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Role of synergy and antagonism in designing multidrug adaptive chemotherapy schedules

Y. Ma*

Department of Physics & Astronomy, University of Southern California, Los Angeles, California 90089-1191, USA

P. K. Newton †

Department of Aerospace & Mechanical Engineering, Mathematics, and The Ellison Institute,
University of Southern California, Los Angeles, California 90089-1191, USA

(Received 20 May 2020; revised 9 December 2020; accepted 26 February 2021; published 22 March 2021)

Chemotherapeutic resistance via the mechanism of competitive release of resistant tumor cell subpopulations
is a major problem associated with cancer treatments and one of the main causes of tumor recurrence. Often,
chemoresistance is mitigated by using multidrug schedules (two or more combination therapies) that can act
synergistically, additively, or antagonistically on the heterogeneous population of cells as they evolve. In this
paper, we develop a three-component evolutionary game theory model to design two-drug adaptive schedules
that mitigate chemoresistance and delay tumor recurrence in an evolving collection of tumor cells with two
resistant subpopulations and one chemosensitive population that has a higher baseline fitness but is not resistant
to either drug. Using the nonlinear replicator dynamical system with a payoff matrix of Prisoner’s Dilemma
(PD) type (enforcing a cost to resistance), we investigate the nonlinear dynamics of this three-component system
along with an additional tumor growth model whose growth rate is a function of the fitness landscape of the
tumor cell populations. A key parameter determines whether the two drugs interact synergistically, additively,
or antagonistically. We show that antagonistic drug interactions generally result in slower rates of adaptation of
the resistant cells than synergistic ones, making them more effective in combating the evolution of resistance.
We then design evolutionary cycles (closed loops) in the three-component phase space by shaping the fitness
landscape of the cell populations (i.e., altering the evolutionary stable states of the game) using appropriately
designed time-dependent schedules (adaptive therapy), altering the dosages and timing of the two drugs. We
describe two key bifurcations associated with our drug interaction parameter which help explain why antagonistic
interactions are more effective at controlling competitive release of the resistant population than synergistic
interactions in the context of an evolving tumor.
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I. INTRODUCTION

We study a mathematical model to explore the role of
synergisitic versus antagonistic multidrug interactions on an
evolving population of cancer cells in a tumor. Building on our
single drug, single resistant cell population adaptive therapy
model developed in Ref. [1], we develop a more complex
model in which we have the ability to independently adminis-
ter two drugs to a coevolving population of chemosensitive
cells, and two resistant populations. Using an evolutionary
game theory approach, we model how these populations re-
spond to the drug schedules as they coevolve. The model
includes a separate tumor growth equation which tracks the
total tumor volume with a growth rate that is a function of
the fitness landscape defined by the subpopulations of cancer
cells. Developed in the same spirit as Ref. [1], our determin-
istic model is purposely simple enough to extract several key
features associated with antagonistic, synergistic, or additive
multidrug interactions, with a parameter that we use to adjust
these interactions.
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There is a large and dedicated literature on characterizing
the interactions of many different multidrug combinations of
toxins on static cell populations. As far as we are aware, the
first comprehensive study of synergistic versus antagonistic
effects was carried out by Bliss [2] in 1939, using joint proba-
bilities, leading to a formula that is commonly called the Bliss
index for drug interactions. A similar but slightly modified
criterion was introduced by Loewe [3] and more recently de-
veloped further by Chou and collaborators [4]. These indices
have all been used to help quantify the many different types
of interactions that can occur with two or more toxins applied
jointly in a static population of cells. In this context, it is
common to assume that synergistic interactions are desirable
in most circumstances, as a lower total dosage accomplishes
the same kill rate as a higher dose would accomplish if the
drugs acted independently. These kinds of studies have been
used effectively to choose appropriate drug cocktails to in-
dividual patients by testing wide ranges of combinations on
tissue samples obtained from patient tumors [5].

