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Hydrodynamically coupled oscillators

R. TIRON1, E. KANSO1† AND P. K. NEWTON1,2

1Department of Aerospace and Mechanical Engineering, University of Southern California,
Los Angeles, CA 90089, USA

2Department of Mathematics, University of Southern California, Los Angeles, CA 90089, USA

(Received 10 August 2010; revised 10 January 2011; accepted 23 February 2011;

first published online 19 April 2011)

A submerged spring–mass ring is analysed as a simple model for the way in which
an underwater swimmer couples its body deformations to the surrounding fluid in
order to accomplish locomotion. We adopt an inviscid, incompressible, irrotational
assumption for the surrounding fluid and analyse the coupling response to various
modes of excitation of the ring configuration. Due to the added mass effect, the
surrounding fluid provides an environment which effectively couples the ‘normal
modes’ of oscillation of the ring, leading to nonlinear trajectories if the ring is free
to accelerate based on the effective forces the oscillations induce. Through a series
of examples, we demonstrate various features that the model supports, including the
locomotion on curved paths as a result of energy and angular momentum exchange
with the surrounding fluid.

Key words: flow–structure interactions, nonlinear dynamical systems, swimming/
flying

1. Introduction
The locomotion of many aquatic animals consists of periods of acceleration

followed by passive glides, see Videler & Weihs (1982). The coupling between the
intrinsic elasticity of the body and the surrounding fluid seems to enhance locomotion
during the gliding periods. Indeed, experimental evidence suggests that the elastic
properties of the fish body are tuned to hydrodynamic forces; see, for example, Videler
(1993), Long & Nipper (1996) and Long et al. (1996) for a discussion of the role of
body elasticity in undulatory swimming. If one thinks of the underwater swimmer as
an elastic body with distributed mass, whose musculature enables it to transmit forces
and thus accelerate the surrounding fluid, then a submerged spring–mass model is
arguably the simplest prototype that allows a systematic and comprehensive study
of the body–fluid coupling to shed light on the main physical mechanisms at play in
passive locomotion. The term passive locomotion here refers to locomotion when the
system is subject to only initial excitations of the body and/or the surrounding fluid.
This is in contrast to active locomotion obtained when properly controlling for all time
the internal degrees of freedom of the swimming model; see, for example, Kanso et al.
(2005) and references therein. It is also to be distinguished from passive locomotion
in continuously excited external flows such as in the work of Beal et al. (2006) on the
swimming in vortex wakes.

† Email address for correspondence: kanso@usc.edu
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590 R. Tiron, E. Kanso and P. K. Newton

Kanso & Newton (2009) studied the passive locomotion of a rectilinear chain
of circular masses connected via linear springs and submerged in a perfect fluid
of infinite extent. The masses were constrained to move on a line joining their
centres; hence, the locomotion was achieved only in one dimension. In the absence
of the fluid, the problem is linear and the normal modes are decoupled, with the
eigenfunction corresponding to eigenvalue λ1 = 0 representing net translation. For
the submerged system, the surrounding fluid couples the normal modes and enables
such systems to achieve net translation, even when the λ1 = 0 mode is not initially
excited.

In this work, we investigate a class of submerged spring–mass systems that can
translate as well as rotate, enabling its geometric centre to move along a two-
dimensional path. The system consists of n circular masses of radii ai, i = 1, . . . , n,
constrained to move on a circular ring of radius R. The centres of every two adjacent
masses are connected by linear springs of constant stiffness k. In the limit k → ∞,
we refer to the masses as ‘rigidly connected’. The springs are constrained to the ring,
such that the elastic forces acting on the cylinders are tangential to it. The system
is immersed in an inviscid, incompressible fluid of infinite extent, and the cylinders
are considered to be neutrally buoyant. The flow is assumed to be irrotational at all
time and at rest at infinity so that we can model and understand the role that the
fluid coupling with the elasticity of the body plays in isolation from other effects.
The interactions of multiple bodies in irrotational flow are considered in different
contexts in the recent works of Grotta Ragazzo (2002, 2003), Burton, Gratus &
Tucker (2004), Wang (2004) and Crowdy, Surana & Yick (2007).

We first assess the effect of the fluid–solid coupling on the rotational motion only
by fixing the geometric centre of the ring. This can be viewed as the rotational
analogue of the rectilinear chain treated in Kanso & Newton (2009). We then
consider the case when the geometric centre of the ring is allowed to move freely
in the plane. In this case, the main question of interest is the effect of the fluid
coupling on the motion of the ring. We show that the coupling of the hydrodynamic
effects with the system’s elasticity leads to interesting dynamics not achievable by the
hydrodynamically decoupled system nor by the system of rigidly connected masses
with no elasticity. For example, we show that for certain initial conditions the spring–
mass undergoes a net translational motion, while the hydrodynamically decoupled
and the rigidly connected systems remain in place.

