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a b s t r a c t

We examine the vortical wake structure shed from a deformable Joukowski airfoil in an unbounded
volume of inviscid and incompressible fluid. The deformable airfoil is considered to model a flapping fish.
The vortex shedding is accounted for using an unsteady point vortex model commonly referred to as the
Brown–Michael model. The airfoil’s deformations and rotations are prescribed in terms of a Jacobi elliptic
function which exhibits, depending on a dimensionless parameter m, a range of periodic behaviors from
sinusoidal to a more impulsive type flapping. Depending on the parameter m and the Strouhal number,
one can identify five distinct wake structures, ranging from arrays of isolated point vortices to vortex
dipoles and tripoles shed into the wake with every half-cycle of the airfoil flapping motion. We describe
these regimes in the context of other published works which categorize wake topologies, and speculate
on the importance of these wake structures in terms of periodic swimming and transient maneuvers of
fish.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

The vortical wake shed from a deformable Joukowski airfoil is
considered as a simple model for the wake generated by a peri-
odically swimming fish. Our main objective is to understand the
dependence of the wake structure on the airfoil motion. A char-
acterization of the wake structure as a function of shape defor-
mations is relevant in many applications, such as understanding
the physics of fish swimming and bird flying and translating this
knowledge into engineering solutions in the form of biologically-
inspired underwater and airborne vehicles. For experimental stud-
ies of the wake structure see, for example, [1–3] for swimming
fish, [4] for flying birds, and [5–10] for oscillating rigid foils and
cylinders.

In the mathematical modeling of swimming at large Reynolds
numbers due to transverse flapping such as the swimming of
carangiform and anguilliform fish, different approaches have been
proposed to account for the wake dynamics. In the classical work
of Wu on the swimming of a deformable plate [11], the author
used the assumption of small shape amplitudes which enables
one to solve analytically for the trailing vortex sheet. The vortex
sheet is a surface across which the tangential component of
the fluid velocity is discontinuous but the normal component is
continuous. Lighthill, in his slender body theory, avoided solving
for the complex wake dynamics altogether by considering the
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momentumbalance in a control volume containing the deformable
body and bounded by a plane attached at its trailing edge; see
for example [12]. Childress later improved on Lighthill’s theory
by providing an analytic approach to estimate the vorticity shed
at the trailing edge [13]. Weihs modified Lighthill’s theory –
which focused on steady swimming – for applications to transient
maneuvers and approximated the wake using classical methods
of unsteady aerodynamics in terms of pre-tabulated lift and drag
coefficients; see [14,15]. Lighthill’s reactive force theory is revisited
in [16] and the wake of a deformable body is modeled using
discrete point vortices introduced manually, so-to-speak, every
half cycle of the body flapping motion. In [17,18], the vortex sheet
shed from the trailing edge of a deformable Joukowski airfoil is
modeled using discrete point vortices with a new point vortex
introduced at every time step to satisfy the Kutta–Joukowski
regularity condition at the trailing edge. Resolving the dynamics
of a vortex sheet shed from a deformable body is quite challenging
even for prescribed or zero motion of the body; see [19–21]. Direct
numerical simulations of the Navier–Stokes equations have also
been used to resolve the wake dynamics; see for example [22–24].

In this work, we consider a Joukowski airfoil with prescribed
shape deformations and prescribed locomotion in the form of a
uniform translational velocity and periodically-varying orienta-
tion. We follow the work of [25,26] in that we model the wake
using an unsteady point vortex model, also referred to as the
Brown–Michael model. This model consists of introducing vortic-
ity in the flow as point vortices of time-varying strength so that the
Kutta–Joukowski regularity condition is satisfied at the sharp edge
of the body; formore details, see [25,26] and the references therein.

http://dx.doi.org/10.1016/j.physd.2011.06.021
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Fig. 1. Kutta–Joukowski transformation: (left) physical plane and (right) circle plane.
Roughly speaking, the unsteady point vortex model is a low-order
representation of the roll-up of the vortical wake shed from the
sharp edge due to boundary layer separation in a real fluid envi-
ronment. Since it is physically impossible to unroll the shed wake
and therefore, in the unsteady vortex model, the magnitude of the
strength of the unsteady vortex is required to bemonotonically in-
creasing. That is to say, once the strength of the unsteady vortex
reaches an extremum, it is kept at that value and a new unsteady
vortex is started from the sharp edge. A comparison of the vor-
tex wakes behind oscillating plates based on the Brown–Michael
model, a vortex sheet model and direct numerical simulations of
the full Navier–Stokes equations is reported in [27]. Interestingly,
the simpler Brown–Michael model provides good approximations
of the wake structure and the strength of the shed vorticity.