When the interacting population of cells are evolving, how-
ever, the relevant effectiveness criteria become more complex.
This is due to the fact that the subpopulations of cells re-
spond differently to the different toxins applied, and as they
respond, an ever-changing (adaptive) combination of toxins
might be required to accomplish a given goal. Instead of
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necessarily killing the maximum number of cancer cells with
the least amount of toxin, it is often the case that the goal
becomes avoiding chemoresistance and delaying unwelcome
tumor recurrence to the maximum extent possible. A strategy
called resistance management [6] is often advocated and oc-
casionally implemented [7]. These kinds of strategies have
been advocated and implemented in chemotherapy settings
[8–14], but perhaps have been most elegantly and thoroughly
carried out in a bacterial setting (since experiments are more
practical) by Kishony and collaborators [15–20] who even
discuss strategies that might reverse antibiotic resistance [19].
See also Ref. [21] for recent work discussing both micro-
bial populations and cancer cells and Refs. [22,23] for novel
sequential therapy methods. In the context of evolving mi-
crobial populations [24], mutations occur frequently and it
is important to consider not only pre-existing mutated sub-
populations, but also mutations that occur as a result of the
application of antibiotic agents. In the case of chemothera-
peutic resistance in tumors, it is often assumed that resistant
mutations occurred before the application of treatment, hence
it is common to separate the subpopulations into sensitive and
resistant subpopulations, with resistant subtypes, as we do in
our deterministic model which does not include further muta-
tions during treatment. See Ref. [25] for further discussions of
these and related issues, and see Refs. [26,27] for discussions
of the general approach of using evolutionary game theory in
biology.

More specifically, our model is based on a replicator dy-
namical system of three (well-mixed) populations of cells:
(i) sensitive cancer cells, S, that are sensitive to both drug
1 and drug 2, (ii) a resistant population, R1, that is sensitive
to drug 1 but resistant to drug 2, and (iii) resistant popula-
tion, R2, that is sensitive to drug 2 but resistant to drug 1.
In contrast to our single-drug model developed in Ref. [1]
which used one control function to administer the dose, the
drug dosing schedules are administered by our two time-
dependent control functions C1(t ), and C2(t ) that represent the
chemotherapy dosing. We constrain these functions to lie in
the range of values 0 � C1 � 1, 0 � C2 � 1 (with a total dose
upper threshold C1 + C2 � 1). We use these control functions
to shape the fitness landscape of the coevolving populations
to manage resistance.

The replicator dynamical system governing the relative
frequencies of (S, R1, R2) makes use of a 3 × 3 payoff
matrix A of Prisoner’s Dilemma type [1,28–31] which im-
plements a cost of resistance fitness penalty for the resistant
populations [32]. Our general goal is to design adaptive mul-
tidrug chemotherapy schedules that delay tumor recurrence
(regrowth) due to competitive release of the resistant cell
population [8,33–35] and to quantify the role of synergistic
and antagonistic drug interactions in this process.

In Sec. II we introduce the details of the three-component
replicator dynamical system that we use to simulate multidrug
adaptive chemotherapy schedules, along with the coupled
tumor growth equation. Section III describes the effects of
constant chemotherapy schedules on the coevolving popula-
tions, along with our parameter e over a range of positive
(synergistic) to negative (antagonistic) values. We describe
in detail the transcritical bifurcations that occur and the tu-
mor growth in response to the chemotoxins. In Sec. IV we

introduce adaptive time-dependent schedules [C1(t ),C2(t )]
along with the parameter e with the goal of delaying tumor
recurrence and we discuss the rate of adaptation of the cell
populations in this context. Finally in Sec. V we discuss
the relevance of our model to the design of adaptive-therapy
clinical trials.

II. A THREE-COMPONENT REPLICATOR SYSTEM

A. The three-component model

The model we employ is a three-component replica-
tor dynamical system for three subpopulations of cells:
(S, R1, R2) ≡ (x1, x2, x3)

ẋ1 = ( f1 − 〈 f 〉)x1, (1)

ẋ2 = ( f2 − 〈 f 〉)x2, (2)

ẋ3 = ( f3 − 〈 f 〉)x3, (3)

where each dependent variable represents the relative fre-
quencies of cells, with x1 + x2 + x3 = 1. In these equations,
fi represents the fitness of subpopulation i = 1, 2, 3, while
〈 f 〉 represents the average fitness of all three subpopulations.
These equations then give rise to the obvious interpreta-
tion that if a given subpopulation’s fitness is above(below)
the average, it grows(decays) exponentially - reproductive
prowess is directly associated with the deviation of the fit-
ness of a subpopulation from the average fitness of the entire
population.