2. Problem setting
Consider a planar system of n circular cylinders Bi of radii ai, i = 1, . . . , n,

constrained to move on a massless circular ring of radius R. The geometric centre
O of the ring is free to move in the plane of motion of the cylinders, see figure 1.
The centres of every two adjacent masses are connected by linear springs of constant
stiffness k. The springs are constrained to the ring such that the elastic forces acting
on the cylinders are tangential to the ring. The spring–mass system is immersed
in an inviscid, incompressible fluid of infinite extent which is assumed to remain
irrotational at all time and at rest at infinity. The cylinders are considered to be
neutrally buoyant, that is to say, the cylinders and the fluid have the same uniform
density ρ.

Let {e1,2,3} be an orthonormal inertial frame where {e1,2} spans the plane of
motion. The configuration of the system can be described by the position vectors
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Figure 1. Spring–mass system in ring formation for a system comprised of three cylinders.
The three cylinders of radii a are constrained to move on a ring of radius R and are connected
via linear springs of constant k, such that the elastic forces act tangentially to the ring. The
angles at equilibrium are denoted by αi , whereas the angular deformations by Θi , i = 1, . . . , 3.

r i = xi e1 + yi e2 of the cylinders’ centres subject to the n constraints (xi − x0)
2 +

(yi −y0)
2 =R2, where (x0, y0) denote the coordinates of the geometric centre of the ring.

Equivalently, the system’s configuration can be described in terms of r0 = x0 e1 + y0 e2

and the positions (r i − r0) of the cylinders relative to the ring centre, the latter
being parameterized by the angular placement of the cylinders on the ring. When the
system is in equilibrium, that is to say, the springs are undeformed, the corresponding
placement of the cylinders along the ring can be described by the angles αi measured
counter-clockwise from the x-axis. As the springs deform, the angular coordinates
of the cylinders, measured from the undeformed configuration, are denoted by Θi .
Clearly, one has

xi = x0 + R cos(αi + Θi), yi = y0 + R sin(αi + Θi). (2.1)

It is convenient to introduce the 2n-dimensional position vector X ≡ {x1, y2, . . . ,

xn, yn}T, where ()T denotes the transpose, and the n-dimensional angular position
vector Θ = (Θ1, Θ2, . . . , Θn)

T. If the ring’s centre is fixed, say at the origin of the
inertial frame (x0, y0) ≡ (0, 0), the configuration of the system can be determined by
the n variables Θi . Then using the constraint equations (2.1) one can readily verify
that the reduced (that is to say, unconstrained) velocity vector Θ̇ := dΘ/dt , with t

being time, is related to the velocity vector Ẋ via the transformation

Ẋ = RfixedΘ̇, (2.2)

where the 2n × n matrix Rfixed is given by

Rfixed =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−R sin (Θ1 + α1) 0 . . . 0

R cos (Θ1 + α1) 0 . . . 0

0 −R sin (Θ2 + α2) . . . 0

0 R cos (Θ2 + α2) . . . 0

...
...

...
...

0 0 . . . −R sin (Θn + αn)

0 0 . . . R cos (Θn + αn)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2.3)
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592 R. Tiron, E. Kanso and P. K. Newton

If the ring is free to move in the plane, its configuration can be described by the
reduced (n+ 2)-dimensional position vector ζ ≡ {x0, y0, Θ1, Θ2, . . . , Θn}T. Similarly
to (2.2), one can readily verify that

Ẋ = Rfree ζ̇ , (2.4)

where the 2n × (n+ 2) matrix Rfree is given by

Rfree =

⎛⎜⎜⎝
I2×2

...
... Rfixed

I2×2

⎞⎟⎟⎠, (2.5)

where I2 × 2 is the 2 × 2 identity matrix.

3. Equations of motion
We derive the equations of motion for the fluid–mass system using Hamilton’s least

action principle for which the Lagrangian function is given by

L = T − U (3.1)

where T = TB + TF denotes the kinetic energy of the fluid–mass system, whereas U

denotes the potential energy stored in the springs. The potential energy U stored in
the springs can be written in matrix form as

U = 1
2
ΘTKΘ, (3.2)

where the stiffness matrix is given by

K = k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 · · · 0 −1

−1 2 −1 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · 2 −1

−1 0 0 · · · −1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
or K = k

(
2 −2

−2 2

)
if n = 2. (3.3)

The kinetic energy TB of the n cylinders is given by

TB = 1
2

ẊTMcyl Ẋ, (3.4)

where Mcyl is a 2n × 2n diagonal mass matrix with block entries ρπa2
i I2 × 2. In potential

flow, the kinetic energy of the fluid TF can be written, using standard vector identities
and techniques (see for example Kanso et al. 2005 and Nair & Kanso 2007), as a
function of the positions X and velocities Ẋ of the submerged bodies,

TF = 1
2

ẊTMadded Ẋ . (3.5)

The added mass matrix Madded is a 2n × 2n symmetric matrix that accounts for the
presence of the fluid. Differently said, in potential flow, the hydrodynamic forces
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Hydrodynamically coupled oscillators 593

acting on the surfaces of the accelerating bodies can be completely accounted for
by ‘adding mass’ to the submerged bodies (see Brennen 1982 for a comprehensive
review). The entries of the added mass matrix Madded depend not only on the shape
of the submerged bodies, here considered to be circular cylinders, but also on their
position relative to each other (xi − xj , yi − yj ), i �= j and i, j = 1, . . . , n. In the case
considered here where the n masses are constrained to move along the ring, these
relative positions can be parameterized by Θ . Approximate expressions for Madded (Θ)
are derived in § 4.