A review of the dynamics of N (finite and real) point vortices of
constant strengths can be found in [28]. For the dynamic interac-
tion of a rigid body with N point vortices of constant strengths, the
reader is referred to [29–32] and the references therein. The cou-
pling of the latter body-vortex system to the unsteady point vortex
was first proposed in [26].

The outline of this paper is as follows. First, we prescribe
periodic shape deformations of a Joukowski airfoil and assume that
these prescribed deformations result in a uniform translational
velocity and periodically-varying orientation of the airfoil. We
then focus attention on the wake structure and its evolution in
time. In particular, we examine the wake structure for a class of
prescribed motions in terms of a Jacobi elliptic function which
exhibits, depending on a dimensionless parameter m, a range
of periodic behaviors from sinusoidal to impulsive flapping. This
periodic flapping motion can also be characterized by the Strouhal
number St defined as the ratio of the distance between the tip-to-
tip transverse motion of the trailing edge times the frequency of
flapping to the translational velocity of the airfoil. Depending onm
and St , one can identify five distinct wake structures, ranging from
arrays of isolated point vortices to vortex dipoles and tripoles shed
into the wake with every half-cycle of the airfoil flapping motion.
This categorization is compared with known published work in
other settings.

2. Problem setting

Consider a uniform and neutrally-buoyant planar body B, as-
sumed to represent a cross-section of a fish body or fin, moving in
an unbounded domain of incompressible, inviscid fluidF at rest at
infinity. For concreteness, letB take the form of a Joukowski airfoil
whose boundary can be conformally mapped to a circle of radius
rc . We introduce an orthonormal inertial frame {e1,2,3} where the
directions {e1, e2} span the physical plane of motion and e3 is the
unit normal to this plane. The orientation of B can be described by
the rotation angle θ about e3 and its location can be specified by
the coordinates of its centroid c ≡ (c1, c2) in the (e1, e2) plane;
see Fig. 1. It is more convenient for what follows to introduce the
complex variable z = x+iy (where i =

√
−1) and its complex con-

jugate z̄ = x − iy. It is also convenient to parameterize the circle
plane by the complex variable ζ = ξ + iη, measured from a fixed
point O located at the center of the circle. The conformal transfor-
mation from the physical plane to the circle plane can be written
in the general form (see, e.g., [26])

z = c + g(ζ )eiθ , (1)

where the mapping g(ζ ) is given by

g(ζ ) = ζ + ζc +
a2

ζ + ζc
. (2)

The parameters a and ζc = ξc + iηc determine the shape of the
airfoil (see, e.g., [18]), and the radius of the circle rc depends on a
and ζc as follows

r2c = (a − ξc)
2
+ η2c . (3)

We prescribe shape deformations of the airfoil by varying the
position of ζc(t) as a function of time t whilemaintaining the radius
of the circle rc constant which means that a also varies in order to
satisfy (3). In particular, we consider deformations of the form

ζc = ξo + iηc(t), (4)

where ξo is non-zero constant and ηc(t) varies periodically as
depicted in Fig. 1. These prescribed deformations are not area
preserving in general. That is to say, the area of the airfoil A =
1
2i


zdz varies in time.However, for all examples considered in this

paper, the deviations from constant are quite small,∆A/Ao ≈ 0.01
where Ao is the airfoil area at time t = 0.

