
Proc. R. Soc. A (2012) 468, 3006–3026
doi:10.1098/rspa.2012.0119

Published online 9 May 2012

The finite-dipole dynamical system
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The notion of a finite dipole is introduced as a pair of equal and opposite strength point
vortices (i.e. a vortex dipole) separated by a finite distance. Equations of motion for N
finite dipoles interacting in an unbounded inviscid fluid are derived from the modified
interaction of 2N independent vortices subject to the constraint that the inter-vortex
spacing of each constrained dipole, �, remains constant. In the absence of all other dipoles
and background flow, a single dipole moves in a straight line along the perpendicular
bisector of the line segment joining the two point vortices comprising the dipole, with a
self-induced velocity inversely proportional to �. When more than one dipole is present,
the velocity of the dipole centre is the sum of the self-induced velocity and the average of
the induced velocities on each vortex comprising the pair due to all the other dipoles. Each
dipole orients in the direction of shear gradient based on the difference in velocities on
each of the two vortices in the pair. Several numerical experiments are shown to illustrate
the interactions between two and three dipoles in abreast and tandem configurations.
We also show that equilibria (multi-poles) can form as a result of the interactions, and
we study the stability of polygonal equilibria, showing that the N = 3 case is linearly
stable, whereas the N > 3 case is linearly unstable.
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1. Introduction

This paper formulates the dynamics of multiple finite dipoles. The primary
motivation is to develop models for fish schooling that account for the
hydrodynamic interactions among school members. Fish schools are often
examined using behaviour-based models that consider homogeneous particles
(fish) interacting locally based on rules of repulsion, alignment and attraction to
other fish (Couzin et al. 2002, 2005). While capable of exhibiting visual patterns
similar to those seen in biological schools from disordered swarming to ordered
parallel and circular motions (see Parrish et al. 2002), these behaviour-based
models do not account for the fluid medium. Yet, it is widely believed that
the hydrodynamic coupling plays an important role in fish schooling. In his
seminal paper, Weihs (1973) uses von Kármán wake models to examine optimal
positioning of an individual fish within the school, thus deducing that a diamond
shape pattern was beneficial for schooling. These are steady-state models, where
the von Kármán wakes, and thus the whole school, translate with a constant
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(a) (b) (c)

Figure 1. The inviscid streamlines (grey) associated with (a) the near-field flow of a single self-
propelled body, (b) three self-propelled bodies and (c) three constrained self-propelled dipoles
(with the dashed outline of the aforementioned bodies) moving to the right at unit velocity. For (a)
and (b), the streamlines are calculated using a boundary-element method. Notice the remarkable
resemblance between (b) and (c) even though the bodies are only separated by three or four
body lengths.

velocity. More recently, the effects of near-field vorticity, presumably produced
by a neighbouring fish, on the dynamics of a single fish have been examined both
experimentally (Liao et al. 2003, Muller 2003) and analytically/computationally
(Kanso & Oskouei 2008; Eldredge & Pisani 2008; Alben 2010; Oskouei 2011).
Other recent studies focused on the far-field effects of the hydrodynamic
interactions, captured via the potential flow component, on the motion of two
submerged bodies (Nair & Kanso 2007; Tchieu et al. 2010). These models are yet
to be scaled to produce dynamical models for fish schooling.

In this paper, we propose the finite-dipole dynamical system as a model that
captures the far-field fluid effects of multiply-interacting swimming bodies. To this
end, consider the dynamics of a collection of several bodies propelling themselves
in a two-dimensional inviscid fluid as shown, for example, in figure 1b. The
smallest length scale, �, is associated with the finite size of each body, which,
to leading order, produces a dipolar velocity field as depicted in figure 1a. The
largest length scale, R, is associated with the separation distance between bodies.
For well-separated cases in which � � R, one might imagine that a dynamical
system consisting of a collection of interacting finite-sized self-propelled dipoles
would be a reasonable model governing the hydrodynamic interactions among the
bodies. The proposed system is depicted in figure 1c, where the bodies have been
effectively replaced by their finite, self-propelled dipole counterparts.

We derive a dynamical system based on a constrained set of 2N interacting
point vortices, paired with equal and opposite strengths with each pair
constrained to remain a distance � apart (hence the term finite-sized), and
we investigate some of the dynamical properties associated with the system.
Note that interacting dipolar fields have been considered by other authors.
Newton (2005) derives a point dipole dynamical system by considering the
limit � → 0 for each dipole (made up of equal and opposite strength point
vortices), making the assumption that the self-induced velocity vector of each
dipole aligns itself in the direction of the background velocity field at the dipole
centre. The infinite self-induced velocity associated with the limit � → 0 is dealt
within two ways. First, it is subtracted out of the field, allowing each dipole
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to move according the field generated by all the others. Second, a regularized
version is proposed and compared with the first approach. In the regularized
version, a regularizing parameter is introduced into the denominator of each
dipole, much like regularizations in point vortex systems such as Krasny (1986).
Yanovsky et al. (2009) and Kulik et al. (2010) derive equations of motion
by representing the vorticity field in terms of generalized functions and their
derivatives. The most recent paper of Llewellyn Smith (2011) reviews previous
methods, including those associated with point vortex systems and formulates a
new method to derive equations of motion for general point singularities using
generalized momentum arguments.

