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We consider streamline patterns associated with single and double von Kármán point vortex streets
on the surface of a nonrotating sphere, with and without pole vortices. The full family of streamline
patterns are identified and the topological bifurcations from one pattern to another are depicted as
a function of latitude and pole strength. The process involves first finding appropriate vortex
strengths so that the configuration forms a relative equilibrium, then calculating the angular rotation
of the configuration about the center-of-vorticity vector. We move in a rotating frame of reference
so that the configuration is fixed, identify the separatrices in the flowfield, and plot the global
streamline patterns as a function of the pole strengths and latitudinal positions of the rings. We carry
the procedure out for single and double von Kármán vortex streets, with and without pole vortices.
The single von Kármán street configurations are comprised of n evenly spaced vortices on each of
two rings that symmetrically straddle the equator and are skewed with respect to each other by half
a wavelength, while the double von Kármán ring configurations are made up of four rings of n
evenly spaced vortices symmetrically straddling the equator. © 2009 American Institute of Physics.
�doi:10.1063/1.3258066�

I. INTRODUCTION

A. Preliminaries

This paper considers streamline patterns generated by
single and double von Kármán point vortex streets1 on the
surface of a sphere, with and without pole vortices, the sim-
plest of which is shown schematically in Fig. 1. The figure
depicts n=6 point vortices evenly distributed on an upper
fixed latitudinal ring, and six vortices on a lower ring sym-
metrically placed across the equator, skewed by half a wave-
length with respect to the upper street. That is, there is a total
of N=2n=12 point vortices in the configuration. The posi-
tions of the point vortices are given in Cartesian variables by
x� , ��=1, . . . ,12�, where �x��=1. Each of the point vortices
on the upper ring has strength ��R �with � positive in the
counter-clockwise direction�, each on the lower ring has op-
posite strength −�, and as a result, the center-of-vorticity
vector J=�i=1

N ��x� is aligned with the north-south polar axis
and the system rotates with angular frequency �N around it.
When pole vortices are included, they are equal and opposite
in strength and then the total number of point vortices is N
=2n+2.

We know from the work of Ref. 2 that von Kármán
configurations form in planetary atmospheres and their
streamline topologies can vary depending on aspect ratio and
latitude. From, Ref. 3 we know that the presence of pole
vortices can and do play an important role in stabilizing or
destabilizing a given latitudinal configuration. We also know
from the work of Refs. 4 and 5 that the streamline patterns
associated with fixed and relative equilibria on the sphere
determine key properties of mixing and global transport. The
recent comprehensive paper6 is an excellent account of the

relation between streamline topologies in fluid flow and their
ramifications. See also Ref. 7 for applications of these ideas
to the near wake of a circular cylinder. Our main motivation
in this paper is to flesh out the full range of streamline pat-
terns that are obtained with von Kármán configurations as a
function of ring latitude and pole strength, in order to better
contextualize the patterns recently identified and studied in
Jupiter’s atmosphere, as described in papers.2,8–10 In these
works, three main patterns were identified, called type I, II,
and III �see Fig. 3 of Ref. 2�. We will show how these pat-
terns arise as a function of our bifurcation parameters, and
that these patterns are actually only a small subset of all
possible patterns that such configurations can, in principle,
generate. We mention other related works on relative equi-
librium ring formations of point vortices on the sphere, Refs.
11 and 12. The latter, among other things, considers skewed
rings of equal and opposite signed vortices—what we call
the single von Kármán street �VKS�. Other recent related
work on equilibria of distributed vorticity regions on the
sphere include Ref. 13 �there is a parametric limit in which
the distributed vortices reduce to point vortices� and Ref. 14,
as well as enlightening papers on the emergence and dynam-
ics of vortices in numerical simulations on the sphere, Refs.
15 and 16.

Understanding the streamline patterns generated by sys-
tems of von Kármán vortex streets on the sphere involves
three distinct steps which we carry out in this paper:

�1� Given a configuration of point vortices on the �unit�
sphere arranged in a von Kármán pattern, find the allow-
able vortex strength vector ��RN that renders the sys-
tem a relative equilibrium configuration which rotates
about the north-south polar axis.