When the ring’s centre is fixed, one finds, by adding (3.4) and (3.5) and
substituting (2.2) into the resulting expression, that the total kinetic energy T = TB + TF

of the fluid–mass system can be written as a function of Θ and Θ̇ only:

T = 1
2
Θ̇

T
MfixedΘ̇, Mfixed = RT

fixed (Mcyl + Madded (Θ))Rfixed , (3.6)

where Mfixed is an n × n mass matrix function of Θ only. In the case when the ring is
free to move in the plane, one finds, by virtue of (2.4), that the total kinetic energy of
the fluid–mass system takes the form

T = 1
2
ζ̇

T
Mfree ζ̇ , Mfree = RT

free(Mcyl + Madded (Θ))Rfree, (3.7)

where Mfree is an (n+ 2) × (n+ 2) mass matrix also the function of Θ only. It is worth
noting that the mass matrix RT

fixedMcylRfixed in (3.6) accounting for the inertia of the

cylinders only is a diagonal matrix with constant entries ρπa2
i , which implies that

the dynamics of this fixed ring system in the absence of the fluid is linear. This is in
contrast to the case when the centre of the ring is free to move in the plane. Indeed,
in (3.7), the mass matrix RT

freeMcylRfree accounting for the inertia of the cylinders only
is no longer a diagonal matrix and depends nonlinearly on the configuration vector
Θ . Thus, even in the absence of the fluid, the dynamics of the spring–mass system on
the ring is nonlinear.

The Lagrangian function L of the fixed ring can then be rewritten, using (3.2) and
(3.6), as a function of Θ and Θ̇ only:

L(Θ, Θ̇) = 1
2
Θ̇

T
Mfixed (Θ)Θ̇ − 1

2
ΘTKΘ . (3.8)

In the absence of external forces and moments acting on the fluid–mass system, the
equations of motion are given by the Euler–Lagrange equations

d

dt

(
∂L
∂Θ̇

)
− ∂L

∂Θ
= 0. (3.9)

This class of problems is energy-preserving, and the total energy E = 1
2
Θ̇

T

MfixedΘ̇ + 1
2
ΘTKΘ is conserved. It also admits a momentum integral of motion,

namely the momentum of the fluid–mass system associated with a rigid or net
rotation of the system is conserved (as verified below via examples). In other words,
if Θ = (

∑
i Θi)/n is the net rigid rotation of the ring, the total angular momentum

h = ∂L/∂Θ̇ is conserved.
In the case when the ring is free to move in the plane, the Lagrangian function can

be expressed in terms of ζ and ζ̇ only:

L(ζ , ζ̇ ) = 1
2
ζ̇

T
Mfree(Θ)ζ̇ − 1

2
ΘTKΘ . (3.10)
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594 R. Tiron, E. Kanso and P. K. Newton

Similarly to the fixed case, one can derive the equations of motion of the system in
terms of the n+ 2 variables ζ . Since the entries of the (n+ 2) × (n+ 2) mass matrix
Mfree depend exclusively on Θ , the coordinates of the geometric centre x0, y0 are
the ignorable coordinates of the Lagrangian, and the associated linear momenta
px = ∂L/∂ẋ0 and py = ∂L/∂ẏ0 are conserved. These two symmetries reflect the fact
that the system’s dynamics is invariant to rigid translations of the ring’s centre. As
in the case of the fixed ring, one has two additional symmetries due to invariance
of the system to rigid rotations and due to re-parameterization of time. The last
symmetry is associated with conservation of the system’s total energy E = T +U ,
while the rotational symmetry is associated with conservation of the system’s total
angular momentum h = ∂L/∂Θ̇ + x0(∂L/∂ẏ0) − y0(∂L/∂ẋ0).

When the spring stiffness is infinite, that is to say, the cylinders are rigidly
connected on the ring, the system has no elastic energy U = 0 and the variables
Θi are equal. The configuration of the free ring can then be determined by the
variables x0 y0 and Θ only. The resulting Euler–Lagrange equations ṗx = 0, ṗy = 0
and ḣ =0 which reflect conservation of total linear and angular momenta of the
fluid–mass system are identical to the well-known Kirchhoff’s equations for a
submerged rigid body; see for example Kanso et al. (2005) and Lamb (1932) for more
details.

