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Vortex Lattice Theory: A
Particle Interaction Perspective∗
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Abstract. Recent experiments on the formation of vortex lattices in Bose–Einstein condensates has
produced the need for a mathematical theory that is capable of predicting a broader class
of lattice patterns, ones that are free of discrete symmetries and can form in a random
environment. We give an overview of an N-particle based Hamiltonian theory which, if for-
mulated in terms of the O(N2) interparticle distances, leads to the analysis of a nonnormal
“configuration” matrix whose nullspace structure determines the existence or nonexistence
of a lattice. The singular value decomposition of this matrix leads to a method in which
all lattice patterns and the associated particle strengths, in principle, can be classified and
calculated by a random-walk scheme which systematically uses the m smallest singular val-
ues as a ratchet mechanism to home in on lattices with m-dimensional nullspaces, where
0 < m ≤ N . The resulting distribution of singular values encodes detailed geometric prop-
erties of the lattice and allows us to identify and calculate important quantitative measures
associated with each lattice, including its size (as measured by the Frobenius or 2-norms),
distance between the lattices (hence lattice density), robustness, and Shannon entropy as
a quantitative measure of its level of disorder. This article gives an overview of vortex
lattice theory from 1957 to the present, highlighting recent experiments in Bose–Einstein
condensate systems and formulating questions that can be addressed by understanding
the singular value decomposition of the configuration matrix. We discuss some of the
computational challenges associated with producing large N lattices, the subtleties associ-
ated with understanding and exploiting complicated Hamiltonian energy surfaces in high
dimensions, and we highlight ten important directions for future research in this area.

Key words. Abrikosov lattices, Bose–Einstein condensates, singular value decomposition, Brownian
ratchets, Shannon entropy, random-walk schemes, Thomson’s problem, mesh generation,
Kullback–Leibler divergence
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1. Introduction. The modern theory of vortex lattices began in 1957 with the
prediction by Abrikosov of the existence of triangular structures in what was then a
new class of superconductor, called “superconductors of the second group,” now called
type II superconductors (Abrikosov (1957)). His prediction was an outgrowth of the
newly developed theory of superconductivity by Ginzburg and Landau (1950) in which
they used a wave function as their “order parameter” to study the superconducting
phase transition. Abrikosov wondered what would happen when the “Ginzburg–
Landau” parameter exceeded the critical value 1/

√
2, in which case the surface energy
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(a) (b)

Fig. 1.1 (a) The first direct image of an “Abrikosov” triangular lattice in a type II superconductor
from Essmann and Trauble (1967) (reprinted with permission from Elsevier). Each dark
spot is a lattice site created by a nearly straight magnetic flux tube in a periodic arrange-
ment, penetrating the specimen parallel to the applied field, with a diameter that is small
compared to the lattice spacing. (b) The image of an “Abrikosov” triangular lattice in
NbSe2 using a scanning-tunneling microscope from Hess et al. (1989) (reprinted with per-
mission from APS). The lattice is far more regular than previously imaged, and contains
detail over a wider range of scales.

of the material becomes negative. He predicted it would be possible for the material
to produce periodic arrays of aligned magnetic flux tubes, with quantized values,
penetrating the specimen parallel to the applied magnetic field. He also argued that
the geometric configuration which would minimize the free energy of the system, in an
isotropic medium, should be triangular.1 Higher energy configurations, such as square
or hexagonal lattices, should be possible in substances with crystalline symmetries
that would “impose” these symmetries on the lattice and, ironically, it is the square
lattice that Abrikosov shows in his 1957 publication, despite the fact that triangular
lattices are now most associated with his name. Interestingly, his prediction, first
made in 1953, did not create much of a stir since Landau and others did not believe in
the possibility of a vortex lattice incommensurable with the crystalline structure which
supports it (see the recollections in Abrikosov’s Nobel lecture (2004)). However, after
Feynman’s (1955) publication on vortex tubes in superfluid helium with quantized
circulations Γ = �/m (∼ 0.001cm2/s), where � is Planck’s constant and m is the
mass of the 4He atom, the idea seemed more palatable. As was remarked on in Aref
et al. (2003), the association between Planck’s constant and the vortex circulations,
along with the fact that the rotational frequency of the lattice can be calculated
from knowledge of the lattice pattern, implies that, in principle, Planck’s constant
(a microscopic quantity) can be calculated given sufficiently accurate measurements
of macroscopic quantities, an intriguing but currently impractical possibility. The
first direct image of such an “Abrikosov” lattice by Essmann and Trauble (1967) (see
Figure 1.1(a), later using scanning-tunneling microscope imaging (see Figure 1.1(b))

1Triangular lattices have better stability properties than others, as shown in Fetter, Hohenberg,
and Pincus (1966).

D
ow

nl
oa

de
d 

04
/2

5/
20

 to
 1

28
.1

25
.2

10
.9

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

VORTEX LATTICE THEORY 503

Fig. 1.2 First good examples, after Yarmchuck, Gordon, and Packard (1979) (reprinted with per-
mission from APS) of vortex lattice patterns in superfluid helium with 1, . . . , 11 vortices
(light spots). The pattern is rotating with a predictable frequency based on the geometric
properties of the pattern and the circulations are quantized and all equal.

by Hess et al. (1989), and in superfluid helium by Yarmchuck, Gordon, and Packard
(1979) (see Figure 1.2), ushered in the modern era of vortex lattice research that has
flourished for the past 50 years and continues unabated. Recently, because of a new
class of experiments, unprecedented in their microscopic detail, performed on more
general lattices (not necessarily periodic) in Bose–Einstein condensate systems, this
classical and fascinating subject has been reinvigorated and has produced the need
for the development of a more comprehensive theory.

A good example of the type of imaging detail now available for these systems is
shown in Figure 1.3 taken from Abo-Shaer et al. (2001) and Figure 1.4 taken from
Engels et al. (2002). Figure 1.3 shows a sampling of vortex lattice patterns with
16, 32, 80, and 130 vortices. In these experiments, a collection of boson particles is
trapped in an external potential, cooled to temperatures near absolute zero, which
causes the atoms to collapse to the lowest quantum state of the external potential
and exhibit quantum effects which collectively are visible on macroscopic scales (see
Butts and Rokhar (1999)). Laser stirring then introduces angular momentum to
the sample which manifests itself in the form of discrete quantized, nearly parallel
vortex filaments. The higher the speed of rotation, the larger the number of vortices
produced (since the rotation speed is a simple function of the total vortex strength
of the collection of particles). Figure 1.4 shows both the front and side views of
the lattice in order to document its two-dimensionality, as evidenced by the parallel
vortex tubes shown from the sides, as well as its regularity, as seen by the nearly equal
spacing of the peaks across a horizontal cut. The lattices can now be manipulated to
a high degree by stressing the patterns, as shown, for example, in Figure 1.5, in which
the size and shape of a basic cell can be altered, and defect patterns such as the line
and grain boundary defects shown in Figure 1.6 can be produced routinely.
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504 PAUL K. NEWTON AND GEORGE CHAMOUN

Fig. 1.3 First good examples, from Abo-Shaer et al. (2001) (reprinted with permission from AAAS),
of vortex lattice patterns in Bose–Einstein condensates with 16, 32, 80, and 130 vortices
(dark spots) as the speed of rotation of the condensate is increased, crystallized in a trian-
gular pattern. The diameter of the cloud in the last image is approximately 1mm.

A fascinating precursor to the modern theory was conceived of by William Thom-
son (Lord Kelvin), who formulated his now defunct “vortex atom” theory of matter
in the 1860s (Thomson (1867)), following Helmholtz’ landmark 1858 study of vor-
tex motion.2 According to this view, and in his attempt to understand Faraday’s
magneto-optic rotation (1846), the underpinnings of matter were made up of atoms,
which were thought of as loci of rotational motion embedded within a homogeneous
ether pervading space. The “permanence” of these inviscid rotational structures,
linked together in complex stable arrangements of rings and knots, were thought to
give rigidity to matter and endow it with properties associated with the underlying
vortex structures. In a letter to Helmholtz of 1867, Kelvin wrote:

If there is a perfect fluid all through space, constituting the substance of

all matter, a vortex-ring would be as permanent as the solid hard atoms

assumed by Lucretius and his followers (and predecessors) to account for

the permanent properties of bodies (as gold, lead, etc.) and the differences

of their characters . . . . [A] long chain of vortex-rings, or three rings, each

running through each of the others, would give each very characteristic

reactions upon other such kinetic atoms.

2See Meleshko and Aref (2007) for a comprehensive bibliography of vortex dynamics.
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Fig. 1.4 Front view (a) and horizontal cut (b) showing the equal spacing of the lattice sites, and side
view (c) showing the parallel vortex filaments indicating a nearly two-dimensional structure
(from Engels et al. (2002) (reprinted with permission from APS)).

�� ��

 ! µ# !$ µ#

Fig. 1.5 Under external stress, the lattice cells can change their size and shape, as shown here from
Engels et al. (2002) (reprinted with permission from APS).

(See Dear (2006, p. 128) for a more comprehensive discussion.) In the most optimistic
scenario, a full-fledged categorization of all matter in the form of a periodic table of
elements based on the links and knots of the underlying vortex rings was envisioned.3

Shown in Figure 1.7(a) is Kelvin’s symmetric arrangement of vortex rings within the

3A recent account of the birth and death of this “Victorian theory of everything” can be found
in Kragh (2002).
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x

(a) (b)

Fig. 1.6 (a) Line defect and (b) grain boundary defect in the Bose–Einstein lattice, from Abo-Shaer
et al. (2001) (reprinted with permission from AAAS).

(a) (b)

Fig. 1.7 (a) William Thomson’s (Lord Kelvin) symmetric arrangement of vortex rings (shown in
cross-section) embedded in the surrounding medium as a model of the optical ether. This
square lattice arrangement is made up of vortex pairs of equal and opposite sign, hence
the lattice produces no net circulation and was thought to endow matter with its rigidity.
Reprinted (with permission from Cambridge University Press) from Thomson (1887). (b)
Maxwell’s periodic arrangement of vortices in a lattice shown as a cross-section in the elec-
tromagnetic ether introduced the presence of what he called “idle wheel” particles between
the separatrices as his mechanical model of electromagnetic phenomena. Reprinted (with
permission from Dover Publications) from Maxwell (1965).

surrounding medium, where the cross-section is made up of pairs of equal and oppo-
site signed point vortices in a square lattice configuration with zero net circulation. In
his later years he openly worried about the stability (or lack thereof) of such arrange-
ments, and ultimately he reluctantly abandoned his grand vision of a vortex based
theory of matter (see discussions in Darrigol (2005)).