The fitness functions are frequency-dependent (i.e., non-
constant), which couples Eqs. (1)–(3) nonlinearly. The
subpopulation fitness fi (i = 1, 2, 3) function is given by

fi = 1 − wi + wi(A�x)i, (4)

A =
⎡
⎣a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎦, (5)

where A is a 3 × 3 payoff matrix which introduces the evolu-
tionary game being played by x1, x2, and x3. In this paradigm,
the sensitive population (x1) are the defectors (higher fit-
ness) and both groups of resistant cells (x2 and x3) are the
cooperators (lower, but not equal fitness). As in Ref. [1],
we use 0 � wi � 1 as a time-dependent parameter to ad-
minister the dose, which determines the relative strength of
selection in the system. When wi ∼ 0, selection is relatively
weak and the evolutionary game does not play a big role
in the balance of the three subpopulations. When wi ∼ 1,
selection is strong, and the game plays a bigger role. Both
of those limiting cases have been discussed in the literature
[36,37] for the case of finite cell population models (i.e.,
Moran processes), since it is easy to show that any constant
parameter wi can be scaled out of the deterministic sys-
tem. For the case of time-dependent chemotherapy schedules,
however, it cannot be scaled out, and we use the selection
parameter wi(t ) as our mechanism to introduce chemother-
apy schedules to design a favorable fitness landscape for
our system. The relative fitness of the three subpopulations
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FIG. 1. (a) e > 0 showing synergistic profiles; (b) e = 0 showing
additive profiles; (c) e < 0 showing antagonistic profiles.

are given by

w1 = w0[1 − C1(t ) − C2(t ) − eC1(t )C2(t )], (6)

w2 = w0[1 − C1(t )], (7)

w3 = w0[1 − C2(t )], (8)

where w0 is a constant that simply scales time (we take
w0 = 0.1). A key difference between the model developed in
Ref. [1] and our model here is the fitness function Eq. (6),
which gives us the ability to create synergy and antagonistic
interactions by varying the parameter e. Specifically, when
e > 0, the drugs interact synergistically, when e = 0, the
drugs are additive, and when e < 0, they interact antagonis-
tically. Level curves of the fitness profiles as a function of C1

and C2 are shown in Fig. 1 which can be compared with Fig. 1
of Ref. [15]. In the neutral case, additive drug interactions
[Fig. 1(b)] accomplish exactly the kill rate that the sum of each
of the two would accomplish acting independently. By con-
trast, synergistic drug interactions [Fig. 1(a)] bend the curves
inward, indicating that the growth rates (fitness) are lowered
more than the two dosages would accomplish independently,
while antagonistic interactions [Fig. 1(c)] bend the curves
outward, indicating that the growth rates are lowered less than
the two dosages would accomplish independently.

To introduce a tumor growth equation, we need the equa-
tion for the average fitness of the population, given by

〈 f 〉 = f1x1 + f2x2 + f3x3. (9)

The condition for the payoff matrix A to be of (PD) type is

a21 < a11 < a22 < a12, (10)

a31 < a11 < a33 < a13, (11)

a32 < a22 < a33 < a23, (12)

and for definiteness, we choose the specific values:

A =
⎡
⎣ 2 2.8 2.8

1.5 2.1 2.3
1.5 1.8 2.2

⎤
⎦. (13)

For the static game, it is easy to show that the cancerous state
(S, R1, R2) = (x1, x2, x3) = (1, 0, 0) ≡ p∗T is a strict Nash

(a) (b)

(c) (d)

FIG. 2. Depiction of evolutionary stable states (ESS) for dif-
ferent chemotherapy values. (a) With no chemotherapy, the tumor
saturates to the S corner regardless of the initial make-up of the three
subpopulations. (b) With C1 = 0, and C2 = 0.8, competitive release
of the resistant population R1 drives all trajectories to the R1 corner.
(c) With C1 = 0.8 and C2 = 0, competitive release of the resistant
population R2 drives all trajectories to the R2 corner. (d) Trajectories
associated with three different constant combinations of C1 and C2,
depicting the overlap of the trajectories at different times.

equilibrium in the absence of chemotherapy (C1 = 0,C2 = 0)
and an ESS for the replicator system, as shown in the diagram
of Fig. 2(a) where the entire triangular region is the basin of
attraction for the S population.

A separate important ingredient in our model, which was
not needed in our simpler single-drug model developed in
Ref. [1], is our tumor-growth equation for tumor volume,
which we denote xtumor(t ):

ẋtumor = (〈 f 〉 − g)xtumor, (14)

where the growth (decay) of the tumor is a function of the
average fitness associated with the tumor minus a constant
background fitness level g, associated with the surrounding
tissue (say, healthy cells) and microenvironment [38]. When
the average fitness level of the population of cancer cells
is higher than g (we take g = 1.05 in our simulations), the
tumor grows, and when it is lower, the tumor regresses. Our
chemotherapy schedules C1(t ) and C2(t ) largely control this
complex dynamic by modifying the Nash equilibria and ESS’s
of the system via the fitness function Eq. (4).