�2� Find the rotational frequency associated with the relative
equilibrium.

a�Author to whom correspondence should be addressed. Electronic mail:
newton@usc.edu.
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�3� Move in a rotating frame to render the configuration a
fixed equilibrium, and identify the separatrices and
streamline topologies in this frame. For this, we need to
identify all the hyperbolic and elliptic stationary points
on the sphere in addition to those located at the actual
point vortex positions.

The streamline patterns depend on �i� the latitudes at
which the rings comprising the streets sit, �ii� how many
streets straddle the equator, and �iii� whether or not there is
pole vorticity. The results are topological in nature, meaning
they depend on the number of centers and saddles in the
vectorfield, not, in general, on details of how the vorticity is
distributed. We mention, up front, a basic tool in understand-
ing streamline patterns on the sphere: the index theorem of
Poincaré.

Theorem (PIT). The index If�S� of a two-dimensional
surface S relative to any C1 vector field f on S with at most
a finite number of critical points is equal to the Euler–
Poincaré characteristic of S, denoted ��S�, i.e., If�S�=��S�.

We know for a sphere, ��S�=2. The index for a center is
+1, while that for a saddle is �1. Hence if c denotes the
number of centers present �point vortices plus other centers�
and s denotes the number of saddles, then one has c−s=2.
Thus, all of the streamline patterns produced must respect
this constraint, which gives a nice check on the consistency
of the patterns produced. See Refs. 4 and 5 for more on
applications of the PIT to the understanding of streamline
patterns on the sphere.

B. Equations of motion

The evolution equations for N-point vortices moving on
the surface of a nonrotating unit sphere, written in Cartesian
coordinates, are given in Ref. 17:

ẋ� =
1

4�
�
�=1

N

���

x� � x�

�1 − x� · x��
, �� = 1, . . . ,N� , �1�

where x��R3 and �x��=1. The unit vector x� denotes the
position of the �th vortex whose strength is given by ��

�R. The relation with standard spherical coordinates on the
unit sphere is given by

x� = �sin 	� cos 
�,sin 	� sin 
�,cos 	�� . �2�

The prime on the summation indicates that the singular term
�=� is omitted, and initially, the vortices are located at the
given positions x��0��R3. The denominator in Eq. �1� is the
intervortical distance, l��, between vortex �� and �� since
l��
2 ��x�−x��2=2�1−x� ·x��. As described in Ref. 18, Eq.

�1� has two conserved quantities associated with it, the
Hamiltonian energy,

H = −
1

4�
�

���

N

���� log�x� − x�� , �3�

and the center-of-vorticity vector,

J = �
�=1

N

��x� = ��
�=1

N

��x�, �
�=1

N

��y�, �
�=1

N

��z�	
= �Jx,Jy,Jz� . �4�

As shown in Ref. 18, for a nondegenerate relative equilib-
rium ��J��0�, the configuration rotates about the J-vector
with frequency proportional to �J�. In this paper, the align-
ment of J with respect to the axis of rotation of the sphere is
crucial toward determining the existence conditions for vor-
tex streets. Our formulation relies on the evolution equations
for the relative distances �see Ref. 19�,

�
d�l��

2 �
dt

= �
�=1

N

���V���d���, �5�

where d������1 / l��
2 �− �1 / l��

2 ��. Here the “ �” means the
summation excludes �=� and �=�. V��� is the volume of
the parallelepiped formed by the vectors x� ,x� ,x�:

V��� = x� · �x� � x�� � x� · �x� � x�� � x� · �x� � x�� .

Notice that the sign of V��� can be positive or negative de-
pending on whether the vectors form a right-or left-handed
coordinate system. These equations of motion yield neces-
sary conditions for relative equilibria,

d�l��
2 �

dt
= 0, ∀ �,� = 1 ¯ N, � � � . �6�

Using condition �6� in Eq. �5� gives the equation for the
relative equilibria as fixed points of Eq. �5�:

�
�=1

N

���V���d��� = 0, �7�

for each value of � ,�=1, . . . . ,N. Based on the fact that Eq.
�7� is linear in the vortex strengths, we write it as a linear
matrix system

A� = 0, �8�

where �= ��1 ,�2 , . . . ,�N�T�RN is the vector of vortex
strengths, and A�RM�N, M =N�N−1� /2, is the configura-
tion matrix whose entries, given by the terms V���d���, en-
code the geometry of the configuration. Thus, to satisfy Eq.
�8�, we seek configurations for which

x

x

x

φ

J

1

2

3

θ

Γ

−Γ

p−Γ

Γp

FIG. 1. Schematic of a single VKS on the sphere with an illustration of the
vorticity vector J where the upper ring is placed at colatitude 
. N is the
total number of vortices, n is the number of vortices per ring, hence N
=2n. When pole vortices are included, we have N=2n+2.
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det�ATA� = 0, �9�

in which case A is rank deficient, and has a nontrivial
nullspace. We seek a basis set for this subspace of RN from
which we obtain the allowable vortex strengths.

