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Abstract. We describe a cell-molecular-based evolutionary mathematical model of tumor development
driven by a stochastic Moran birth-death process. The cells in the tumor carry molecular
information in the form of a numerical genome which we represent as a four-digit binary
string used to differentiate cells into 16 molecular types. The binary string is able to
undergo stochastic point mutations that are passed to a daughter cell after each birth
event. The value of the binary string determines the cell fitness, with lower fit cells (e.g.,
0000) defined as healthy phenotypes, and higher fit cells (e.g., 1111) defined as malignant
phenotypes. At each step of the birth-death process, the two phenotypic subpopulations
compete in a prisoner’s dilemma evolutionary game with the healthy cells playing the role
of cooperators, and the cancer cells playing the role of defectors. Fitness, birth-death rates
of the cell populations, and overall tumor fitness are defined via the prisoner’s dilemma
payoff matrix. Mutation parameters include passenger mutations (mutations conferring
no fitness advantage) and driver mutations (mutations which increase cell fitness). The
model is used to explore key emergent features associated with tumor development, in-
cluding tumor growth rates as it relates to intratumor molecular heterogeneity. The tumor
growth equation states that the growth rate is proportional to the logarithm of cellular
diversity/heterogeneity. The Shannon entropy from information theory is used as a quan-
titative measure of heterogeneity and tumor complexity based on the distribution of the
four-digit binary sequences produced by the cell population. To track the development of
heterogeneity from an initial population of healthy cells (0000), we use dynamic phyloge-
netic trees which show clonal and subclonal expansions of cancer cell subpopulations from
an initial malignant cell. We show that tumor growth rates are not constant throughout
tumor development and are generally much higher in the subclinical range than in later
stages of development, which leads to a Gompertzian growth curve. We explain the early
exponential growth of the tumor and the later saturation associated with the Gompertzian
curve which results from our evolutionary simulations using simple statistical mechanics
principles related to the degree of functional coupling of the cell states. We then compare
dosing strategies at early stage development, midstage (clinical stage), and late-stage de-
velopment of the tumor. If used early during tumor development in the subclinical stage,
well before the cancer cell population is selected for growth, therapy is most effective at
disrupting key emergent features of tumor development.
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1. Introduction. At the molecular and cellular levels, cancer is an evolutionary
process [1, 2, 3, 4] driven by random mutational events [5, 6, 7, 8] responsible for
genetic diversification which typically arises via waves of clonal and subclonal expan-
sions [9, 10], operating over an adaptive fitness landscape in which Darwinian selection
favors highly proliferative cell phenotypes, which in turn drive rapid tumor growth
[11, 12, 13]. The tumor environment should be viewed as a complex Darwinian adap-
tive ecosystem consisting of cell types which have evolved over many years [1]. As a
result, all but the most well-designed and tailored therapeutic strategies often deliver
disappointing outcomes and potentially introduce a potent new source of selective
pressure for the proliferation of variant cells which develop an enhanced ability to re-
sist future therapeutic assaults [14, 15, 16, 17, 18]. The prospects for influencing and
controlling such a system are likeliest at the emerging early stages of tumor develop-
ment when the cell population has not yet been selected for growth and survival, and
the tumor size is small. But by the time a typical tumor becomes clinically detectable
(often after several years of growth), it already contains O(108) or more malignant
cells (and potentially occupies a volume of 1–2 mm3), some of which may have entered
the blood circulation [12]. Since there is very little human data available in this early
subclinical stage of tumor development, computational models can serve as a useful
surrogate in this critical developmental stage, which clearly influences and determines
many important emergent features of the tumor at later stages.

Our goals in this paper are to describe a mathematical model for stochastic cell
kinetics in the beginning stages of tumor development (from a single malignant cell)
that includes cell reproduction and death, mutations, evolution, and the subsequent
emergence of genetic heterogeneity well documented in many soft-tissue tumors [19,
20, 21, 22, 23, 24, 25, 26, 27]. The model is a computational one, driven by a stochastic
Moran (birth-death) process with a finite cell population, in which birth-death rates
are functions of cell fitness. The fitness is determined by the cell’s numerical genome in
the form of a four-digit binary string capable of undergoing point mutational dynamics
with one digit in the string flipping values stochastically. The corresponding numerical
value of the binary string determines whether the cell is healthy (low fitness) or
cancerous (high fitness). These two classes of cells compete against each other at each
birth-death event, with fitness calculated according to the payoff matrix associated
with the prisoner’s dilemma evolutionary zero-sum game [28, 29, 30, 31]. The healthy
cells play the role of cooperators, while the cancer cells play the role of defectors
[29, 31]. Our goal is to understand how the model parameters—passenger (mp) and
driver mutation rates (md), selection strength (w), and birth and death rates—affect
tumor growth characteristics, such as tumor growth rates, fixation probabilities of
malignant and healthy cell types, saturation rates of cancer cells, and the emergence
of genetic heterogeneity in a tumor at later stages of development when the tumor is
clinically detectable.

