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We use a three-component replicator system with healthy cells, sensitive cells, and resistant cells, with a
prisoner’s dilemma payoff matrix from evolutionary game theory, to model and control the nonlinear dynamical
system governing the ecological mechanism of competitive release by which tumors develop chemotherapeutic
resistance. The control method we describe is based on nonlinear trajectory design and energy transfer methods
first introduced in the orbital mechanics literature for Hamiltonian systems. For continuous therapy, the basin
boundaries of attraction associated with the chemo-sensitive population and the chemo-resistant population
for increasing values of chemo-concentrations have an intertwined spiral structure with extreme sensitivity
to changes in chemo-concentration level as well as sensitivity with respect to resistant mutations. For time-
dependent therapies, we introduce an orbit transfer method to construct continuous families of periodic (closed)
orbits by switching the chemo-dose at carefully chosen times and appropriate levels to design schedules that are
superior to both maximum tolerated dose (MTD) schedules and low-dose metronomic (LDM) schedules, both
of which ultimately lead to fixation of sensitive cells or resistant cells. By keeping the three subpopulations of
cells in competition with each other indefinitely, we avoid fixation of the cancer cell population and regrowth
of a resistant tumor. The method can be viewed as a way to dynamically shape the average population fitness
landscape of a tumor to steer the chemotherapeutic response curve. We show that the method is remarkably
insensitive to initial conditions and small changes in chemo-dosages, an important criterion for turning the
method into an actionable strategy.
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I. INTRODUCTION

It is widely appreciated that the development of chemother-
apeutic resistance is the primary reason for recurrence of can-
cer in patients undergoing treatment, and remains one of the
primary challenges in the field of oncology [1–3]. As a tumor
grows, and even as tumor cells spread throughout the system
and metastasis ensues, standard prescheduled chemotherapeu-
tic protocols such as maximum tolerated dose (MTD) and
low-dose metronomic schedules (LDM) often show early suc-
cess as the tumor regresses temporarily. Schematics for sev-
eral kinds of chemotherapeutic schedules are shown in Fig. 1.
A typical chemotherapeutic cycle might involve one strong
dose every three weeks, or a dose for 5 consecutive days,
followed by a 28 day rest period [4]. After months of fixed
periodic cycles, the cancer often recurs and the tumor begins
to regrow. Because of the genetic and cellular heterogeneity
of a typical tumor [5], instead of killing all of the cancer
cells and thereby eliminating the tumor, the chemotherapeutic
regimen actually selects for a resistant phenotype [6–9]. The
diversity of cells within a tumor effectively protects the tumor
from single-line or prescheduled chemotherapeutic assaults
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by allowing for elimination of the chemo-sensitive population
in order to accomplish the subsequent release of the chemo-
resistant population. By reducing the relative fitness of the
sensitive cells, chemotherapy acts as the primary mechanism
of natural selection that selects specifically against rapidly
dividing cells [10].

The characterization of a typical tumor as an adaptive
landscape made up of competing cells of varying degrees
of fitness, which determine growth rates of the various sub-
populations, is a more accurate characterization of a tumor
and suggests an ecological or evolutionary approach [11–20].
If one had access to time-resolved information [21] on the
relative balance and growth rates of the subpopulations of
cells making up the tumor, then one could use chemotherapy
as a control device (actuator) to keep the subpopulations in
balance, competing with each other indefinitely, without any
one of the cancerous subpopulations dominating the land-
scape [6]. Chemotherapy would then be regarded more as a
maintenance mechanism than a cure [22,23] and one would
be imposing no more selection than is necessary, as has been
advocated by Read et al. and others [24].

We introduce an evolutionary game theory model of
chemotherapeutic resistance [1] along with a method of adap-
tive control to design advantageous chemotherapeutic sched-
ules that are able to overcome, or at least manage, resistance.
The mechanism of resistance that we model is based on
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FIG. 1. Schematic dose schedules. (a) Maximum tolerated dose
(MTD) schedule. (b) Low dose metronomic (LDM) schedule.
(c) Adaptive schedule. (d) General time-dependent schedule actuated
by piecewise constant dose concentrations.