This approach for identifying relative equilibria is ide-
ally suited to the study of vortex street configurations on the
sphere since N must necessarily be finite, and each of the
intervortical distances have an upper bound given by the
sphere diameter, see Fig. 1. By contrast, planar vortex streets
are doubly infinite and thus require the summation of an
infinite series to write the governing streamfunction �see, for
example, Ref. 20�. To adapt the configuration matrix ap-
proach in this setting would require that one make sense of
the infinite dimensional configuration matrix that ensues.

C. SVD primer

Given the positions of the N-points, x��0��R3, ��
=1, . . . ,N� on the surface of the unit sphere, the configura-
tion matrix A�RM�N is obtained, with entries given by Eq.
�7�. The most general tool for characterizing the nullspace
structure of the matrix is the singular value decomposition
�SVD�, which we briefly review. First, we find the eigenval-
ues �i� and eigenvectors v�i� and u�i� of the square covariance
matrices ATA and AAT, respectively �in practice, to compute
the singular values, one does not take this approach as it is
known to be numerically unstable�:

�ATA − �i��v�i� = 0; �AAT − �i��u�i� = 0. �10�

The singular values ��i� of A are related to �i� as follows:
�i�= ���i��2, and can be ordered from largest to smallest,
��1����max����2�� . . . ���min��0. Then A has factoriza-
tion A=U�VT, where the first N columns of U are the left
singular vectors u�i��RM and the remaining M −N columns
are chosen to be orthonormal so that U is an orthogonal
matrix, UTU= I. Similarly, the N columns of V are the nor-
malized right singular vectors v�i��RN, making V an or-
thogonal matrix, while the N singular values form the diag-
onal entries of ��RM�N with zeroes off the diagonal. The
right singular vectors, v�i�, corresponding to the zero singular
values form an optimal basis set for the nullspace of A, and
hence are used as a basis for the vortex strength vector �, as
seen in Eq. �8�. Thus, the rank of A corresponds to the num-
ber of nonzero singular values, call this number k�0. The
factorization of A, written out via the SVD, is instructive:

A = �
i=1

k

��i�A�i�, �11�

where A�i���u�i���v�i��T are each of rank one. Thus, the SVD
expresses A as a linear combination of rank-one matrices,
with relative weightings given by the nonzero singular val-
ues ��i�. Before detailing the streamline patterns, we focus

first on the singular value distribution for the single VKS in
the next section, as this will set the stage for determining all
allowable vortex strengths for which the pattern remains in a
vortex street formation, rotating about the polar axis.

II. SINGLE VON KÁRMÁN STREETS

A. No pole vortices

We first consider the simplest case of a single VKS con-
sisting of two fixed latitudinal rings placed symmetrically
across the equator at colatitudes 
=
1 and 
=�−
1, with n
vortices per ring, evenly spaced. The vortices in the upper
ring and those in the lower ring are skewed by half a wave-
length with respect to each other as shown in Fig. 1. The
longitudes associated with the n vortices in the upper ring are

	 =
2�� − 1�

n
, � = 1, . . . ,n� , �12�

while those in the lower ring are

	+n =
2�� − 1�

n
+

�

n
, � = 1, . . . ,n� . �13�

It is now straightforward to produce the configuration matrix
A associated with Eq. �8�, given n. We take the simplest case
with n=2, N=4 as an example. Equation �7� gives rise to the
configuration matrix A�R6�4:

A = 

0 0 0 0

0 − � 0 − �

0 � � 0

� 0 0 �

− � 0 − � 0

0 0 0 0

�;

�14�

� =
�3 cos2 
1 − 1�cos 
1

2�cos2 
1 + 1�
.