An important outcome of the model is that growth of the cancer cell population is
directly influenced by the intratumor heterogeneity (represented as the distribution of
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the four-digit binary strings throughout the cell population), with high heterogeneity
driving more rapid growth. The connection between heterogeneity and growth has
been discussed in the literature [27, 32, 33, 34, 35, 36, 37]. We quantify heterogeneity
in a tumor using tools from information theory [38, 39], as well as quantitative analysis
of phylogenetic trees associated with clonal and subclonal expansions [26, 40] in the
developing tumor. Because our numerical simulations are carried out from initial
conditions corresponding to a homogeneous population of healthy cells (0000) all the
way to a saturated population of cancer cells, we can use the model to test basic
dose and scheduling strategies [41, 42] at very early stages of tumor development in
the subclinical range, well before a tumor would be clinically detectable by current
technology. Our point of view is that this emerging subclinical tumor should be more
amenable (and potentially vulnerable) to a well-planned therapeutic assault than
a more mature tumor comprised (on average) of larger numbers of cells with more
aggressive proliferative capabilities (having undergone generations of selection), which
are potentially in the early stages of migration to other organs. More complex features
that might influence early stage dynamics, like human-immune response [34, 35] and
the tumor microenvironment [43], are not included in this model in order to keep
things as simple and clear as possible.

2. Description of the Model. The ingredients in our model includes a stochastic
birth-death process that is the engine which drives tumor growth, with heritable
mutations operating over a fitness landscape so that natural selection can play out
over many cell division timescales. Genetic mutations (point mutations) are modeled
using a four-digit binary string of information that each cell carries with it.1 This
simple sequence divides the cells into 16 different “genotypes,” ranging from 0000 up
to 1111, and this information is passed on to the daughter cell during a birth event.
The birth-death replacement process is based on a fitness function defined in terms
of interactions quantified by the prisoner’s dilemma payoff matrix, which operates on
two general classes of cells: healthy (the cooperators) and cancerous (the defectors).
Natural selection acts on each generation of the cell population as the computational
simulation proceeds on a cell division timescale. In this version of the model we
typically simulate up to O(1011) cell divisions, so our mutation rates are chosen to
be relatively high to accommodate these somewhat modest timescales. See [7] for
discussions on mutation rates in cancer.

2.1. The Moran Birth-Death Process. The stochastic engine [44] that drives
tumor growth in our model is a finite-cell-based Moran process consisting of a popu-
lation of N cells, divided into two subpopulations consisting of i cancer cells and N−i
healthy cells. In all of our simulations, N is large enough so that there is no signifi-
cant difference between the results from our finite-cell model and the (deterministic)
replicator equation approach for infinite populations, a connection that is discussed in
detail in [45]. At each time-step in the simulation, one cell is chosen for reproduction
and one cell is chosen for elimination. The cells are chosen randomly, based on their
prevalence in the population pool, which, in turn, is weighted by the fitness function
based on a chosen payoff matrix. The probability of choosing a cancer cell at any
given step is i/N , while the probability of choosing a healthy cell is (N − i)/N . As it

1To be clear, the four-digit sequence is not meant as a bare-bones representation of the full
human genome, but as a simple representation of the relevant differences in genetic information
contained in different cells, allowing us to coarse-grain the cells into 16 different categories based on
their genetic/epigenetic profiles.
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Fig. 1 Stochastic Moran birth-death process. Cancer cell population, i(t), during three stochastic
simulations of the Moran birth-death process in a population of 100 cells and an initial
condition of i = 50 cells. The blue curve leads to fixation of the cancer cell population, the
red curve leads to elimination of the cancer cell population, and the yellow curve remains
fluctuating in a mixed population of cells after 10,000 cell divisions. An average of 25
stochastic simulations (black dashed line) is also plotted.

unfolds, the process is a stochastic birth-death process where the total population size,
N , stays constant and the number of cancer cells in the population, i, is the stochastic
state variable. At any given step, the probability of transitioning from i cancer cells
to j cancer cells is denoted Pij , with j = i + 1 or j = i − 1. These probabilities are
determined by the birth/death rates associated with the cancer cell population, which
in turn are determined by a cell population fitness function. Each cell carries with
it a binary string in the form of a four digit binary sequence from 0000 up to 1111.
This defines 16 different cell types, which are coarse-grained into two groups: healthy
cells (0000–1010) and cancer cells (1011–1111). These two subpopulations interact
at each birth-death time-step with fitness defined in terms of the prisoner’s dilemma
payoff matrix. The algorithmic details are shown in Figure 10 in the appendix. To
set the stage for more complex simulations, Figure 1 shows the result of a stochastic
simulation (depicting i) driven by the Moran process alone, with no mutations and no
selection. Figure 1 shows three different simulations: one leading to the elimination of
all cancer cells via random drift (red), another fluctuating between a mixed cell popu-
lation after 10,000 cell divisions (yellow), and a third leading to fixation of the cancer
cell population (blue) after around 5000 cell divisions. The average of 25 stochastic
simulations is also plotted (note that the average will converge to half cancer cells
and half healthy cells by the law of large numbers). The mean time to fixation of the
cancer cell population which starts with “i” cells in this simple setting (no mutations,
no selection) is given by

(2.1) k = N

 i∑
j=1

N − i
N − j

+

N−1∑
j=i+1

i

j

 .
With no mechanism for natural selection, there is no shape to the growth curves.
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2.2. The Prisoner’s Dilemma Payoff Matrix. To introduce the effect of selection
which will regulate cell birth and death rates, we use the prisoner’s dilemma evolu-
tionary game, in which two players compete against each other for the best payoff.
Each has to decide whether to cooperate (healthy cell), or defect (cancer cell), and
each receives a payoff determined from the prisoner’s dilemma payoff matrix,2 A:

(2.2) A =

(
a b
c d

)
=

(
3 0
5 1

)
.