the ecological notion of competitive release [8,11,25] of the
resistant cell population when the sensitive cell population
is reduced below a certain threshold. Above the threshold,
the sensitive cells are able to outcompete (on average) the
resistant cells due to the inherent cost of resistance [26], which
tilts the fitness landscape of the system in favor of the sensitive
cell population, allowing the tumor to grow. Under sufficient
chemotherapeutic pressure, the sensitive cell population is
reduced enough to allow the resistant population to begin
to flourish and eventually regrow the tumor in a form that
is much harder to treat. A quantitative understanding of this
phenomenon is necessary in order to develop chemotherapeu-
tic strategies (i.e., adaptive therapies) to combat it, a point
of view adopted and developed in [3,13,14,16,22,27]. In this
paper, we frame the problem as one in nonlinear dynamical
systems theory and use trajectory transfer methods developed
relatively recently in the orbital mechanics literature [28–32]
to design chemotherapeutic schedules that have the potential
to outperform more standard approaches [33].

The mathematical model we use is based on a three-
component replicator dynamical system with a frequency-
dependent fitness function based on a prisoner’s dilemma
(PD) payoff matrix [34,35]. Cell interactions occur between
three cell types that form our ecosystem: healthy cells (H),
chemo-sensitive cells (S), and chemo-resistant cells (R). The
healthy cell subpopulation can be thought of as non-neoplastic
cells that have a lower fitness than the chemo-sensitive
subpopulation. The independent variables represent relative
frequencies in the total population, and the tumor alone
would be made up of S + R cancer cell subpopulations. In
a PD scenario, the healthy cells act as cooperators while the
cancer cells act as defectors [36]. Unchecked, the defectors
saturate the population as the average fitness decreases to a

suboptimal outcome. The goal of chemotherapeutics in this
framework is to coax the defectors to cooperate, leading to
a higher fitness Nash equilibrium [34,35]. Growth rates are
determined by cell fitness functionals which, in turn, depend
on subpopulation sizes, i.e., they are frequency dependent.
There is a time-dependent controller in our model which
determines chemotherapeutic dose schedule and concentra-
tions. Although the model system is nonlinear and the control
parameter enters as a coefficient in most all of the terms of
the three-component cubic nonlinear system (making clas-
sic control schemes [37] nonapplicable), we use nonlinear
trajectory design techniques introduced and developed in an
orbital mechanics context [28–32]. In that body of literature,
time-dependent controllers are used to design orbit transfers
in a Hamiltonian mechanics setting, piecing together partial
orbits at different energy levels and switching energies at care-
fully chosen times, much like classic Hohmann transfers for
satellite control [38]. While the replicator system we describe
is not a Hamiltonian system in which orbits transfer from one
energy level to another, the time-dependent chemotherapeutic
parameter, C(t ), can be used to design advantageous orbits
in the replicator dynamics trilinear phase space in a similar
manner where piecewise constant dose concentrations are
used, Ci = const., for carefully chosen time intervals ti <

t < ti+1 (i = 0, . . . , n) with switching times ti chosen in such
a way as to produce a periodic (closed), continuous, piecewise
differentiable orbit that stays trapped in a desirable region
of the phase space. Orbits designed this way are shown to
maintain a higher average level of fitness for the full pop-
ulation and avoid tumor recurrence. The existence of such
orbits for appropriately chosen chemotherapeutic schedules in
our model system suggests the possibility that similar orbits
may also exist in a more complex tumor environment with
carefully designed adaptive schedules [27,39]. The general
technique of designing an orbit with a time-dependent con-
troller should also work in other contexts such as microbial
drug resistance [40] or pest management [8,41], although with
perhaps different numbers of competing subpopulations and
different payoff matrices that determine the fitness landscapes.

II. A THREE-COMPONENT REPLICATOR SYSTEM

The model we develop is based on a three-component repli-
cator nonlinear dynamical system governing three competing
subpopulations of cells: �x = (x1, x2, x3)T = (xH , xS, xR )T ,
where x1 represents the proportion of healthy cells (H), x2 rep-
resents the proportion of sensitive cells (S), and x3 represents
the proportion of resistant cells (R), with x1 + x2 + x3 = 1.
In this context, the model makes the well-mixed assumption
on the cell population [34,35], i.e., no spatial dependence
is modeled in order to highlight the method in as clean a
setting as possible. For discussions and comparisons of well-
mixed models vs those with spatial dependence, see [42]. The
equations which describe the subpopulation interactions are

ẋ1 = (f1 − 〈f 〉)x1, (1)

ẋ2 = (f2 − 〈f 〉)x2, (2)

ẋ3 = (f3 − 〈f 〉)x3. (3)
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with fi representing the fitness of each of the subpopulations
(i = 1, 2, 3) as their relative populations change, and 〈f 〉
representing the average fitness of the entire population. The
exponential growth-decay rates of each of the subpopulations
are then determined by (fi − 〈f 〉), which dictates whether the
subpopulation fitness is above or below the average population
fitness, hence whether the subpopulation decays or grows.