B. Why the prisoner’s dilemma game?

It is useful to briefly step back from our more complex
three-component model Eqs. (1)–(3) to understand why, ex-
actly, the prisoner’s dilemma (PD) payoff matrix is used for
modeling coevolving tumor cell populations. Consider, more
simply, a reduced two-component system with a population of
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healthy cells H , and a population of sensitive cancer cells S,
each competing for the best payoffs. The standard version of
the prisoner’s dilemma payoff matrix is

Â =
[

a b
c d

]
=

[
3 0
5 1

]
, (15)

where the healthy cells are the cooperators, and the can-
cer cells are the defectors [31]. Unlike other contexts in
which game theory is used, cells are not making strategic
decisions, instead, their strategy is encoded in their reproduc-
tive prowess, and selection is frequency dependent. In any
mixed population �x = (xH , xS )T , 0 � xH � 1; 0 � xS � 1;
xH + xS = 1, the fitness functions, �f = ( fH , fS )T , associated
with the two subpopulations are

�f = Â�x, (16)

which in component form yields

fH = (Â�x)1 = 3xH + 0xS, (17)

fS = (Â�x)2 = 5xH + 1xS, (18)

while the average fitness of the total population is given by the
quadratic form:

〈 f 〉 = �xT Â�x = 3x2
H + 5xH xS + x2

S � 1. (19)

The average fitness of the healthy state (xH , xS ) = (1, 0) is
given by 〈 f 〉|(xH =1) = 3, while that of the cancerous state
(xH , xS ) = (0, 1) is given by 〈 f 〉|(xS=1) = 1, which minimizes
the average fitness. For the static game, the cancerous state
(xH , xS ) = (0, 1) ≡ p∗T is a strict Nash equilibrium since
p∗T Ap∗ > pT Âp∗, for all p [28]. We can then embed this
static game into an evolutionary context using the replicator
dynamical system [29]:

ẋH = ( fH − 〈 f 〉)xH , (20)

ẋS = ( fS − 〈 f 〉)xS, (21)

from which [using values from Eq. (15)] it is straightforward
to show

ẋS = xS ( fS − 〈 f 〉) = xS (1 − xS )(2 − xS ), (22)

with fixed points at xS = 0, 1, 2. The cancerous state (xS =
1) then becomes an asymptotically stable fixed point of the
dynamical system Eq. (22) and an evolutionary stable state
(ESS) of the system Eqs. (20) and (21), which serves to
drive the system to the strict Nash equilibrium under the flow.
The fact that this ESS also corresponds to the one with the
lowest average fitness is an extra feature of the PD game.
For any initial condition containing at least one cancer cell,
0 < xS (0) � 1, we have

(i) xS → 1, xH → 0 as t → ∞,
(ii) 〈 f 〉 → 1 as t → ∞.
The first condition (and the structure of the nonlinear

equations) guarantees that the cancer cell population will
saturate at the carrying capacity of 1 in an S-shaped (lo-
gistic) growth curve, while the second guarantees that this
asymptotically stable carrying capacity is suboptimal, since
〈 f 〉|(xS=1) < 〈 f 〉|(xH =1). For these two reasons, the prisoner’s
dilemma evolutionary game serves as a simple paradigm for

FIG. 3. Tumor growth curves (log-plots) for untreated and con-
stant therapies. Tumor recurrence (vertical dashed line) occurs at t ∼
75 dimensionless time units. For these simulations we take g = 1.05.

tumor growth both in finite population models, as well as
replicator system (infinite population) models [12,31,39,40].
This two-component system alone, however, is not able to
account for the evolution of resistance, or the complexity
associated with multidrug interactions which we turn to next.

III. CONSTANT CHEMOTHERAPY SCHEDULES

First, we examine the dynamical system Eqs. (1)–(3) for
different constant levels of the chemoparameters C1, C2 (0 �
C1 � 1; 0 � C2 � 1; C1 + C2 � 1) in the case of additive
e = 0 interactions, synergistic (e > 0) interactions, and antag-
onistic (e < 0) interactions.

A. Additive interactions e = 0

Figure 2 shows the panel of trajectories for three different
scenarios. To start, Fig. 2(a) shows the trajectories with no
chemotherapy—all trajectories lead to the S corner which
saturates the tumor. In these figures, solid circles denote the
ESS states, while open circles denote the unstable states.
Figure 2(b) shows trajectories with C1 = 0,C2 = 0.8. In this
case, competitive release of the R1 population allows it to take
over the tumor, with all trajectories leading to the R1 corner.
For these parameter values, R1 is the ESS (and strict Nash
equilibrium) of the system. Figure 2(c) with C1 = 0.8,C2 = 0
depicts competitive release of the R2 population, with all
trajectories leading to the R2 corner, showing that R2 is the
ESS of the system.