In addition to these studies on point dipole dynamics, earlier work such as
that of Love (1893), Eckhardt & Aref (1988), Price (1993) and subsequently
Tophoj & Aref (2008) analyse the complex and chaotic interaction of four point
vortices paired up, initially, in two tight groups of equal and opposite pairs,
hence two unconstrained dipoles. More specifically, these papers take a look at
the scattering properties of the unconstrained interactions between the two pairs
of vortices. The work of Newton & Shokraneh (2008) formulates the general
problem of 2N point vortices grouped into equal and opposite pairs on a rotating
sphere, hence an unconstrained N -dipole problem on the sphere, while that of
Kimura (1999) formulates the problem of isolated dipolar motion on surfaces
of constant curvature (e.g. spheres) and proves that they follow geodesic paths
(e.g. great circles).

The organization of this paper is as follows. Section 2 addresses the formulation
of the finite-dipole problem in the unbounded plane as a constrained 2N point
vortex system. This is done by directly modifying the standard point vortex
equations of motion to respect the constraint that each pair of point vortices
of equal and opposite strength remains a fixed distance � apart. Examples of
two and three finite-dipole systems are addressed in §3. In §4, we investigate the
formation of multi-pole equilibria and subsequently discuss the stability of such
equilibria. We conclude with §5 and discuss the outlook of employing the finite-
dipole system as a model of biological organisms swimming in potential flow as
well as giving an example touching on aspects of formation motion.

2. Formulation

(a) Equations of motion

We formulate the problem in an inviscid, unbounded, two-dimensional fluid.
Consider N pairs of point vortices of equal and opposite strengths, placed a
distance �n apart in the complex z-plane (where z = x + iy and i = √−1) for
n = 1, . . . , N as depicted in figure 2. A single pair is shown in the detailed
schematic. The positive (+Gn) and negative (−Gn) vortices are located at

zn,l = zn + i�neian

2
and zn,r = zn − i�neian

2
, (2.1a)

respectively, where zn denotes the midpoint lying between the pair, i.e. the vortex
dipole centre

zn = zn,l + zn,r

2
, (2.2)
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Figure 2. Schematic of the finite-dipole system and detail of an individual finite dipole. For clarity,
the line joining the two point vortices of a finite dipole is drawn in to define the orientation of the
finite dipole. The complex velocity wn,s represents the self-induced velocity along which an isolated
dipole moves, and an represents the orientation with respect to the x-axis.

and an represents the orientation of the vortex dipole with respect to the x-axis.
Corresponding to figure 2, we will refer to the positive vortex as the left vortex and
the negative vortex as the right vortex as identified by the respective subscripts.

It is well known that the kinematic solution to the incompressibility condition
in inviscid flow amounts to determining a complex potential, F(z) = f + ij,
that is analytical in the domain (except at singular points) and decaying
at infinity. Here, f and j are the so-called (real-valued) velocity potential
and streamfunction, respectively. For the system provided in figure 2, F(z)
is constructed from a linear superposition of point vortex potentials at their
respective positions,

F(z) =
N∑

n=1

Gn

2pi
log

(
z − zn,l

z − zn,r

)
. (2.3)

The complex velocity field, w = u − iv, is given by the derivative of (2.3) with
respect to z ,

w(z) =
N∑

n=1

Gn

2pi

(
1

z − zn,l
− 1

z − zn,r

)
. (2.4)

It can also be confirmed that in the limit �n → 0 and Gn�n → mn = constant,
equation (2.3) reduces to a sum of point dipoles at zn with scalar strength mn
and orientation an , that is to say, one has

lim
�n→0

F = −
N∑

n=1

mneian

2p(z − zn)
,

which is in agreement with Newton (2005, see eqn (6)).
We seek to determine equations of motion governing the interaction between

all vortex dipoles as functions of time, while the vortex pair in each dipole is
constrained so that �̇n = 0. These constrained vortex pairs are aptly named finite
dipoles, as they maintain a constant, finite distance between the vortex pair for all
time. This amounts to deriving equations of motion for all vortex dipole centres,
zn , and the orientations, an . To this end, we consider the 2N -vortex problem
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(see Newton 2001) subject to an additional inter-dipole velocity to allow us to
apply the constraint, �̇n = 0. Each respective vortex of each individual finite dipole
convects with the modified velocity

˙̄zn,l = wn,s + wn,o(zn,l) + ilne−ian (2.5a)

and
˙̄zn,r = wn,s + wn,o(zn,r) − ilne−ian , (2.5b)

where ( ) and ˙( ) represent the complex conjugate and time derivative,
respectively, and ln is real. The first term in equation (2.5) represents the
self-induced velocity and is given by

wn,s = Gne−ian

2p�n
, (2.6)

that is, an isolated vortex dipole moves in a straight line in the direction defined
by an at the speed Gn/(2p�n). The second term, wn,o, represents the velocity
induced by all other finite dipoles and has a similar form to (2.4), namely

wn,o(z) =
N∑

j �=n

Gj

2pi

(
1

z − zj ,l
− 1

z − zj ,r

)
. (2.7)

The third term, ±ilne−ian , is an additional, attractive (ln > 0) or repulsive
(ln < 0) inter-dipole velocity that allows for a constraint on �n to be applied.
This velocity is modelled so that zn,l and zn,r move towards or away from each
other at the speed ln along the line joining these two vortices. Typically, in the
unconstrained interaction of N -vortex dipoles in an inviscid fluid (or equivalently,
2N point vortices), the inter-dipole spacing �n is not constant, see, for example,
Eckhardt & Aref (1988), and the equations of motion for each vortex are exactly
given by equations (2.5) with ln = 0. The introduction of non-zero ln introduces
another degree of freedom to enforce the constraint that �̇n = 0, much like
applying Lagrange multipliers in constrained mechanics. This allows each finite
dipole to retain its ‘particle-like’ identity throughout its time evolution.

