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Abstract
The classic view of metastatic cancer progression is that it is a unidirectional process initiated at the primary

tumor site, progressing to variably distant metastatic sites in a fairly predictable, although not perfectly
understood, fashion. A Markov chain Monte Carlo mathematical approach can determine a pathway diagram
that classifiesmetastatic tumors as "spreaders" or "sponges" and orders the timescales of progression from site to
site. In light of recent experimental evidence highlighting the potential significance of self-seeding of primary
tumors, we use a Markov chainMonte Carlo (MCMC) approach, based on large autopsy data sets, to quantify the
stochastic, systemic, and often multidirectional aspects of cancer progression. We quantify three types of
multidirectional mechanisms of progression: (i) self-seeding of the primary tumor, (ii) reseeding of the primary
tumor from ametastatic site (primary reseeding), and (iii) reseeding ofmetastatic tumors (metastasis reseeding).
Themodel shows that the combined characteristics of the primary and thefirstmetastatic site towhich it spreads
largely determine the future pathways and timescales of systemic disease. Cancer Res; 73(9); 2760–9.�2013 AACR.

Introduction
The classic view ofmetastatic progression, framed in part by

the "seed-and-soil" hypothesis of Paget (1), is that cancer
spreads from the primary tumor site to distant metastatic
locations in a unidirectional way. The "seeds" responsible for
the spread are circulating tumor cells (CTC; refs. 2–4) that
detach from the primary tumor, enter the bloodstream and
lymphatic system (3), and travel to new distant locations. If
conditions are favorable, this initiates a complex (5–7) and not

well understood metastatic cascade, ultimately leading to
tumor growth at distant anatomic sites if their "soil" is hos-
pitable (1). The exclusively unidirectional nature of this process
has been challenged recently in a series of articles (8–13), which
use mouse models to show a mechanism by which CTCs from
the primary tumor can re-enter the primary, a process called
"self-seeding" (12). These authors further comment that "it is
tempting to speculate that self-seedingmight occur not only at
the primary tumor site, but also at distinct metastatic sites, . . .
each site being a nesting ground." The possibility of metastasis
from metastases has also been discussed (14, 15). While the
underlying "agent" responsible for the spread of cancer is the
CTC, the disease progression pathways in different patients
can be both predictable (froma statistical viewpoint), but often
unpredictable and surprisingly distinct in patients with nom-
inally the same disease (16, 17), prompting the question "how
can metastatic pathways be predictable and unpredictable at
the same time" (10)?

Motivated in part by these questions, we develop a Markov
chain/Monte Carlo (MCMC) stochastic mathematical model
for cancer progression to identify and quantify the multidi-
rectional pathways and timescales associated with metastatic
spread for primary lung cancer.

While stochastic in nature, our model shows that a defining
aspect of both pathway selection and timescale determination
is whether the disease spreads from the primary tumor to a
metastatic site that is either a "spreader" (adrenal gland and
kidney) or a "sponge" (regional lymph nodes, liver, bone). In
contrast to the traditional view of cancer metastasis as a
unidirectional process starting at the primary site and spread-
ing to distant sites as time progresses, our model supports and
quantifies the view that there are important multidirectional
aspects to metastatic progression. These fall under 3 general
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classes: (i) self-seeding of the primary tumor, (ii) reseeding
of the primary tumor from a metastatic site (primary reseed-
ing), and (iii) reseeding of metastatic tumors (metastasis
reseeding).
Using a discrete Markov chain (19) system of equations

applied to a large autopsy dataset of untreated patients with
cancer (20), we quantify the likelihoods of the top metastatic
pathways in terms of probabilities and conduct Monte Carlo
computer simulations of cancer progression that statistically
reflect the autopsy data about (non-Gaussian) distribution of
disease. The stochastic Markov chain dynamical system takes
place on a metastatic network–based model of disease pro-
gression that we construct based on available autopsy data
over large populations of patients. To obtain our baseline
model, we use the data described in an autopsy analysis (20)
inwhichmetastatic tumor distributions in a population of 3827
untreated deceased cancer victims were recorded; 163 of these
had primary lung cancer of some type, distributing a total of
619metastatic tumors across 27 different sites. Information on
lung cancer type in this data set is not possible to obtain as the
samples were collected before the widespread use of immu-
nohistochemistry (1914–1943), without which, the subcatego-
rization of non–small cell lung cancer is unreliable. However, it
is probably safe to assume that the distribution of lung cancer
type was not significantly different than current distributions,
roughly 40% adenocarcinoma, 30% squamous cell carcinoma,
9% large cell carcinoma, and 21% small cell carcinoma.