The fitness of each of the three subpopulations is defined
by the linear functionals

f1 = 1 − w1 + w1(A�x)1, (4)

f2 = 1 − w2 + w2(A�x)2, (5)

f3 = 1 − w3 + w3(A�x)3, (6)

where 0 � wi (t ) � 1 (i = 1, 2, 3) are time-dependent selec-
tion parameters (that serve as our controllers) we use to shape
the fitness landscape of the system. A is the payoff matrix
associated with the cell-cell interactions, which we describe
in Sec. III. The time dependence in our model enters through
a chemo-concentration parameter C(t ):

w1 = w0, (7)

w2 = w0[1 − C(t )], (8)

w3 = w0, (9)

where w0 scales time (we typically take w0 = 1). Note that
the chemotherapy parameter acts linearly on the sensitive cell
population lowering its fitness, although the three populations
are coupled nonlinearly through (1)–(3). The average popula-
tion fitness is defined by the quadratic functional

〈f 〉 = x1f1 + x2f2 + x3f3 (10)

in the usual way. It is straightforward to see (for fixed values
of the chemo-concentration parameter C) that the fixed points
of the system (1)–(3) are of three basic types. (i) There are
the three fixed points at each of the corners of the trian-
gular phase space diagram shown in Fig. 2, when two of
the subpopulation values are zero, and the third is saturated:
(x1, x2, x3) = (xH , xS, xR ) = (1, 0, 0); (0, 1, 0); (0, 0, 1). (ii)
There are three possible fixed points on the triangle sides,
which correspond to one of the subpopulation values equal-
ing zero, with the other two having fitness values equal to
the population average: x1 = 0, f2 = 〈f 〉, f3 = 〈f 〉; x2 = 0,
f1 = 〈f 〉, f3 = 〈f 〉; x3 = 0, f1 = 〈f 〉, f2 = 〈f 〉. (iii) There
is the balanced fitness state, when none of the subpopulation
values is zero, but each of the subpopulation fitness values
equals the population average: f1 = 〈f 〉, f2 = 〈f 〉, f3 = 〈f 〉.
Which of these fixed points lies on or inside the triangular
phase space, and their stability properties, depend in detail on
the parametric values, which we describe in Sec. IV.

By using a prisoner’s dilemma payoff matrix (see Sec. III)
we ensure (i) Gompertzian growth of the cancer cells [43], (ii)
a reduction in overall fitness of the population as the tumor
grows, and (iii) a fitness cost associated with resistance. We
first study the details of the nonlinear dynamics associated
with Eqs. (1)–(3) for constant values of the chemotherapy

FIG. 2. The competitive release mechanism. (a) The three-
component phase space associated with competing populations of
(H, S,R) cells. (b) With no therapy, the S corner of the triangle
is a globally attracting fixed point, while the H and R corners
are unstable. All initial conditions lead to a saturated tumor. Filled
circles are stable, unfilled circles are unstable. (c) For continuous
chemotherapy above a threshold level, the R corner of the triangle
is a globally attracting fixed point, while the H and S corners are
unstable. All initial conditions (except those lying on the separatrix
connecting the interior balanced fitness state to the S-R side) lead to
a resistant tumor.

parameter 0 � C � 1 to demonstrate the mechanism of com-
petitive release for threshold values C � 1/3. Then we inves-
tigate piecewise constant time-dependent functions C(t ) to
show how to avoid the evolution of resistance of the tumor.
Figure 1 shows several examples of the chemotherapeutic
schedules we consider. These include maximum tolerated
dose (MTD) schedules [Fig. 1(a)], low-dose metronomic
schedules (LDM) [Fig. 1(b)], adaptive schedules [Fig. 1(c)],
and more general time-dependent schedules [Fig. 1(d)] which
we break up into piecewise constant doses as done when
forming the Riemann sum approximation to an area under
a curve. In all cases, we compare outcomes of the differ-
ent schedules holding the total dosage, D, fixed over time
period τ ,