4. Approximate added mass matrices
We obtain approximate expressions for the added mass matrix Madded in (3.5) by

assuming that the distances between the cylinders are much bigger than their radii.
To fix ideas, we first construct the approximate added mass matrix for the case of two
cylinders, of radii a1 and a2, free to move in the plane, that is to say, not constrained
to the ring. The derivation, which we omit here for the sake of brevity, follows closely
the discussion in Nair & Kanso (2007) for the case of two cylinders free to move
along the line connecting their centres. The main difference is that here we let each of
the cylinders move with unit speed in the e1- and e2-directions, respectively, while the
other cylinder is fixed. We compute approximate expressions for Kirchhoff’s potentials
caused by each of these motions. We then calculate the entries of the added mass
matrix as integral functions of these Kirchhoff’s potentials – the interested reader is
referred to Nair & Kanso (2007) and Lamb (1932) for more details. To this end, one
obtains

Madded ≈
(

ρπa2
1I2×2 (Madded )12

(Madded )12 ρπa2
2I2×2

)
, (4.1)

where I2 × 2 is the 2 × 2 identity matrix and the off-diagonal block matrix is given by

(Madded )12 = −ρπ
2a2

1a
2
2

r2
12

(
cos 2α12 sin 2α12

sin 2α12 − cos 2α12

)
. (4.2)

Here, r2
12 = (x2 − x1)

2 + (y2 − y1)
2 is the square of the distance between the two

cylinders and α12 is the angle measured from the e1-direction to the line connecting
the centres of the two cylinders.

We generalize these approximate expressions to the case of n submerged cylinders
by assuming that every two cylinders affect each other as if they were the only two
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Hydrodynamically coupled oscillators 595

in the fluid domain. Namely we write

Madded ≈

⎛⎜⎜⎜⎜⎜⎝
ρπa2

1I2×2 (Madded )12 · · · (Madded )1n

(Madded )12 ρπa2
2I2×2 · · · (Madded )2n

...
. . .

(Madded )1n (Madded )2n · · · ρπa2
nI2×2

⎞⎟⎟⎟⎟⎟⎠, (4.3)

where (Madded )ij for i �= j is given as in (4.2).
When the centres of the cylinders are constrained to the ring, the components of

Madded can readily be expressed in terms of the configuration vector Θ by noting that

2αij = Θi + Θj + αi + αj − π,

r2
ij = 2R2(1 − cos[Θi − Θj + αi − αj ]).

}
(4.4)

In order to highlight that the resulting expressions for the added mass are valid only
when the distances between the cylinders are much bigger than their radii, it is useful
to introduce a small scaling parameter ε of the same order as a/R � 1, where a

is the maximum of the cylinders radii and R, the radius of the ring, characterizes
the separation between the cylinders. We then define the scaled non-dimensional

parameters ãi and m̃ and scaled variables Θ̃i:

εãi =
ai

R
, m̃ij =

mij

ρπa2
, εΘ̃i = Θi, (4.5)

where mij stands for any entry of the added mass matrix Madded . For consistency with
the non-dimensionalization in (4.5), x0 and y0 are scaled as εx̃0 = x0/R and εỹ0 = y0/R.

Time is scaled as t̃ = ωn t where ωn is a ‘nominal’ frequency defined as ωn =
√

kn/(ρπa2)
with kn being a constant spring stiffness whose value is of the same order of k. The

spring stiffness is non-dimensionalized using k̃ = k/ρπa2ωn
2. Note that the value of kn

can be set to be equal to k in which case k̃ =1 or alternatively, as done throughout
this paper, kn can be chosen such that ωn =1 and the dimensionless spring stiffness

k̃ remains a free parameter. Now, upon substituting (4.4) and (4.5) into (4.3), one
gets the entries of the non-dimensional added mass matrix when the cylinders are
constrained to move on the ring, namely

(Madded )ii = mθ
i I2×2, mθ

i =
a2

i

a2
, (4.6)

and, for i �= j ,

(Madded )ij = −ε2mθ
ij

(
cos[ε(Θi + Θj )+ αi + αj ] sin[ε(Θi + Θj )+ αi + αj ]

sin[ε(Θi + Θj )+ αi + αj ] − cos[ε(Θi + Θj )+ αi + αj ]

)
, (4.7)

where

mθ
ij = −

a2
i a

2
j

a2
(
1 − cos[ε(Θi − Θj ) + αi − αj ]

) . (4.8)
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Note that in (4.6)–(4.8), we dropped the tilde notation, considering all variables are
non-dimensional. When adding the dimensionless mass of the cylinders to the added
mass matrix, the non-dimensional mass matrix Mfixed = RT

fixed (Mcyl + Madded )Rfixed in

(3.6) takes a particularly simple form with diagonal entries equal to 2mθ
i and off-

diagonal entries equal to ε2mθ
ij .