Materials and Methods
Structure of the lung cancer multistep diagram
The 27 metastatic sites in the diagram shown in Fig. 1 are

organized in ring formation, with 20 sites surrounding lung on

the inner ring and the remaining 7 sites organized on the
outmost ring, each connected to a site from the inner ring. The
sites listed on the inner ring are called "first-order" sites—they
have direct edge connections from the lung, with edge prob-
abilities decreasing from 12:00 clockwise around the ring. The
most heavily weighted edge, hence the most likely first step of
metastatic disease, is the transition from lung to regional
lymph nodes [LN (reg)]. The least heavily weighted, hence
least likely first step, is the transition from lung to skeletal
muscle shown just to its left. The 7 sites making up the
outermost ring are called "second-order" sites, also organized
with edge probabilities decreasing in clockwise order. These
sites are classified as "second-order" due to the fact that they
have 2-step probabilities via a first-order site that are equal or
higher in probability than any direct one-step probability from
the lung. In short, for disease to spread to a second-order site
from lung, it most probably passes via a first-order site.

The general structure of the concentric diagram, with lung
placed at the center, highlights the underlying classical uni-
directional view of disease progression. However, the diagram
also highlights the 3 key mechanisms of multidirectional
progression: (i) self-seeding of the primary lung tumor shown
in the diagram as a self-loop in the seventh position, with an
edge weight of 5.2% and (ii) reseeding of the primary tumor
from a first-order site, shown as arrows directed back to the
center. Because we are using an ensemble average of 1,000
trained lung cancer matrices to produce this diagram, the
reseeding edges are all roughly comparable in weight (8%), (iii)
metastasis reseeding of first-order sites shown as a self-loop
back to each metastatic site. The strongest metastasis resee-
ders are lymph nodes (regional and distant), followed by liver,
adrenal, bone, and kidney.

Quick Guide to Equations and Assumptions
Assumptions of the model:
1. The disease progression starts with an isolated tumor in the lung position.
2. The progression dynamics follows a Markov stochastic process (19), moving from site "i" to site "j" according to a transition

probability Pij that depends only on those 2 sites, not on the past history of how it arrived at site "i."
3. The Markov transition matrix of our model is calculated so that the steady-state vector of the Markov chain model

corresponds to the metastatic distribution of tumors found from the autopsy data set described (20).

Key equations:
1. A Markov chain dynamical system (18, 19) is defined by the equation:

~vkþ1 ¼~vkA k ¼ 0; 1; 2; . . .ð Þ;

where A is called the Markov transition matrix and ~vk is called the state vector. The entries of the state vector give the
probabilities of metastatic tumors developing at the 50 different sites in our model. The sum of the entries must be 1. The
entries of the Markov transition matrix are the transition probabilities Pij from site "i" to site "j". In our model, A is a 50� 50
square matrix and ~vk is a vector in R50.

2. ~v0 ¼ 0; 0; . . . ; 1; 0; 0; . . .ð Þ is our initial state vector, which has a 1 placed in the 23rd position, corresponding to the "lung"
entry.

3. ~v¥ ¼ lim
k!¥

~v0A
k is called the steady-state vector associated with the Markov chain. It can be obtained by solving the

eigenvalue problem:~v¥ A� Ið Þ ¼ 0. Therefore, the steady-state vector is a left eigenvector of the Markov transition matrix.
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From this diagram, we can obtain the 2-step pathway
probabilities from the lung, by direct multiplication of the 2
edges making up any of the 2-step paths starting from lung.
The 729 distinct two-step paths from the lung, the top ones
of which are shown in Fig. 2, produce the statistical distri-
bution ~v2 produced by the Markov chain model. We calcu-
late all of these and rank them in decreasing order in the
next subsections. By comparing the probability distributions

~v2 and~v¥ (shown in Supplementary Fig. S2), we can see that
after 2 steps, the distribution has nearly converged to the
steady-state, so we expect our rankings of 2-step pathways
not to change much if we compare them to the top 3-step
and higher step pathways.