D =
∫ τ

0
C(t )dt = const. (11)

III. THE PRISONER’S DILEMMA AS A CANCER MODEL

We first describe the standard version of the PD payoff
matrix [34] in a 2 × 2 setting to make clear why the PD
evolutionary game gives rise to a Gompertzian (i.e., “S-
shaped”) growth curve when two subpopulations compete. To
be specific, we first describe what happens when healthy cells
compete with cancer cells using the 2 × 2 payoff matrix

APD =
[
a b

c d

]
=

[
3 0
5 1

]
, (12)
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with c > a > d > b. The first row and column correspond to
the payoffs associated with the cooperator (C) in the PD evo-
lutionary game, and the second row and column correspond
to the payoffs associated with the defector (D). In the simplest
tumor growth paradigm in which a population of healthy cells
competes with a population of cancer cells, the healthy cells
are the cooperators, while the cancer cells are the defectors.
In any mixed population �x = (xC, xD )T (0 � xC � 1, 0 �
xD � 1, xC + xD = 1), the fitness functions, �f = (fC, fD )T ,
associated with the two subpopulations are

�f = APD �x, (13)

which in component form yields

fC = (APD �x)1 = 3xC + 0xD, (14)

fD = (APD �x)2 = 5xC + 1xD, (15)

while the average fitness of the total population is given by the
quadratic form

〈f 〉 = �xT APD �x = 3x2
C + 5xCxD + x2

D � 1. (16)

Note that the average fitness of the healthy state (xC, xD ) =
(1, 0) is given by 〈f 〉|(xC=1) = 3, while that of the cancer-
ous state (xC, xD ) = (0, 1) is given by 〈f 〉|(xD=1) = 1, which
minimizes the average fitness. Tumor growth is then modeled
as a 2 × 2 evolutionary game governed by the replicator
dynamical system:

ẋC = (fC − 〈f 〉)xC, (17)

ẋD = (fD − 〈f 〉)xD. (18)

It is straightforward to show

ẋD = [(c − a) − (d − b)]xD (1 − xD )

(
1

1 − (
d−b
c−a

) − xD

)
,

with fixed points at xD = 0, 1, (c−a)
(c−a)−(d−b) . From this, we can

conclude that for any initial condition containing at least one
cancer cell, 0 < xD (0) � 1, we have

(i) xD → 1, xC → 0 as t → ∞,
(ii) 〈f 〉 → 1 as t → ∞.
Condition (i) guarantees that the cancer cell population

will saturate, while condition (ii) guarantees that the saturated
state is suboptimal, since 〈f 〉|(xD=1) < 〈f 〉|(xC=1). For these
two reasons, the prisoner’s dilemma evolutionary game serves
as a simple model for tumor growth both in finite population
models as well as replicator system (infinite population) mod-
els [18–20,44].

For our purposes, we now generalize to a three-component
system where the fitness functions (4)–(6) are defined via
a payoff matrix A which is a 3 × 3 matrix defining the
evolutionary game played by the cell population. For this, we
take every 2 × 2 submatrix to be a PD game, i.e., we take A

to be the 3 × 3 PD matrix

A =
⎡
⎣a b c

d e f

g h i

⎤
⎦ =

⎡
⎣ 3 1.5 1.5

4 2 2.8
3.9 −2 2.2

⎤
⎦, (19)

with the PD inequalities [34]:

g > a > i > c, (20)

d > a > e > b, (21)

f > i > e > h. (22)

The numerical values in (19) are chosen for convenience and
satisfy the constraints (20)–(22). In each cell-cell interaction,
the healthy cells x1 (healthy H) are cooperators, and the two -
species of cancer cells, x2 (sensitive S) and x3 (resistant R), are
the defectors. In any interaction between a chemo-sensitive
cell (S) and a chemo-resistant cell (R), the sensitive cell is the
defector, while the resistant cell is the cooperator. The payoff
matrix (19) guarantees that, for any interaction between two
cells, the system retains features (i) and (ii) detailed previously
(i.e., tumor growth leading to suboptimal fitness). In addition,
the payoff matrix also imposes a cost to resistance if we add
the extra constraint d > g which guarantees

fS = dxH + exS + f xR

> fR = gxH + hxS + ixR. (23)

It is worth pointing out that shaping the fitness landscape
by adjusting the selection parameters (w1, w2, w3) is equiva-
lent to choosing

fi = (Ã�x)i , (24)

where

Ã =
⎡
⎣1 − w1 + aw1 1 − w1 + bw1 1 − w1 + cw1

1 − w2 + dw2 1 − w2 + ew2 1 − w2 + f w2

1 − w3 + gw3 1 − w3 + hw3 1 − w3 + iw3

⎤
⎦.