The covariance matrix is given by

ATA = 

2�2 0 �2 �2

0 2�2 �2 �2

�2 �2 2�2 0

�2 �2 0 2�2
� , �15�

with det�ATA�=0. The singular values for Eq. �14� can be
obtained analytically �as square roots of the eigenvalues of
the square covariance matrices�:

��1� = 2�; ��2� = ��3� = �2�; ��4� = 0. �16�
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With one singular value that is zero, the nullspace dimension
is one, giving rise to a unique distribution of vortex
strengths:

� = �
1

1

− 1

− 1
� . �17�

The first two components of the vector correspond to the
upper �northern� ring, showing they must be equal. The sec-
ond two components of equal but opposite strength vortices
correspond to the lower �southern� ring. This is the general
structure of the right singular vector of A for all n.

For example, the singular values �for a typical case n
=5� are shown in Fig. 2. Note the fact that there is only one
zero singular value, hence the nullspace dimension of A is
one. The unique �up to multiplicative constant� nullspace
vector is given by

� = �
1

]

1

− 1

]

− 1

� � R2n, �18�

where the first set of n vortices of equal strength lie evenly
spaced on the ring in the Northern hemisphere, while the
second set of n equal but opposite strength vortices lie
evenly spaced on the ring in the southern hemisphere. The
center of vorticity, given by Eq. �4�,

J = �
�=1

N

��x� = 2N� 0

0

cos 

� , �19�

is aligned with the z-axis and the rings rotate around this
axis.

B. With pole vortices

When two pole vortices are added to the system, there is
a total of N=2n+2 point vortices. The singular value struc-
ture �n=5� is shown in Fig. 2�b�, which should be compared
with that without poles �Fig. 2�a��. With the addition of pole
vortices, the nullspace dimension increases from one to
three. The basis set for the nullspace is most conveniently
written:

� = �
1

]

1

− 1

]

− 1

0

0

� + �np
f�
1�
]

f�
1�
0

]

0

1

0

� + �sp
f�
1�
]

f�
1�
0

]

0

0

1

� � R2n+2.

�20�

The first n components of the first vector on the right corre-
spond to the vortex strengths in the upper ring, the second n
correspond to those in the lower ring. The last two vectors on
the right tell us how the pole vortex strengths decompose in
order for a relative equilibrium to exist with this configura-
tion. The value �np corresponds to the strength of the vortex
at the north pole, while �sp corresponds to that at the south
pole. f�
1� is a general function of the ring latitude. The
simplest case is when the pole vortices are equal and oppo-
site, i.e., when �np=−�sp=�p. For this case, the nullspace
dimension is 2, showing that the pole strength can be chosen
independently from the ring strength. The vortex strength
vector in this case reduces to

1 2 3 4 5 6 7 8 9 10

0

0..5

1

1..5

2

2.5

i

σ
i

(a)

2 4 6 8 10 12

0

0..5

1

1..5

2

2..5

3

i

σ
i

(b)

FIG. 2. Singular values for a single von Kármán vortex street with param-
eters n=5 and 
=3� /8. �a� Without pole vortices, the nullspace dimension
is one; �b� with pole vortices, the nullspace dimension is three.
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� = �
1

]

1

− 1

]

− 1

0

0

� + �p
0

0

]

]

]

0

1

− 1

� � R2n+2, �21�

and the center of vorticity vector �4� in this case is aligned
with the polar axis. The relative equilibrium in this case is a
VKS rotating around J.

For the more general case in which �np�−�sp, it is

readily seen that the vortex strength vector �20� gives rise to
a decomposition in which the strength of those in the north-
ern ring is not equal and opposite those in the southern ring.
The configuration in this case is a relative equilibrium, but
not a classical VKS. Thus, the only allowable arrangement
which gives rise to a single VKS with pole vortices are those
in which the poles are equal and opposite in strength and the
northern ring is made up of vortices that are equal in
strength, but opposite to those in the south.