As the airfoil deforms, the location of its centroid in the physical
plane changes. The centroid position c is dictated by both the
prescribed deformations and the orientation θ of the airfoil such
that

c = −zceiθ , (5)

where zc is defined by Azc = −
1
4i


z2dz. When expressed as

function of the prescribed deformations ζc(t) (and in turn a(t)) in
the circle plane, one has

zc =
a6ζ̄c + ζc(r2c − ζc ζ̄c)

3

(r2c − ζc ζ̄c)[(r2c − ζc ζ̄c)2 − a4]
. (6)

We assume that the prescribed cyclic deformations induce a
uniform translational velocity (Vx, Vy) and a periodic rotational
velocity ω(t) = θ̇ (t) of the airfoil in the physical plane. In other
words, we do not solve the coupled body-fluid system to obtain
the locomotion of the airfoil due to the prescribed deformations as
done in [33,16]. Rather, we impose on the airfoil a net locomotion
consisting of a steady translation and periodic rotations. To this
end, the velocity of the centroid is given by

vc = (Vx + iVy)− (żc − iωzc) eiθ . (7)

The resulting free stream velocity in the circle plane is

U = −vceiθ = ˙̄zc − iωz̄c −

Vx − iVy


eiθ . (8)

The Joukowski airfoil sheds a vortical wake from its sharp
edge as it deforms in the fluid domain. We account for the shed
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vorticity using the unsteady point vortex model which consists,
as explained in Section 1, of introducing vorticity in the flow
as point vortices of monotonically-varying strength so that the
Kutta condition is satisfied at the sharp edge; see [25,26]. For
concreteness, the unsteady vortex is identified by its variable
strength Γ1(t) and location z1(t) while the previously shed point
vortices have frozen strengths Γ2, . . . ,ΓN and time-dependent
positions z2(t), . . . , zN(t).

3. Fluid velocity and complex potential

The complex potential function is defined as F(z) = φ(x, y) +

iψ(x, y), with φ being the real potential function and ψ the
stream function. The existence of φ and ψ is guaranteed by
irrotationality (except at the location of the point vortices) and
by the continuity equation div(u) = 0, respectively; see for
example [34]. By linearity of the problem, the complex potential
F(z) can be written as a superposition of the contributions Fb(z)
due to translational and rotational velocities of the airfoil, Fs(z)
due to shape deformations and Fn(z) due to the presence of point
vortices in the wake,

F(z) = Fb(z)+ Fs(z)+

N−
n=1

ΓnFn(z). (9)

The potential Fb due to the rigidmotion of the airfoil is harmonic
in the fluid domain with proper decay at infinity while satisfying
the boundary conditions on the airfoil surface C

Re [−iFb]C = Re
[
−iv̄c(z − c)−

1
2
ω|z − c|2

]
. (10)

That is, Fb(z) has the form of a Riemann–Hilbert problem (see,
e.g., [35,36]) and it can be transformed, using the conformal
mapping (1) and its inverse, into a Dirichlet problem in the circle
plane whose solution is given in terms of the Schwarz formula. To
this end, one gets

Fb(ζ ) = U(ζ − g(ζ ))+
r2c
ζ
Ū − iωr, (11)

where

r(ζ ) =
1
2


r2c + 2ζc

r2c
ζ

+ ζc ζ̄c

+
2a2


r2c + ζ ζ̄c


ζ (ζ + ζc)

+
a4(ζ − ζc)

(ζ + ζc)(r2c − ζc ζ̄c)


. (12)

The complex potential due to body deformations is constructed
as a linear superposition of the two components,

Fs(ζ ) = Fη(ζ )η̇c + Fa(ζ )ȧ. (13)

Fη and Fa are also harmonic in the fluid domain with proper decay
at infinity while satisfying the following boundary conditions at
the airfoil surface C and the circle surfaceΣ

Re
[
−i

dFη
dζ

dζ
]
Σ

= Re


−i
∂g(ζ )
∂ηc

dz


C

,

Re
[
−i

dFa
dζ

dζ
]
Σ

= Re


−i
∂g(ζ )
∂a

dz


C

. (14)

Upon integrating both sides of (14) for Fη and Fa and ensuring that
Kelvin’s conservation of circulation around the airfoil is satisfied
(see [18] for more details), one gets that
Fη(ζ ) = −i
[
−

r2c
ζ

+
a2r2c
ζ ζ 2

c
+

a2

ρ
−

a4ζ 2
c

ρδ4

−
2a4r2c ζc
δ6

log

ρ

rc


−


a2r2c
ζ 3
c

−
a4r2c
ζcδ4


ζ

ρ

+ 2a2r2c


1
ζ 3
c

+
ζ̄ca2

δ6


log


ρ

ζ


+

2a4r2c ζx
δ6

log

ζ

rc

]
,

Fa(ζ ) = 2a


−
r2c
ζ ζc

−
a2ζc
ρδ2

−
a2r2c
δ4

log

ρ

rc


+

r2c (δ
4
− a2ζ 2

c )