The essence of the prisoner’s dilemma game is that two players compete against
each other, and each has to decide what best strategy to adopt in order to maximize
their payoff. This 2×2 matrix assigns the payoff (e.g., reward) to each player on each
interaction. My options, as a strategy or, equivalently, as a cell type, are listed along
the rows, with row 1 associated with my possible choice to cooperate, or equivalently
my cell type being healthy, and row 2 associated with my possible choice to defect, or
equivalently my cell type being cancerous. Your options are listed down the columns,
with column 1 associated with your choice to cooperate (i.e., be a healthy cell), and
column 2 associated with your choice to defect (i.e., be a cancer cell). The analysis of
a rational player in a prisoner’s dilemma game runs as follows. I do not know what
strategy you will choose, but suppose you choose to cooperate (column 1). In that
case, I am better off defecting (row 2) since I receive a payoff of 5 instead of 3 (if I
also cooperate). Suppose instead you choose to defect (column 2). In that case, I am
also better off defecting (row 2) since I receive a payoff of 1 instead of 0 (if I were to
have cooperated). Therefore, no matter what you choose, I am better off (from a pure
payoff point of view) if I defect. What makes this game such a useful paradigm for
strategic interactions ranging from economics, political science, biology [46], and even
psychology [29] is the following additional observation. You will analyze the game in
exactly the same way I did (just switching the roles of me and you in the previous
rational analysis), so you will also decide to defect no matter what I do. The upshot
if we both defect is that we will each receive a payoff of 1, instead of each receiving
a payoff of 3 if we had both chosen to cooperate. The defect-defect combination is a
Nash equilibrium [28], and yet it is suboptimal for both players and for the system
as a whole. Rational thought rules out the cooperate-cooperate combination, which
would be better for each player (3 points each) and for both players combined (6
points). In fact, the Nash equilibrium strategy of defect-defect is the worst possible
system-wide choice, yielding a total payoff of 2 points, compared to the cooperate-
defect or defect-cooperate combination, which yields a total payoff of 5 points, or the
best system-wide strategy of cooperate-cooperate, yielding a total payoff of 6 points.

The game becomes even more interesting if it is played repeatedly [28, 29, 30, 31],
with each player allowed to decide what strategy to use on each interaction so as to
accumulate a higher payoff than the competition over a sequence of N games. In order
to analyze this kind of an evolving setup, a fitness function must be introduced based
on the payoff matrix A. Let us now switch our terminology so that the relevance to
tumor cell kinetics becomes clear. In this case, we randomly select pairs of cells out
of the total population at each step and subject them to a birth-death process, basing
our birth rates and death rates on the prisoner’s dilemma payoff matrix. Thus, in

2What defines a prisoner’s dilemma matrix are the inequalities c > a > d > b. The chosen values
in (2.2) are relatively standard, but not unique. More discussion of why the prisoner’s dilemma
matrix, which models the evolution of defection, is a useful paradigm for cancer can be found in [46]
and some of the references therein.
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our context, it is not the strategies that evolve, as cells cannot change type based
on strategy (only based on mutations), but the prevalence of each cell type in the
population is evolving, with the winner identified as the subtype that first reaches
fixation in the population. As the populations evolve, the fitness of the two competing
subpopulations can be tracked, as well as the overall fitness of the combined total
population of cells.

2.3. The Fitness Landscape. Let us start by laying out the various probabilities
of pairs of cells interacting and clearly defining payoffs when there are i cancer cells,
and N−i healthy cells in the population. The probability that a healthy cell interacts
with another healthy cell is given by (N − i − 1)/(N − 1), whereas the probability
that a healthy cell interacts with a cancer cell is i/(N − 1). The probability that a
cancer cell interacts with a healthy cell is (N − i)/(N − 1), whereas the probability
that a cancer cell interacts with another cancer cell is (i − 1)/(N − 1). The payoffs
associated with the healthy cells and cancer cells, obtained by weighting the payoff
matrix values with appropriate probabilities, are given by (following notation in [45])

(2.3) πH =
3(N − i− 1) + 0i

N − 1
,

(2.4) πC =
5(N − i) + 1(i− 1)

N − 1
.

This gives rise to the average payoff associated with the population of cells:

(2.5) 〈π〉 =
πH(N − i) + πC(i)

N
.

Based on these formulas, we define the fitness of the healthy cells as

(2.6) fH = 1− wH + wHπ
H

and the fitness of the cancer cells as

(2.7) fC = 1− wC + wCπ
C .

Here, (wH , wC) are “selection strength” parameters, 0 ≤ wH ≤ 1, 0 ≤ wC ≤ 1, that
measure the strength of selection pressure on each of the population of cells. If wH = 0,
there is no natural selection acting on the healthy cell population, and the dynamics
is driven purely by the Moran process. When wH = 1, the selection pressure on
the healthy cell population is strongest, and the prisoner’s dilemma payoff matrix has
maximum effect. Likewise for the parameter wC and how it controls selection pressure
in the cancer cell population. Since therapy imposes selection pressure on different
subpopulations of cells, wH and wC are the two parameters we alter to administer
simulated therapeutic responses. We discuss this in section 3.5.