To see this, use the fact that (1 − wi ) ≡ (1 − wi )(x1 + x2 +
x3) in the fitness equations (4)–(6).

IV. RESULTS

A. Continuous therapy

For the purposes of understanding how to implement time-
dependent therapies in our model, we first describe the phase
space dynamics for constant values 0 � C � 1, so total dose
delivered over time period t is D = Ct . Figure 2 shows the
mechanism of chemotherapeutic resistance via competitive
release determined by the system (1)–(3) (for constant C)
as depicted in the triangular phase space diagram shown in
Fig. 2(a). With no therapy [Fig. 2(b), C = 0], the sensitive
corner S is globally attracting, while the H and R corners
are unstable. When the continuous therapy parameter C = 0.6
[Fig. 2(c)], the resistant corner is globally attracting, while
the H and S corners are unstable. Filled corners are stable,
unfilled corners are unstable. This is the basic mechanism of
competitive release induced by sufficiently strong chemother-
apeutic dose [6].

Intermediate values of C reveal a much more complex
picture. We show in Fig. 3 the location of the fixed points
as a function of C. For values 79/228 = 0.34649 . . . < C <

0.7, the balanced fixed point state is an interior fixed point,
which forms the central spiral associated with the basin
boundaries between the asymptotically stable S corner and
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FIG. 3. Fixed point locations. Tracking the location of the fixed
points as a function of chemo-concentration parameter C. The frac-
tional values indicate that the values are analytically obtained.

R corner, shown in Fig. 4. Also shown in the figure are the
nullclines defined by the curves dxH /dt = 0, dxS/dt = 0,
dxR/dt = 0. Opposite sides of each of the nullclines mark
a change in whether the particular subpopulation decays or
grows. The mixed population state exists for values 1/3 <

C < 1/2 where the basin of attraction sizes (areas), shown in
Fig. 5, change sensitively (as C varies), one at the expense
of the other, in an intertwined spiral structure centered at
the balanced fixed point state. The steep transition curves
between the two states occurring for small changes in the
chemo-concentration parameter highlights the sensitivity of
the system to chemotherapeutic dosing levels. Also worth
highlighting in Figs. 4(b) and 4(c) is the sensitivity to resistant
mutations of the final asymptotic state of the system, even
if no preexisting mutations exist in the population. As the
tumor grows, assuming no preexisting resistant mutations, the
dynamics would traverse down the left side of the triangle
from the H corner to the S corner. As it does, the very thin
passageway [on the H -S side of the triangle in Figs. 4(b) and
4(c)] associated with the basin of attraction of the resistant
corner indicates that one single resistant mutation would push
the trajectory off the side into the basin of attraction associated
with the R corner instead of converging to the S corner.

The fitness landscapes are shown in Fig. 6 both for C =
0 and for C = 0.6. With no therapy, the fitness curves are
monotonically decreasing functions as the sensitive popula-
tion saturates the tumor in a sigmoidal shaped [18,43] growth
curve. With continuous therapy above threshold, the fitness
curves initially increase (i.e., tumor regression), but eventually
decrease monotonically as the tumor relapses. The healthy
cell population initially increases, but eventually the resistant
population saturates the tumor.

B. Time-dependent therapy

Figure 7 shows the key idea behind the method we use
to design trajectories for Eqs. (1)–(3) for time-dependent
chemotherapeutic schedules C(t ). With no chemotherapy,
C = 0, since the sensitive corner S is a globally asymp-
totically attracting fixed point whose basin of attraction is

FIG. 4. Basins of attraction and nullclines. Panel showing the
separatrices and nullclines (dxH /dt = 0, dxS/dt = 0, dxR/dt = 0)
through the balanced fitness interior fixed point that determines the
basin boundaries of attraction of the S state and the R states. The inte-
rior fixed point is the one in which each of the subpopulation fitness
levels exactly matches the average fitness of the entire population.
Filled circles are stable, unfilled circles are unstable.

the full region, all trajectories that start inside the triangle
eventually get trapped in the left S corner. By contrast, with
chemotherapeutic levels at C = 0.7, competitive release acts
to create a basin of attraction for the right resistant corner R

for all initial conditions inside the triangle. Using these fami-
lies of solution trajectories, we overlay the solution curves in
Fig. 7(c) to show the underlying curvilinear grid that spans
the full trilinear phase plane. By switching between the two
values C = 0 and C = 0.7 at times when two curves intersect,
it is possible to transition from a trajectory associated with
the C = 0 family to one associated with the C = 0.7 family.
This creates multiple possibilities for designing complex or-
bits using piecewise constant values of C, with switching at
appropriately chosen times.