5. Hydrodynamically decoupled dynamics
When the off-diagonal entries of the added mass matrix Madded in (4.3) are zero

(mθ
ij = 0, i �= j ), the diagonal entries correspond to the added mass of each cylinder

as if it were alone in the fluid domain without accounting for the presence of the
other cylinders. To this end, the submerged cylinders are said to be hydrodynamically
decoupled.

For the case when the ring’s centre is fixed and mθ
ij = 0, i �= j (which is equivalent to

setting ε = 0), one can readily verify that the mass matrix Mfixed , relabelled as Mdecoupled ,
is diagonal with constant entries equal to 2a2

i /a
2. The dynamics is thus linear and the

equations of motion (3.9) take the form

MdecoupledΘ̈ + KΘ = 0. (5.1)

It is worth emphasizing here that this result is true only for the fixed ring. The
dynamics of the free ring is nonlinear even when hydrodynamically decoupled
(mθ

ij = 0, i �= j ). The nonlinearity stems from the geometric constraints in (2.1) and
(2.4) which makes the mass matrix Mfree in (3.7) depend nonlinearly on Θ even when
the mass matrices Mcyl and Madded are diagonal.

Solutions of (5.1) can be expressed in terms of the system’s normal modes
corresponding to the eigenvalues λi and eigenvectors v(i) of the matrix M−1

decoupledK.

Indeed, one has M−1
decoupledK= V ΛV −1, where Λ is a positive diagonal matrix whose

entries correspond to the eigenvalues of M−1
decoupledK, while the columns of V correspond

to its eigenvectors. Now, letting Γ = V −1Θ , (5.1) can be rewritten in the convenient
form

Γ̈ + ΛΓ = 0. (5.2)

The solution of (5.2) is given by the normal modes

Γ1(t) = Γ1(0) + Γ̇1(0)t

Γi(t) = Γi(0) cos(ωit) +
Γ̇i(0)

ωi

sin(ωit), i = 2, . . . , n.

⎫⎬⎭ (5.3)

Here, Γ1(t) represents the rigid rotation of the ring corresponding to the zero
eigenvalue λ1 = 0 (guaranteed by the fact that all the rows of K sum to zero) and
its associated eigenvector v(1) = {1/

√
n, . . . , 1/

√
n}T while Γi (for i � 2) are purely

oscillation modes with oscillation frequencies ωi =
√
λi . Note that the rigid rotation

Θ defined in § 3 is equal to Γ1 modulo a multiplication constant, Θ = Γ1/
√

n, which
is inconsequential to the dynamics.

In the case of identical cylinders (equal radii ai = a), the diagonal mass matrix
Mdecoupled has equal entries m. The matrix M−1

decoupledK is symmetric and V is orthogonal

(V −1 = V T) which allows one to find closed form expressions for the eigenvalues and
eigenvectors of M−1

decoupledK. Namely, one has

λi =
2k

m

(
1 − cos

2π(i − 1)

n

)
, m = 2, i = 1, . . . , n, (5.4)
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and (
√

n/
√

2)V is equal to⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
2

1 1 · · · − 1√
2

· · · 0 0

1√
2

cos
2π

n
cos

4π

n
· · · 1√

2
· · · sin

4π

n
sin

2π

n

...
...

...
...

...
...

1√
2

cos
2π(n − 2)

n
cos

4π(n − 2)

n
· · · − 1√

2
· · · sin

4π(n − 2)

n
sin

2π(n − 2)

n

1√
2

cos
2π(n − 1)

n
cos

4π(n − 1)

n
· · · 1√

2
· · · sin

4(n − 1)π

n
sin

2π(n − 1)

n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(5.5)

for n even, whereas for n odd the middle column is absent.
When ε �= 0, the hydrodynamic coupling between the masses causes the normal

modes to couple in general yielding interesting dynamics not achievable when ε =0
as detailed in § 6.

6. Dynamic response of the submerged spring–mass system
In this section, we analyse the dynamics of the submerged spring–mass system. We

particularly highlight the system’s dynamics in comparison to two limiting cases: (i)
the case mθ

ij = 0, i �= j , which reflects the system’s response when it is hydrodynamically
decoupled and (ii) the case of infinite spring stiffness k which reflects the submerged
rigid-body dynamics of the free ring with no elasticity. Note that in order to compare
the motion of the deformable spring–mass system to the motion of the ‘locked’ system
(infinite k), we have to translate the initial conditions given for the deformable system
in terms of ζ (0) ≡ {xo(0), yo(0), Θi(0)}T and ζ̇ (0) ≡ {ẋo(0), ẏo(0), Θ̇i(0)}T to the rigid
system where the variables Θi are equal. This is done by computing the total linear
and angular momenta imparted by the initial conditions ζ (0) and ζ̇ (0) to the spring–
mass system and using these momenta to compute the initial linear and angular
velocities of the corresponding ‘locked’ rigid system. In order words, in comparing
the trajectories of the deformable and rigid systems, we ensure that the initial total
momenta in both cases are identical.