We now rewrite (2.5) as a system of equations governing the motion of the
centre zn and the orientation an of each finite dipole. To this end, we take the
conjugate and time derivative of equation (2.2) and substitute equations (2.5) to
get the equation of motion for the dipole centre,

˙̄zn = wn,s + wn,o(zn,l) + wn,o(zn,r)
2

. (2.8)

One can see that the velocity of the dipole centre is a sum of the self-induced
velocity and the average of the velocity that each left and right vortex feels
from all other dipole pairs. In instances �n/R � 1, where R is some character
separation distance between dipoles, the motion of the dipole centre zn can
be approximated with the background velocity field evaluated at zn (as in
Newton 2005; Yanovsky et al. 2009; Llewellyn Smith 2011) but with an additional
self-induced velocity term specified by wn,s.
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In similar fashion, taking the time derivative of the separation between the
vortices gives

˙̄zn,r − ˙̄zn,l = (ȧn�n + i�̇n)e−ian

= wn,o(zn,r) − wn,o(zn,l) − 2ilne−ian . (2.9)

Imposing the constraint �̇n = 0 distinctly determines the newly added parameter

ln = 1
2 Im

[
(wn,o(zn,l) − wn,o(zn,r))eian

]
(2.10)

and enforcing (2.10) allows us to write (2.9) as

ȧn = Re
[
(wn,o(zn,r) − wn,o(zn,l))eian

]
�n

. (2.11)

Equations (2.8) and (2.11) form a closed system of 3N real equations
(N complex + N real) governing the motion of N finite dipoles interacting in
an unbounded plane. We note, for this reason alone, the system cannot be put
directly into canonical Hamiltonian form of 2N real equations. The equations
are physically based on the interaction of point vortices and allow for a finite
self-induced velocity of each dipole. It is also worthy to note that in this
formulation, the dipole centre zn is not singular. Classically, a singular point dipole
induces infinite velocity through its centre. Without proper desingularization,
neighbouring point dipoles have the tendency to advect through the singular
points of other neighbouring dipoles, as can be simulated in the formulations
given by Newton (2005), Yanovsky et al. (2009) and Llewellyn Smith (2011). Our
formulation circumvents this possibility and the equations of motion remain well
behaved in this circumstance.

(b) Dynamic translation and alignment of the finite dipole

Equation (2.8) implies that the translational motion of the centre of a finite
dipole depends on its self-induced velocity as well as the average of the velocities
of the two vortices owing to other dipoles and background flows. That is to say,
the centre of the dipole need not always translate in the direction of the self-
induced velocity (i.e. along a straight line) because, in general, the background
flow can induce a velocity on the centre in the direction and/or lateral to the
self-propelled velocity.

Equation (2.11) implies that the instantaneous evolution of the orientation of
a finite dipole depends on the difference in velocities between the two vortices
that comprise the dipole. More specifically, one can see from equation (2.11)
that the important quantity defining the instantaneous evolution of an is
Re

[
(wn,o(zn,r) − wn,o(zn,l))eian

]
which is the projection of the difference in

velocities onto the direction of self-induced motion. The difference between the
velocities wn,o(zn,r) and wn,o(zn,l) defines the local shear of the fluid. We discuss
these effects on the motion and alignment of the dipole through examples.

Proc. R. Soc. A (2012)



3012 A. A. Tchieu et al.

(a) uniform flow shear flow(b)

Figure 3. Schematic depicting a snapshot of the alignment of a single dipole and subsequent
evolution (black to grey, connected by the path line) in locally (a) uniform flow and (b) shear
flow. (a) Dipole moves along a straight path in the directions defined by the superposition of
its self-induced velocity and the background velocity but does not adjust its orientation to the
flow. (b) Dipole orients itself clockwise to move in the direction of the gradient. (Online version
in colour.)

Consider the case of a single isolated dipole or a dipole moving in a locally
uniform flow U such that wn,o(zn,r) = wn,o(zn,l) = U (where U is a constant,
possibly zero), as shown in figure 3a. Since both vortices comprising the dipole
feel the same background velocity, equation (2.11) implies that ȧn is precisely
zero with no dependence on the direction of the background flow. Thus, even
when the dipole is not aligned with the background flow direction, the dipole
simply translates along a straight line combining its self-induced velocity and
the velocity of the locally uniform flow. Because of the lateral components
of the background velocity, the trajectory of the dipole centre will be altered
to move in a direction different from its self-induced velocity, as shown, but
the dipole does not alter its orientation. The model of Newton (2005), by
contrast, forces the self-induced velocity vector to align itself with the uniform
background flow.