C. Angular frequency formulas

To calculate the angular frequency of the vortex streets,
we start with the equations of motion �1� written in spherical
coordinates:17

	̇� =
1

4� sin 
�
�
��

N

�

sin 
� cos 
 − cos 
� sin 
 cos�	� − 	�
1 − cos ��

, �22�

where cos ��=cos 
� cos 
+sin 
� sin 
 cos�	�−	�. Since the vortex street rotates rigidly about the z-axis, it is sufficient
to calculate the angular frequency, �n, for any of the vortices, hence, without loss of generality, we take �=1 with N=2n �no
poles�:

�n � 	̇1 =
1

4� sin 
1
�
=2

2n

�

sin 
1 cos 
 − cos 
1 sin 
 cos�	1 − 	�
1 − cos �1

. �23�

It is convenient to split the sum into two parts, first summing over the vortices in the upper ring where =2, . . . ,n, 
=
, and
�=1, then over those in the lower ring where =n+1, . . . ,2n, 
=�−
, and �=−1. Hence

�n =
1

4� sin 

��

=2

n
sin 
 cos 
 − cos 
 sin 
 cos�	1 − 	�

1 − cos2 
 − sin2 
 cos�	1 − 	�
− �

=n+1

2n
sin 
 cos�� − 
� − cos 
 sin�� − 
�cos�	1 − 	�

1 − cos 
 cos�� − 
� − sin 
 sin�� − 
�cos�	1 − 	�� .

�24�

Now, using the fact that cos��−
�=−cos 
, sin��−
�=sin 
, and Eqs. �12� and �13�, which state that the n vortices are
evenly spaced on each ring, with the lower ring skewed by � /n with respect to the upper ring, we obtain

�n =
cos 


4� sin 
��n − 1�
sin 


+ sin 
�
=1

n 1 + cos�2�� − 1�
n

+
�

n
	

1 + cos2 
 − sin2 
 cos�2�� − 1�
n

+
�

n
	� . �25�

We show in Fig. 3 plots of �n versus 
 for n=2, . . . ,6 for the
full range 0�
�� /2. From Eq. �25�, it is straightforward
to show that �n→� as 
→0, corresponding to the limit in
which all the vortices in the upper ring coalesce at the north
pole, and all those in the lower ring coalesce at the south
pole, and �n→0 as 
→� /2, corresponding to the limit in
which all the vortices are equally spaced along the equator,
having alternating equal but opposite strength.

With the addition of pole vortices of strength �np��p at
the north pole, and �sp�−�p at the south pole, the VKS
remains intact, but the angular frequency changes. Using Eq.
�22� to calculate this change, we apply it with 	�=	, 
�

=
, with one term in the sum, N=1, corresponding to �

=�1=�p and 
=
1=0 to obtain the effect from the vortex
located at the north pole:

�np = 	̇ =
�p

4� sin 


sin 


1 − cos 

=

�p

4��1 − cos 
�
. �26�

Similarly, to obtain the effect from the south pole vortex, we
use Eq. �22� with one term in the sum corresponding to �

=�1=−�p and 
=
1=� to obtain the effect from the south
pole vortex:
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�sp =
�p

4��1 + cos 
�
. �27�

The angular frequency of the full vortex street with pole
vortices, �, is then a linear superposition of the frequencies
�n, �np, and �sp, which can be written as

� = �n + �p, �28�

where

�p = �np + �sp =
�p

4��1 − cos 
�
+

�p

4��1 + cos 
�

=
�p

2� sin2 

�29�

is the pole component. We plot this component of angular
frequency due to the poles in Fig. 3�b�.

D. Streamline topologies

With these formulas in hand, we are now in a position to
plot the full range of allowable streamline patterns for the
single VKS, with and without pole vortices. For this, we
move in the appropriate rotating frame of reference to render
the relative equilibrium fixed, and we plot the streamline
patterns in this frame as a function of colatitude 
. This full
range of patterns is shown in Figs. 4–6.

Figure 4 shows the case of a single street with no pole
vortices, through the full range of values 
=0→� /2. Our
convention is to use clockwise orientation ���0� of the vor-
tices in the northern hemisphere and counterclockwise ��
�0� in the southern hemisphere, in agreement with patterns
described in Ref. 2. Aside from the two limiting �degenerate�
cases 
=0,� /2, there is only one topology type throughout

the entire range, which we call type I, shown in Figs. 4�b�
and 4�c� at two different latitudes. The streamline pattern is
topologically equivalent to that identified in Ref. 2 �their Fig.
3�b��, where a westward going jetstream meanders between
the vortices comprising the street. The limiting case 
=0
�shown in Fig. 4�a�� corresponds to the case of two vortices
of equal and opposite strength �n�, located at the poles. For
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FIG. 3. �a� Angular velocity � as a function of 
 for a single VKS with
n=2¯6. �b� Additional angular velocity � due to pole vortices with �p

=+1. As 
 approaches � /2, �→�p /2�.