In a follow-up to this “mechanistic” line of thought, Maxwell further developed
Thomson’s ideas and struggled with the development of what he considered a “proper
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physical” treatment of electromagnetism, the purpose of which was to show that the
phenomena could be made consistent with mechanical principles (Kragh (2002)). As
shown in his schematic diagram in Figure 1.7(b), he represented magnetic lines by a
vortex lattice, where the direction and rate of rotation of each lattice site (vortex)
corresponded to the direction and strength of the magnetic field.4 In his struggle
to model what was then known about the relationship between electric currents and
magnetism, he

found great difficulty in conceiving of the existence of vortices in a medium,

side by side, revolving in the same direction about parallel axes. The con-

tiguous portions of consecutive vortices must be moving in opposite direc-

tions; and it is difficult to understand how the motion of one part of the

medium can coexist with, and even produce, an opposite motion of a part

in contact with it.

Maxwell’s resolution was to separate the vortices by layers of particles, which he
poetically called “idle wheel” particles, each revolving on its own axis in the opposite
direction to that of the vortices. The idle wheel particles, when in motion, served to
represent the electric current, and he used this construct of an elastic, mechanical ether
to determine the amount of elasticity the medium should possess if it were indeed the
cause of the electromagnetic forces measured by experiment. The model of vortices
and idle wheels was, for him, a convenient fiction which allowed him to conclude that
waves would travel through the medium at a speed very close to the known measured
speed of light in vacuum. He thus concluded that light itself was an electromagnetic
disturbance. The mechanistic model and notion of ether were, of course, ultimately
discarded and are now described by historians of science as a “vehicle of intelligibility”
(Dear (2006)), but the crucial insight of viewing light as an electromagnetic wave
governed by Maxwell’s equations is his greatest lasting contribution.

There has been a recent shift in the previous focus on classification of patterns,
perhaps best represented by the Los Alamos catalogue of two-dimensional vortex pat-
terns in 1978 (see Campbell and Ziff (1978, 1979) and Mertz (1978)) and the normal
modes associated with linear perturbations of these patterns (see Campbell (1981),
Lansky and O’Neil (1997)), toward an emphasis on the far from equilibrium dynam-
ics associated with the patterns (see, for example, Engels et al. (2002)). This shift in
emphasis, prompted primarily by detailed imaging and probing techniques in Bose–
Einstein condensate systems, is evidenced by the beautiful visualization of “Tkachenko
modes,” as seen in Figure 1.8, once only a theoretical construct (Tkachenko (1966a,b),
Sonin (1987)), and the formation process of highly irregular lattices (from Engels et al.
(2003)), as shown in Figure 1.9. This remarkable sequence shows an initially regular
lattice (frame (a)) being blasted by a laser (frame (b)), undergoing a cooling process
of effectively random motion (frame (c)), before finally settling into a frozen irregular
state (frame (d)). The dramatic irregularity of the state is shown in Figure 1.10 taken
from Engels et al. (2002), where the histogram on top shows the regularity of the initial
lattice spacings contrasted with the histogram below, showing the irregularity of the
spacings. These types of experiments have exposed our lack of knowledge regarding
the formation of the allowable patterns as well as their dynamics in the far from equi-
librium regime. It has also forced us to address new questions regarding, for example,
whether completely asymmetric patterns with no apparent discrete symmetries are

4As an interesting historical side note, one can see from the arrows in the second row from the
bottom some mistakes he made in accounting for the proper circulation of each lattice site!
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A B

Fig. 1.8 When perturbed by small amplitude perturbations, lattices can support linear sinusoidal
waves, called “Tkachenko oscillations,” shown here in a BEC lattice from Coddington
et al. (2003) (reprinted with permission from APS).

Fig. 1.9 This sequence, published in Engels et al. (2003) (reprinted with permission from APS),
shows an initially regular lattice (frame (a)) being blasted by a laser (frame (b)), undergoing
a cooling process of seemingly random motion (frame (c)), before finally settling into a
frozen state (frame (d)).
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Fig. 1.10 (a) An irregular BEC lattice from Engels et al. (2002) (reprinted with permission from
APS). The top histogram (b) shows the regularity of the initial lattice spacings before the
laser perturbations which destroy it, contrasted with the histogram below (c), showing the
final irregularity of the spacings after the “random” motion has settled.
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Fig. 1.11 Panel of equal strength equilibria (N = 18) arranged on concentric circles taken from
Campbell and Ziff (1979) (reprinted with permission from APS). The number just below
each arrangement is the energy level, and the numbers below that show the number of
vortices arranged on each of the rings, starting with the smallest. The minimum energy
configuration is (1 6 11).

allowable (see Aref and Vainchtein (1998)), and about the stability and robustness of
the resulting patterns. Current questions associated with these static patterns now
center on their dynamics under various forms of energetic external forcing.

Classical theory, as represented by Campbell and Ziff (1978, 1979), for example,
has generally worked well at identifying allowable patterns for relatively small numbers
of lattice sites (say, N ≤ 30), sites with vortex strengths that are all equal, patterns
with discernible discrete symmetries, and patterns that are stable. In these cases, the
free energy landscape is not so complex, and standard techniques such as gradient
search algorithms which seek out local minima, as used in Campbell and Ziff (1978,
1979), are reasonably effective. As a representative example, we show the panel of
known equal strength equilibria for N = 18 from Campbell and Ziff (1979) in Figure
1.11. Note that, for a given value of N , there can be more than one equilibrium
pattern, the energy levels that separate the patterns (number just below each pattern
in the figure) can be very tightly spaced, and the number of local minima can increase
rapidly (exponentially fast) with N , all of which present additional challenges.

Alternatively, when searching for patterns with known vortex strengths and iden-
tifiable discrete symmetries, an “ansatz”-based approach is a tried-and-true technique
that has paid dividends (Aref (1982), Aref et al. (2003)). See Lewis and Ratiu (1996)
or Aref and van Buren (2005) for two recent and representative examples of perhaps
the most complex equilibrium configurations identified with this approach to date.
However, for larger N (say, N ≥ 100), heterogeneous states with unequal vortex
strengths, patterns with symmetry-breaking defects or no apparent symmetries, and
unstable patterns, the classical theory has not been as successful and it seems un-
likely that it ever will be, since the set of allowable vortex strengths makes the energy
landscape extremely high-dimensional, and their prediction is not part of the theory,
but must be specified a priori.

A key aspect of the approach described in this article is that it is based on
a particle-interaction point of view. In other words, since the “vorticity” at each
lattice site is manifestly localized, we treat it as a “point,” which implies that the
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Fig. 1.12 The solid curve shows the radial profile of the velocity field associated with an isolated
lattice site; the dashed shows 1/r decay. The figure, adapted from the original version
in Abrikosov’s 2003 Nobel lecture (Abrikosov (2004)), is qualitative, as the axes are not
marked, but shows (i) a vortex-core region as r → 0, and (ii) monotonic decay of the field
as r → ∞.

corresponding velocity field it generates has no azimuthal dependence, only radial.
The “core size” of each vortex can be measured by the diameter, d, of each dark
spot in Figure 1.3 (usually an overestimate of the core size because of fuzzy imaging)
divided by a measure of the interparticle spacing, l. This dimensionless parameter
δ = d/l � 1 needs to be small in order that a particle based theory is feasible, and
in most of the experiments we are referring to, δ ∼ O(10−1 − 10−4). The velocity
field at each site is a function whose azimuthal component, uθ, decays monotonically
with radial distance, as shown in Figure 1.12 taken from Abrikosov’s Nobel lecture in
2003 (Abrikosov (2004)). Although the figure is qualitative, it exhibits two important
features: (i) a core region as r → 0 in which the field flattens out; (ii) monotonic
decay of the field as r → ∞. Since the lattice sites in our models are relatively well
separated, the behavior inside the core is regarded as unimportant. The simplest way
to model the monotonic decay is to use a velocity profile uθ(r) = αr−1, although this
could be generalized to a more complicated profile if the need arose and one could also
“cut off” the blow-up as r → 0 in various ways (see discussions in Newton (2001)).
Generally speaking, it is the monotonic decay of the radial field that is important for
our purposes, not the specific profile.

Thus, we treat each site as a “particle,” and the generated field is based on a
linear superposition of velocity fields �u(r) = (ur, uθ) = (0, αr−1) centered at each of
the particle sites. The associated vorticity field (�ω = ∇×�v) generated by this velocity
is a linear superposition of delta functions, the quintessential collection of “mathe-
matical particles.” Indeed, it is in fact possible to create analog systems of interacting
particles, such as large collections of millimeter-sized floating magnets on a liquid-air
interface, which are capable of recreating some of the patterns seen in Bose–Einstein
systems, as shown, for example, in Figure 1.13 after Grzybowski, Stone, and White-
sides (2000). For example, the patterns for the N = 4 and N = 5 states are the
same as those in Figure 1.2, while the one corresponding to N = 18 with 6 and 11
vortices evenly spaced on two concentric circles surrounding a central vortex closely
resembles the ground state shown in Figure 1.11. This work is the culmination of
a long line of classical studies on pattern formation using floating magnetic devices
(see, for example, Mayer (1878), Thomson (1878), Warder and Shipley (1888), Wood
(1898), and Snelders (1976)). Perhaps new in this work is the focus on “dynamic”
self-assembly of the magnets, each of which spins about its axis (accomplished using a
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Fig. 1.13 Dynamic self-assembly of spinning magnetic discs floating on a liquid-air interface, from
Grzybowski, Stone, and Whitesides (2000) (reprinted with permission from Nature Pub-
lishing Group). The interaction is a combination of fluid interaction produced by the
spinning discs and the magnetic field. Note that configurations for N = 10, 12, 19 are
not unique and the patterns can dynamically oscillate between the two. The patterns for
N = 4 and N = 5 are the same as those in Figure 1.2. The N = 18 pattern (1, 6, 11)
corresponds (roughly) to the lowest energy state shown in Figure 1.11.

rotating magnet placed under the dish of liquid in which the particles float), creating
an axisymmetric fluid field in the liquid about each site (in addition to the magnetic
field) which decays (approximately) linearly with distance from the site. Alterna-
tively, lattices can be produced in “random environments” using the two-dimensional
Euler equations from incompressible flow, as shown in Figure 1.14, and in magnetized
nonneutral plasmas (Driscoll and Fine (1990), Durkin and Fajans (2000)), as shown
in Figure 1.15 (the two-dimensional Euler equations and drift-Poisson equations are
isomorphic), where the vortices are magnetically confined pure electron columns. In
this context, the electron density is proportional to the vorticity, while the electro-
static potential is proportional to the streamfunction, and a maximum entropy theory
(see Jin and Dubin (1998)) can be used to describe the vortex crystal states, but not
their formation or dynamics far from equilibrium.