Consider now the example of a single dipole in a shear flow as shown in
figure 3b. Because one of the vortices of the dipole feels a larger component
of background velocity than the other, the dipole aligns its orientation in the
direction of the shear gradient. In this example, the top vortex feels a larger
induced velocity than the bottom vortex and thus rotates in the clockwise
direction while moving on the trajectory shown, owing to the lateral components
of the background flow field. Note that one has ȧn = 0 only if the dipole moves
perpendicular to the direction of local shear. It is clear through these two
examples that dipoles turn in the direction of the shear gradient as they move on
curved paths which take into account not only the self-induced velocity vector,
but also the parallel and lateral projections of the background field on this vector.

It is worth emphasizing that this is the immediate behaviour and not the
long-time behaviour of the coupled system. The dynamics of the coupled system
governed by equations (2.8) and (2.11) is much more rich, complex and likely
chaotic for N > 1. Consider, for example, the dynamics of a finite dipole located
at z1 with orientation a1 in the presence of the flow field generated by another
finite dipole at z0 = 0 with orientation a0 = p/2. We fix z0 and a0 so that the dipole
at z0 exhibits no dynamics and acts as a background flow field on the z1-dipole.
Two sample trajectories are given in figure 4. Initially in figure 4a, ȧ1(0) > 0 and
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Figure 4. The dynamics of a single finite dipole in the presence of a fixed dipole background flow
located at z0 = 0 and a0 = p/2. Initial conditions are (a) z1(0) = 0.6 and a1(0) = p/2 and (b) z1(0) =
0.6 and a1(0) = 0. Shown in grey are the streamlines associated with the constant background
flow, in dashed black is the dipole path where the arrows and barbell-shaped dipole designate the
orientation of the dipole and size of the dipole. We choose G1 = 1 and �1 = 1/(2p), thus giving a
unit self-induced velocity. (Online version in colour.)

the dipole turns counterclockwise towards the velocity shear gradient because
the left vortex (i.e. the vortex closer to the origin) feels a larger velocity in the
negative y-direction than the right vortex. After the initial turn, the dipole makes
a small adjustment before heading along a straight line at its self-induced velocity
as the effect of the background flow gradually diminishes.

The second example given in figure 4b shows clearly how the translation and
orientation equations couple to produce more complex dynamics. Initially, the
dipole is oriented to travel in the direction of the gradient, thus ȧ1(0) = 0.
It appears that the dipole should always be oriented in the a1 = 0 direction
since it moves across streamlines, but the local velocity field moves z1 in the
lateral direction and thus the dipole begins to move downward. Subsequently,
the dipole begins to reorient itself since its equation of motion is coupled to the
translational dynamics of the dipole. Eventually, the dipole moves far enough
that the influence of the background flow becomes negligible and it continues to
travel along a straight line with its self-induced velocity. It is in this sense that the
long-time dynamics for a collection of finite dipoles is difficult to predict based
solely on the instantaneous background flow.

(c) Force acting on a finite dipole

A free-point vortex in an inviscid fluid advects force free so that momentum
is conserved everywhere except at the singular point vortex location. This result
is due to Kirchhoff (1876) and is discussed in Lamb (1945). In the constrained
dipole model presented here, it is expected that each vortex of the finite dipole
experiences an additional force to maintain its constrained motion. This is also
reflected in the additional velocity component ±iln e−ian in equations (2.5). In this
section, we derive an expression for the constraint force and interpret its effect
on the constrained dipole.
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Figure 5. Contour used for determination of the force applied on a finite dipole by enforcing
constraint. C = Cn,r + Cn,l + Cn,‖.

Consider the fluid momentum in the moving contour C = Cn,r + Cn,l + Cn,‖
surrounding a single vortex of the dipole pair as pictured in figure 5. The force
applied to a finite dipole satisfying the fixed-separation constraint is equivalent
to the time rate of change of momentum for the fluid enclosed in contour C.
Following Michelin & Llewellyn Smith (2009), the complex force is given as

Fn = − i
2

∮
C
(Ḟ + ˙̄F) dz + i

2

∮
C
(w − wc) w dz + i

2

∮
C
w̄cw dz̄ , (2.12)

where wc is the velocity of the contour. The x- and y-components of the force are
given by Re [Fn ] and Im [Fn ], respectively.

As C shrinks infinitesimally small to surround only the vortex pair and the
branch cut connecting the two vortices, the contribution from Cn,‖ becomes
identically zero and therefore

∮
C = ∮

Cn,r
+ ∮

Cn,l
. Now consider the integrals

presented in (2.12) around Cn,l. The complex potential and velocity can be
decomposed as

F = Gn

2pi
log

(
z − zn,l

) + F̃ n,l(z) (2.13)

and

w = Gn

2pi(z − zn,l)
+ w̃n,l(z), (2.14)

where F̃ n,l(z) and w̃n,l(z) are the desingularized potential and velocity field,
respectively. That is to say, in the vicinity of zn,l, the functions F̃ n,l(z) and w̃n,l(z)
remain analytical and single-valued. Noting that as Cn,l shrinks to surround solely
the point vortex, wc → żn,l. Now the integrals in (2.12) can be exactly evaluated
around Cn,l, ∮

Cn,l

(Ḟ + ˙̄F) dz = −Gnżn,l, (2.15a)

∮
Cn,l

(w − wc)w dz = 2Gnw̃n,l(zn,l) − Gn ˙̄zn,l (2.15b)

and
∮
Cn,l

w̄cw dz̄ = 0. (2.15c)
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Similarly, the integrals around Cn,r can be evaluated and substituted, along
with (2.15), into (2.12) to obtain