Supplementary Figure S1 shows a (ensemble) convergence
and nonconvergence plot associatedwith our search algorithm
to calculate theMarkov transitionmatrix based on the baseline

Lung

LN (reg)

 0
.1

5
1

 0
.0

8
0

 0
.1

8
7

Adrenal

 0
.1

3
2

 0
.0

7
9

 0
.0

9
3

LN (dist)

 0
.1

19

 0
.0

80
 0

.1
23 Liver

 0.080

 0.080

 0.094

K
id

n
e

y

 0.067

 0.080

 0.047

B
o

n
e

 0.059

 0.079

 0.062

 0.052

Pl
eu

ra

 0.047

 0.079
 0.043

Pancre
as

 0.047

 0.079 0.036

Heart

 0
.0

3
6

 0
.0

7
9

 0
.0

2
6

Spleen

 0
.0

3
4

 0
.0

7
9

 0
.0

2
9

Brain

 0
.0

3
3

 0
.0

8
0

 0
.0

2
3

Thyroid

 0
.0

32

 0
.0

80 0
.0

23

Pericardium

 0.027

 0.079
 0.020

D
iap

h
rag

m

 0.022

 0.079

 0.019

Lg
 In

te
st

in
e

 0.017

 0.079

 0.014

G
al

lb
la

d
d

e
r

 0.010

 0.079

 0.010

St
om

ac
h

 0.009

 0.079

 0.008

Sm
 In

te
stin

e

 0.008

 0.080
 0.010

Skeletal Musc

 0
.0

0
4

 0
.0

8
0

 0
.0

0
3

P
e

ri
to

n
e

u
m

 0
.0

2
0

S
k

in
 0

.0
1

3

O
m

e
n

tu
m

 0
.0

0
7

P
ro

st
a

te
 0

.0
0

2

V
a

g
in

a
 0

.0
0

2

B
la

d
d

e
r

 0
.0

0
1

U
te

ru
s

 0
.0

0
1

P
e

ri
to

n
e

u
m

 0
.0

2
0

S
k

in

 0
.0

1
4

O
m

e
n

tu
m

 0
.0

0
7

B
la

d
d

e
r

 0
.0

0
2

V
ag

in
a

 0
.0

0
2

U
te

ru
s

 0
.0

02

Pr
o

st
at

e

 0
.0

02

Pe
ri

to
n

eu
m

 0
.0

21

Sk
in

 0
.0

13

O
m

en
tu

m

 0
.0

07

U
te

ru
s

 0
.0

02

Pro
st

at
e

 0
.0

02

Vag
in

a

 0
.0

02

Bla
dder

 0
.0

02

Perit
oneum

 0
.0

21

Skin

 0
.0

14

Om
entu

m

 0.007

Bladder

 0.002

Vagina

 0.002

Prostate

 0.002

Uterus

 0.002

Perito
neum

 0.021

Skin

 0.014

Omentum

 0.007

Bladder

 0.002

Uterus

 0.002
Vagina

 0.002 Prostate

 0.002
Peritoneum

 0.021
Skin

 0.014

Omentum 0.007

Uterus 0.002

Bladder
 0.002

Prostate

 0.002

Vagina

 0.002

Peritoneum

 0.020

Skin

 0.014

Omentum

 0.007

Uterus

 0.002

Bladder

 0.002

Vagina

 0.002

Prostate

 0.002

Peritoneum

 0.021

Skin

 0.014

O
m

entum

 0.007

Bladder

 0.002

U
terus

 0.002

Vag
in

a

 0.002

Pro
state

 0.002

Perito
n

eu
m

 0.021

Skin

 0.014

O
m

en
tu

m

 0
.0

0
7

B
lad

d
e

r

 0
.0

0
2

U
te

ru
s

 0
.0

0
2

V
ag

in
a

 0
.0

0
2

P
ro

sta
te

 0
.0

0
2

P
e

rito
n

e
u

m

 0
.0

2
1

S
k

in
 0

.0
1

4

O
m

e
n

tu
m

 0
.0

0
7

B
la

d
d

e
r

 0
.0

0
2

U
te

ru
s

 0
.0

0
2

P
ro

sta
te

 0
.0

0
2

V
a

g
in

a

 0
.0

0
2

P
e

ri
to

n
e

u
m

 0
.0

2
1

S
k

in

 0
.0

1
4

O
m

e
n

tu
m

 0
.0

0
7

U
te

ru
s

 0
.0

0
2

B
la

d
d

er

 0
.0

0
2

P
ro

st
at

e

 0
.0

02

Va
g

in
a

 0
.0

02

Pe
ri

to
n

eu
m

 0
.0

22

Sk
in

 0
.0

14

O
m

en
tu

m

 0
.0

07

Bla
dder

 0
.0

02

Vag
in

a

 0
.0

02

U
te

ru
s

 0
.0

02

Pro
st

ate

 0
.0

02

Perit
oneum

 0
.0

20

Skin

 0
.0

14

Om
entu

m

 0.007

Ute
ru

s

 0.002

Bladder

 0.002

Vagina

 0.002

Prostate

 0.002

Perito
neum

 0.021

Skin

 0.014

Omentum

 0.007

Uterus

 0.002

Bladder

 0.002

Vagina

 0.002

Prostate

 0.002

Peritoneum

 0.021Skin

 0.014Omentum
 0.007

Bladder  0.002

Uterus  0.002

Vagina
 0.002

Prostate
 0.002

Peritoneum

 0.021

Skin

 0.013

Omentum

 0.007

Uterus

 0.002

Bladder

 0.002

Prostate

 0.002

Vagina

 0.002

Peritoneum

 0.021

Skin

 0.014

Omentum

 0.007

Bladder

 0.002

Uterus

 0.002

Prostate

 0.002

Vagina

 0.002

Peritoneum

 0.021

Skin

 0.014

O
m

entum