ζ 2
c δ

4
log


ρ

ζ


,

(15)

where ρ = ζ + ζc and δ2 = r2c − ζc ζ̄c .
The complex potential due to the presence of N point vortices

is given by the well-known Milne–Thomson theorem (also known
as the circle theorem; see [37])

Fn(ζ ) =
1

2π i

[
log (ζ − ζn)− log


ζ −

r2c
ζ̄n

]
, (16)

where r2c /ζ̄n is the position of the image vorticity.
The complex fluid velocity ū = ux − iuy at a point z = x + iy

in the physical plane that does not coincide with a point vortex is
obtained from the relation

ū =
dF(z)
dz

=
dF(z(ζ ))

dζ
dζ
dz
, (17)

whereas, due to a theorem by Lin [38,39], the regularized velocity
induced at a point vortex zn is given by

ūn =
d
dz

[
F(z)−

Γn

2π i
log (z − zn)

]
zn

. (18)

In particular, Eq. (17) takes the form

ū = v̄c +
e−iθ

g ′(ζ )


U −

r2c
ζ 2

Ū − i
∂r
∂ζ
ω +

∂Fη
∂ζ
η̇c +

∂Fa
∂ζ

ȧ

+

N−
n=1

Γn

2π i


1

ζ − ζn
−

ζ̄n

ζ ζ̄n − r2c


. (19)

Eq. (19) is used to compute the velocity at the trailing edge of
the airfoil denoted by ζ1,0 = a − ζc , as shown in Fig. 1. It is
important to observe that the velocity in (19) admits a singularity
at the trailing edge ζ1,0. This is apparent by noting that g ′(ζ ) =

∂g/∂ζ = 1 − a2/(ζ + ζc)
2 which at ζ1,0 = a − ζc is equal to

zero. To eliminate this singularity, we impose the Kutta–Joukowski
regularity condition by introducing an unsteady point vortex in
the flow as mentioned in Section 2 that makes the quantity in the
bracket of Eq. (19) vanish as discussed below.

4. Equations of motion

The equations of motion for the system of vortices is expressed
more compactly in the physical plane and consists of the following
set of 2N ordinary differential equations

żn + (zn − zn,0)
Γ̇n

Γn
= ūn, (20)

where the complex conjugate of un is given by (18) and the term
containing Γ̇n is known as the Brown–Michael correction term.
Here, it is non-zero only for the unsteady vortex Γ1 and zero for
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(a) cn(4Kt/T ). (b) d (cn(4Kt/T )) /dt .

Fig. 2. Plots of (a) the cnoidal function cn(4Kt/T ) and (b) its time derivative versus time t form = 0, 0.8, 0.95, 0.995. Note that form = 0, one recovers the cosine function.
The period is set to T = 1.
Fig. 3. Geometry of Joukowski airfoil over a half cycle 2K/T for prescribed flapping ζc = ξo + iηo cn(4Kt/T ) and orientation θ(t) = θo cn(4Kt/T ). The case of m = 0 is
shown in dashed line andm = 0.995 in black line. The parameter values are set to ξo = −1/8 ηo = −1/2, θo = 1/2, rc = 1 and T = 1.
(a) streamlines. (b) Γn versus t .

(c)
∑
Γn versus t .

Fig. 4. (a) Snapshot of the streamlines at t = 5.002, (b) strength of Γn versus time and (c)
∑
Γn versus time for prescribed motions ζc = −0.125 − i0.2 cn(4Kt/T ),

θ = 0.2 cn(4Kt/T ) and parameters m = 0.8 and St = 0.1 which correspond to Region I in Fig. 9.
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(a) streamlines. (b) Γn versus t .

(c)
∑
Γn versus t .