Fn = iGn(żn,l − żn,r − w̃n,l(zn,l) + w̃n,r(zn,r)). (2.16)

This expression can be simplified further by substituting (2.9) into (2.16) and
noting that w̃n,l(zn,l) = wn,o(zn,l) + wn,s and w̃n,r(zn,r) = wn,o(zn,r) + wn,s. To this
end, one gets

Fn = 2Gnlneian . (2.17)

Each individual vortex contributes exactly Gnlneian to equation (2.17) thus there
is no additional moment about zn . As expected, when no constraint is applied
(ln = 0), the dipole pair convects force free. In the presence of other point vortices,
a vortex belonging to the finite dipole, except under very special conditions, will
attempt to separate from or be attracted to its partner. When ln > 0, a force
is applied in the same direction as the self-induced velocity. This is contrary to
applying a force along the line joining the two, which may seem more intuitive
since the constraint acts along this line. The reason that the force is applied
in the direction of travel is that, if a vortex dipole begins to separate, the pair
itself begins to lose its forward momentum. In this instance, to enforce the fixed-
separation constraint, the dipoles are pushed and given extra momentum to
maintain a constant speed and separation. Therefore, an additional force in the
direction eian is necessary whenever the constrained variable ln > 0, and vice versa
for ln < 0.

3. Finite-dipole interactions

We present numerical examples of the dynamic interactions of finite dipoles
in free-space with the emphasis placed on investigating the motion of dipoles
initially travelling in the same direction. Each dipole is given a self-propelled speed
|ws,n | = 1 by specifying Gn = 1 and �n = � = 1/(2p). In what follows, the initial
orientation is specified as an = p/2 (thus initially travelling upward). Keep in
mind that these finite dipoles have no control or collision-avoidance mechanisms
and act solely under the evolution of the equations given in equations (2.8)
and (2.11). These equations are solved numerically in Matlab using the packaged
solver ODE45 (a variable-step, explicit time integrator) with relative and absolute
tolerances of 10−6 and 10−8, respectively.

We begin by considering the interaction of two dipoles. We initially place the
dipoles a horizontal distance b and vertical distance h apart, as defined by figure 6,
and allow the dipoles to interact freely. Several regimes of motion occur in this
example and are depicted in figure 7 for a total integration time t = 5.

When initializing the dipoles perfectly in tandem to one another (b = 0), the
dipoles remain in relative equilibrium with travelling speed

|zn | = G

2p�

(
1 + �2

h2 + �2

)
, (3.1)

that is to say, the dipoles help each other in travelling forward at a rate faster than
their self-induced velocity, a phenomena we call ‘dipole drafting.’ As h → 0, the
dipoles approach a maximum speed of twice its self-propelled speed. A sample
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Figure 6. Schematic defining parameters for N = 2 (and N = 3 in grey).
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Figure 7. Interactions of two dipoles initially aligned with one another. Each dipole is depicted
with a line joining the two counter rotating vortices. The initial (final) location and orientation
of the dipoles are given in grey (black). (a) h = 4�, b = 0; (b) h = 4�, b = 2�; (c) h = 4�, b = 4�;
(d) h = 2.25�, b = 4�; (e) h = 1�, b = 4� and (f ) h = 0, b = 4� (detail zoom is given within the
inset). All simulations are run to t = 5.

simulation where h = 4� is given in figure 7a. As we increase b while holding
h = 4�, the dipoles initially assist each other in forward motion, but then diverge
quickly (figure 7b). As b is further increased, the rate of divergence decreases
(figure 7c). It is interesting to note that this diverging behaviour of the trailing
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dipole is also seen in numerical simulations of a drafting cylinder behind a forced
cylinder (Tchieu et al. 2010). In contrast to Tchieu et al. (2010), here the two
dipoles are dynamically coupled with one another.

We decrease h while holding b = 4�. For a critical value of h = 2.25�, the pair
moves in a relative equilibrium but in an oblique direction to their self-induced
velocity as depicted in figure 7d. There is no propulsive benefit for the dipoles
because the travelling speed of this equilibrium is less than the self-propelled
speed. Still, it is intriguing that two dipoles can influence each other to change
their overall direction of motion without changing their orientations. Interestingly
enough, as we decrease h < 2.25, the two dipoles begin to oscillate in what
seems close to a periodic trajectory (modulo translations). This is illustrated
in figure 7e. The dipoles maintain this oscillation throughout the integration
time. As we decrease b < 0.83� the dipoles enter a regime where they collide with
one another. For example, with the dipoles initially starting abreast (h = 0), the
two dipoles eventually collide symmetrically and annihilate each other as shown
in figure 7f. Indeed, the dipole dynamical system can be viewed as a low-order
model for interacting rigid bodies in which case the collision of the two entities
is not unexpected. Notice that although the dipoles collide in finite time, the
evolution equations are well defined because the equations describe the evolution
of the centre zn which is a non-singular point. As the vortices of the respective
pairs approach one another in the collision, they cancel the effect of the nearest
neighbour and the dipoles are annihilated.