6.1. Fixed ring

For concreteness, we consider the case of three masses of equal radii a that
are uniformly spaced on the ring in the undeformed equilibrium configuration.
The solution of the hydrodynamically decoupled system is expressed analytically
in terms of its normal modes Γ1(t), Γ2(t), Γ3(t) and their associated frequencies
ω1 = 0, ω2 = ω3 =

√
3k/m. Note that the solutions of the decoupled problem do not

depend on the equilibrium spacing between the cylinders. To highlight the effect of
the hydrodynamic coupling on the system’s response, we project the dynamics of
the coupled system on the normal modes of the decoupled one. That is, we use the
coordinate transformation Γ = V TΘ which can be written in component form as

Γ1 =
1√
3
(Θ1 + Θ2 + Θ3), Γ2 =

1√
6
(2Θ1 − Θ2 − Θ3), Γ3 =

1√
2
(Θ2 − Θ3). (6.1)
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Figure 2. Submerged three-mass system on a fixed ring. Starting with zero angular velocity
Γ̇1(0) = 0, the submerged system is capable of achieving net rotation by initially exciting
impulsively the oscillatory mode Γ2. The initial conditions are Γ1(0) =Γ2(0) =Γ3(0) = 0,
Γ̇1(0) = Γ̇3(0) = 0 and Γ̇2(0) = 10. The parameters are set to k =1, ε = 0.1, a =3 and the cylinders
are equally spaced at equilibrium. The integration time is 400.

When expressed in terms of the Γ coordinates, the stiffness matrix V TKV is a diagonal
matrix with entries 0, 3k and 3k, respectively, whereas the symmetric mass matrix
V TMfixed (Γ )V (which includes the mass plus added mass effect) takes the form⎛⎜⎜⎜⎜⎜⎜⎝

m +
2ε2

3
(m12 + m13 + m23)

ε2

3
√

2
(m12 + m13 − 2m23)

ε2

√
6

(m12 − m13)

ε2

3
√

2
(m12 + m13 − 2m23) m +

ε2

3
(m23 − 2m12 − 2m13)

ε2

√
3

(m12 − m13)

ε2

√
6

(m12 − m13)
ε2

√
3

(m12 − m13) m − ε2m23

⎞⎟⎟⎟⎟⎟⎟⎠.

(6.2)
The scaled total angular momentum h = ∂L/∂Γ̇1 of the fluid–solid system is a
conserved quantity and takes the form

h =

[
m +

2ε2

3
(m12 + m13 + m23)

]
Γ̇1

+
ε3

3
√

2
(m12 + m13 − 2m23) Γ̇2 +

ε2

√
6

(m12 − m13) Γ̇3. (6.3)

By proper initial excitation of the oscillation modes only, the submerged spring–
mass system can undergo a net rotation due to the hydrodynamic coupling.
Obviously, such oscillation-induced rotations cannot be achieved in the context
of the hydrodynamically decoupled system. Figure 2 shows the response of the
spring–mass system relative to the response of the decoupled system (5.3) subject to
zero rotational velocity Γ̇1(0) = 0 at t = 0 and an initial impulsive excitation to the
oscillatory mode Γ2. Clearly, a net rotation is achieved due to the coupling of the
masses via the ambient fluid. Remarkably, the total angular momentum h of the fluid–
solid system given in (6.3) is zero in this case, see figure 3. However, the term
hrotation = [m +(2ε2/3) (m12 + m13 +m23)]Γ̇1 associated with Γ̇1 starts to oscillate for
t > 0, see figure 3(a), while exhibiting a net drift over these oscillations as evident
in figure 3(b).

This oscillation-induced rotation can be enhanced by modifying the equilibrium
configuration (results not shown here), that is to say, the location of the masses on
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Time
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Figure 3. Submerged three-mass system on a fixed ring. Angular momentum for the case
shown in figure 2. (a) Thick line – the total (fluid + body) angular momentum, dashed line –
the angular momentum associated with rotation hrotation = [m+ (2ε2/3)

(
mθ

12 + mθ
13 + mθ

23

)
]Γ̇1,

and thin line – the average of the angular momentum associated with hrotation obtained by taking
h̄rotation (t) = (1/T )

∫ t+T

t
hrotation (s) ds, where T = 5.2 s gives a scale of the oscillations shown by

the dashed line. (b) Long-time behaviour of the average h̄rotation (t) = (1/T )
∫ t+T

t
hrotation (s) ds.
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Figure 4. Submerged three-mass system on a fixed ring. Long-time response projected on the
rigid rotation normal mode (a) for the case in figure 2 and (b) for the same system but starting
from rest (Γ̇1(0) = Γ̇2(0) = Γ̇3(0) = 0) with initial conditions in deformation Γ1(0) =Γ3(0) = 0
and Γ2(0) chosen such that the energy E =U (0) is the same as in (a). The integration time
in both cases is 2500. The long-time response of the system depends on the type of initial
excitation. When the initial excitation is given in terms of deformation angle only, the net
rotation remains bounded.