 0.007

U
terus

 0.002

Bladder

 0.002

Prostate

 0.002

Vag
in

a

 0.002

Perito
n

eu
m

 0.021

Skin

 0.014

O
m

en
tu

m

 0
.0

0
7

U
te

ru
s

 0
.0

0
2

B
lad

d
e

r

 0
.0

0
2

V
ag

in
a

 0
.0

0
2

P
ro

state

 0
.0

0
2

Figure1. The 1-step pathways ofmetastatic lung cancer. Ensemble averaged 1-step pathwaydiagram. Primary lung tumor is at the center, next ring out are the
20 first-order sites showing their direct connection from the lung, with transition probabilities getting weaker in clockwise direction. Next ring out are
the 7 second-order sites and their connections from the first-order sites. The 3 elements of multidirectional spread are highlighted in this diagram: (i) self-
seeding of the primary tumor (self-loop back to center), (ii) reseeding of the primary tumor from a first-order site (arrows back to center), and (iii) reseeding of
first-order sites (self-loops back to first-order site). Not shown in the diagram are the 1-step paths from first-order site to another first-order site.
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dataset (20). What is significant is the nonconvergence of our
algorithm when we constrain our searches to not allow for any
multidirectional edges. In other words, when we forced our
algorithm to not allow edges directly back to a site (no self-
metastases nor primary reseeding), either separately or
together, the algorithm would not converge to a solution. In
contrast, the algorithm, in general, converged quickly to a
solution when all connections were allowed and produces a
transition matrix with many multidirectional connections
from site to site.

The autopsy datasets
The data in (20) compiles themetastatic tumor distributions

in a population of 3,827 deceased cancer victims, none of whom
received chemotherapy or radiation, hence the model can be
said to be based on the natural progression of the disease,
although mastectomy for many breast cancer primaries was
most likely conducted at that time. In addition, brain metas-
tases are likely underrepresented by this dataset as brain
autopsies probably were not universally conducted at that time.
The autopsieswere conductedbetween 1914–1943 in 5 separate
affiliated centers, with an ensemble distribution of 41 primary
tumor types and 30 distinct metastatic locations. The total
number of distinct primary and metastatic tumor locations is
50, which sets the size of our square Markov transition matrix
(50 � 50) as well as the number of entries in the Markov state-
vector ~vk. The data offer no direct information on the time
history of the disease, either for individual patients comprising
the ensemble or in ensemble format. The datawe use, therefore,
only contain information on the "long-time" distribution of
metastatic tumors, where long-time is associated with end of
life, a timescale that varies significantly from patient to patient.
The model does, however, allow us to infer time histories from
autopsy data based on the logic that if more metastatic tumors
show up in a population of patients at a specific site, then on
average, they would develop earlier in the progression history.
Although this association is not perfect, if does allow us to
extractmeaningful temporal inferences from ourMarkov chain
model. Details of how we infer the correct ensemble Markov
transition matrix are described in reference 18.
We use the dataset in 2 distinct ways to construct ourmodel.