One such trajectory is shown in Fig. 8(a), achieved by
switching between the two values C = 0 and C = 0.5. The
trajectory starts at point A [(H, S,R) = (0.5, 0.4, 0.1)] using
a trajectory with C = 0.5. When the trajectory reaches point
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FIG. 5. Basin of attraction areas. Areas of basin of attraction of
S fixed point and R fixed point as a function of chemo-concentration
C.

B, the chemotherapy is switched off, C = 0, and the system
then travels back down to point A in a closed loop. With
switching times labeled T1 and T2 (which are computed by
monitoring the relative balances of the three subpopulations),
this closed orbit can be maintained indefinitely. By contrast,
Fig. 8(b) shows the corresponding MTD and LDM trajectories
with the same initial condition (point A) using the same total
dosages over the same time periods. The MTD trajectory
eventually gets trapped in the left S corner, as does the LDM
trajectory. Figure 8(c) shows the schedules for all three cases.
In all cases, we first design the adaptive schedule, then we

FIG. 6. Fitness landscapes as a function of time. With no therapy
(C = 0), the fitness curves are continuously decreasing functions as
the tumor saturates with the sensitive cell population in a sigmoidal
shaped growth curve. With continuous therapy (C = 0.6), the fit-
nesses initially increase indicating tumor regression, but eventually
decrease. The healthy subpopulation initially increases before the
resistant population eventually saturates the tumor. Initial condition
(0.9,0.09,0.01) with w0 = 0.1

FIG. 7. Dynamical trajectories for constant C. (a) With no
chemotherapy (C = 0), the sensitive corner S is a globally attracting
fixed point. All initial conditions inside the triangle move to S along
the sample trajectories shown. (b) Above the chemotherapy threshold
C > 0.5, all initial conditions inside the triangle move to the resistant
corner R. Shown are sample trajectories for C = 0.7. (c) Overlay of
the solution trajectories for C = 0 and C = 0.7 create a curvilinear
grid throughout the triangle. By switching between these two values
of C, we construct a global trajectory made up of segments of the
two families of trajectories.

create the MTD and LDM schedules using the same total
dosage D. Neither the MTD nor the LDM standard chemo-
schedules are able to prevent the system from saturating with
a full grown tumor, whereas the adaptive schedule keeps the
system trapped indefinitely near the top H corner of the
system. Figure 8(d) shows the average fitness of the system
for the MTD, LDM, and adaptive schedules. It is clear that the
adaptive schedule is able to maintain a higher average fitness
throughout the full course of chemotherapy.

Figure 9 shows the sensitivity of the system to the chemo-
concentration levels chosen. Here we switch between C = 0
and C = 0.6 (higher average dose than in Fig. 8) to construct
the closed loop [Fig. 9(a)], which looks very similar to that
in Fig. 8. But notice that for these values the LDM schedule
creates an orbit that saturates at the R corner, whereas the
MTD schedule saturates at the S corner. The actual schedules
are shown in Fig. 9(c). Figure 9(d) compares the average
population fitness of the three schedules, showing that the
adaptive schedule maintains a higher average throughout.
Notice that LDM initially achieves a higher average fitness
before tumor regression occurs.

In Fig. 10 we show the result of toggling between val-
ues C = 0.3 and C = 0.6 to maintain the periodic loop
[Fig. 10(a)]. For this case, both the MTD and LDM schedules
send the trajectory to the R corner [Fig. 10(b)]. Figure 10(d)
shows the initial benefit of the MTD and LDM schedules
in terms of higher initial average fitness, but eventually the
adaptive schedule shows its superiority over both.