The expected fitness of each of the subpopulations are

(2.8) φH =
N − i
N

fH ,

(2.9) φC =
i

N
fC ,

with total expected fitness

(2.10) φ = φHi + φC .
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(a) (b) (c)

Fig. 2 Fitness as a function of the selection parameter w ≡ wH ≡ wC . (a) Monotonically decreasing
fitness of healthy cell subpopulation φH . (b) Fitness of cancer cell subpopulation φC . Note

that φC has a maximum at i = N
2

+
(N−1)

8w
, which is between 0 and N for w > 1

4
(1 − 1/N).

(c) Monotonically decreasing fitness of the total population, φ.

From these formulas, we can define the transition probability of going from i to i+ 1
cancer cells on a given step:

(2.11) Pi,i+1 =
ifC

ifC + (N − i)fH
N − i
N

.

The first term represents the probability that a cancer cell is selected for reproduction
(weighted by fitness) and a healthy cell is selected for death. Likewise, the transition
probability of going from i to i− 1 cancer cells on a given step is

(2.12) Pi,i−1 =
(N − i)fH

ifC + (N − i)fH
i

N
.

Here, the first term is the probability that the healthy cell is selected for reproduction
(weighted by fitness) and a cancer cell is selected for death. The remaining transition
probabilities are as follows:

(2.13) Pi,i = 1− Pi,i+1 − Pi,i−1; P0,0 = 1; PN,N = 1.

It is these simple formulas that drive the subsequent dynamics of the competing
populations of cells and determine the emergent features of the forming tumor (cancer
cell population). A typical set of simulations (for different values of w) of the evolving
fitness of the healthy cell population, φH , the cancer cell population φC , and the
total fitness, φ, is shown in Figure 2 as the selection parameter varies from 0 to 1
(wH = wC ≡ w). As the population evolves, the fitness of the healthy cell population
decreases, the fitness of the cancer cell population increases (sometimes reaching a
maximum point), while the total population fitness decreases.

2.4. Passenger and Driver Mutations. Two remaining parameters in our model
are the passenger mutation rate, mp, and the driver mutation rate, md [7]. Passenger
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Fig. 3 Markov point mutation diagram. Left: diagram shows 16 genetic cell types based on four-
digit binary string and the effect of a point mutation on each cell type. Blue indicates healthy
cell type (0000–1010), red indicates cancerous cell type (1011–1111). Black arrows indicate
passenger mutations (healthy to healthy or cancer to cancer), red arrows indicate driver
mutations (healthy to cancer). Top right: 3 scenarios may occur during the reproduction
process: no mutation, passenger mutation, or driver mutation.

mutations confer no fitness advantage; hence mp controls point mutations that act on
the digit strings that define the 11 levels of healthy cells 0000–1010, and the 5 levels
of cancer cells 1011–1111. A mutation diagram is shown in Figure 3 depicting all
of the possible point mutation transitions at each step. Mutations that stay within
either of those two ranges do not alter the cell fitness. On the other hand, the driver
mutation parameter controls mutations that take a binary string from a healthy cell
and, via a point mutation, alter it so that the string becomes a cancer cell.3 A
simple example would be a mutation that alters 1010 (healthy) to 1011 (cancer) by
stochastically flipping the first digit from 0 to 1. The interested reader can consult
the flow diagram in Figure 10 of the appendix for more details of the algorithm. The
full code is available from the authors upon request.

3. Results. Gompertzian growth arising from multicellular systems occurs in
many settings with different physical and biological constraints acting in concert.
Hence it appears as if this universal growth curve does not depend on specific physi-
cal mechanisms (e.g., oxygen diffusion, blood supply, or tumor microenvironment) but
more on multicellularity and the ability for populations of cells to assume a heteroge-
neous distribution of functional states, as was described most clearly in Kendal’s 1985
paper [32] and documented clinically in breast [42] and other tumor types. Alternative
biomechanistic models of tumor growth at the cellular level have been developed (see
[43, 47, 48, 49, 50, 51]), although they do not generally include molecular information

3In our simulations, we assume that driver mutations cannot revert to passenger mutations; i.e.,
once a cancer cell is born, it stays in that category. We do not know of any evidence in the literature
that shows the reversion of a cancer cell to a healthy cell, nor is this particularly a focus of this
manuscript.
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or evolutionary effects. Features of the Gompertzian growth curve defined by (3.1),
(3.2) allow us to clearly describe three distinct growth regimes, the earliest being sub-
clinical and the most critical regime in which to influence future tumor kinetics, the
second being the clinical regime where growth measurements are typically obtained
[12], and the third being the lethal burden phase where growth saturates. The growth
equation, (3.9), relates tumor heterogeneity to growth rates, and we quantify hetero-
geneity via the Shannon entropy [38, 39, 55] of the cellular population. One of the main
features of our evolutionary simulations is to show (i) how it leads to Gompertzian
growth, (ii) how growth is driven by heterogeneity quantitated via Shannon entropy,
(iii) how the initiation of heterogeneity and fitness can be tracked via dynamic phylo-
genetic trees, and (iv) how tumor kinetics can be influenced via therapeutic strategies
that target heterogeneity best in earlier growth regimes. In keeping consistent with
the notation of the Gompertzian growth curve, we now represent the tumor growth
as the proportion of cancer cells in the population, nG(t).