First, we associate the distribution of metastatic tumors (after
appropriate normalization) for primary patients with lung
cancer with the steady-state (long-time) probability distribu-
tion of our Markov chain (19). From this, we compute the
"transition matrix" for our Markov chain (ensemble averaged)
that produces this steady state. As the problem is mathemat-
ically underdetermined, the calculation procedure requires an
initial "candidate" transitionmatrix obtained from the autopsy
data anddiscussed in (18), which is then systematically iterated
until a numerical convergence criterion is satisfied. Interest-
ingly, we also show that when our search algorithm is con-
strained so as to not allow any multidirectional edges in the
directed graph associated with the transition matrix, no self-
consistent model can be produced (i.e., the search algorithm
does not converge). Then, we update our baseline model
with the more targeted dataset described (25) of 137 patients
with adenocarcinoma of the lung (stage I and II), all treated

with complete lung resection, and show how the baseline
model is able to adapt to this assimilated data set.

Results
Cancer metastasis as a stochastic multistep process

The ensemble averaged lung cancer transition matrix asso-
ciated with the Markov chain model (see Fig. 1) depicts the
complete metastatic pathway diagram (18). Each of the 2,500
entries, aij, of the 50 � 50 transition matrix determines the
probability of the disease (modeled as a random walker over
the network) spreading from site "i" to site "j" in an effectively
multistep process before the statistical tumor distribution of
the autopsy dataset is filled out. The diagram rank orders (in
decreasing clockwise order) all of the possible pathways ema-
nating from the lung. One-step paths are defined by the edges
leading directly out from the lung—the sum of these outgoing
edges must be one. The single most likely one-step path of
disease progression from the lung is to the regional lymph
nodes, shown at the top of the diagram, with a probability of
15.1%, followed by the lung to adrenal gland path, with
probability of 13.2%. On the diagram ordering the first steps
out of the lung, we also show the "self-seeding" step directly
back to the lung, represented by the edge from lung looping
back to itself, with edge probability 5.2%.

Two-step paths are made up of an edge from the lung to
another site (or back to itself), followed by the edge from that
site to a second site. There are 729 two-step paths emanating
from the lung. The probability of taking a particular two-step
path from the lung is obtained bymultiplying theweights of the
2 edges making up the path. The sum of all of these 2-step path
probabilitiesmust be 1, and so on for 3-step paths, 4-step paths,
etc. We focus on quantifying all of the two-step paths in this
article, because as shown in Supplementary Fig. S2 (See
SupplementaryMaterial), after 2 iterations of theMarkov chain
(k ¼ 2), the state-vector has nearly converged to the steady-
state target vector for metastatic tumors making metastatic
progression for lung cancer effectively a 2-step process. In Fig.
2, we show all of the 2-step paths emanating from the lung
passing through each of the 8 most probable metastatic sites.
To obtain the probability of cancer progression on 1 of these 2-
step paths, one multiplies the products of the 2 edges making
up the 2-step path.

Rank-ordering the two-step metastatic pathways toward
the final state of the disease

We list the top multidirectional 2-step pathways obtained
from our model in Table 1. The first entries of Table 1 list
the top 10 reseeding pathways back to the lung from a first-
order site, along with the running cumulative values. We
highlight from this list several points. First, lymph nodes,
adrenal gland, and liver are the most important interme-
diate sites that reseed back to the lung. Their cumulative
probability value (3.8%) accounts for more than half of the
total cumulative value from the entire list (6.2%). This total
cumulative value is slightly greater than, but roughly com-
parable in size to the lung to lung reseeding path value of
5.2%, indicating that cells that reseed to the lung land there
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with roughly equal probabilities of having arrived via an
intermediate site (see Table 1) versus directly from the lung.
The second half of Table 1 lists the top 10 2-step reseeding
pathways back to a metastatic site, a mechanism we call
"metastasis reseeding." From this table, we can see that for
lung cancer, lymph nodes and adrenal gland are the most
active metastasis reseeders, followed by liver, bone, and
kidney.