We contrast the particle-based approach with that of treating the field as the
solution of a system of partial differential equations, such as the Ginzburg–Landau
or Gross–Pitaevskii equations, with highly localized (Dirac-mass) initial conditions,
taking asymptotic advantage of the small parameter δ ≡ d/l in a dynamical setting.
This approach has been used, for example, by Neu (1990) and was developed further
by Pismen and Rubinstein (1991), Peres and Rubinstein (1993), and E (1994) and
given a rigorous footing by Jerrard and Soner (1998) and Lin (1996, 1998). Two books
that offer excellent state-of-the-art descriptions of much of the literature in this area
are that of Bethuel, Brezis, and Helein (1994) and the most recent up-to-date account
given in Sandier and Serfaty (2007), while the recent article of Zhang, Bao, and Du
(2007) explores some of the same issues. Our goal in this article is to show how the
particle-interaction point of view, which in a sense captures the “leading order” behav-
ior of the asymptotic theories derived from the full nonlinear field equations, coupled
with a random-walk component which mimics some of the physics and “thermody-
namically” ratchets the particles toward equilibria, can be used to shed light on some
questions of current research interest. For comprehensive reviews of the full equa-
tions governing Bose–Einstein and related systems, see Dalfovo et al. (1999), Leggett
(2001), Aranson and Kramer (2002), and the recent article of Kevrekidis et al. (2004).
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Fig. 1.14 Lattice formation is remarkably robust, as shown here for three successive times of a
vortex-in-cell simulation from Jin and Dubin (2000) (reprinted with permission from APS)
for five point vortices in a random background. Also plotted is the minimum distance
between the point vortices, with the arrow showing the approximate “cooling time” at
which the crystal structure sets in.

Fig. 1.15 Lattices with N = 3, 5, 7, 9, 6 formed in a magnetically confined nonneutral plasma, from
Fine et al. (1995) (reprinted with permission from APS), which mimic some of the pat-
terns produced in Campbell and Ziff (1978, 1979) as well as those shown in Figures 1.2
and 1.13. The vortices are magnetically confined pure electron columns. Note that the
case N = 9 appears to have a stronger vortex at the center, surrounded by 8 equal strength
vortices around the circular perimeter.

2. Interacting Particle Formulation. We begin with the assumption of a planar
velocity field that has only radial dependence of the form uθ(r) = αr−1. This is most
conveniently written in complex variable notation:

ż∗ =
Γ
2πi

1
z
,(2.1)
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VORTEX LATTICE THEORY 513

where ∗ denotes complex conjugation, and Γ ∈ R is the particle strength, located at
the origin. To see that this produces a circular field around the lattice site which
decays like r−1 with distance, let z(t) = r(t) exp(iθ(t)), which yields

ur = ṙ = 0,(2.2)

uθ = rθ̇ = Γ/2πr,(2.3)

where ur and uθ are the radial and azimuthal velocity components, respectively. If
a particle of strength Γβ ∈ R is located at an arbitrary position zβ ∈ C, the field
produced is

ż∗ =
Γβ

2πi
· 1
z − zβ

,(2.4)

while the field due to a linear superposition of N of these particles is

ż∗ =
1
2πi

N∑
β=1

Γβ

z − zβ
.(2.5)

Next, we make the assumption (originally due to Helmholtz) that each particle, lo-
cated at position zα (α = 1, . . . , N), moves according to the local velocity field, hence

ż∗α =
1
2πi

N∑
β=1

′ Γβ

zα − zβ
,(2.6)

which is the classical dynamical system of N -point vortices (Newton (2001)). The
prime on the summation indicates that the term β = α is excluded, a mathematical
manifestation of the fact that a particle should have no self-induced motion and
a convenient way of avoiding a singularity in the equations. Note that when all
particle strengths are equal—a common but restrictive assumption—there is no loss
in setting Γβ = 1, since the strengths can then be pulled out of the sum and absorbed
by rescaling time. Since the system is planar, we can also write it in Cartesian
coordinates,

�xα ≡ (xα(t), yα(t)) ≡ xα + iyα = zα(t),(2.7)

in which case we have

�̇xα =
N∑

β=1

′Γβ

2π
· n̂β × (�xα − �xβ)

‖�xα − �xβ‖2
,(2.8)

where

n̂β = êz,(2.9)

l2αβ ≡ ‖�xα − �xβ‖2,(2.10)

and it is now recognizable as a “discrete Biot–Savart law” (Newton (2001)), giving the
velocity field in terms of the vorticity, i.e., a discrete inversion of the linear relation
�ω = ∇×�v. It is a convenient and interesting fact that this interacting particle system
is Hamiltonian,

Γαẋα =
∂H
∂yα

; Γαẏα = − ∂H
∂xα

,(2.11)
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with H (originally due to Kirchhoff) given by

H = − 1
4π

N∑
β=1

N∑
α=1

′ΓαΓβ log |zα − zβ|.(2.12)

In addition to H, the other conserved quantities are the system’s linear momentum
and angular momentum:

Q+ iP =
N∑

α=1

Γαzα, I =
N∑

α=1

Γα|zα|2.(2.13)

The basis of most of the classical techniques for finding equilibria is Kelvin’s varia-
tional principle (see Aref et al. (2003)), which says that equilibrium configurations
arise as extremizers of the augmented Hamiltonian

H+ V

N∑
α=1

Γαzα +
1
2
ω

N∑
α=1

Γα|zα|2,(2.14)

where V = u + iv is the translational velocity of the configuration and ω is the
rotational frequency, both of which play the role of Lagrange multipliers. See Gueron
and Shafrir (1999) for an example of the use of the variational procedure in this
context.

We now pose the following question in two formally different but complementary
ways:

1. Given a set of N points in the complex plane with coordinates zα(0) ∈ C,
α = 1, . . . , N , find the set of vortex strengths �Γ = (Γ1,Γ2, . . . ,ΓN ) ∈ RN

so that all intervortical distances l2αβ = |zα − zβ |2 (α �= β) remain fixed. In
particular, find a basis set for this subspace of RN .

2. For a given set of vortex strengths �Γ = (Γ1,Γ2, . . . ,ΓN ) ∈ RN , find the
set of points zα(0) ∈ C, α = 1, . . . , N , so that all intervortical distances
remain fixed. As a special case, there is often a reason to focus particularly
on the vector of strengths �Γ = (1, 1, . . . , 1), as in the case of Bose–Einstein
condensates, in which case all the Γ′

αs in (2.6) can be absorbed by a simple
rescaling of time. When N is even or infinite, another special case worthy of
mention is �Γ = (1,−1, 1,−1, . . .), in which case they sum to zero, as in the
case of a von Kármán vortex street.

We emphasize that our overriding goal for a given value of N is to find all configu-
rations and all �Γ that lead to equilibria, not just those with prespecified symmetries
or assumed values of �Γ. In the next section, we describe how these questions can
be addressed by understanding the nullspace structure of the “configuration” matrix
associated with the lattice.

3. The Configuration Matrix. In order to derive the system governing the dy-
namics of the N(N − 1)/2 intervortical distances lαλ, it is more convenient to start
with the Cartesian formulation of the equations in the form

ẋα =
N∑

β=1

′Γβ

2π
êz × (xα − xβ)

l2αβ

(α = 1, . . . , N).(3.1)D
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VORTEX LATTICE THEORY 515

Then

ẋα − ẋλ =
N∑

β=1

′Γβ

2π
êz × (xα − xβ)

l2αβ

−
N∑

β=1

′Γβ

2π
êz × (xλ − xβ)

l2λβ

=
N∑

β=1

′′Γβ

2π
êz × (xα − xβ)

l2αβ

+
Γλ

2π
êz × (xα − xλ)

l2αλ

−
N∑

β=1

′′Γβ

2π
êz × (xλ − xβ)

l2λβ

− Γα

2π
êz × (xλ − xα)

l2λα

=
N∑

β=1

′′Γβ

2π

[
êz × (xα− xβ)

l2αβ

− êz × (xλ−xβ)
l2λβ

]
+
(
Γα + Γλ

2π

)
êz × (xα−xλ)

l2αλ

.

Using the fact that l̇2αλ = 2(xα − xλ) · (ẋα − ẋλ),

l̇2αλ = 2(xα − xλ) ·
N∑

β=1

′′Γβ

2π

[
êz × (xα − xβ)

l2αβ

− êz × (xλ − xβ)
l2λβ

]

+
(
Γα + Γλ

2π

)
2(xα − xλ) · êz × (xα − xλ)

l2αλ

,

l̇2αλ =
1
π

N∑
β=1

′′Γβ êz · [xα × xβ + xλ × xα + xβ × xλ]

(
1
l2αβ

− 1
l2λβ

)
.

Noticing that 1
2 [xα × xβ + xλ × xα + xβ × xλ] is the area, Aαλβ , subtended by the

points xα, xλ, xβ , we obtain

d

dt

(
l2αλ

)
=

2
π

N∑
β=1

′′ΓβAαλβ

(
1
l2αβ

− 1
l2λβ

)
(α, λ = 1, . . . , N).(3.2)

Hence, the condition that all intervortical distances remain constant, l2αλ = const., is

N∑
β=1

′′ΓβAαλβ

(
1
l2αβ

− 1
l2λβ

)
= 0 (α, λ = 1, . . . , N),(3.3)

as long as the N particles are not collinear, in which case the subtended area collapses
to zero and the configuration is degenerate (see Aref (2007b) for discussions on this
point and Aref et al. (2003) for more details on the collinear states). This can be
written more conveniently in matrix form:

A�Γ = 0,(3.4)

whereA ∈ RM×N hasN columns andM = N(N−1)/2 rows and �Γ = (Γ1,Γ2, . . . ,ΓN ).
We call the matrix A the configuration matrix associated with the collection of N par-
ticles (not to be confused with the area term Aαλβ which, of course, appears in the
entries of A), since its entries depend only on the relative positions of the particles,
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not on their strengths.5 In a sense, it encodes the geometry of the pattern, and not all
patterns produce an equilibrium, only those corresponding to configuration matrices
with nontrivial nullspaces. Existence of a lattice then depends on whether or not A
has a nontrivial nullspace, giving rise to the following simple existence criterion:

Existence: det(ATA) = 0.(3.5)

The strength vector �Γ ∈ RN (without loss, we can normalize it so that ‖�Γ‖ = 1, where
‖ · ‖ denotes the usual Euclidean norm in RN ) is found a posteriori, after the pattern
is set, so to speak, by finding a basis set for the nullspace of A. The strength vector
is unique (with normalization condition) iff the dimension of the nullspace is one or,
equivalently,

Uniqueness: Rank(A) = N − 1.(3.6)

Otherwise, there is more than one set of particle strengths for which that configuration
is an equilibrium. Knowing the geometry of the pattern and �Γ, we can find the
translational velocity V , the rotational frequency ω, and the Hamiltonian energy
(2.12) of the lattice, whose equations are derived in Aref et al. (2003). In fact, in
some cases, particularly elegant and useful formulas for the Hamiltonian energy can
be obtained (see Gueron and Shafrir (1999) and Aref (2007c)). In the remainder of
the article, we will focus on the structure of the configuration matrix A instead of
the actual configuration of N particles, as specified by their positions in the complex
plane.