Fig. 5. (a) Snapshot of the streamlines at t = 5.002, (b) strength of Γn versus time and (c)
∑
Γn versus time for prescribed motions ζc = −0.125 − i0.2 cn(4Kt/T ),

θ = 0.2 cn(4Kt/T ) and parametersm = 0.8 and St = 0.3 which correspond to Region II in Fig. 9.
all n ≥ 2. These equations can be written in the circle plane by
substituting (1) and (18) into (20). The resulting expression takes
the form

g ′(ζn)ζ̇n + (g(ζn)− g(ζn,0))
Γ̇n

Γn

= −iωg(ζn)− g ′(ζn)η̇c −
∂g(ζn)
∂a

ȧ +
1

g ′(ζn)

×


Ū −

r2c
ζ̄ 2
n

U + iω
∂r(ζn)
∂ζn

+
∂Fη(ζn)
∂ζn

η̇c +
∂Fa(ζn)
∂ζn

ȧ

−

−
j≠n

Γj

2π i


1

ζ̄n − ζ̄j
−

ζj

ζjζ̄n − r2c



+
Γn

2π i


ζn

ζnζ̄n − r2c
+

g ′′(ζn)

2g ′(ζn)


. (21)

The Kutta condition is used to ensure that the complex velocity
(19) remains finite at the trailing edge of the airfoil ζ1,0 = a − ζc .
This amounts to evaluating the quantity in the bracket at ζ1,0 and
setting it to zero, which upon some simplifications gives

2Im

Uζ1,0


− ωζ1,0r ′

1 − iζ1,0

uη,0η̇c + ua,0ȧ


+

N−
n=1

Γn

2π


1 + 2Re


ζ1,0

ζn − ζ1,0


= 0, (22)

where

r ′

1 =
∂r
∂ζ


ζ=ζ1,0

, uη,0 =
∂Fη
∂ζ


ζ=ζ1,0

,

ua,0 =
∂Fa
∂ζ


ζ=ζ1,0

. (23)

Eqs. (21) and (22) form an algebraic-differential set of 2N + 1
equations which we solve for Γ1(t) and zn(t), n = 1, . . . ,N .

It is important to note here that this system of equations is ill-
posed when a new unsteady vortex is started from the trailing
edge because the right-hand side of (21) is singular. Indeed, at the
onset of shedding, the vortex and its image conjugate are at the
same point. To overcome this difficulty, we follow the approach
in [25,40,26] and propose an analytic solution valid only for small
time which we use to obtain the initial behavior of the system; see
Appendix for details.

5. Wake structure

In this section, we study the behavior of the wake as a func-
tion of the prescribed deformations and prescribed translational
and rotational motions of the airfoil. We particularly examine pre-
scribed deformations, orientation and translational velocities of
the Joukowski airfoil of the form

ζc = ξo + iηo cn

4K
T

t

, θ = θo cn


4K
T

t

,

Vx = Vo, Vy = 0. (24)

Here, ξo, ηo, θo and Vo are non-zero constants and cn(4Kt/T ) is the
cnoidal elliptic functionwith K(m) given by K(m) =

 π/2
0 dφ/(1−

m sin2 φ)1/2 and T the period of flapping or shape cycle. It is worth
noting that m is a dimensionless parameter that determines the
profile of the cnoidal function as shown in Fig. 2. If m = 0, one
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Fig. 6. (a) Snapshot of the streamlines at t = 5.002, (b) strength of Γn versus time and (c)
∑
Γn versus time for prescribed motions ζc = −0.125 − i0.2 cn(4Kt/T ),

θ = 0.2 cn(4Kt/T ) and parameters m = 0.995 and St = 0.3 which correspond to Region IV in Fig. 9.
recovers the sinusoidal cosine function cos(2π t/T ) and if m = 1,
one gets the hyperbolic secant. Note that as m increases, the time
derivative of the cnoidal function (shown in Fig. 2(b)) changes
rapidly when the airfoil reaches its maximum, zero and minimum
flapping angles. It is this rapid change in the shape deformations
that we refer to as impulsive flapping. The airfoil motion in the
physical plane is illustrated in Fig. 3 for two parameter values
m = 0 and m = 0.995. This motion can be characterized by two
parameters: m which dictates the shape of the cnoidal function as
depicted in Fig. 2 and the Strouhal number St defined as

St =
L

VoT
. (25)

In (25), the length scale L is defined by the lateral motion of the
trailing edge. Our objective is to map out the dependence of the
wake structure on the Strouhal number St and the dimensionless
parameter m which dictates the profile of the periodic deforma-
tions, from sinusoidal to impulsive.