Metastatic sites as spreaders or sponges
A careful analysis of the top 30 2-step pathways allows us

to compute the key probabilistic quantity of interest asso-
ciated with each 2-step path which characterizes each site as
a sponge or a spreader. The quantity is the ratio of prob-
ability out (Pout) over probability in (Pin) to each of the sites.
If Pout > Pin, the site is a spreader, whereas if Pin > Pout, we
characterize it as a sponge. The ratio Pout=Pinð Þ of their
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Figure 2. The 2-step pathways through top 8 first-order sites. Diagram of all 28 two-step pathways from lung to a tertiary site. A, lung through regional lymph
nodes. B, lung through adrenal gland. C, lung through distant lymph nodes. D, lung through liver. (Continued on the following page.)
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exiting and incoming probabilities, in the case of a spreader,
gives us what we call the amplification factor, as it is larger
than one, whereas in the case of a sponge, we call the ratio
the absorption factor, as it is less than 1. Using these
quantities, the top 2 spreaders are the adrenal gland and
kidney, with amplification factors of 1.91 (adrenal gland)
and 2.86 (kidney). The total number of 2-step pathways into
and out of the adrenal gland is 10, whereas the total into and
out of kidney is only 3. For these reasons, we identify the
adrenal gland as the key distant anatomic spreader of
primary lung cancer.
The sponges associated with primary lung cancer are the

regional lymph nodes, liver, and bone. Their respective absorp-
tion factors are 0.74 (regional lymph nodes), 0.87 (liver), and
0.75 (bone). The total number of 2-step pathways into and out
of the regional lymph nodes is 16, comparedwith 8 into and out
of the liver, and 5 into and out of bone. For these reasons, we
identify the regional lymphnodes as the key anatomical sponge

associated with primary lung cancer, followed by both bone
and liver.

The spatial pathways of lung cancer
To compare the relative importance of 2-step unidirectional

pathways versus 2-step multidirectional pathways, we list the
top 30 two-step pathways in decreasing order in Supplemen-
tary Table S1. The top metastatic pathway (of any type) is the
lung ! lymph node (reg) ! lymph node (reg) metastasis
reseeding pathway, whereas the top unidirectional pathway is
the lung! adrenal! lymph node (reg) path. Looking at all of
the multidirectional pathways, it is clear that the lymph nodes
and adrenal gland are the key metastatic sites responsible for
multidirectional spread, whereas lymph nodes, adrenal gland,
and liver are important sites responsible for unidirectional
spread. In general terms, lymph nodes, adrenal gland, and liver
feature very prominently as intermediate metastatic sites in
many of the 2-step pathways.
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Figure 2. (Continued. ) E, lung through kidney. F, lung through bone. G, lung through pleura. H, lung through pancreas.
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The information can then be combined into a reduced 2-step
diagram for progression, shown in Fig. 3. The diagram shows the
centrality of lymph nodes and adrenal gland as key first met-
astatic sites,withmany incomingandoutgoingedges.Thefigure
also captures all of the informationabout the spreaderor sponge
character of each site, with red indicating the color of the key
spreaders (adrenal gland, kidney) and blue indicating the color
of sponges (lung, regional lymph nodes, liver, bone). Amplifica-
tion and absorption factors are shown in each of the ovals.

Timescales of progression: enhancing the Kaplan–Meier
approach

Our model gives a useful measure of metastatic progression
timescale, called first-passage time from lung to any given site,
defined as the number of edges a "random walker" leaving the
lung must traverse to first arrive at that site. Monte Carlo
simulations of randomwalk paths from the lung are conducted
computationally to obtain mean first-passage times (averages
over 10,000 runs) to every other site in themodel. Themeanfirst-
passage times (mfpts) act as aproxy timescale (model-based) for
metastatic progression. It is a model-based relative measure of
the time that it takes for a primary tumor to metastasize to a
secondary site, or, roughly speaking, a model-based measure of
the timescale associated with successful extravasation and
colonization (6). Timescales associated with metastatic disease
are typically quantified by so-called Kaplan–Meier survival
curves (23, 24), which follow a cohort of patients from presen-

tation until death, plotting the survival percentage associated
with the cohort. Alternative methods have been proposed, but
by and large, tracking survival of a cohort of patients remains the
industry-standard way of tracking progression. There is very
little in the literature that tracks the timescale of progression
from metastatic site to metastatic site (15–17, 21, 22).