3.1. Gompertzian Tumor Growth and Three Growth Regimes. The basic
(top-down) equations giving rise to pure Gompertzian growth [52, 53, 54, 56] are
the coupled equations

dnG
dt

= γnG,(3.1)

dγ

dt
= −αγ.(3.2)

Here is the proportion of growing cancer cells in the mixed population, which
grows exponentially according to (3.1), but with a time-dependent growth rate which
is exponentially decaying according to (3.2). It is straightforward to integrate (3.1)
to obtain

(3.3) nG(t) = N0 exp

[(
1

t

∫ t

0

γdt

)
· t
]
.

Then (3.2) is solved with

(3.4) γ(t) = γ0 exp(−αt).

Plugging (3.4) into (3.3) and integrating yields the Gompertzian curve

(3.5) nG(t) = N0 exp
[γ0
α

(1− exp(−αt))
]
,

where in the long-time limit the population saturates to the value

(3.6) n∞ = N0 exp(γ0/α),

which we normalize to one (without loss of generality). The key features of Gom-
pertzian growth are shown in Figure 4. As the cancer cell proportion nG(t) increases
(Figure 4(a)), there are three distinct growth regimes defined by the inflection point on
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(a) (b)

(c) (d)

Fig. 4 Gompertzian equation. Numerical simulation of the Gompertzian equations (3.1), (3.2) with
parameters N0 = 0.001, γ0 = 10, and α = 0.2895. The three regimes of tumor growth are
demarcated by the blue dots in each subfigure, representing the maximum and minimum of
the second derivative. (a) Cancer cell proportion, n(t), over time. (b) First and second
derivatives of the tumor growth curve. (c) Growth rate, γ(t), over time, with the average
growth rate in regimes 1, 2, 3 plotted in red. (d) First derivative of growth rate.

the nG growth curve (maximum of ṅG and d2nG/dt
2 = 0) and the two inflection points

on the growth-velocity curve ṅG (maximum/minimum of n̈G and d3nG/dt
3 = 0). As

shown in Figure 4(a), there are three points that divide the growth curve into four
distinct regions. For convenience and symmetry, we lump the second and third regions
together and define three basic growth regimes:

• Regime 1 (subclinical): Increasing velocity ṅG, increasing acceleration d2nG/dt
2.

Cell population and tumor volume grow at an exponential rate.
• Regime 2 (clinical): In this regime, ṅG reaches its maximum value. In the

early part of the regime, ṅG is increasing while d2nG/dt
2 decreases. In the

later part of the regime, ṅG is decreasing and d2nG/dt
2 becomes negative

(deceleration). Growth rates are clinically typically measured as linear.
• Regime 3 (saturation/lethal): Decreasing tumor velocity ṅG with decreasing

deceleration. Growth rate rapidly slows toward full saturation of the cancer
cell population.

Regime 1, generally speaking, is the subclinical growth regime where the develop-
ing tumor has substantially fewer than 108 malignant cells with a tumor size smaller
than 1 or 2 mm3. Typically, the clinically measurable regime is regime 2, while the
lethal stage when the tumor saturates is associated with regime 3. In reality, the
boundaries of these regimes are, of course, not sharp and depend on tumor type and
location, which influence detectability. But the clarity of the pure Gompertzian curve
gives a useful framework which delineates the three distinct growth regimes based on
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clear principles associated with growth, velocity, and acceleration. The growth rate
curve is shown in Figure 4(c), with its derivatives shown in Figure 4(d). It is most
instructive to show the average growth rates defined in each of the three regimes, also
shown in the Figure 4(c). The average growth rate in the time interval from t1 to t2
is defined as

(3.7) γave =
1

t2 − t1

∫ t2

t1

γ(t)dt.

The subclinical regime 1 has the highest average growth, whereas in regime 2,
where tumor growth is typically measured, average growth rates are lower, followed
by the lowest average growth in the clinically lethal regime 3. This implies that clin-
ically measured growth rates typically underestimate growth rates that preceded it
in the subclinical stage. It also implies that linear extrapolation back from clinically
measured growth rates to estimate tumor initiation times (see [11, 12, 13]) will sys-
tematically overestimate the amount of time the tumor has been developing before
being measured. While this might generally be seen as good news (since the cancer
initiation event was more recent than estimated via linear extrapolation), it also gives
the clinician a shorter window of time in which to act.