The conformal mapping approach presented in this paper
transforms the problem of wake generation behind the deforming
airfoil into that of vortex formation behind a cylinder oscillating
in a free stream. Vortex formation behind a cylinder oscillating in
a free stream is a classical example that is known to afford a great
variety ofwake structures depending on the cylinder’s oscillations;
see the seminal work of Williamson & Roshko in [10]. Williamson
and Roshkomapped out thewake structures behind the oscillating
cylinder as function of the oscillation parameters, namely, the
amplitude and frequency (or Strouhal number) of the harmonic
oscillations. A simple mathematical model was later developed
in [41] to explain the important wake transitions. Examples of the
wakes reported in [10] include von Kármán-type wakes, referred
to as 2S wakes, in which two vortices of opposite sign are shed
per oscillation period and 2P wakes in which two vortex pairs are
shed per oscillation period. We use this terminology to categorize
the wake structures obtained here in the context of the simplified
Brown–Michael vortex model.

It is worth noting that the idea of mapping out the dependence
of the wake structure on the oscillation parameters was recently
reconsidered in [8] for a symmetric rigid airfoil oscillating in a
two-dimensional free stream created by a vertically flowing soap
film. These soap-film experiments focused on sinusoidal pitching
oscillations and reported awide variety of simple and exoticwakes
for various amplitude and frequency of oscillations. The focus of
our study, as mentioned earlier, is to understand the dependence
of wake structure on the swimming velocity (as reflected by
Strouhal number St) and the profile of the periodic deformations,
from sinusoidal to impulsive (as dictated by the dimensionless
parameterm).

In Figs. 4–8, we show the wake structure obtained by varying
the parameters m and St while the remaining parameters are
held at ηo = −1/5, ξo = −1/8, θo = 1/5, rc = 1, and
T = 1. In other words, the Strouhal number St is varied by
varying the translational velocity Vo. Panels (a) in Figs. 4–8 show
snapshots of the streamlines of the velocity field at t = 5.002
while panels (b) and (c) show the strength of the shed vortices
and the total circulation in the wake (sum of strength) versus time,
respectively. Each of these figures represent one of five distinct
structures of the wake that we identified depending on the two
parameters m and St; see Fig. 9. The results in Fig. 9 are obtained
by discretizing the parameter space (St,m) and computing the
wake of the deformable airfoil at each of these discrete points.
In region I where the Strouhal number is low St < 0.2, that is
to say, the translational velocity Vo is large, the wake, after some
transient behavior, is an aligned 2Swake that resembles an array of
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Fig. 7. (a) Snapshot of the streamlines at t = 5.002, (b) strength of Γn versus time and (c)
∑
Γn versus time for prescribed motions ζc = −0.125 − i0.2 cn(4Kt/T ),

θ = 0.2 cn(4Kt/T ) and parametersm = 0.8 and St = 0.5 which correspond to Region III in Fig. 9.
isolated point vortices of equal and opposite circulations, with two
vortices of equal and opposite strength shed per oscillation period
as evidenced in Fig. 4.

As the Strouhal number increases 0.2 < St < 0.4, the
structure of the wake bifurcates depending on the value m: in
region II for m < 0.95 the wake structure is similar to a reverse
von Kármám wake or 2S wake (Fig. 5) whereas in region IV for
m > 0.95, that is to say, for impulsive motion, one gets a 2P
wake with predominantly two point vortices shed in every half
cycle of the airfoil oscillations and pair-up to form vortex dipoles
that propagate obliquely in the flow (Fig. 6), with their direction
being determined by initial conditions. The increased shedding
periodicity is evident in Fig. 6(b). Numerically, three vortices are
shed each half-cycle where one vortex has negligible effect given
that its intensity is much smaller than the other two (see Fig. 6(b)
and (c)).