Mean first-passage times from lung to each of the other sites
are shown in Fig. 4. The sites are ordered from shortest to
longest mean first-passage time from lung. In dark, we show
the baseline (untreated patients) model using the data set (20).
The dashed-dot line is a linear curve fit to the first 9 sites,
showing a clear linear increasing regimen (roughly the top 16
sites), followed by a group of sites where mean first-passage
times increase nonlinearly. The first 9 sites used in the reduced
model set the basic linear timescales of progression for the high
probability metastatic locations. Times increase following the
general linear formulamfpt ¼ a � tþ b, where a¼ 2.56, b¼ 2.07
for the baseline (untreated) model, where "a" is the slope and
"b" is the y-intercept. In this formula, larger slopes indicate
longer overallmeanfirst-passage times from lung tometastatic
sites. Spread to regional lymph nodes is fastest (with a nor-
malized value of 1), followed by normalized times to distant
lymph nodes (1.47), adrenal (1.72), and liver (1.75). One should
interpret these timescales to indicate that it takes roughly 75%
longer for cancer tometastasize to adrenal gland and liver than
to regional lymph nodes. Self-seeding back to lung has a
normalized mean first-passage time of 2.30, which is faster

Table 1. Top 2-step pathway probabilities

Top reseeding pathways back to lung Transition probability Cumulative values

Lung ! Lymph (reg) ! Lung 0.01214
Lung ! Adrenal ! Lung 0.01042 0.02256
Lung ! Lymph (dist) ! Lung 0.00952 0.03208
Lung ! Liver ! Lung 0.00645 0.03853
Lung ! Kidney ! Lung 0.00533 0.04386
Lung ! Bone ! Lung 0.00467 0.04853
Lung ! Pleura ! Lung 0.00375 0.05228
Lung ! Pancreas ! Lung 0.00367 0.05595
Lung ! Heart ! Lung 0.00288 0.05883
Lung ! Lung ! Lung 0.00273 0.06156

Top metastasis reseeders Transition probability Cumulative values

Lung ! Lymph (reg) ! Lymph (reg) 0.02819
Lung ! Lymph (dist) ! Lymph (dist) 0.01468 0.04287
Lung ! Adrenal ! Adrenal 0.01223 0.05510
Lung ! Liver ! Liver 0.00758 0.06268
Lung ! Bone ! Bone 0.00364 0.06632
Lung ! Kidney ! Kidney 0.00314 0.06946
Lung ! Pleura ! Pleura 0.00206 0.07152
Lung ! Pancreas ! Pancreas 0.00168 0.07320
Lung ! Spleen ! Spleen 0.00098 0.07418
Lung ! Heart ! Heart 0.00095 0.07513

NOTE: Top 2-step reseeding pathwaysback to lung: Primary!First-order site!Primary. Top reseeding pathwaysback tometastatic
site: Primary! First-order site! Back to first-order site. Cumulative values (obtained by adding the previous transition probabilities)
are listed in third column.
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than to most of the first-order sites, but over twice the time as
the lung to regional lymph node timescale.

Assimilating new autopsy data of adenocarcinoma lung
cancer patients undergoing complete resection
Figure 4 (more details are shown in Supplementary

Table S1) also shows metastatic pathways and mean
first-passage times using the model with assimilated data
from (25), an autopsy data set tracking a cohort of patients
with adenocarcinoma of the lung (ACL) who underwent
complete lung resection. Of these, 35 survived more than
30 days after resection, 22 were classified as stage I, and 13
as stage II. We assimilated their metastatic tumor distri-
bution from an autopsy study into our baseline (untreated
population) model, recalculated the Markov transition
matrix and all mean first-passage times. The results are
shown in Fig. 4 (and the middle and right columns of
Supplementary Table S1). Stage I are shown in medium
dark, stage II in light gray.
Comparing the columns of Supplementary Table S1, the

main change in the spatial pathways shows up in the fifth entry
down, where the Lung! Adrenal! LN (Dist) pathway drops
in probability on the list of the stage I treated patients but not
as much as for the stage II treated patients. Lung resection
seems to alter this important pathway, particularly for stage I

patients, making it less likely to occur, perhaps by disruption of
lymphatic connections between the primary tumor and ipsi-
lateral adrenal gland. The overall probabilities of each of the
pathways in the treated population also decrease from the
untreated population.

The effect of treatment on the overall mean first-passage
times is shown in Fig. 4. The corresponding curve fit to the first
9 sites follow the same general linear trend as in the untreated
population,mfpt ¼ a � tþ b, butwith a¼ 2.68, b¼ 1.55 (stage I,
medium dark); a ¼ 2.54, b ¼ 1.91 (stage II, light gray). The
conclusions we can draw are clear: mean first-passage times
increase overall with the stage I treated cohort, shown by the
increase in slope over the untreated slope, but not with the
stage II treated cohort. Interestingly, the mfpt back to lung in
the treated cohort actually decreases with treatment. As lung
is classified as a sponge in our model, this does not seem to
have a negative overall effect on the general trend of increasing
passage times with treatment. In contrast, the mfpt back to
adrenal gland (the key spreader) with the treated cohort
increases. This enhances the overall increase in mfpts for the
treated cohort. The mean first-passage times increase most in
the subgroup of stage I patients, indicating that complete lung
resection is more effective in this group compared with the
stage II subgroup. To summarize, our model shows that lung
resection for patients with ACL seems to generally increase