Figure 11(a) shows that we can actually design an orbit that
starts at an arbitrary point A inside the triangle, and send it to
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FIG. 8. Constructing a closed loop trajectory using C = 0 and
C = 0.5, with Cavg = 0.366. (a) By using segments of a trajectory
for C = 0 and C = 0.5, switching values at points A and B, we
construct a closed periodic orbit. (b) Using the same total dose,
we show the MTD and LDM trajectories starting from point A.
Both eventually move to the S corner, although initially the MTD
trajectory moves toward the H corner (tumor regression) before
recurrance. (c) The MTD, LDM, and adaptive schedules are depicted.
(d) We plot the average fitness 〈f 〉 for the three different chemo-
schedules. The adaptive schedule is able to maintain a higher average
fitness throughout.

an arbitrary point B. We accomplish this by constructing the
incoming and outgoing orbits from point A for two different
C values, and those associated with point B for those same
two C values, showing that they must intersect at some point
which we label O. By sending the orbit out from point A to
point O, then switching values of C at point O until we arrive
at point B, we complete the transfer. One can immediately
see the potential richness in the possible design of different
orbits one can construct by switching values of C among
two, three, or more values, at appropriately chosen times.
Figure 11(b) shows the richness of the curvilinear grid that
can be created with three values of C = 0, 0.3, 0.7 and the
multitude of possible paths from one point to another inside
the triangle if one allows for switching among the three values
shown.

C. Robustness

To be clinically actionable, at the very least it would be
important that the method not be sensitive to specific initial
conditions and parameter values. We describe several remark-
ably robust features of the strategy in this section. We show
in Fig. 12(a) an example of a continuous family of closed
orbits that are easily achievable by using a bang-bang strategy,
with blue orbits (no therapy) and red orbits (C = 0.7) forming
a continuous family of closed and nearly closed loops. The
associated dose schedules are shown in Figs. 12(b)–12(j), with
average doses all very close to 0.4. Because of the continual

FIG. 9. Constructing a closed loop trajectory using C = 0 and
C = 0.6, with Cavg = 0.375. (a) By using segments of a trajectory
for C = 0 and C = 0.6, switching values at points A and B, we
construct a closed periodic orbit. (b) Using the same total dose,
we show the MTD and LDM trajectories starting from point A.
The MTD trajectory eventually moves to the S corner, while the
LDM trajectory moves to the R corner. Both trajectories initially
move toward the H corner (tumor regression) before recurrence.
(c) The MTD, LDM, and adaptive schedules are depicted. (d) We
plot the average fitness 〈f 〉 for the three different chemo-schedules.
The adaptive schedule is able to maintain a higher average fitness
throughout, although LDM initially achieves higher average fitness
before declining.

interlacing of these orbits, and the robustness of their associ-
ated schedules, it is clear there is nothing particularly special
about any of the values shown, or the average dose; any of
the orbits and schedules would work. Interestingly, Fig. 13
shows that the entire region on the right side of the triangle
centered on the dashed curve can be populated by continuous
families of closed orbits, each centered at any point on the
line. Figure 13(a) depicts the defining feature of the line
which requires that two orbits with different C values have
a point of tangency lying on it. A necessary and sufficient
condition for this is f1 = f3, which defines a line; a condition
obtained by requiring that tangent vectors associated with two
different values of C point in opposite directions, as shown
in Fig. 13(a). Figure 13(b) shows examples of closed orbits
obtained at five representative points on the dashed line.

V. DISCUSSION

The model shows that if the chemo-dose exceeds a thresh-
old value of C > 0.5, the tumor may regress for a period
of time, but eventually regrows to form a resistant tumor
[Fig. 2(c)] as long as there is at least one resistant cell in the
population (i.e., a preexisting resistant mutation). This process
of competitive release is very robust and occurs for all initial
distributions of the three subpopulations. For chemo-doses
that are not as large, the results are much more sensitive to
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FIG. 10. Constructing a closed loop trajectory using C = 0.3 and
C = 0.6, with Cavg = 0.396. (a) By using segments of a trajectory
for C = 0.3 and C = 0.6, switching values at points A and B, we
construct a closed periodic orbit. (b) Using the same total dose, we
show the MTD and LDM trajectories starting from point A. Both
trajectories move toward the R corner after initially moving toward
H . (c) The MTD, LDM, and adaptive schedules are depicted. (d) We
plot the average fitness 〈f 〉 for the three different chemo-schedules.
The adaptive schedule is able to maintain a higher average fitness
throughout. Both MTD and LDM initially show higher average
fitness before declining.

small changes in C since the phase space diagram generally
has two basins of attraction, one associated with a saturated
sensitive state and the other with a saturated resistant state,
and these basins of attraction are spirally intertwined. Small
differences in the balances among the three types of cells
comprising our model, and a single resistant mutation, can
determine whether the long-time dynamics converges to the S

state or the R state. The relative areas of the basins of attrac-

FIG. 11. Constructing orbit transfers. (a) We take two arbitrary
points labeled A and B and construct the incoming and outgoing
solution trajectories from each, using two values C = 0 and C = 0.7.
There must be a crossing point, which we label point O. The two
segments AO followed by OB is the two-switch trajectory that takes
us from A to B. (b) Shown is the curvilinear grid constructed by
families of solution curves for the three values C = 0, C = 0.3, C =
0.7. Any point of intersection can be used as a starting point and an
ending point to construct a three-switch orbit.