3.1. The Triangle. Consider a general triangle shown in Figure 3.1(a). The
configuration matrix formed from (3.3) is

A =




A231

(
1

l221
− 1

l231

)
0 0

0 A312

(
1

l232
− 1

l212

)
0

0 0 A123

(
1

l213
− 1

l223

)

 .(3.7)

With only three particles, the areas are all equal and we write Aijk ≡ ∆, which we
factor out of the matrix leaving a simple matrix with diagonal structure,

A = ∆


 a1 0 0

0 a2 0
0 0 a3


 ,(3.8)

where a1 = ( 1
l221

− 1
l231

), a2 = ( 1
l212

− 1
l232

), a3 = ( 1
l213

− 1
l223

). If none of the sides is
equal to another, a1 �= a2 �= a3, there are no zero eigenvalues, the rank is three, and

5The configuration matrices discussed in this article are based on collections of particles in the
unbounded plane, which one can think of as analogous to constructing a lattice in an isotropic
medium. To carry the analogy further, if one wanted to ask how the crystalline structure of the
material imposes itself on the allowable lattice patterns (to satisfy Landau’s curiosity), one could
work in domains enclosed by solid boundaries; in this case an additional (at least) N “image”
particles, of appropriate strengths (for lattice cells with appropriate symmetries), would be placed
outside the domain, at fixed distances from their “preimages” inside the domain, in order to enforce
the condition that the boundary be a streamline. One would still construct the configuration matrix
based only on the N particles inside the domain, hence its size would be the same as if the boundary
were absent.
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1Γ

2Γ3Γ

s

s

s
A= √3

4
s2

1Γ

2Γ
3Γ

s1

s2

s3

2Γ3Γ s1

ss

(a) (b) (c)

1Γ

Fig. 3.1 N = 3: Triangular lattice cell: (a) General triangle; (b) isosceles triangle; (c) equilateral
with side s and area A =

√
3s2/4.

the nullspace is empty, allowing us to conclude that there are no nontrivial particle
strengths �Γ for which an equilibrium exists. If the triangle is isosceles with two sides
equal (Figure 3.1(b)), say, l12 = l13 �= l23, then a1 = 0, a2 �= 0, and a3 �= 0, the
matrix has a single eigenvalue which is zero, the rank is two, and the nullspace is
one-dimensional with basis (1, 0, 0)T , i.e., the particle opposite the unequal side can
have any value, while the other two must have value zero. This corresponds to the
trivial case of one vortex Γ1 with two passive particles rotating in the same circular
orbit around it—certainly an equilibrium but not a very interesting one! Finally, if
the triangle is equilateral (Figure 3.1(c)), then a1 = a2 = a3 = 0, the rank is zero, and
the nullspace is three-dimensional with basis set {(1, 0, 0)T , (0, 1, 0)T , (0, 0, 1)T}. The
three vortex strengths can be chosen to have any value independently and the equilat-
eral triangle will always be an equilibrium. This configuration, with Γ1 = Γ2 = Γ3, is
the one shown in Figure 1.2(c) in superfluid helium, Figure 1.13(3) with collections of
spinning magnets, and Figure 1.15(a) in a magnetically confined nonneutral plasma.
The method also shows how the extreme symmetry of the equilateral triangle is the
reason it is an equilibrium, for if any of the three positions is slightly perturbed, the
matrix will again have full rank and empty nullspace. Furthermore, if we place a
fourth particle at random in the plane, as shown in Figure 3.2, its distance from each
of the other three will be distinct, and the configuration matrix associated with the
four points will generically have a zero-dimensional nullspace. This is despite the fact
that the configuration is known to be linearly stable (Havelock (1931)). One can find
formulas for the rotational frequencies and translational velocities associated with the
equilateral triangle in Aref et al. (2003). One might say, from this example, that a
stable configuration is not necessarily a robust one.

3.2. The Singular Value Decomposition of the Configuration Matrix. For
larger N , a more systematic procedure is needed. The most comprehensive tool
for understanding and characterizing the nullspace, range, and rank of any matrix
is the singular value decomposition (SVD; see Golub and Van Loan (1996)). It is a
factorization that greatly generalizes the spectral decomposition of a matrix, as the
SVD is available for any matrix. For our purposes, since A ∈ R

M×N , we formulate
the SVD for real matrices only, although the generalization to the complex case is
standard (see Golub and Van Loan (1996) or Trefethen and Bau (1997)). The N
singular values, σ(i) (i = 1, . . . , N), of the M by N real matrix A are nonnegative real
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1Γ

2Γ3Γ

s

s

s

4Γ
1Γ

2Γ3Γ

4Γ

A

A

A

A

123

142

423

143

(a) (b)

Fig. 3.2 (a) Equilateral triangle with a fourth particle deposited randomly. (b) Symmetry is de-
stroyed, which changes the matrix from one with a nullspace dimension of three to one
with a zero-dimensional nullspace, hence full rank. The equilateral triangle is dynamically
stable (Havelock (1931)), but its configuration matrix is not robust.

numbers that satisfy

Av(i) = σ(i)u(i); ATu(i) = σ(i)v(i),(3.9)

where u(i) ∈ RM and v(i) ∈ RN . The vector u(i) is called the left-singular vector
associated with σ(i), while v(i) is the right-singular vector. In terms of these vectors,
the matrix A has the factorization

A = UΣV T .(3.10)

Since M > N , the first N columns of U are the left-singular vectors u(i), and the
remaining M − N columns are chosen to be orthonormal so that U is orthogonal
(UTU = I). Then U is an M × M orthogonal matrix, V is an N × N orthogonal
matrix whose columns are the right-singular vectors v(i), and Σ is an M ×N matrix
with the N singular values on the diagonal and zeros off the diagonal:

Σ =




σ(1) · · · 0
. . .

0 · · · σ(N)

0 · · · 0
...

...
0 · · · 0




.(3.11)

The singular values can be ordered so that σ(1) ≡ σ(max) ≥ σ(2) ≥ · · · ≥ σ(min) ≥ 0
and one or more may be zero. As is evident from multiplying the first equation in
(3.9) by AT and the second by A,

(ATA− σ(i)2)v(i) = 0, (AAT − σ(i)2)u(i) = 0,(3.12)
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the singular values squared are the eigenvalues of the covariance matrices ATA or
AAT , which have the same eigenvalue structure, while the left-singular vectors u(i)

are the eigenvectors of AAT and the right-singular vectors v(i) are the eigenvectors
of ATA. From (3.9), we also note that the right-singular vectors v(i) corresponding
to σ(i) = 0 form a basis for the nullspace of A.6

We seek configuration matrices with one or more singular values that are zero, and
the SVD provides an explicit and optimal representation of the range and nullspace
of the matrix A. In particular, the right-singular vectors v(i) corresponding to the
singular values that are zero span the nullspace of A, while the left-singular vectors
u(i) corresponding to the nonzero singular values span the range of A. The rank of A
equals the number of nonzero singular values and, since rank(A) + nullity(A) = N ,
we know that the number of zero singular values equals the dimension of the nullspace
of A. Also, the ranks of A, ATA, AAT are the same and ATA and AAT have the
same nonzero eigenvalues and nullspaces.

The formula (3.9), which defines the singular values, also lends itself nicely to a
“Rayleigh quotient” interpretation. If we write the first equation (dropping super-
scripts) as

σu = Av,(3.13)

and think of u as the unknown in a least-squares formulation, then the associated
normal equations obtained by multiplying each side by uT gives rise to the best
approximate solution

σuTu = uTAv,(3.14)

or

σ =
uTAv
uT u

= uTAv,(3.15)

for vectors of unit length. Thus, for arbitrary unit vectors u,v, the scalar σ that acts
most like a singular value of A is the one shown above, as it minimizes the residual
‖σu −Av‖2.7 If in fact the vectors u,v are the left- and right-singular vectors of A,
then the residual is zero and σ is exactly the singular value.

3.3. The Square. A good example which shows the utility of the SVD is the
square configuration shown in Figure 3.3(a), which also can be thought of as four vor-
tices equally spaced on the circumference of a circle, one of the classical configurations
treated in Havelock (1931), which is known to be linearly stable. The configuration

6It is interesting to point out that many of the properties of the SVD were discussed and proven
in a very direct way by Keller (1962), who knew and built upon Hotelling’s 1933 treatment of the
principal component analysis in statistics.

7Here ‖ · ‖2 denotes the 2-norm.
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matrix has banded structure:

A =




A341

(
1

l231
− 1

l241

)
A342

(
1

l232
− 1

l242

)
0 0

A241

(
1

l221
− 1

l241

)
0 A243

(
1

l223
− 1

l243

)
0

A231

(
1

l221
− 1

l231

)
0 0 A234

(
1

l224
− 1

l234

)
0 A142

(
1

l212
− 1

l242

)
A143

(
1

l213
− 1

l243

)
0

0 A132

(
1

l212
− 1

l232

)
0 A134

(
1

l214
− 1

l234

)
0 0 A123

(
1

l213
− 1

l223

)
A124

(
1

l214
− 1

l224

)




(3.16)

=
(
d2 − s2

2d2

)
∆




1 −1 0 0
0 0 0 0
−1 0 0 1
0 1 −1 0
0 0 0 0
0 0 1 −1




=
1
4




1 −1 0 0
0 0 0 0
−1 0 0 1
0 1 −1 0
0 0 0 0
0 0 1 −1




,

(3.17)

where ∆ ≡ s2/2 is the area subtended by any three particles and d2 = 2s2. The SVD
of A gives rise to the matrices

U =




−0.5 0.5 0.5 −0.1015 0 0.4896
0 0 0 0.9792 0 0.2030
0.5 −0.5 0.5 −0.1015 0 0.4896
0.5 0.5 −0.5 −0.1015 0 0.4896
0 0 0 0 1.0 0

−0.5 −0.5 −0.5 −0.1015 0 0.4896




,(3.18)

Σ =




1
2 0 0 0
0 1

2
√

2
0 0

0 0 1
2
√

2
0

0 0 0 0
0 0 0 0
0 0 0 0




,(3.19)

V =




−0.5 0.7071 0 −0.5
0.5 0 −0.7071 −0.5
−0.5 −0.7071 0 −0.5
0.5 0 0.7071 −0.5


 .(3.20)

Hence, the singular values are (σ(1), σ(2), σ(3), σ(4)) = (1
2 ,

1
2
√

2
, 1

2
√

2
, 0), giving rise to a

one-dimensional nullspace with basis (−0.5,−0.5,−0.5,−0.5) (the rightmost column
of V ), i.e., the four vortices must have equal strength. This is precisely the superfluid
helium configuration shown in Figure 1.2(d) and the spinning magnet configuration
in Figure 1.13(4).
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s

s

s

sdd

1Γ 2Γ

3Γ4Γ

s

s

s

s

1Γ 2Γ

3Γ4Γ

5Γ

d/2

d/2

d/2

d/2

(a) (b)

Fig. 3.3 (a) Square lattice cell with side s. The (normalized) singular values are ( 1
2
, 1

4
, 1

4
, 0)

with Shannon entropy 3
2
ln(2) = 1.0397. (b) Square lattice cell with side s and a cen-

tral vortex. The (normalized) singular values are ( 3
8
, 3
8
, 1

4
, 0, 0) with Shannon entropy

7
4
ln(2) − 3

4
ln(3) = 0.3890. See text for details.