(b)(a)

(c) (d)

FIG. 4. Streamline topologies for a single VKS. The fixed parameters are
n=5 and �=−1. The different topology types are obtained by varying 
. In
�a�, we begin with the degenerate case 
�=0, and in �d� we end with the
degenerate case 
�=� /2. A single topology type exists in the range 0�

�� /2, as illustrated in �b� and �c�. We call these Type I topologies.

(b)(a) (c)

(d) (f)(e)

(g) (h) (i)

FIG. 5. Streamline topologies for a single VKS with vortices at the poles.
The fixed parameters are n=5, �=−1, and 
=3� /8. The different topology
types are attained by varying �p from 10 to �0.02. See Fig. 6 for a north
pole view of the streamline topology bifurcations in the vicinity of �p

�=0. �a�
Type I; �b� �p

�=8; �c� Type II; �d� �p
�=3.45; �e� Type III; �f� �p

�=0; �g� Type
IV; �h� �p

��−0.015; �i� Type II.

116603-6 Chamoun, Kanso, and Newton Phys. Fluids 21, 116603 �2009�



this, the streamlines correspond to latitudinal lines. The other
limiting case 
=� /2 corresponds to the case of 2n point
vortices evenly spaced along the equator, with alternating
equal and opposite signs �see Fig. 4�d��.

In Fig. 5 we show the considerably richer set of patterns
for a single street with pole vortices. In this panel, we fix the
latitude at 
=3� /8 and use the pole strength as our bifurca-
tion parameter, ranging from �p=10→−0.02. The type I to-
pology is shown first in Fig. 5�a�. The first topological bifur-
cation occurs at value �p�8, shown in Fig. 5�b�. The new
topology is then shown in Fig. 5�c�, which we call type II.
This is the topology identified in Ref. 2 �their Fig. 3�a��. The
next bifurcation occurs at �p�3.45, shown in Fig. 5�d�. This
is the degenerate case shown in Ref. 2 �their Fig. 3�c��.
Shown in Fig. 5�e� is the next type III pattern, which corre-
sponds to the pattern shown in Ref. 2 �their Fig. 3�b��. Figure
5�f� shows the next bifurcation value which occurs when
�p=0, i.e., the pole vortex vanishes. After this �i.e., when the
north pole strength becomes negative in sign�, we obtain the
topologies shown in Figs. 5�g�–5�i�. Here, it is useful to view
the streamline patterns looking down from the north pole, a
view which is shown in the panel of Fig. 6. The structure of
the streamline patterns is quite intricate here, particularly that
identified as type IV, shown in Fig. 6�c�. These are the full
range of allowable patterns for the single street with pole
vortices.

III. DOUBLE VON KÁRMÁN STREETS

The double VKS is considerably richer. We show the
diagram in Fig. 7, both with and without pole vortices. The
top northern ring is positioned at colatitude 
1, while the
lower northern ring, skewed with respect to the top, is posi-
tioned at colatitude 
2. This arrangement is then reflected
across the equator to the southern hemisphere. Thus, the two
outermost rings are positioned at 
1 and �−
1, while the
two innermost rings are at 
2 and �−
2.

A. The nullspace structure

In Fig. 8 we show the generic distribution of singular
values, focusing on the case n=5. Figure 8�a� shows that in
the case of no pole vortices, the nullspace dimension is one.
The 
1 rings have equal and opposite strengths ��, while
the 
2-rings have equal and opposite strengths ��1�, where

(b)(a) (c)

(d) (e)

FIG. 6. North pole view of the streamline topologies for a single VKS with
vortices at the poles. The fixed parameters are n=5, �=−1, and 
=3� /8.
Here, we illustrate the streamline topology bifurcations in the vicinity of
�p

�=0. In the range 0��p�−0.015 as shown in �c�, a flower-shaped contour
consisting of five elliptic points and five saddle points appears about the
pole. Figures 6�a�–6�e� correspond to Figs. 5�e�–5�i�, respectively. �a� Type
III; �b� �p