Figure 3. Reduced pathway
diagram showing top 30 two-step
paths. Top 30 two-step pathways
emanating from lung (representing
36.83% of the total pathway
probabilities), obtained by
multiplying the edges of the 1-step
edges comprising each 2-step path.
Edges without numbers are 1-step
paths emanating from lung. All other
numbered edges mark the second
edge in a 2-step path, with numbers
indicating the 2-step probabilities.
Colors indicate classification of each
node as a "spreader" (red) or
"sponge" (blue). Spreader
amplification factor and sponge
absorption factor are listed in each
oval. Edge colors indicate primary
self-seeding (red), primary reseeding
(green), and metastasis reseeding
(yellow). See text for more detailed
descriptions.
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overall mfpts of metastases for stage I patients, and it does this
by (i) altering a key pathway from lung to adrenal gland to
lymph nodes (distal), (ii) increasing mean first-passage times
to the adrenal gland (spreader), (iii) decreasing mean first-
passage times back to the lung (sponge), and (iv) reducing the
overall top pathway probabilities. Lung resection seems to
have very little impact on stage II patients. The failure of
resection to improve metastasis-free survival in stage II
patients with lung cancer may occur because the regional
lymph nodes act as a sponge (Fig. 3), potentially suppressing
early metastasis when not removed. However, because the risk
of local disease is high in lung cancer, surgery remains the
preferred treatment in stage II disease.

Discussion
Our model depicts cancer progression as effectively a mul-

tistep (2-step), multidirectional, stochastic process, spreading
probabilistically from site to site in individual patients, but
filling out a well-defined and predictable metastatic tumor
distribution for large ensembles of patients. This stable, robust,
and predictable ensemble tumor distribution available over
large autopsy data sets is exploited to build aMarkov transition
matrix for lung cancer progression. We identify the top uni-
directional and multidirectional metastatic pathways of pri-
mary lung cancer bymeans of a probabilistic comparison of all
2-step paths emanating from the lung. The results support the
view that multidirectional pathways play an important role in
cancer progression. We identify 3 main mechanisms of multi-
directionality needed to obtain consistency with ensemble
autopsy data: (i) primary tumor self-seeding, (ii) reseeding of
the primary tumor from a metastatic tumor, and (iii) metas-
tasis reseeding. Of these, the most important are metastasis
reseeding of the lymph nodes (both regional and distant) and

adrenal gland and primary lung reseeding via the regional
lymph nodes. Also significant is metastasis reseeding of the
liver and primary self-seeding of the lung, but neither seem to
be as significant as passage of the disease through the regional
lymph nodes.

While very few patients die from their first metastasis, the
characterization of the first metastatic site as a spreader or
sponge yields important insights into metastatic pathway
selection and the determination of progression timescales for
patients. The model may have implications for decisions
surrounding surgical resection of oligometastatic disease
(26) as one might predict different outcomes for patients
whose solitary site of disease is a sponge or spreader. Histor-
ically, resection of isolated adrenal metastasis has entered
clinical practice in lung cancer, and removal of this spreader
site has benefited patients (27). Conversely, there has never
been an established role for resection of isolated liver metas-
tasis, a sponge site, despite there being a track record of success
doing this in colon cancer (28–32).

A careful inspection of the top 2-step pathways supports the
dominance of unidirectional metastatic spread over multidi-
rectional processes, which perhaps explains why the prevailing
historical view is one of unidirectional spread (5). However, we
should emphasize that our search algorithm for a Markov
transition matrix could not converge to any solution when we
constrained it so thatmultidirectional edgeswere ruled out but
did converge consistently to an ensemble of transition matri-
ces when unconstrained so that all possible pathswere allowed
(See SupplementaryMaterial). In otherwords, wewere not able
tofind aMarkov transitionmatrix that produced a steady-state
consistent with the autopsy data unless multidirectional edge
connections were allowed. Therefore, we stress the viewpoint
that multidirectional processes play a key role in pathway
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selection and timescale determination for metastatic lung
cancer.
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