With an additional vortex at the center, as shown in Figure 3.3(b), one can show
that the configuration matrix is

A =
1
4




−1 0 1 0 0
0 1 0 −1 0
1 −1 0 0 0
1 0 −1 0 0
0 0 0 0 0
−1 0 0 1 0
0 −1 0 1 0
0 1 −1 0 0
0 0 0 0 0
0 0 1 −1 0




.(3.21)

The SVD of A gives rise to the matrices

U =




−0.5774 0 0 −0.2224 0 −0.4104 −0.4554 0.4242 0 −0.2480
0 0.5774 0 −0.7195 0 0.1906 0.1621 −0.1622 0 −0.2452

0.2887 −0.2887 −0.5 −0.0908 0 0.4348 −0.0615 0.4559 0 −0.4176
0.5774 0 0 −0.2993 0 −0.1692 −0.6566 −0.0410 0 0.3399

0 0 0 0 1 0 0 0 0 0
−0.2887 −0.2887 0.5 −0.1677 0 0.6760 −0.2628 −0.0093 0 0.1703

0 −0.5774 0 −0.5481 0 −0.2729 0.4556 0.0975 0 0.2733
0.2887 0.2887 0.5 0.0806 0 −0.0286 0.2320 0.7155 0 0.1009

0 0 0 0 0 0 0 0 1.0 0
−0.2887 0.2887 −0.5 0.0037 0 0.2126 0.0307 0.2504 0 0.6888




,

(3.22)
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1! 1!

1!1!

5!
+

1! 2!

3!4!

5!
=

Fig. 3.4 The decomposition of the square with a center vortex into its optimal basis elements via
the SVD of its configuration matrix. Open circles are passive particles, or vortices of zero
strength.

Σ =




√
3

2
√

2
0 0 0 0

0
√

3
2
√

2
0 0 0

0 0 1/2 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




,(3.23)

V =




0.7071 0 −0.5 0.5 0
0 0.7071 0.5 0.5 0

−0.7071 0 −0.5 0.5 0
0 −0.7071 0.5 0.5 0
0 0 0 0 1


 .(3.24)

The singular values in this case are (σ(1), σ(2), σ(3), σ(4), σ(5)) = (
√

3
2
√

2
,

√
3

2
√

2
, 1

2 , 0, 0), and
the nullspace is two-dimensional with basis set {(0.5, 0.5, 0.5, 0.5, 0)T , (0, 0, 0, 0, 1)T}
(the two rightmost columns of V ), indicating that any linear combination of a central
vortex with equal strength vortices on the four corners will form an equilibrium,
as shown in Figure 3.4. Notice also that the method tells us that the four equal
strength vortices produce a stagnation point at the center, an extra piece of important
information as stagnation points are known to be crucial in studying aspects of mixing
and transport of passive particles in the flowfield (see, for example, Aref and Brøns
(1998)), a topic we comment on at the end of the article.

3.4. What Do the Other Singular Values Tell Us?. The configuration matrix
A contains a wealth of geometric information about the lattice which is encoded in
the full set of singular values. First, if we normalize each of the eigenvalues of the
covariance matrix ATA by dividing by their sum,

λ̂i =
λi∑N

j=1 λj

(i = 1, . . . , N)(3.25)

(recall that (σ(i))2 ≡ λi), then each can be interpreted as the probability Pi ≡ λ̂i that
the pattern will be clustered in that mode (singular vector). It can also be interpreted
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1 2 3 4 5 6 7 8 9 10 N

λ(i)

1

minimum entropy distribution

Fig. 3.5 Singular value distribution corresponding to a matrix of minimum entropy. All of the
energy is clustered into one mode.

as the fraction of the total energy residing in that mode. The discrete sequence
(P1, P2, . . . , PN ) then contains important information about the way in which the
lattice is structured. From this, we can define a scalar measure of information content,
or Shannon entropy (see Shannon (1948)), H , of the pattern

H = −
N∑

i=1

Pi lnPi.(3.26)

To see the utility of this quantity, it is useful to compare two extreme examples—one
with minimal entropy and one with maximal entropy (see Kirby (2001)).

Example 1. Consider the case where P1 = 1, Pi = 0 for i > 1, i.e., all the energy
is clustered in one mode. In this case, H = 0, which is minimum, and information
compression is maximal. The simplest example of a minimum entropy matrix is the
square N ×N matrix

A =




1 0 . . . 0 0
0 0 . . . 0 0
0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 0


 .(3.27)

For this matrix, ATA = A, which has rank one and nullspace dimension N−1. There
is one nonzero singular value, while the other N − 1 are zero. This case is depicted in
Figure 3.5.

Example 2. Consider the case where all probabilities are equal, hence Pi = 1
N ,

for i = 1, . . . , N . In this case, H = lnN , which is maximum. There is no information
compression or preferred coordinate clustering in this case. Every orthogonal matrix
(AT = A−1) is a maximum entropy matrix, since ATA = AAT = I, which implies
λi = 1, λ̂i = 1/N (i = 1, . . . , N). The simplest example is the identity matrix,
whose covariance matrix is also the identity matrix, with unit eigenvalues and uniform
distribution among the singular modes. This case is depicted in Figure 3.6.
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1 2 3 4 5 6 7 8 9 10 N

λ(i)

1

0.1

maximum entropy distribution

Fig. 3.6 Singular value distribution corresponding to a matrix of maximum entropy. The energy is
spread evenly across all modes.

1 2 3 4 5 6 7 8 9 10 N

λ(i)

1

0.1

typical distribution

Fig. 3.7 A typical distribution of singular values, as compared with the minimum and maximum
distributions. The singular values are ordered from largest to smallest, with the last one
being zero, indicating that the lattice of ten vortices has a one-dimensional nullspace with
unique values for the vortex strengths. Lower entropy lattices have configuration matrices
that are closer to matrices of low rank.

The typical singular value distribution for a lattice, as compared with these two
extremes, is shown in Figure 3.7. One can state that distributions of singular values
that drop off sharply from the maximum (Example 1) are lower entropy matrices then
those that are relatively flat around the maximum (Example 2). Stated differently,
the percentage of information compression can be measured from the quantity(

lnN −H

lnN

)
· 100,(3.28)

which in the first example gives 0%, while in the second gives 100%. In Shannon’s
original paper (1948), he makes an interesting observation about the quantity (3.26).
He proves that any change toward equalization of probabilities P1, P2, . . . , Pn will in-
crease H. In particular, if we perform any operation on these probabilities which
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“averages” them, i.e., let

P ′
i =

∑
j

aijPj ,(3.29)

where
∑

i aij =
∑

j aij = 1 with aij ≥ 0, then H increases. Since generic perturba-
tions of the configuration matrix A will generally spread the Pi’s more evenly, this
will increase H . It follows that configurations with larger values of H will change less
under perturbation than those with smaller values of H , and in this sense we say that
they are more robust.

For the square configuration with no central vortex, N = 4, the normalized
eigenvalues are given by

(λ̂1, λ̂2, λ̂3, λ̂4) = (P1, P2, P3, P4) =
(
1
2
,
1
4
,
1
4
, 0
)
,(3.30)

hence the entropy is given by

H = −
4∑

i=1

Pi lnPi = −1
2
ln(1/2)− 1

4
ln(1/4)− 1

4
ln(1/4)(3.31)

=
1
2
ln 2 +

1
2
ln 4 =

3
2
ln 2 = 1.0397.

The maximum entropy for N = 4 is ln 4 = 1.3863, hence the percentage of information
compression as measured by (3.28) is 25%. For the square configuration with a central
vortex, N = 5, the normalized eigenvalues are

(λ̂1, λ̂2, λ̂3, λ̂4, λ̂5) = (P1, P2, P3, P4, P5) =
(
3
8
,
3
8
,
1
4
, 0, 0

)
,(3.32)

hence the entropy is given by

H = −
4∑

i=1

Pi lnPi = −3
8
ln(3/8)− 3

8
ln(3/8)− 1

4
ln(1/4)(3.33)

= −3
4
ln 3 +

7
4
ln 2 = 0.3890.

The maximum entropy for N = 5 is ln 5 = 1.6094, hence the percentage of information
compression as measured by (3.28) is 76%. Our conclusion is that the square without
a central vortex is a higher entropy state than one with a central vortex, i.e., there is
a more even distribution of energy among the modes and the configuration is more
robust. In addition, there is less compression of information with respect to the
idealized state of maximum entropy. It is perhaps relevant to point out that for
N = 4, the square configuration also has higher entropy than the equilateral triangle
with an additional vortex at the center. Likewise, for N = 5, the regular pentagon has
higher entropy than the square with a fifth vortex placed at the center. In both these
cases, it is the regular configuration without the vortex at the center that appears in
experiments such as those in Figures 1.2 and 1.13. Both are lower energy states (see
Gueron and Shafrir (1999)) and higher entropy states than the corresponding ones
with the central vortex (for the same value of N).
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The second important piece of geometric information buried in the full set of
singular values is the size of the lattice, as measured by the Frobenius norm ‖A‖F of
the configuration matrix or, alternatively, the 2-norm ‖A‖2:

‖A‖2 = σ(1) ≤ ‖A‖2
F = (σ(1))2 + · · ·+ (σ(r))2 ≡ trace(ATA).(3.34)

Both of these norms are useful since they are invariant under multiplication by unitary
matrices (Trefethen and Bau (1997)), hence they can be written directly in terms of the
singular values down the diagonal of Σ (since the matrices U and V are orthogonal).
For the square lattice without the central vortex, the lattice size is given by

‖A‖2
F =

(
1
2

)2

+
(

1
2
√
2

)2

+
(

1
2
√
2

)2

=
1
2
,(3.35)

‖A‖2 =
1
2
.

With the central vortex, the lattice is larger since in this case

‖A‖2
F =

( √
3

2
√
2

)2

+

( √
3

2
√
2

)2

+
(
1
2

)2

= 1,(3.36)

‖A‖2 =
√
3

2
√
2
.

In addition, knowing the full set of singular values for two different configurations
with the same number of particles allows us to compare their entropies by computing
their Kullback–Leibler divergence (also called relative entropy), a standard way of
comparing two different distributions (Kullback and Leibler (1951)). This value is
defined as

(3.37) DKL(P,Q) =
N∑

i=1

Pi ln
Pi

Qi
,

where P = (P1, P2, . . . , PN ) and Q = (Q1, Q2, . . . , QN ) are the two distributions being
compared. It can be understood by noting that

DKL(P,Q) =
N∑

i=1

Pi ln(Pi)−
N∑

i=1

Pi ln(Qi)(3.38)

= −
N∑

i=1

Pi ln(Qi) +
N∑

i=1

Pi ln(Pi)

= H(P,Q)−H(P ),

where H(P,Q) is the cross-entropy between P and Q and H(P ) is the entropy of P .
We emphasize that all of these properties of the lattice are purely geometric; they do
not involve particle strengths �Γ the way the Hamiltonian energy of the lattice does.
We mention in connection with this discussion the recent development of information
theoretic tools for quantifying predictability in geophysical models. See the recent
text of Majda and Wang (2006) and references therein. See also Lim and Nebus
(2006) for uses of Monte Carlo simulations in this context.
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Fig. 4.1 10,000 configurations of N = 10 points placed randomly in the plane. Note that none of
the values are zero. (a) Smallest singular value. (b) Sum of squares of the two smallest
singular values.