�=0; �c� Type IV; �d� �p
��−0.015; �e� Type II.
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FIG. 7. Diagram of a double VKS with and without pole vortices. The
configuration consists of one vortex street in the northern hemisphere, and a
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metrically skewed n-vortex rings. One ring in each hemisphere has a latitude
of 
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FIG. 8. Singular values for a double von Kármán vortex street: �a� without
pole vortices and �b� with pole vortices. The fixed parameters are n=5, 
1

=13� /40, and 
2=3� /8.
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�1�R. The vortices are ordered from the uppermost ring to
the lowermost ring, namely,

� = ��1, . . . ,1

n

,− �1, . . . ,− �1

n

,�1, . . . ,�1

n

,− 1, . . . − 1

n

�T

� R4n. �30�

Unless �1=1, the configuration is not a double VKS.
With the addition of poles, the dimension of the null

space is three, as shown in Fig. 8�b�. The right null vector in
this case, ��R4n+2, takes the general form

� = �

⎝
⎜
⎜
⎜
⎛ 1

]

1

− �1

]

− �1
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− 1
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− 1

0
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]
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0
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0

1
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⎠
⎟
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⎞
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⎜
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]
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]
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0
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0

0
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⎟
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⎞

. �31�

We focus on the special case in which the poles are equal and
opposite, hence �np=−�sp��2�, and

� = �

⎝
⎜
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⎛ 1

]
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]
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�1

]

�1

− 1

]

− 1

0

0
⎠
⎟
⎟
⎟
⎞

+ �

⎝
⎜
⎜
⎜
⎛�2�f1 − g1�

]

�2�f1 − g1�
�2�f2 − g2�

]

�2�f2 − g2�
�2�f3 − g3�

]

�2�f3 − g3�
0

]

0

�2

− �2

⎠
⎟
⎟
⎟
⎞

= �

⎝
⎜
⎜
⎜
⎛ 1 + �2�f1 − g1�

]

1 + �2�f1 − g1�
− �1 + �2�f2 − g2�

]

− �1 + �2�f2 − g2�
�1 + �2�f3 − g3�

]

�1 + �2�f3 − g3�
− 1

]

− 1

�2

− �2

⎠
⎟
⎟
⎟
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�32�

From this representation, it is straightforward to choose vari-
ables so that the solution collapses into one dimension,
namely,

� = ��1, . . . ,1,− 1, . . . ,− 1,1, . . . ,1,− 1, . . . ,− 1,�p,− �p�T

� R4n+2, �33�

where �p��2. For this, we choose f1=g1, �f2−g2�=−�f3

−g3�, and �1=1+�2�f2−g2�. The center-of-vorticity vector
then aligns with the polar axis:

J = 2� 0

0

n�cos 
2 − cos 
1� + �2
� , �34�

and the system is a double VKS. We note that to achieve this
relative equilibrium configuration requires a delicate balance
of ring latitudes �
1 ,
2� and pole strengths �2. This balance
is shown in Fig. 9 for a range of ratios R=
1 /
2. In a sense,
one can view the pole strength as the key parameter, which,
if chosen judiciously, locks the double rings into a relative
equilibrium much as the poles played an important role in
the stability and bifurcations of a single latitudinal ring stud-
ied in Ref. 3. We show in Fig. 10 the angular velocity of the
double street, with and without pole vortices, for a fixed
value of 
1, as a function of the 
2 variable, for values of
n=2, . . . ,6 �Fig. 10�.
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FIG. 9. Curves relating the pole vortex strength �p vs the angle ratio R
=
1 /
2. The fixed parameters are n=5 and 
1=3� /8. �a� 
1�
2�� /2
�i.e., 0.75�R�1�. �b� 0�
2�
1 �i.e., 1�R�+��.
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FIG. 10. Angular velocity � as a function of 
2 for n=2¯6. The fixed
parameter is 
1=3� /8. In �a�, we illustrate the curves when 0�
2�
1,
while the curves in �b� correspond to 
1�
2�� /2.
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B. Streamline topologies

In Figs. 11�a�–11�i� we show the full range of patterns
obtained by varying 
2 for fixed values of 
1=3� /8, n=5.
We use the ratio R�
1 /
2 as our bifurcation parameter as it
increases from R=0.9 �Fig. 11�a�� to R=0.996 �Fig. 11�i��.
We identify three distinct topology types: type I �Fig. 11�a��,
type II �Fig. 11�c��, and type III �Fig. 11�e��. The bifurcation
values from one type to the next are also shown. Figure 12
shows a north pole view of the details of the topological
bifurcation which takes place as the pole strength switches
sign. In Fig. 13 we show the continuation of Fig. 11 for
values 1.02�R�2.0. Figure 14 shows details of the north
pole view of the bifurcation when the pole strength changes
sign.