3.2. Heterogeneity and Growth via Statistical Mechanics. Kendal [32] lays out
a clear argument of how this growth curve arises from a purely statistical mechanics
point of view. In a nutshell, his argument can be explained by considering a population
of n cells, letting the jth cell (j = 1, 2, 3, . . . , n) have the potential to assume one of qj
possible states. The number of combinations of states possible within the population,
P , can be thought of as a measure of intraneoplastic diversity,

(3.8) P = q1q2q3 . . . qn,

and is related to the growth rate of a tumor via the equation

(3.9)
dn

dt
= α logP,

where n(t) is the number of cells capable of proliferation at a given time t and α is a
parameter that sets the timescale of growth.4 There are two basic cases to consider.
First, suppose the cells have no interaction at all, say in the earliest stages of tumor
development, and let each of the n cells have the ability to assume one of m possible
states. Then P = mn, and the growth equation becomes

(3.10)
dn

dt
= αn logm = (α logm)n.

The solution to this equation is the exponentially growing population

(3.11) n(t) = N0 exp((α logm)t).

4Kendal’s formulation [32] assumes a cell population made up of three subgroups: (1) proliferative
cells; (2) nonproliferative and nonclonogenic cells; (3) nonproliferative but clonogenic cells, with
an assumption that the neoplasm’s growth rate is influenced by the proportion of proliferating to
nonproliferating cells and an expression of each clone’s growth potential. The log is chosen based on
the fact that heterogeneity is measured as the multiplicative combination of achievable states in the
tumor, and the requirement that G(P1 · P2) = G(P1) + G(P2) for any two subpopulations P1, P2

and growth function G. The discussion of the relationship between tumor heterogeneity and growth
is an ongoing topic in the current literature [19, 20, 23, 25, 26].
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Table 1 md: driver mutation rate; mp : passenger mutation rate; tEmax: time to maximum en-
tropy; tSAT : time to saturation; nd: number of driver mutations; np: number of passenger
mutations; γave,1: average growth rate in regime 1; γave,2: average growth rate in regime 2;
γave,3: average growth rate in regime 3.

md mp tEmax tSAT nd np γave,1 γave,2 γave,3

0.4 0.1 5.50e+5 1.830e+6 1.289e+4 4.68e+4 3.14e-5 3.68e-6 1.448e-7

0.3 0.2 4.88e+5 1.753e+6 1.682e+4 8.26e+4 4.04e-5 4.31e-6 1.677e-7

0.2 0.3 4.85e+5 1.761e+6 1.715e+4 1.230e+4 3.86e-5 4.41e-6 1.729e-7

0.1 0.4 5.40e+5 1.426e+6 1.362e+4 1.836e+4 3.04e-5 3.81e-6 1.658e-7

Thus, early stage development is characterized by exponential growth (regime 1), with
a growth rate proportional to the log of the number of assumable states of the cells
comprising the tumor population. This stage is characterized by the Gompertzian
curve shown in Figure 4(a) to the left of the first blue dot, in regime 1. Contrast this
with later stages of tumor growth, when the subpopulations of cells communicate and
influence each other’s growth characteristics, either via competition or cooperation
(regime 3) within the tumor microenvironment. In effect, this will constrain (reduce)
the number of assumable states of each cell, since the population is effectively coupled.
In the extreme, suppose P = mn/nn. In other words, suppose P is now inversely
related to the total number of possible intercellular interactions. Inserting this into
(3.9) yields

(3.12)
dn

dt
= α log

((m
n

)n)
= αn [logm− log n] .

The solution to this equation is exactly the Gompertzian growth curve (3.5) and ac-
counts for regimes 2 and 3 previously discussed in which tumor growth slows down.
The growth equation (3.9) which relates cancer cell population growth to tumor het-
erogeneity is capable of producing a family of growth curves, depending on details of
intercellular coupling, which of course is influenced by details of the biological and
physical constraints influencing the tumor microenvironment. Thus, the growth equa-
tion (3.9) has the ability to produce different detailed shapes based on assumptions
associated with intercellular coupling. Table 1 shows the average growth rates in the
three regimes as a function of the key parameters in the model.

3.3. Quantitative Measures of Tumor Heterogeneity and Growth. For our
purposes, we measure heterogeneity using the Shannon entropy from information
theory [38]:

(3.13) E(t) = −
N∑
i=1

pi log2 pi

(here, log is defined as base 2). The probability pi measures the proportion of cells
of type i, with i = 1, . . . , 16 representing the distribution of binary strings ranging
from 0000 to 1111. We then coarse-grain this distribution further so that cells having
strings ranging from 0000 up to 1010 are called “healthy,” while those ranging from
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1011 to 1111 are “cancerous.”5 The growth equation (3.9) then becomes

(3.14)
dnE
dt

= αE(t).

It follows from (3.14) that the cancer cell proportion nE(t) can be written in terms
of entropy as

(3.15) nE(t) = α

∫ t

0

E(t)dt.

The panel in Figure 5 shows the results from our cell-based simulations. Figure
5(a) shows the Gompertzian curve associated with the proportion of cancer cells in
the population, while Figure 5(b) shows the velocity and accelerations associated
with growth and can be compared with Figure 4(b). In Figure 5(c) we show the
entropy during a typical simulation, marking the maximum entropy point, which
peaks relatively early in the simulation before the entropy returns back down to zero,
reflecting the fact that cancer cells have reached fixation and have saturated the
population. Figure 5(d) shows the fitness of the cancer cell subpopulation, healthy
cell subpopulation, and the overall tumor fitness (wH = wC ≡ w = 0.5). As a typical
simulation proceeds, the cancer cell subpopulation fitness increases, the healthy cell
subpopulation fitness decreases, and the overall tumor fitness decreases. Figures 5(e),
5(f) show the Gompertzian growth curves as the selection pressure increases (Figure
5(e)) and as the mutation rate increases (Figure 5(f)). High values for either of these
parameters lead to a very steep growth curve, as is expected.