the ring at equilibrium. This is in contrast to the behaviour of the hydrodynamically
decoupled system which does not depend on how the cylinders are placed on the
ring at equilibrium. We also note that the hydrodynamically coupled system exhibits
distinct long-term dynamics depending on whether the initial excitation is given in
terms of oscillation velocity or deformation, see figure 4, whereas for the decoupled
system, the two initial conditions lead only to a phase difference in the system’s
response.
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Figure 5. Submerged three-mass system on a free ring. The hydrodynamically coupled system
is able to achieve net locomotion while, for the same initial conditions, the hydrodynamically
decoupled and rigidly locked systems remain in place. Configurations of the system at
t = 0 and t = 100 are superimposed on the trajectory of the ring’s centre. The non-zero
initial conditions are Θ̇2(0) = −Θ̇3(0) = 1 and ẋ0(0) = 1/3 (sin α2 − sin α3) such that the linear
and angular momenta of the cylinders, but not of the whole fluid–body system, are zero
initially. The equilibrium positions on the ring are α1 = 0, α2 = 19π/24 and α3 = 29π/24 . The
non-dimensional parameters are ε = 0.5, k1 = k3 = 1 and k2 = 30.

This oscillation-induced rotation can be thought of as the rotational analogue of the
dynamics discussed in Kanso & Newton (2009) for the rectilinear spring–mass system.
To this end, analogously to the linear system, when exciting only the (symmetric)
oscillatory mode Γ3 (impulsively or through deformation), both the net rotation mode
Γ1 and the oscillatory mode Γ2 remain identically zero for all time. This response can
be understood based on symmetry arguments, see Kanso & Newton (2009) for more
details.

6.2. Free ring

Given that we now know that the fixed ring configuration is able to couple its
oscillation nonlinearly with the surrounding fluid, we address the more interesting
and complex question of how a system can exploit this angular momentum/energy
exchange with the surrounding fluid in order to locomote. Thus, in the remainder
of this paper we no longer fix the centre of the ring, but allow it to move freely in
response to the net forces that act on it.

By way of judiciously chosen examples, starting with zero linear and angular
momenta of the cylinders only, figure 5 depicts perhaps the simplest case (in the
sense that it produces a rectilinear motion of the ring’s centre) in which the ring is
able to achieve net locomotion via coupling to the surrounding fluid, whereas the
hydro-dynamically decoupled system and the rigidly locked system remain in place.
Figures 6(a) and 6(b) show the trajectories of the centre of mass and the geometric
centre of the ring, respectively, in comparison to those of the hydrodynamically
decoupled system. Note that the rigidly locked system remains at rest for this set of
initial conditions (initial conditions and parameters are given in the figure caption).
We note that this is a highly specialized and perfect example in which no net rotation
occurs due to oscillations, only translation. The more general (and interesting) case
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Figure 6. Submerged three-mass system on the free ring shown in figure 5. Continuous
line – the trajectories of the fully coupled system, dashed line – the trajectories of the
hydrodynamically decoupled system for (a) the centre of mass and (b) the geometric centre
as functions of time. Clearly, the decoupled system undergoes no net motion. This is also
true for the locked system which for this choice of initial conditions remains at rest for all
time.
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Figure 7. Rotation induces locomotion of the submerged free ring system. The non-zero
initial conditions are Θ̇1(0) = 1, Θ̇2(0) = Θ̇3(0) = sec (5π/24) /2 and correspond to an impulsive
start for the masses from the equilibrium position such that the resulting linear momenta of
the cylinders are zero initially. The non-dimensional parameters are the same as in figure 5.
The configuration of the system and trajectory of the centre of mass at t = 100 for (a) an
elastic, hydrodynamically decoupled system, (b) a rigid body and (c) an elastic, fully coupled
body. Clearly, the hydrodynamic effects couple the oscillations and rotation in a way that is
advantageous to the net displacement of the ring.

is depicted in figure 7. Here, the initial conditions are such that the ring rotates
as well as translates as it locomotes. The three panels of figure 7 contrast three
important cases: (a) the elastic hydrodynamically decoupled system, (b) the trajectory
of the corresponding rigid body and (c) the elastic, fully coupled system. Figure 8
shows the conserved quantities and the exchange of energy and momentum for the
case shown in figure 7. Although the ring must use part of its energy for rotation
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Figure 8. Conserved quantities for the case in figure 7. (a) Energy, (b) angular, (c) horizontal
and (d ) vertical momenta. Thick lines – quantities associated with the whole body–fluid
system, thin continuous lines – quantities afferent to the cylinders only, and dashed lines –
hydrodynamically decoupled system. Note that while the total energy and momenta of the
body–fluid system are conserved (thick lines), there is an exchange of energy and momenta
between the ring (thin lines) and the surrounding fluid.