We now consider the case of three finite dipoles. The dipoles are initialized
as schematically drawn in figure 6 with the horizontal and vertical spacings,
b and h, respectively. In figure 8a, the dipoles are placed in abreast formation
(h = 0). The two outer dipoles induce a velocity in the negative y-direction on
the centre dipole and travel faster than the centre dipole. The outer dipoles
approach the centreline, turn inward owing to the influence of the centre
dipole, and then system approaches a fixed equilibrium where the lines joining
the vortex pairs of each respective dipole lie on the edges of an equilateral
triangle. Although it may seem fortuitous, this equilibrium is attained for
situations where h < 0.36� and seems to be an attracting state for this regime
of initial conditions.

As we increase h to 0.36� < h < 1.5�, the trailing pair of dipoles collide as seen
in figure 8b. Interestingly enough, when 1.50� < h < 5.83�, the dipoles enter a
regime where the outer initially angle themselves towards the centre and then
subsequently diverge (figure 8). When integrating the dynamics for longer time
as done in figure 9, we see that the system continues to oscillate with growing
amplitude for long times, which is characteristic for this regime. For h > 5.83�,
owing to the separation between the lead and trailing vortices, the influence of
the lead dipole is too small to counteract the tendency of the trailing pair of
dipoles to collide as in figure 7f.

4. Multi-pole formation and stability

The occurrence of the three-dipole equilibrium is rather peculiar and suggests the
question of whether other polygonal equilibria exist and whether or not they are
stable. In similar fashion, more than a century ago, Lord Kelvin (Thomson 1878)
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Figure 8. Interactions of three dipoles initially aligned with one another. The initial (final) location
and orientation of the dipoles is given in grey (black). Thin grey lines join the dipoles for increased
clarity of the initial formation. (a) b = 4�, h = 0 (detail zoom is given within the inset) and (b)
b = 4�, h = � and (c) b = 4�, h = 2�.

Figure 9. The long-time paths of the oscillating three dipole system for h = 4�, b = 2� (figure is
placed on its side, y-axis horizontal, for more appropriate layout purposes). The inset box depicts
the original view frame of figure 8c. Simulation is run until t = 100.

discussed the relative equilibria of point vortices lying at the vertices of a polygon,
and Thomson (1883) revisited the problem and investigated the stability of this
configuration. One can consult Aref et al. (2003) for a review on point vortex
equilibria. Here, we study the analogous case applied to the absolute equilibria,
żn = 0, of the finite-dipole dynamical system.

There is an important distinction between the free point vortex dynamical
system and the finite dipole dynamical system discussed here. The free point
vortex system, as a discretization of the Euler equations of ideal fluid flow,
is Hamiltonian, as is well known. A characteristic property of Hamiltonian
systems is that equilibrium configurations cannot be reached from generic initial
conditions in finite time. In other words, vortices have to be initially placed in
their equilibrium configuration and cannot dynamically attain an equilibrium.
This is not true for the finite-dipole system since, as mentioned earlier, the
force required to maintain the constraint breaks the Hamiltonian structure of
the problem. This is seen very clearly in a Hamiltonian energy plot shown in
figure 10a of the equivalent unconstrained point vortex system. In addition, the
equilibrating constraint, which is directly proportional to the magnitude of the
constraining force (2.17), is given in figure 10b. It is clear that the point vortex
Hamiltonian is not conserved in general.
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Figure 10. The time evolution of (a) the point vortex Hamiltonian and (b) the constraint variable
for the outer dipoles of the simulation presented in figure 8a respectively. Note that the constraining
force is proportional to l (see equation (2.17)).

Indeed, in figure 8a, three dipoles starting abreast reached, in finite time, what
appears to be an equilibrium configuration where all the vortices constituting
the dipoles are placed equidistantly on a circle of radius r . We now examine the
general case of fixed equilibria of N dipoles more closely.

(a) Equilibria

We wish to find equilibrium configurations for N finite dipoles of strength
Gn = G and characteristic separation �n = �. We specifically look for equilibria
where the dipoles are placed equidistantly on the circle of radius r , that is,

zn = reiqn and qn = 2p(n − 1)
N

. (4.1)

The orientation is initially prescribed to move towards the centre of the formation,

an = qn + p. (4.2)

In this configuration, ȧn = 0. Substituting equation (4.1) and (4.2) into (2.8) gives

˙̄zn = GAN (r ; �)
BN (r ; �)

e−iqn , (4.3)

where AN (r ; �) and BN (r ; �) are polynomial with the highest power of r being
rN+1 for N odd and rN for N even. The positive real roots of AN (r ; �) are the
radii that define the equilibria. For N = 2, A2(r ; �) = −2r2 and the only solution
is the trivial case where r = 0. For N = 3, A3(r ; �) = 48r4 − 24�2r2 − �4 and the

only real solution is r/� = (1/2)
√

1 + 2
√

3/3 ≈ 0.733945. For N = 4, A4(r ; �) =
−8r4 + 10�2r2 bifurcates into two solutions; the trivial solution, r = 0, and
r/� = √

5/2 ≈ 1.11803. For N ≥ 5, owing to the increasing order of AN (r ; �),
equilibrium radii are found numerically. In figure 11, the non-trivial radii r are
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Figure 11. Non-trivial equilibrium radii, r , versus the number of finite dipoles. Circles denote the
first solution, triangles the second and squares the third. All other alternative solutions are omitted
for clarity.