As the Strouhal number increases further 0.4 < St < 0.6,
the von Kármám structure observed in region II disappears as the
vortices shed in two consecutive cycles of oscillations begin to
pair-up and propagate obliquely as dipoles resulting in a P wake
(Fig. 7). Finally, the dipoles shed every half cycle of oscillations in
region IV are now replaced by tripoles also shed every half-cycle
of oscillations as evidenced in Fig. 8(b) and (c). More specifically,
the previously negligible vortex in region IV now has significantly
higher strength, resulting in what initially sheds as a 2P+2Swake.
Due to downstream vortex interactions, the wake structure breaks
up into tripoles and more complex configurations.

6. Conclusions

A deformable Joukowski airfoil is proposed as a model for the
flapping of a fish body or tail in an otherwise quiescent fluid.
The wake structure is investigated as a function of m and St
wherem indicates the profile of the flapping motion, from smooth
sinusoidal motion to more sharply peaked, but still periodic
motion. The Strouhal number St indicates the ratio of the flapping
speed to the translational motion of the fish. For almost sinusoidal
flapping m < 0.95 in the range 0.2 < St < 0.4, which is the
range of Strouhal numbers identified in the experimental work [3]
as the optimal range in terms of swimming efficiency, we find that
the wake structure corresponds to a reverse von Kármán street.
For lower St , the wake structure consists of an array of isolated
point vorticeswith no fluid jet propagating downstream. Thiswake
structure presents little advantage to the flapping airfoil in terms
of momentum thrust induced by the wake. For higher St , the point
vortices shed in two consecutive cycles of flapping begin to pair-up
to form vortex dipoles that propagate obliquely to the direction of
motion, also reducing the locomotory advantage of a thrust wake.
For impulsive flapping m > 0.95, we find that as the Strouhal
number increases, the airfoil begins to shed three point vortices
with every half-cycle of its flapping motion. For 0.2 < St < 0.4,
the third vortex shed when the airfoil approaches its straight-out
configuration has negligible magnitude and the wake structure
consists of dipoles shed every half-cycle of flapping. For 0.4 < St <
0.6, the third vortex becomes stronger and pairswith the other two
point vortices to form a tripole shed every half-cycle of flapping.
We conjecture that these sharper flapping strokes are more suited
for transient turning maneuvers than for steady swimming, and
that the net mean force on the body becomes zero in the region
St < 0.2. Future extensions of this work will include computing
the forces and moments acting on the airfoil and solving for the
coupled body-wake time evolution with application to transient
maneuvers. The resulting wakes will be compared with reported
experimental and numerical data on fish wakes such as in [22,2].
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Fig. 8. (a) Snapshot of the streamlines at t = 5.002, (b) strength of Γn versus time and (c)
∑
Γn versus time for prescribed motions ζc = −0.125 − i0.2 cn(4Kt/T ),

θ = 0.2 cn(4Kt/T ) and parameters m = 0.995 and St = 0.5 which correspond to Region V in Fig. 9.
Fig. 9. Wake structure as a function of the two dimensionless parametersm and St .
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Appendix. Onset of vortex shedding

Vorticity is generated by themotion of the sharp trailing edge of
the airfoil. At the time a newvortex is started, one gets a singularity
at the trailing edge. It is therefore necessary to use small-time
analysis to solve for the initial behavior. The small time analysis
is based on the system of Eqs. (21) and (22) in the mapped plane.
Defining ϵ such that ζ1 = ζ1,0(1+ϵ), the Kutta condition (22) then
becomes:

2Im(Uζ1,0)− ωζ1,0r ′

1 − iζ1,0

uη,0η̇c + ua,0ȧ


+
Γ1

π
Re

1
ϵ


+

N−
n=2

Γn

2π
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1 + 2Re


ζ1,0

ζn − ζ1,0

]
= 0. (A.1)

The Taylor series expansion of (21) is taken about ζ1,0. Keeping only
the dominant terms produces the following, with τ = t − ts and ts
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the time of shedding:

ζ 2
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Subtracting a slight variation of (A.1) from the quantity inside the
brackets of (A.2) produces the following equation:
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which is integrated for ϵ as ϵ2 = Cτ where:
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Further computation shows that all terms in C are real and given
by
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