(at the expense of translation), it gains by being able to locomote along a much more
complex two-dimensional (curved) path, as most clearly depicted in figure 9. Here,
figure 9(a) depicts the centre of mass of the locomoting ring, while 9(b) depicts the
geometric centre with the same parameters as those chosen in figure 5. Our main
point here is to depict the complex two-dimensional curved path that the system
achieves.

In figure 10 we make a different point. Here we show a case in which the initial
oscillations of the system, which has no angular momentum, induce rotation to the
ring under coupling with the fluid. Thus, the trajectory in figure 10(a) is not along a
straight line, but a curved path. This is most clearly seen by plotting the response of
the system projected onto the rigid rotation mode as shown in figure 10(b).

In figures 11 and 12 we again make two separate points that highlight the
differences between the ring if it is able to deform (k < ∞) as opposed to a non-
deformable (locked) body (k = ∞). Figure 11 makes the point that there are initial
conditions one can find such that the deformable body purely rotates, while the non-
deformable body, with the same initial conditions, translates. Likewise, figure 12
shows that there are other initial conditions which make the deformable body
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Figure 9. Trajectories of (a) the centre of mass: continuous line – the fully coupled system,
dashed line – the rigidly locked system and (b) the geometric centre: continuous line – the
fully coupled system, dashed line – the hydrodynamically decoupled system. The time interval
is t = [0, 100]. The non-zero initial conditions are Θ1(0) = 1, Θ̇1(0) = 1/6 and correspond to
an impulsive start with initial deformation in the springs such that the linear momentum of
the cylinders (without the fluid) is initially zero. The parameters are the same as in the case
considered in figure 5.

translate, while the non-deformable body, for the same initial conditions, rotates in
place.

7. Conclusions
The spring–mass ring that is free to move underwater due to its own deformations is

a simple model for an underwater swimmer which locomotes by coupling its intrinsic
body elasticity with the surrounding fluid, even in an inviscid, irrotational context.
Through a series of increasingly complex examples, we highlight the following main
points.

(i) The surrounding fluid couples the normal modes of oscillation of the spring–
mass system and provides an environment in which the oscillator can exchange energy
and angular momentum with the fluid to accomplish various modes of locomotion.

(ii) Viscous boundary conditions and the resulting generation of vorticity from the
boundary layer region are not required for non-trivial energy and angular momentum
exchange to occur.

(iii) Elasticity of the body (finite k) (in the form of oscillations in our model)
can sometimes be the essential ingredient for locomotion and turning manoeuvers,
the details of which all depend on features such as phasing of the oscillations, their
amplitudes and frequencies.

Of course all of these features will also play a role in the viscous case where a
boundary layer is created and vorticity is shed into the wake region in response to
different deformations. Indeed the next step in the long-term development of this class
of models is to include wake dynamics and implement control strategies to produce
more complex manoeuvers, such as turning and fleeing responses, collision avoidance
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Figure 10. Passive oscillations induce rotation. (a) The configurations of the system at t = 0
and t =30 are superimposed on the trajectory of the centre of mass (continuous line). The
dashed line corresponds to the trajectory of the centre of mass of the locked system (no
elasticity). The non-zero initial conditions are ẋO (0) = 0.5 and Θ2(0) = −π/6,Θ3(0) = −π/12
and correspond to an impulsive start in the horizontal direction and an initial configuration
that is symmetric with respect to the x- and y-directions. The non-dimensional parameters are
ε = 0.5, k = 2, and the cylinders are equally spaced on the ring at equilibrium. (b) The response

of the system projected on the rigid rotation mode Γ1 = (Θ1 +Θ2 + Θ3)/
√

3.
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Figure 11. Deformable body rotates in place while the locked body under the same initial
conditions translates as well as rotates. The trajectories of (a) the centre of mass and (b)
the geometric centre are shown in dimensional coordinates. Continuous lines – the elastic,
fully coupled system and dashed lines – the rigidly locked system. The non-zero initial
conditions are Θ2(0) =Θ3(0) = 1, ẋO (0) = −0.03, Θ̇1(0) = 0.3, Θ̇2(0) = 0.233, Θ̇3(0) = 0.198,
and correspond to the total (fluid + body) linear momentum being zero and a non-zero
angular momentum. The integration time is 123. The non-dimensional parameters are
a = 1, ε = 0.4, δ = π/6, k1 = k3 = 0.1, k2 = 30.
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Figure 12. Deformable body translates while the locked body under the same initial conditions
rotates in place. The trajectories of (a) the centre of mass and (b) the geometric centre are
shown in dimensional coordinates. Continuous lines – the elastic, fully coupled system and
dashed lines – the rigidly locked system. The non-zero initial conditions are Θ̇1(0) = 1.209
and Θ̇2(0) = Θ̇3(0) = 0.835, and correspond to the total (fluid + body) linear momentum being
zero and a non-zero angular momentum. The integration time is 40. The non-dimensional
parameters are the same as in figure 11.

in the presence of more than one locomotor, multi-body synchronization, and general
motion planning.
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