N = 3 N = 4 N = 5

(a) (b) (c)

(d) (e) ( f )

N = 6 N = 10 N = 20

Figure 12. Non-overlapping finite-dipole absolute equilibria. Each finite dipole is depicted with
a line joining its two counter rotating vortices. Grey lines indicate the associated streamlines,
i.e. Im [F ].

plotted versus N , the number of dipoles in the system. There are two non-trivial
solutions for r for N = 5, 6, three for N = 7, 8, four for N = 9, 10 (the fourth
solution not shown in figure 11 for clarity) and so on.

Figure 12 depicts the configuration and associated streamlines of the first set of
solutions for various N . These are the equilibria for which the radii are the largest
(circle markers in figure 11). Characteristically, the lines joining the vortex pairs
do not intersect in this configuration. In fact, each vortex is equidistant from its
nearest neighbour. The growth of r for this set of equilibria is nearly linear with
a slight departure at small N .

Proc. R. Soc. A (2012)



The finite-dipole dynamical system 3021

(a) (b) (c)

Figure 13. Alternative overlapping equilibria for N = 10 (see figure 12e for to compare). The finite
dipoles overlap with two others (r/� = 0.968923) in (a), four others (r/� = 0.489932) in (b) and six
others (r/� = 0.242064) in (c).

The additional equilibria that exist are defined with increasingly smaller radii
(triangle and square markers in figure 11). These alternative equilibria can be
viewed as ‘higher harmonics’ of the primary equilibria presented in figure 12.
This is more clearly shown in figure 13, which depicts the hierarchy of the N = 10
equilibria. The lines joining the dipoles in figure 13a now intersect with two other
neighbouring dipoles in this configuration. Although the locations of the dipole
centres are defined, the equilibrium solution requires that the vortices comprising
the dipoles must also remain equidistant. In the subsequent equilibria presented
in figure 13c, the line joining the dipoles intersects with four and six others,
respectively, and all individual vortices remain equidistant.

We remark that in contrast to this finite-dipole problem, the free-point vortex
dynamics of this 2N configuration of alternating strength vortices is not in
equilibrium. When unconstrained, the vortices of adjoining finite dipoles in these
formations eventually pair and travel towards |z | → ∞ (e.g. in the first set of
equilibria solutions presented in figure 12, the right vortex of n = 1 partners with
the left vortex of n = 2). The constraint modelled here allows for a finite force to
be applied to each finite dipole to maintain its equilibrium in the system.

(b) Stability

We now examine the linear stability of the equilibria presented in figure 12
numerically. The nonlinear system of equations (2.8) and (2.11) is rewritten as a
system of real equations in standard state-space form as

dx
dt

= F(x), (4.4)

where x = (Re[z]1, . . . , Re[z]N , Im[z]1, . . . , Im[z]N , a1, . . . , aN )T and F(x) is a 3N -
dimensional vector function defined by the right-hand sides of equations (2.8)
and (2.11). Equations (4.4) are linearized about the equilibrium positions. The
linearized equation of motion take the form:

d(dx)
dt

= Jdx, (4.5)

where dx denotes an infinitesimal perturbation about the equilibrium state and
J = VF is the 3N × 3N Jacobian matrix evaluated at the equilibrium of interest.
Owing to the number of states when N ≥ 3, the J is computed numerically using
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(a) (b) (c) (d)

Figure 14. The four stable modes for N = 3 equilibrium (black). The original equilibrium
configuration is coloured grey. Listed here are the (a) expansion/contraction, (b) shear, (c)
opening/closing and (d) tilting modes.

Table 1. Maximum non-zero eigenvalues for the polygonal equilibria presented in figure 12. The
(2) following the eigenvalue gives the multiplicity of the eigenvalue.

N max eigenvalue

3 −8.5608
4 6.0263
5 5.6569(2)
6 6.4673
7 6.3475(2)

10 6.9028
20 7.2945

finite differences. The maximum non-zero eigenvalues for several values of N are
presented in table 1. It is observed for N > 3 and odd, the maximum eigenvalues
have double multiplicity.

We examine the eigenvalues and eigenvectors of J more closely. For N = 3,
the matrix J (9 × 9) is degenerated and has five zero eigenvalues, suggesting
that there are five invariants of motion. The first three invariants are due to the
invariance in x-translations, y-translations, and in-plane rotation of the initial
configuration. The additional two invariants stem from the fact that reflections
about the x- and y-axes do not change the system. The four other eigenvalues
are negative and thus stable. The stable modes of the N = 3 system are depicted
in figure 14. There are four modes that are denoted as expansion/contraction,
shear, opening/closing and tilting modes (figure 14a–d, respectively). The linear
superposition of these four stable modes constitute any deformation for which
the system is subsequently stable. The stability owing to small perturbations is
numerically verified.

For N ≥ 3, the polygonal configuration of dipoles also exhibits the same
invariants. For N = 4, J has one positive unstable eigenvalue that causes the
system to collapse in a straining mode (which is defined by its associated
eigenvector). The evolution of this unstable mode is given in figure 15. When
perturbed in this fashion, the two dipoles separate, strain and eventually collide
with each other. Numerically, it is confirmed that the other stable modes
do not excite an immediate collapse, although the system eventually becomes
unstable owing to numerical noise. For N ≥ 4, it is verified that the equilibria are
linearly unstable.
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(a) (b) (c) (d)

Figure 15. Snapshots of the unstable mode and resultant unstable motion for N = 4. The direction
of time flows from (a), the initial configuration, to (d), the end of simulation.