4. Formation in a Random Environment. Consider the problem of depositing
N points at random in the plane. What is the probability that there is some choice
of �Γ for which the configuration will be an equilibrium? It is a well-known theorem of
linear algebra (see Golub and Van Loan (1996), or Lax (2007) for general background)
that the set of full-rank matrices is dense in RM×N , while the set of rank-deficient
matrices is not. This might lead one to believe that the chances are small, at best, of
finding a rank-deficient matrix corresponding to an equilibrium, which of course is a
subset of the set of all rank-deficient matrices. In fact, as we know from the example of
rational and irrational numbers on the real line, which are “mutually dense” (between
any two rationals is an irrational and between any two irrationals is a rational), even
finding an element from a dense set can be challenging using a random search. A
dart, assuming it lands on the real line and has a infinitely small point, will be much
more likely to land on an irrational number than a rational. In a measure theoretic
sense, the rationals form a set of measure zero, while the irrationals form a set of full
measure. So, how likely is it that N randomly deposited points in R

2 will produce
a rank-deficient configuration matrix? Shown in Figure 4.1 are the smallest singular
values associated with 10,000 configurations of N = 10 points placed randomly in the
plane. Figure 4.1(a) shows the smallest singular value, and Figure 4.1(b) the sum of
squares of the two smallest to check whether any of these random configurations has
one- or two-dimensional nullspaces—the answer is no. Rank-deficient configuration
matrices are hard to produce by the computational equivalent of throwing darts.
Indeed, finding them this way is probably not too different than finding a needle in a
haystack.8

4.1. Brownian Ratchet Scheme. A good way of finding a needle in a haystack
is to use a method based on random walks, but random walks with a purpose. The
advantage of a Brownian motion–driven algorithm, over say a gradient method, is
that all portions of the configuration landscape are sampled in an unbiased way. We
describe what we call a Brownian “ratchet” scheme, used in Newton and Chamoun
(2007) to uncover new classes of equilibria. The idea behind a Brownian ratchet is

8A recent result of Hampton and Moeckel (2006, 2009) shows that the number of stationary
configurations for N = 4 is finite.
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528 PAUL K. NEWTON AND GEORGE CHAMOUN

simple—it is a device that sits in a heat bath and rectifies the nonequilibrium thermal
fluctuations to generate motion in a preferred direction. Originally conceived of by
Feynman (see Feynman, Leighton, and Sands (1966, Chapter 46)), Brownian ratchets
are devices which, at the microscopic level, allow motion in one direction and block
it in others so that net displacement occurs. Feynman first discussed a paradoxical
ratchet device that seemed to extract work from equilibrium thermal fluctuations, in
violation of the second law of thermodynamics. However, he also showed that such
a device, when reduced to microscopic size, causes fluctuations of the ratchet that
are equally likely to occur in either direction. It is now realized that many known
biological systems, or so-called motor protein devices, use the surrounding energy
associated with unoriented nonequilibrium fluctuations to produce directed motion
by employing a potential with ratchet-like features. One can read surveys in Doering
(1995, 1998) and Reimann (2002).

In analogy with these studies, we “ratchet” the Brownian motion of the particles,
allowing it only in the direction that decreases the smallest singular value (or sum
of the smallest k singular values) of A until it drops below a preassigned threshold.
In this way we drive the configuration toward an equilibrium9 (i.e., one or more zero
singular values), but we don’t know which values to assign �Γ until we derive a basis set
for the nullspace of A corresponding to the converged state. The number of singular
values that are simultaneously driven to zero corresponds to the dimension of the
nullspace and thus determines whether or not the equilibrium configuration is unique
(up to a multiplicative constant) with respect to the choice of �Γ.

The scheme proceeds with five simple steps:
1. Randomly deposit N points in the plane in an unbiased way and compute the

N singular values of the configuration matrix A. These can be ordered and
denoted σ1 ≡ σ(max) ≥ σ2 ≥ · · · ≥ σN ≡ σ(min) ≥ 0. The minimum singular
value, σN , is positive, with probability one.

2. Allow each of the N points to execute an unbiased random walk in R2, and
compute the singular values of A at each step. At each step n, choose a
radial variable r(n) ∈ [0, 1] and an angle variable θ(n) ∈ [0, 2π] drawn from
a uniform distribution and scale the radial variable by the smallest singular
value associated with the configuration matrix at that step, i.e., σ(n) (so
the step size decreases as we get closer to a converged state), and move the
particle from point (r(n−1), θ(n−1)) to (r(n), θ(n)).

3. To find a configuration with a one-dimensional nullspace, at the (n + 1)st
step, keep the new arrangement if the minimal singular value decreases from
that of the previous step, i.e., if σ

(n+1)
(min) < σ

(n)
(min). Otherwise, discard the

configuration, produce a new random arrangement, and repeat this step.
For equilibria with k-dimensional nullspaces, drive the scalar quantity δk ≡√
(σ(n)

N )2 + · · ·+ (σ(n)
N−k+1)2 to zero in a similar fashion.

4. When σ
(n+1)
N (or equivalently δk) is below a certain predetermined threshold,

i.e., δk < δthreshold, the algorithm has converged.
5. Calculate a basis set for the nullspace of A to obtain �Γ and all other properties

of the lattice, using both A and H.
The random-walk algorithm is depicted schematically in Figure 4.2. Convergence

curves based on this method are shown in Figure 4.3, which depicts the smallest

9Although the ratchet mechanism is not dissipative, it provides the same service of driving the
system toward an equilibrium, but not necessarily a stable one.

D
ow

nl
oa

de
d 

04
/2

5/
20

 to
 1

28
.1

25
.2

10
.9

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

VORTEX LATTICE THEORY 529

r(2)σ(2)

θ(2)

r(0)σ(0)

θ(0)

θ(1)
r(1)σ (1)

Fig. 4.2 The random-walk algorithm at the nth step is based on choosing an angle variable θ(n) ∈
[0, 2π] and a radial variable r(n) ∈ [0, 1], both from a uniform distribution, scaled with the
size of the smallest singular value, σ(n), of the configuration matrix at that step.

singular value as a function of the step number for converged equilibria for N =
6, 8, 10. An actual convergence path in the plane of one of the vortices making up
the equilibrium is shown in Figure 4.4. We note that, in practice, the method has
worked well and has uncovered new classes of equilibrium patterns (see Newton and
Chamoun (2007) for examples). Of course, the method doesn’t always converge and
can sometimes get stuck, for various reasons that need to be better understood. In
this context, we mention the importance of developing constrained Brownian search
schemes, where the vortex strengths are predetermined. For example, within the set
of all equilibrium configurations for a given N , it would be particularly desirable to
identify those configuration matrices having �Γ = (1, 1, 1, . . . , 1) in their nullspace.

4.2. Maximum Entropy Theory. Particularly interesting is the fact that the vast
majority of patterns found using this method have no discernible symmetry properties
at all. As an example, we show in Figure 4.3(b) a converged state, for N = 10, along
with the paths of each of the particles on the road to the final state. This observation
is quite curious given the fact that the overwhelming number of known examples of
equilibria so far documented in the literature (those shown in Figure 1.11 would be ex-
cellent representative examples) have very distinct symmetries. Why is this the case?

There are two possible explanations for this. Since a Brownian motion–based
scheme should, in a sense, find any existing equilibrium with equal probability, it
may be that asymmetric equilibrium patterns are far more prevalent than symmetric
ones. This is complicated by the fact that the converged states might be influenced by
the pool of initial states which creates them, and since these initial states are chosen
by a random deposition of points in the plane, asymmetric initial configurations are
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Fig. 4.3 (a) Convergence of the smallest singular value via the random-walk algorithm: N = 6
(dashed), N = 8 (dotted), N = 10 (solid). (b) Convergence of the collection of particles in
configuration space toward the final lattice. Unfilled circles represent the initial positions,
filled circles represent the converged states, and smaller dots represent some intermediate
steps toward convergence.

overwhelmingly more likely to be produced than symmetric ones, which may bias the
pool of converged states to favor asymmetric ones as well.

The second (perhaps related) possibility is that asymmetric states, on average,
have higher Shannon entropy than symmetric ones. All other things being equal, this
would make them more likely to be picked out at random, since a higher entropy con-
figuration can be produced by a far greater number of microscopic arrangements than
a lower entropy state. Phrased differently, a state of lower entropy has preferential
clustering of energy among its singular values, while a higher entropy state has more

D
ow

nl
oa

de
d 

04
/2

5/
20

 to
 1

28
.1

25
.2

10
.9

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

VORTEX LATTICE THEORY 531

Fig. 4.4 The configuration path toward convergence of one of the particles making up the lattice.

even distribution among the modes. Preferential clustering, from a combinatorial
perspective, should be less likely than nonpreferential clustering. Hence, the square
without the central vortex would be a more likely state than one with the central
vortex, since it has higher entropy. Consider the two examples discussed in section
3.4, one with maximal entropy, log(N), and one with minimum entropy 0. For a given
N , imagine all possible arrangements of N balls in N bins, each bin representing one
of the singular values and the number of balls in a bin determining the size of that
singular value. There are exactly N arrangements of balls that are clustered in one
bin, since the first could be put in any of the N bins, while the second and remaining
balls must be placed in that same bin. On the other hand, there are N ! arrangements
that will have exactly one ball per bin, hence an even distribution among the modes.
This is because the first could be in any of the N bins, the second could be in any
of the remaining N − 1 bins, and so on, with the last forced to be in the final bin.
The probability of picking either of these two arrangements out of the full set of all
possible arrangements is just the previous number divided by the total number of
possible arrangements, which is NN . Thus, the probability of picking such a max-
imum entropy state at random would be N !

NN , a far higher probability (particularly
as N → ∞) than the minimum entropy arrangement, which is N

NN = N1−N . This
argument, of course, assumes for simplicity that each of the microscopic arrangements
(in this case the distribution of balls in bins) is equally likely to occur. If this is not
the case, the probabilities would have to be weighted accordingly, which only muddies
the water. Whether or not this analogy is at the bottom of why asymmetric states
seem easier to find than symmetric ones would need to be explored by more system-
atic studies of singular value distributions and entropy levels of asymmetric versus
symmetric states.

Our suspicion is that both of these explanations are partially responsible for why
most of our converged configurations are asymmetric.10 The fact that symmetric
states are far more prevalent in the literature might well be for the same reason
that a man looking for his lost keys at night first chooses to look under the street
lamp—that is where the light shines!