Figure 6 shows the growth curves linearly extrapolated back to give a prediction
of when the first driver mutation occurred that initiated tumor growth. The growth
rates from regime 2 (linear regime) are used to extrapolate back to the initiation
event. Since the actual growth rate in regime 1 is much faster than linear, the linear
extrapolation extends the event too far back in time as compared to when the event
actually occurred. The inset of Figure 6 shows histograms of the average growth
rates in each of the three regimes as a function of the mutation rate m (here, we take
mp = md = m).

A typical stochastic simulation showing the evolution of all 16 possible cell types
is shown in Figure 7. We also show E(t), where entropy is computed using the
most extreme coarse-grained two-state system composed of the two subpopulations
of healthy cells and cancer cells. We compare in Figure 7 the Gompertzian growth
curve (eqn. (3.5)) and the corresponding curve obtained from (3.15) to the stochastic
simulation, and the agreement is excellent. Likewise, we also show a comparison of
dn/dt, with (3.14) and (3.1), with E(t) normalized so that limiting values match
the stochastic simulation, and the agreement is also excellent. In the beginning,
entropy is zero, since the population consists purely of healthy cells, and in the end
of the simulation, entropy is again zero as the population consists purely of cancer
cells. Entropy peaks somewhere early in the simulation when the mixture of cell
types is equally distributed over cancer and healthy types. It is this intermediate but
important heterogeneously distributed state that is the key driver of growth, as is
clear from (3.14).

5Our results are relatively insensitive to where we draw the dividing line between healthy and
cancerous.
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(a) (b)

(c) (d)

(e) (f)

Fig. 5 Moran birth-death process with selection. (a) Cancer cell population, i(t) (w = 0.5, m = 0.2,
N = 1010) plotted with a spline curve connecting 200 data points from a single stochastic
simulation. (b) First and second derivatives of the tumor growth curve in (a) are plotted
with maximum and minimum of second derivative indicated (blue). (c) Entropy of the cell
population from (3.13) as it relates to the growth equation (3.14). (d) Fitness of healthy cell
population and cancer cell population and total fitness as defined by (2.8), (2.9), (2.10). (e)
Simulations of cancer cell population, i(t), for a range of selection parameter values. (f)
Simulations of cancer cell population, i(t), for a range of mutation rate values.

3.4. Dynamic Phylogenetic Trees and Evolution of Fitness. To track the ini-
tiation of cellular heterogeneity from an initially homogeneous state, we follow all of
the mutations that take place during the course of a simulation and organize this in
the form of a phylogenetic tree in Figure 8, showing the typical size of the genotypic
space and the evolution of the genotypic landscape. As the simulation proceeds, the
phylogenetic tree dynamically branches out into an increasingly complex structure,
with fitness characteristics color coded in Figure 8(a). We also show the bins associ-
ated with each of the 16 cell types, the number of cancer cells i(t), and the entropy
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Fig. 6 Tumor initiation prediction. Five sample stochastic simulations of tumor growth (N = 1010

cells, w = 0.5, m = 0.1, 0.2, 0.3, 0.4, 0.5) plotted on a log-linear graph where the model output
(i(t), solid lines) is fit in the clinical regime (greater than 108 cells) using an exponential
growth equation and extrapolated backward in simulation time (dashed lines). The inset bar
graph shows the average growth rate in each regime.

associated with the subpopulation of cell types as a simulation proceeds in Figure
8(b). Knowing exactly the types of cells comprising the tumor at any given time al-
lows us to target cell distributions for simulated therapies to test different strategies,
which we describe next.

3.5. A Comparison of Early vs. Late Therapy. In Figure 9 we show the results
from asking the simple question of how early therapy (administered in regime 1) com-
pares with therapy in the middle stages of tumor development (regime 2), or in the
later stages of development (regime 3). Equations (2.11), (2.12) are the governing
equations controlling birth/death rates of the cancer cell and healthy cell subpopu-
lations as natural selection plays out. Since the proliferation of cancer cells can be
thought of as an imbalance of selection pressures on the competing subpopulations in
favor of the cancer subpopulation, the goal of any therapeutic intervention is to alter
this complex imbalance in favor of the healthy cell subpopulation. We implement
this by adjusting the selection pressure parameters (wH , wC) in the formulas (2.6),
(2.7). In particular, when therapy is “on,” we choose wC = 0, and wH = 1, tilting the
selection pressure in favor of the healthy cell subpopulation. When therapy is “off,”
the two parameters return to their original baseline values, which we take here as
wH = 0.1, wC = 0.1. Figure 9 depicts the proportion of cancer cells in the population
both in the absence of therapy and when therapy is administered. As a compara-
tive tool, in each case we administer the therapy until a fixed number of cancer cells
remains (in each case we take this threshold number to be 25 cancer cells), and we
compare the amount of time, ∆t, it takes to achieve this low level. The figure clearly
shows ∆t1 < ∆t2 < ∆t3 < ∆t4, while if therapy is administered too late, as in ∆t5,
the low threshold is never achieved. The simulations show that a shorter therapeutic
time period is needed if administered earlier to gain the same level of success. The
topic of how best to optimize computational therapies is complex, and these simula-
tions are only meant as a confirmation and quantification of how early stage therapy
is more effective than late stage therapy.
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(a)