We note that this linear analysis does not guarantee stability owing to finite
perturbations. A nonlinear stability analysis is necessary for this and beyond
the scope of this paper. It is also interesting to note the classical result of
Thomson (1883), which was later corrected by Havelock (1931) (also see, Dritschel
1985; Aref 1995, for modified forms) that the regular polygon configuration of
identical point vortices is linearly stable when there are six or fewer vortices,
neutrally stable when there are seven vortices and linearly unstable when there
are eight or more vortices. In this analogous analysis for identical finite dipoles
restricted to the polygon, the N = 3 case, consisting of six vortices, is linear
also stable, and the N ≥ 4 cases, consisting of eight or more vortices, are also
linearly unstable.

5. Conclusion and discussion

We derived equations of motion for the finite-dipole dynamical system by
starting from the standard point vortex equations and imposing that the
separation distance between the two vortices in each dipole remains constant.
The enforcement of the constraint dictated that an additional force must be
applied to each dipole, effectively increasing the momentum of the dipole when
the unconstrained vortex pair begins to separate and decreasing the momentum
of the dipole when the unconstrained pair begins to merge. The balance is
maintained by the modified velocity term in equation (2.5) and results in a
dynamical system that is not Hamiltonian in the canonical sense. The resulting
equations of motion imply that the dipole centre convects with a self-induced
velocity plus the average of the background velocity at the two vortices that
comprise the finite dipole. The alignment of the dipole changes according to the
projection of the difference in the velocities of the two vortices onto the direction
of self-induced motion.

We examined the interaction of two and three finite dipoles through examples.
We showed that two finite dipoles can exhibit steady forward and oblique motion,
that is to say, move in relative equilibrium to each other. We also identified
regimes where the two dipoles diverged or collided and others where they seemed
to move in periodic or quasi-periodic motion. Interestingly, in a different context,
the motion of a collection of vortex dipoles in the dilute-gas regime of a Bose–
Einstein condensate was examined and quasi-periodic motion in the form of
stable epicyclic orbits were observed (Middelkamp et al. 2011). It is, of course,
well known that the equations governing quantized vortices in helium II and
Bose–Einstein condensates are the same as that in ideal, incompressible fluids
(see Donnelly 1991), so we certainly expect our model to be relevant in this

Proc. R. Soc. A (2012)



3024 A. A. Tchieu et al.

–2 0 2
–2

0

2

4

6

8

–2 0 2

(a) (b)

Figure 16. Interactions of nine dipoles initially aligned with one another in (a) box formation,
sitting initially abreast and tandem and in (b) diamond formation. The initial (final) location and
orientation of the dipoles are given in grey (black). Thin grey lines join the dipoles for increased
clarity of the initial formation. Both simulations are stopped at t = 7.

context as well. Based on what we know from the previously mentioned works
on the dynamics of unconstrained dipoles, we can anticipate that the long-time
dynamics of a collection of finite dipoles will be chaotic, but that is outside the
scope of the present paper. In the case of three finite dipoles, the emergence of
dipole equilibria, or multi-poles, were observed and a class of stationary polygon
equilibria were found. A linear stability analysis was then performed and it was
found that the N = 3 case (triangle) was linearly stable, and for N > 3, the
polygonal equilibria were linearly unstable to infinitesimal perturbations.

As mentioned in §1, our main motivation for considering this class of finite-
dipole models stems from our interest in developing low-order models for fish
schooling. To this end, we briefly examine the motion of dipoles initially placed
in square and diamond formations, respectively. We consider these configurations
because in the context of fish schooling, it has been argued that the diamond
formation is favourable for schooling (see Weihs 1973). Weihs (1973) based his
analysis on a stationary, infinite lattice and computed the locomotory benefits,
a given fish in diamond formation gets from the vortical wakes (modelled as
idealized vortex streets) of its neighbouring fish. Here, we view the dipole system
as a model for a group of dynamically interacting, self-propelled swimmers in
the absence of vortex shedding and only consider a finite number of dipoles
(fish). In figure 16a, nine dipoles are placed initially in a square formation with
spacing equal to 4

√
2�. The dipoles are placed abreast and in tandem to one

another. Figure 16a shows that the dipoles interact such that they break the
square formation and form three of the equilibrium formations. In this case, the
interactions between the dipoles is not beneficial for locomotion.
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In figure 16b, the dipoles are placed in a staggered or a diamond formation
and initially spaced with b = 4� and h = 4� (that is to say, same separation
distance between dipoles as in the square formation). These finite dipoles have no
control or collision-avoidance mechanisms and act solely under the evolution of
the equations given in equations (2.8) and (2.11). Figure 16b shows that, for the
same integration time as in 16a, though slightly diverging, the dipoles essentially
retain their formation. The dipoles maintain much better spacing than in the case
of the square formation, leading to more favourable conditions when travelling
in a group than when travelling alone. Eventually, after some time that is much
longer than the characteristic time it takes for the dipoles to reach a stationary
equilibrium in the square formation, the dipoles either collide or diverge to the
point where they act independently of one another.

These observations raise questions associated with the collective motion of
self-propelled swimmers in the inviscid limit. Are there locomotory advantages to
schooling? What is the role of the hydrodynamic coupling in motion coordination?
How does the addition of control or decision-making features (e.g. attitude control
on an) affect the collective behaviour of a group of dipoles? These questions will
be addressed in a future study.
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