FIG. 12. Robust family of nested orbits. (a) One example of a
(continuous) family of nested closed orbits using bang-bang strategy
toggling between C = 0 and C = 0.7, all with similar total dose
(C ∼ 0.4). A closed loop can be made arbitrarily small around a
center point described in Fig. 13. Schedules associated with (b) orbits
1 and 4; (c) orbits 1 and 5; (d) orbits 1 and 6; (e) orbits 2 and 4; (f)
orbits 2 and 5; (g) orbits 2 and 6; (h) orbits 3 and 4; (i) orbits 3 and
5; (j) orbits 3 and 6.

tion also sharply change with small changes in chemo-dose
values between 1/3 < C < 1/2, reflecting the sensitivity in
choosing the optimal chemo-dose levels. There is no constant
value of C for which the system converges to the H state, as
this state is always unstable.

FIG. 13. All closed orbit families are centered on dashed line
defined by f1 = f3. (a) As a family of closed orbits enclose smaller
and smaller loops, they intersect at a point of tangency. The point of
tangency must lie on the dashed line. (b) Examples of several closed
loop orbits centered at different points down the line.
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By contrast, for a time-dependent chemotherapy parameter
C(t ), one can design a rich, robust, and potentially endless
array of trajectories (i.e., tumor responses) that remain in
desirable regions of the triangular phase space indefinitely,
depending on how many time switches and different dose
levels one is willing to accept. One can, in principle, steer the
system trajectory along any path (in the model). Identifying a
given trajectory in our model as well as the chemo-therapeutic
schedule that produces it is fairly straightforward and amounts
to superposing the response curves associated with different
constant therapies, and piecing together a global trajectory
made up of sections generated from each of the constant
therapy curves. Of course, in a clinical setting this procedure
will be much more complex, but it suggests the possibility
of using actual chemo-therapeutic responses with different
chemo-schedules used on different patients as a design tem-
plate to combine in new ways to predict possible responses
to various time-dependent switching strategies. By using one
dosing schedule to create a time-limited response, then a
different dosing schedule to create a different (time-limited)
response, one could think of piecing together finite-time lim-
ited responses to create new outcomes, superior to what would
have been achieved by sticking to one single chemo-schedule.

One of the challenges of testing and designing new sched-
ules via clinical trials is that short term gain in average fitness
with LDM or MTD does not always result in more long-term
increased averaged fitness levels, i.e., recurrence sets in if
the schedule does not completely eradicate the tumor. This is
clearly shown in our simulations. The possibility of designing
complex orbits with various potentially advantageous features
is virtually endless if one allows for enough switches among
many different levels of the chemo-concentration parameter
C. In this paper, we have focused on comparisons of average
fitness levels to evaluate the quality of the schedule. One

could, of course, imagine designing orbits that maximize
a (time-averaged) population fitness while minimizing total
dose, or perhaps delay recurrence as long as possible while
avoiding regions of the phase space (i.e., relative balances
of the subpopulation levels) where the total tumor burden
becomes unsustainable. The fact that closed loop trajectories
can be designed in our model three-component replicator sys-
tem by chemo-scheduling alone suggests the possibility that
similar orbits could potentially be created in an actual tumor
environment, microbial environment, or pest management
setting with the right actuation (chemo-schedule, antibiotic
regimen, or pest control schedule), where fixation of the sensi-
tive population or fixation of the resistant population are both
avoided indefinitely as the balance is managed with proper
adaptive therapy. This, of course, all hinges on our ability
to carefully and frequently monitor the tumor environment
[21]. Clinical trials that make use of adaptive scheduling ideas
are currently being carried out at the Moffitt Cancer Center,
and results show great promise [39]. More possibilities exist
with the use of combination multidrug therapies [13,40,45] or
immunotherapies [46], but these are outside the scope of our
model, which focuses only on the use of dosing schedules to
shape the fitness landscape of a tumor to steer its evolutionary
response.
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