IV. DISCUSSION

The problem of how to place stacked latitudinal rings of
evenly spaced point vortices on a sphere, together with the
proper choice of vortex strengths in order that the system
forms a relative equilibrium configuration, analogous to the

(b)(a) (c)

(d) (f)(e)

(g) (h) (i)

FIG. 11. Streamline topologies for a double VKS with vortices at the poles.
The fixed parameters are n=5, 
1=3� /8, and �=1. The different streamline
topologies are attained by varying 
2. We use R=
1 /
2, and R is increased
from 0.9 to 0.996. The bifurcation point in �f� corresponds to the point at
which �p=0. See Fig. 12 for a north pole view of the streamline topology
bifurcations in the vicinity of �p=0. The topology types above correspond to
all those observed in the range 
1�
2�� /2 �i.e., 0.75�R�1�. �a� Type I;
�b� R*�0.957; �c� Type II; �d� R*�0.99065; �e� Type III; �f� R*

�0.990743; �g� Type II; �h� R*�0.9953; �i� Type I.

(b)(a) (c)

FIG. 12. North pole view of the streamline topologies for a double VKS
with vortices at the poles in the vicinity of R�0.990 743. At this point, the
pole vortices switch signs. The fixed parameters are n=5, 
1=3� /8, and
�=1. Figures 12�a�–12�c� correspond to Figs. 13�e�–13�g�, respectively. �a�
Type III; �b� R��0.990743; �c� Type III.

(b)(a) (c)

(d) (f)(e)

(g) (h) (i)

FIG. 13. A continuation of Fig. 11, the figures above are streamline topolo-
gies for a double VKS with vortices at the poles. The fixed parameters are
again n=5, 
1=3� /8, and �=1. The different streamline topologies are
attained by varying 
2. We use R=
1 /
2, and R is increased from 1.02 to 2.
The bifurcation point in �f� corresponds to the point at which �p=0. See Fig.
14 for a north pole view of the streamline topology bifurcations in the
vicinity of �p=0. The topology types above correspond to all those observed
in the range 0�
2�
1 �i.e., 1�R�+��. �a� Type I; �b� R*�1.039; �c�
Type II; �d� R*�1.238; �e� Type IV; �f� R*�1.23844; �g� Type III; �h�
R*�1.535; �i� Type V.

(b)(a) (c)

(d) (f)

FIG. 14. North pole view of the streamline topologies for a double VKS
with vortices at the poles in the vicinity of R�1.238 44. At this point, the
pole vortices switch signs. The fixed parameters are n=5, 
1=3� /8, and
�=1. In the range 1.238�R�1.238 44 as shown in �c�, a flower-shaped
contour consisting of five elliptic points and five saddle points appears about
the poles. �a� Type II; �b� R*�1.238; �c� Type IV; �d� R*�1.23844; �e�
Type III. Figures 14�a�–14�e� correspond to Figs. 13�c�–13�g�, respectively.
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concentric ring problem in the plane discussed most com-
pletely in Ref. 21, is a delicate problem involving the simul-
taneous choice of latitudes, longitudes, and point vortex
strengths. The configuration matrix approach used in this pa-
per, which identifies the appropriate vortex strengths as ele-
ments of a nullspace associated with the matrix encoding the
particular positions of the point vortices, seems ideally suited
to handle the general problem. Maintaining such an equilib-
rium requires that the vortex strengths remain elements of
the nullspace as the system evolves, and it is indeed remark-
able that planetary atmospheres actually produce �approxi-
mately� such structures, which sometimes remain stable for
decades �Refs. 2 and 8�. The Hamiltonian stability theory for
the VKS identified in this paper, an interesting and challeng-
ing problem in its own right, remains to be carried out.
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