(b)

(c)

Fig. 7 Comparison of stochastic Moran birth-death process, Gompertzian, and Shannon entropy
growth curves. (a) A single stochastic simulation (N = 1010 cells, m = 0.5, w = 0.5,
mp = md = 0.25) growth curve, n(t), compared with the Gompertzian growth curve, nG(t),
(3.5), and Shannon entropy growth curve, nE(t), (3.15). Growth curves nG(t) and nE(t)
are normalized to equal one in the limit. (b) Comparison of first derivatives of n(t), nE(t),
nG(t). (c) Comparison of growth rates associated with n(t), nE(t), nG(t), with average
growth rates of n(t) plotted for each regime, (3.7).

4. Discussion. The following summarizes the main points forming the framework
of our model:

(i) A tumor is a complex Darwinian ecosystem of competing cells operating on
an adaptive fitness landscape driven by mutational dynamics and shaped by
evolutionary pressures.

(ii) The basic competitors in an evolutionary game theory model of tumor de-
velopment are cell populations with a broad distribution of fitness character-
istics coarse-grained into two types: healthy cells (cooperators) and cancer
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(a)

(b)

Fig. 8 Emergence of genetic heterogeneity. (a) Left: sample dendritic phylogenetic tree tracking
point mutations as time extends radially. Right: three snapshots in time of a dendritic tree
in a simulation of 30 cells with strong selection (w = 1, mp = 0.1, md = 0.2). Pathways are
color coded to indicate genetic cell type. (b) Linear phylogenetic tree of the same stochastic
simulation shown in (a) along with histogram plots of the distribution of genetic cell types
and a plot of the cancer cell population i(t) and entropy.

cells (defectors). Each of these cell subpopulations attempts to maximize its
own fitness.

(iii) Cell fitness is associated with reproductive prowess, and in this respect,
healthy cells are less fit than cancer cells.
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Fig. 9 Simulated therapy. An average of 25 stochastic simulations (N = 103 cells, w = 0.5,
m = 0.1) where therapy (wH = 1, wC = 0) is administered at different time points
(t = 6000, 8000, 10000, 12000, 14000 cell divisions) until all cancer cells are eliminated be-
low a small threshold value (25 cells). Time required (∆t) for tumor elimination increases
as the tumor volume increases (i.e., ∆t1 < ∆t2 < ∆t3 < ∆t4, blue, red, yellow, purple ar-
rows, respectively), until, at later simulation time points, therapy is unable to regress tumor
size (∆t5, green arrow).

(iv) Primary tumors initiate from a single malignant cell that has undergone the
appropriate mutational steps and subsequently undergoes clonal and sub-
clonal expansion. Polyclonality and heterogeneity are thus seen as emergent
features of tumor development.

(v) Parameters and distributions measured in the detectable range of tumor
growth, such as tumor growth rates and fixation probabilities, are emergent
features that have developed from a monoclonal state via cell kinetics and
evolutionary development taking place in the subclinical regime.

(vi) Tumor growth is driven by molecular heterogeneity of the cell population
comprising the tumor and reflected in the growth equation (3.9).

(vii) Tumor cell populations are more amenable to therapeutic strategies in the
early stages of development, before selection for growth and survival have
shaped the environment.

We believe the simple evolutionary model described in this paper, driven by a
Moran process and shaped by heritable mutations with a fitness landscape based on
the prisoner’s dilemma evolutionary game, is useful in helping to understand early
stage tumor growth and how it is influenced by the interplay of a few select small
number of key parameters. When a malignant tumor cell population has already
exceeded O(108–1010) cells, some of which may have entered the circulation or lym-
phatics and migrated to other sites, the opportunity to control or even shape future
events may be limited. Attacking tumor heterogeneity as soon as it develops seems
to be a useful strategy, particularly if heterogeneity is the driver of growth, as in
(3.9). Whether these concepts can be developed in the more general context when
cell dissemination to other sites is included in the model, and then translated into
actionable clinical strategies, is a challenge for the future.
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Appendix A.

Fig. 10 A flow chart of the Moran process with selection and mutation algorithm. Box 1: Mutation
rate m (where m = mp +md), selection pressure w, and the initial state vector x containing
N total cells are the inputs for a simulation. Box 2: The prisoner’s dilemma game (a = 3;
b = 0; c = 5; d = 1) is used to calculate the fitness of each healthy and cancer cell
type, which is a function of the payoff values and the state vector, x. Boxes 3 and 4: A
single cell is chosen for death according to the relative proportion of the cell type in the
cell population. Simultaneously, a single cell is selected for birth according to the relative
proportion, weighted by cell fitness. Box 5: During the replication process, the daughter
cell inherits a replica of the parent cell’s genetic string, with errors occurring at a rate of
m. A single bit of the daughter cell’s genetic string may flip during each cell division. The
possible mutations can be thought of as a single-step random walk on the Markov diagram
shown in Figure 3.
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