4.3. Approximate Equilibria. How far is one of the randomly chosen configu-
rations used to produce Figure 4.1 from an actual equilibrium? The answer to this
question would give insights into the average spacing between equilibria. If we denote
the corresponding “random” full-rank configuration matrix A0, then we can certainly

10In most of the previous studies, all of the vortex strengths are equal, which may also bias the pool
in favor of symmetric states over asymmetric ones, although we do know from Aref and Vainchtein
(1998) that even with equal strength vortices, it is possible to create an asymmetric lattice.
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532 PAUL K. NEWTON AND GEORGE CHAMOUN

quantify the distance between it and any given equilibrium with configuration matrix
A1 by calculating the Frobenius norm or 2-norm difference between the two matrices,
‖A0−A1‖F . But what is the closest equilibrium? In other words, we would like to min-
imize this Frobenius norm difference over the set of all configuration matrices A1 with
nontrivial nullspaces, which is more challenging. However, consider the following con-
struction. We know that if the rank of a given matrix A is r, then there are r nonzero
singular values ordered so that σ(1) ≥ · · · ≥ σ(r) > σ(r+1) = σ(r+2) = · · · = σ(N) = 0
and one obtains the following representation of the matrix A:

A = σ(1)u(1)v(1)T + σ(2)u(2)v(2)T + · · ·+ σ(r)u(r)v(r)T .(4.1)

In this way, the SVD expresses A as a sum of r rank-one matrices. This provides
another interpretation of the Shannon entropy of a lattice. Lower entropy lattices
have configuration matrices that are closer to matrices of low rank, while higher
entropy ones are closer to matrices of full rank. In addition, (4.1) provides an optimal
method of approximating A by another matrix of reduced rank. In particular, we can
define a rank k < r approximation to A by keeping only the first k terms of (4.1):

Ak = σ(1)u(1)v(1)T + σ(2)u(2)v(2)T + · · ·+ σ(k)u(k)v(k)T �= A.(4.2)

This matrix is sometimes referred to as the k-truncated SVD. It can be proven that
Ak is the optimal reduced rank approximation to the matrix A, meaning that any
other rank-k matrix approximation to A has greater error, as measured by their
Frobenius-norm difference. The construction (4.1) is reminiscent of a Fourier series
representation of a periodic function on an interval in terms of its Fourier modes, where
the singular values play the role of the Fourier coefficients providing the appropriate
weighting of the modes. The optimality of the linear superposition provided by (4.2)
is analogous to the standard fact that the partial sum representation of a Fourier
series gives the least-squares error. Therefore, for any randomly chosen full-rank
matrix, we can construct the closest matrix to it with any size nullspace we choose,
and then calculate the basis set for the nullspace. While such a configuration might
not be an exact equilibrium since there is no guarantee that the k-truncated SVD
construction would produce a matrix satisfying the constraints of (3.2), one could
say that it represents an optimally approximate configuration. The vortex strengths
would lie in the nullspace of the matrix that is optimally close to this randomly chosen
matrix. Whether or not this construction proves to be useful remains to be seen, but
the general question of finding “the nearest equilibrium” with specified characteristics
(i.e., energy or entropy values, or nullspaces of a particular dimension and span) to
any other equilibrium is certainly an interesting and potentially important one.

4.4. Lattice Defects via Matrix Perturbation Theory. Lattice structures with
the kinds of line and grain boundary defects shown in Figure 1.6 offer particular
challenges. Physically, they arise from a system’s attempt to lower its energy in
response to external stress, such as the type shown in Figure 1.5, or perhaps because
of a change in stability of the current state. For one reason or other, the system of
interacting particles seeks a better (i.e., lower energy or more robust) option available
to it, and sometimes the best available option is a pattern with broken symmetry.
Using matrix perturbation theory, one could frame the problem as follows. Imagine a
symmetric lattice with configuration matrix A0 ∈ RM×N and particle strength vector
�Γ0 ∈ RN . Suppose a “nearby” lattice exists having configuration matrix Aε ∈ RM×N
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and particle strength vector �Γε ∈ RN . Let

Aε ≡ A0 + A1, where A1 ≡ (Aε −A0),(4.3)
�Γε ≡ �Γ0 + �Γ1, where �Γ1 ≡ (�Γε − �Γ0).(4.4)

Assume further that the “defect” lattice is indeed a perturbation of the symmetric
lattice, i.e.,

‖A1‖F

‖A0‖F
∼ ε � 1,

‖�Γ1‖
‖�Γ0‖

∼ ε � 1.(4.5)

Given an allowable unperturbed stateA0
�Γ0 = 0, how does one find a nearby perturbed

state Aε
�Γε = 0 ? From (4.3) and (4.4) we have

(A0 +A1)(�Γ0 + �Γ1) = 0.(4.6)

Using the ordering imposed by (4.5) yields

O(1) : A0
�Γ0 = 0,(4.7)

O(ε) : A0
�Γ1 = −A1

�Γ0,(4.8)

O(ε2) : A1
�Γ1 = 0.(4.9)

The first of these equations (4.7) defines both A0 and �Γ0 associated with the defect-
free state (symmetric). Then, by the Fredholm alternative theorem, (4.8) requires

−A1
�Γ0 ⊥ Null(AT

0 ).(4.10)

This defines the matrix A1 in terms of A0 and �Γ0. Equation (4.9) then tells us that

�Γ1 ∈ Null(A1),(4.11)

which, together with (4.8), defines �Γ1. The “defect” state thus constructed is defined
by Aε and �Γε. More restrictively, if we require that the particle strengths of the
defect-free state and the perturbed state be the same, then �Γ1 = 0, which by (4.8)
implies

�Γ0 ∈ Null(A1).(4.12)

For a nontrivial solution to exist, the nullspaces of A0 and A1 must have some vectors
in common and �Γ0 must lie in both subspaces. To bring in the additional feature
that the defect state resides at lower energy, one also would need to require that
the perturbed energy (2.12) be lower than the unperturbed energy, i.e., Hε < H0, a
condition that involves both the particle configuration and particle strengths.

4.5. Optimal Mesh Generation. The techniques discussed in this article can
be used to generate finite-element meshes on general surfaces if you think of each
vertex in the mesh as a particle and execute the Brownian ratchet scheme so that
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the particles evolve to a lattice that optimizes some quantity. We focus on construct-
ing meshes on the sphere, but constructing meshes on more complex (nonconstant
curvature) surfaces such as the body of an airplane, a human skull, or the cavity of a
pulsating heart are of obvious interest and one can find an interesting recent overview
of relevant methods in the book of Edelsbrunner (2006). In fact, using interacting
particle systems to perform meshing is an active area of research in the computer
graphics community (see, for example, Szeliski, Tonnesen, and Terzopoulos (1993),
Witkin and Heckbert (1994), and Chouraqui and Elber (1996)). The question of
how one generates a mesh that is in some sense optimal is related to the question
of how one distributes N points uniformly on a surface, particularly for large N .
On the sphere, despite the fact that the problem has a long history, dating back to
J.J. Thomson’s 1904 formulation associated with his “plum-pudding” model of the
atom (an equally unsuccessful follow-up to the ill-fated vortex-atom theory of mat-
ter), there is no known general solution, and it is listed as Problem 7 on Smale’s
“Mathematical Problems for the Next Century” (2000). This question is of practical
importance since a uniform distribution of points on a sphere is typically needed for
the purposes of numerical integration. One example is in the analysis of satellite data
from the earth’s surface, where it is usually necessary to approximate integrals over
the sphere (or perturbed sphere) by arithmetic averages at some judiciously chosen
set of points. In this case, one would like to choose the set of points {x1, . . . , xN} so
that for a large class of smooth functions f(x), the difference∣∣∣∣∣∣

1
4π

∫
S2

f(x)dσ(x) − 1
N

N∑
j=1

f(xj)

∣∣∣∣∣∣(4.13)

is as small as possible. Here, σ(x) is the Lebesgue measure on the sphere. A re-
lated notion is the construction of spherical t-designs of Hardin and Sloane (1996).
There are other physical models which rely on optimal distributions of points on the
sphere, such as the arrangement of the protein subunits of a protein coat of a spherical
virus (see Casper and Klug (1962)), the arrangement of atoms in a spherical molecule
such as the buckminsterfullerine molecule (Kroto et al. (1985), Kroto (1987)) and the
vortex distributions in thin film superconductors with spherical geometry (Dodgson
(1996)) or on more general curved surfaces of nonconstant curvature where one might
want to study quantum Hall effects (Dodgson and Moore (1997)). The problem is
closely related to the so-called Tammes problem of determining the largest diame-
ter that N equal circles (i.e., spherical caps) can have when packed onto the surface
of a sphere, without any overlapping. Alternatively, if the center of each circle is
the vertex of a polyhedron, find the polyhedron that maximizes the shortest edge
lengths. This “spherical packing” problem was originally formulated and studied by
the biologist Tammes (1930) in connection with his study of the pattern of orifices in
spherical pollen grains and has since spawned a large literature. An overview of opti-
mal solutions for certain ranges of N is provided in Clare and Kepert (1986), while a
particularly comprehensive and rapidly evolving database of “empirical” global min-
ima for a whole host of molecular clusters can be found at the Cambridge Cluster
Database: http://www-wales.ch.cam.ac.uk/CCD.html. We mention that in one di-
mension, the corresponding problem of how to place particles on a line so that they
form an equilibrium has been solved (and related to the location of zeros of certain
classical functions), and is reviewed nicely in Aref (2007a) and discussed in Hardin
and Saff (2004).
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Consider N equal point charges on the surface of a unit conducting sphere. How
does one distribute these points so that the Coulomb energy E1,

E1 =
N∑

i=1

N∑
j=1

′ 1
|zi − zj | ,(4.14)

is minimized? The points that globally minimize this quantity are called Fekete
points and one can pose this problem on more complex surfaces. More generally, we
can define the Riesz s-energy Es of a set of N distinct points ωN = {xi}N

1 as

Es(ωN ) =
N∑

i=1

N∑
j=1

′|zi − zj|−s, s > 0.(4.15)

For parameter value s = 0, we take it to be the logarithmic interaction; for s = 1,
it is the Coulomb energy E1; while for s → ∞, with N fixed, (4.15) is increasingly
dominated by the terms involving the smallest pairwise distances, which leads to the
best-packing problem (see Hardin and Saff (2004) for a comprehensive discussion of
the results in this field). Alternatively and perhaps more immediately relevant are
points that maximize the product of all the interparticle distances

ΠN
i=1,j=1

′|zi − zj |,(4.16)

which is equivalent to minimizing the interparticle energy

E0 =
N∑

i=1

N∑
j=1

′ log
1

|zi − zj| ,(4.17)

i.e., the Hamiltonian (2.12). These points are called logarithmic extreme points, or
elliptic Fekete points. For example, it is obvious that for N = 2, the optimal distri-
bution is the antipodal points, but it is less obvious that, for N = 8, as an example,
the optimal configuration is not the cube, but a twisted noncubic rectangular paral-
lelepiped (see Wille (1986)), and for N ≤ 12, icosahedral based lattices form minimum
energy configurations. It is certainly known that optimal solutions (particularly for
large N) are not necessarily the ones with greatest symmetry (Bergersen, Boai, and
Palffy-Muhoray (1994)). While there is no known general solution to the problem,
optimal configurations are known for values of N in the range (roughly) 2 ≤ N ≤ 100
and for other special values of N . As N increases, solid information becomes scant
until one reaches the asymptotic regime (N → ∞), where the fog clears and a whole
host of viable techniques emerges. The article of Saff and Kuijlaars (1997) is a nice
introduction to this regime. What makes the problem difficult for finite (but large)
N is that the number of local minima increases exponentially with N and that these
local minima congregate in close proximity to the global minimum in many cases
(see Erber and Hockney (1991), Glasser and Every (1992), or Morris, Deaven, and
Ho (1996)), making analytical formulas for energy levels (as in Aref (2007c) for the
planar problem) particularly valuable.

In general terms, configurations that try to organize the particles in regular hexag-
onal tilings of the sphere are typically optimal. The problem is that the Euler char-
acteristic formula F − E + V = 2, where F is the number of faces, E is the number
of edges, and V is the number of vertices, rules this out. So, the particles try to “per-
turb” these configurations in some way that the Euler formula is respected, and this
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often (but not always) involves creating pentagons (see Altschuler et al. (1997, 2005,
2006)). The effect is that defects or “disclinations” form on the spherical surface (see
Edmundson (1992), Wales and Ulker (2006)) when N is sufficiently large (N ∼ 300).
In fact, any tiling of the sphere that consists exclusively of hexagons and pentagons
must have exactly 12 pentagons (3 edges emanating from each vertex). For exam-
ple, the soccer ball pattern, or truncated icosahedron (whose dual structure made up
of carbon atoms at the vertices is the C60 buckyball molecule), for N = 32 has 12
pentagonal and 20 hexagonal faces (Kroto et al. (1985)).

Systematic studies of how to distribute points on a sphere based on geometric
iteration have been carried out and properties of lattices based on procedures such
as icosahedral dissection (Baumgardner and Frederickson (1985)) are understood.
Start with an icosahedral configuration with a particle placed at each vertex, place
a new particle at the midpoint of each edge projected on the sphere, and continue
with this process of placing new particles at the midpoints of the geodesic segments
connecting previous vertices. One can see that on the kth dissection, there are exactly
2 + 10(k + 1)2 nodes. Measures of the uniformity of theses meshes as k → ∞ can be
obtained. See Cui and Freeden (1997) for comparisons of five different schemes based
on the concept of generalized discrepancy. Another procedure (see Saff and Kuijlaars
(1997)) that produces lattices with spiral structure seems to have some advantages
over icosahedral dissection (Rakhmanov, Saff, and Zhou (1994)). We now have a full
decomposition of all the Platonic solid equilibria on the sphere (see Jamaloodeen and
Newton (2006)); however, research into the energy and entropy landscapes associated
with them and their general use as building blocks for more complex lattices has not
been completed.

5. Computational Challenges. The numerical challenges associated with the
methods described in this paper stem from the fact that as the particles home in
on an equilibrium, the configuration matrix A is rank deficient, and the resulting
numerical problem A�Γ = 0 is ill-posed (see Hansen (1998) or Demmel (1997)). This
is because near an equilibrium with nullspace dimension m < N , there is a cluster
of extremely small singular values, with a well-separated gap between the smallest
and largest singular values, making the condition number of A very large. Since the
condition number associated with a matrix measures the system sensitivity to round-
off errors, this is bad news. Often, a large condition number associated with a matrix
indicates an incorrect or an incomplete mathematical model and one must go back to
first principles and modify the model—this is most definitely not the case here. It is
precisely the configurations with “infinite condition number” (i.e., σmax/σmin → ∞)
we seek. Fortunately, these problems are beginning to be well studied, in particular
with respect to the algorithms associated with stable, accurate, and fast SVD solvers.

Consider, for example, the relationship between the SVD of A and the eigenvalue
decomposition of ATA. Since A = UΣV T and AT = V ΣTUT , we have immediately
that ATA = V ΣT (UTU)ΣV T = V ΣTΣV T . This implies that we could perform the
SVD of A by first forming ATA. Then (i) compute the eigenvalue decomposition of
ATA = V ΛV T ; (ii) obtain Σ by defining it to be the M by N nonnegative diagonal
square root of the matrix Λ; (iii) solve the system UΣ = AV for unitary U via QR
factorization. Although this approach is straightforward mathematically, it is well
known to be numerically unstable since the eigenvalue problem is extremely sensitive
to perturbation. Nevertheless, most algorithms for the computation of the SVD of a
general matrix rely, in some way, on the computation of the eigenvalue decomposition
of a Hermitian square matrix, but there are both stable and unstable ways of doing
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this. We refer the reader to Trefethen and Bau (1997) (particularly Lecture 31) for a
lucid introduction to this topic.

In addition, there are cost considerations in selecting an algorithm. For example,
the classical algorithm for computing the SVD due to Golub and Kahan (1965) is
known to be computationally costly. It is based on the idea of first transforming
A into upper bidiagonal form B by a finite sequence of alternating left and right
Householder transformations. Then, the QR algorithm is applied implicitly to BTB
making B converge to Σ, while the left and right orthogonal transformations produce
U and V . However, the computational price for such an approach, as discussed in
Hansen (1998) is that the algorithm needs 14MN2 + 8N3 flops to compute the full
SVD, a very high price to pay, particularly if this must be performed at each random-
walk step. However, in a sense, all that is necessary at each step is to gain just enough
information to know when a configuration produces a rank-deficient pattern. Thus,
one can use a far less expensive rank-revealing decomposition (see the discussion in
Hansen (1998)) at each random step to check for convergence, then when satisfied that
an equilibrium has been located to high enough accuracy, perform a full-scale SVD.

There are a whole host of random number generating algorithms one could choose
from, as described in Gentle (2003), or more specifically in L’Ecuyer (2004) and Aiello,
Rajagopalan, and Verga (1998), and optimizing these could also improve performance
considerably. One thing is certain: MATLAB’s rand() algorithm is not the fastest.
There are alternatives to using uniformly distributed random numbers at each step as
well. For example, one could imagine using the heat kernel as a means of generating
the random step not unlike the approach introduced in Chorin (1973) and discussed
more generally in Cottet and Koumoutsakos (2000). Alternatively, one could add
stochastic forcing terms directly to the dynamical intervortical distance equations
(3.2), turning them into Itô equations instead of deterministic ones, as is done, for
example, in Agullo and Verga (1997, 2001) and Kevlahan (2005) directly to the equa-
tions (2.6) for N = 2. All of these possibilities remain to be more fully explored.

6. Discussion and Future Directions. The ultimate payoff of being able to
rapidly compute large N lattices includes the possibility of designing them with spe-
cific features built in. It is known, for example, that associated with each vortex
equilibrium is a specific topological streamline pattern or “template” for the flowfield,
which governs the way particles are transported through the structure, collections
of particles mix and evolve, and interfaces stretch and deform (see Aref and Brøns
(1998), Kidambi and Newton (2000), Newton and Ross (2006), Brøns (2007)). The
patterns produced are a delicate kinematic combination of the relative positions of
the vortices within the lattice, along with their individual strengths. Since the tech-
niques discussed in this article have the ability to find all possible strengths associated
with a given pattern, the potential exists to find lattices which optimize these mixing
and transport features, an issue that is of general interest in wake patterns generated
by collections of bluff bodies or schools of swimming fish. In addition, with the ex-
perimental ability to “knock” a given lattice from one fixed state to another by an
external “driving force,” one could imagine taming these forces for beneficial goals,
such as coaxing the system to a new energy state, for example, from the lowest en-
ergy state to one of the 17 higher energy states shown in Figure 1.11. Or, for the
purposes of optimizing the robustness of the pattern, one could imagine driving the
configuration to a higher entropy level.

In many high-dimensional systems with complex energy surfaces, understand-
ing the geometry of the energy landscape in the neighborhood of local minimizers or
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more generally the local extremizers may be much more relevant than finding global
minimizers of the system. For example, often it is important to ask what is the
probability of being captured by an equilibrium, or, once captured, how much en-
ergy need be expended to escape to another region of the accessible surface. Both
of these questions have much more to do with the shape of the energy surface sur-
rounding the extrema than the actual values of the energy at the minima. Energy
landscapes littered with many local minima creating a large basin of attraction, or
“catchment region,” are much more likely to be captured in a probabilistic sense
than a global minimum which may be isolated with a small basin of attraction. In
addition, a global minimum sitting in a shallow basin is typically much easier to
escape from, hence is less robust than a local minimum surrounded by steep walls.
It is the potentially subtle and complicated geometric features of the energy and en-
tropy landscapes that are much more revealing than their relative values at extremum
points.

We end with a list of ten interesting future research directions associated with
the characterization of lattices, which make use of both the geometry of the energy
landscape imposed by the Hamiltonian H and the singular value structure of the
configuration matrix A:

1. Understanding the dynamical stability of the vortex lattices for the full set of
�Γ in the nullspace of A and uncovering the interplay between the geometry
of the Hamiltonian energy landscape and the nullspace structure of A.

2. Developing constrained Brownian ratchets, or combined Brownian ratchet
and gradient algorithms, that seek configurations with prescribed �Γ, with a
particular focus on finding and classifying all configurations with matrices
having (1, 1, 1, . . . , 1) in their nullspace.

3. Implementing the Brownian ratchet algorithms on more general surfaces for
the purpose of optimal mesh generation.

4. Including boundaries in the configuration matrix approach, particularly for
lattice cells with symmetries so that image methods could be used, but also
when the boundary breaks the symmetry of the cell.

5. Understanding the singular value distributions of the configuration matrix
for particle configurations with discrete symmetries, as compared with those
that have no symmetries. How do the Shannon entropies of these two gen-
eral classes of lattices compare and how do the allowable vortex strengths
compare?

6. Constructing configuration matrices for lattices with defects, or dislocations,
perhaps via perturbation theory on the underlying defect-free configuration
matrix.

7. Understanding the evolution of the Shannon entropy associated with a col-
lection of particles as it evolves toward an equilibrium configuration to better
understand the role of entropy in the selection of one lattice geometry over
another.

8. Using both the Hamiltonian and the Shannon entropy to design lattices with
specific optimal features built in, such as identifying minimal energy (stable),
maximal entropy (robust) lattices.

9. Understanding the effects of changing the monotonic velocity profile associ-
ated with each lattice site to more general profiles.

10. Obtaining a full enumeration of the number of equilibria, both stable and
unstable.
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These are all topics that seem likely to play an increasingly prominent role in
future developments and we hope the themes discussed in this article offer readers a
fresh and inviting perspective on some fascinating topics in applied mathematics.

Acknowledgments. The first author would like to thank the Mathematics De-
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