In Fig. 2(d) we plot three different constant therapy sched-
ules together, showing how they can intersect at different
times. This gives the possibility of switching the therapies
off and on at the intersection times to create a trajectory that
stays in a closed loop and never reaches any of the corners—
these closed loops, which we call evolutionary cycles [13],
represent scenarios in which the three subpopulations stay in
perpetual competition, guided by a time-dependent schedule
that shapes the fitness landscapes in such a way as to manage
chemotherapeutic resistance. We will describe the systematic
construction of these closed loops in Sec. IV. Figure 3 shows
the tumor size [using Eq. (14)] plotted logarithmically. The
untreated tumor (C1 = 0,C2 = 0) grows exponentially, while
each of the treated tumors initially show tumor regression up
until t ∼ 75, then tumor recurrence due to chemotherapeutic
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FIG. 4. Panel showing the full range of trajectories, ESS, and their basins of attraction for constant additive (e = 0) therapies in the
range 0 � C1 � 1, 0 � C2 � 1, C1 + C2 � 1. Bifurcation values along top row (C1 = 0) are C2 = 1/3, C2 = 1/2. Bifurcation values down left
column (C2 = 0) are C1 = 7/18, C1 = 1/2.

resistance (either of the R1 or R2 populations), an unwelcome
common scenario. This scenario is clearly depicted in prostate
cancer data sets shown in Ref. [41] and widely discussed in
the clinical literature. Our goal is to show how specially de-
signed adaptive multidrug chemotherapies can push the tumor
recurrence point further to the right on these plots.

The full range of possible constant chemotherapy profiles
are shown in Fig. 4. For certain ranges of chemodosing, there
are mixed basins of attraction to each of the corners, hence
multiple evolutionary stable states of the system. In the top
row, with C1 = 0, the two critical values where the ESS’s
bifurcate are C2 = 1/3 (R1 changes from unstable to stable
via a transcritical bifurcation) and C2 = 1/2 (S changes from
stable to unstable via a transcritical bifurcation). In the left
column, with C2 = 0, the two critical values where the ESS’s
bifurcate are C1 = 7/18 (R2 changes from unstable to sta-
ble via a transcritical bifurcation) and C2 = 1/2 (S changes
from stable to unstable via a transcritical bifurcation). This
panel shows the complexity associated with the stability and
basins of attraction of the three tumor subpopulations even
in such a simple model, but also gives us the ability to ex-
ploit the inherent underlying dynamics associated with the

different trajectories using piecewise constant chemodosing
protocols.

B. Synergistic and antagonistic interactions

Using the panel in Fig. 4 as our guide, we focus in more de-
tail on the values C1 = 0.35, C2 = 0.27, comparing the effects
of synergistic interactions and antagonistic interactions with
values −0.4 � e � 0.4 in Fig. 5. For strongly antagonistic
interactions (e = −0.4,−0.3,−0.2), only the two subpopu-
lations S and R2 compete for dominance (both ESS), with
the R1 population being an unstable state with no basin of
attraction since this value of C1 is high enough to control
the R1 population. For strongly synergistic interactions (e =
0.2, 0.3, 0.4), the two subpopulations R1 and R2 compete for
dominance (both ESS), with the population of cells S sensitive
to both drugs being an unstable state. In this regime, the syn-
ergistic interactions enhance the competitive release of both
of the resistant subpopulations. It is the intermediate regime
e = −0.1, 0, 0.1 that is the most interesting, and has all three
evolutionary stable populations competing for dominance (all
three ESS) with intertwined basins of attraction for each.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 5. The effect of synergy (e > 0) vs antagonism (e < 0) on
the ESS and the basins of attraction for a fixed choice of constant
combination therapies C1 = 0.35, C2 = 0.27. (a) e = −0.4; (b) e =
−0.3; (c) e = −0.2; (d) e = −0.1; (e) e = 0; (f) e = 0.1; (g) e = 0.2;
(h) e = 0.3; (i) e = 0.4.

Which of the subpopulations eventually wins depends very
much on our initial mixture of cell types, and exactly how
the two drugs interact. We examine these details next, and
describe a bifurcation that occurs between the two-species
coexistence and three-species coexisting states.

Transcritical bifurcations

To better understand the details of the delicate nonlinear
dynamical processes that take place with antagonistic drug
interactions, in Fig. 6 we focus on the range of antagonistic
values e = −0.21,−0.19,−0.175,−0.15 for fixed values of
C1 = 0.35 and C2 = 0.27. The relevant bifurcation that oc-
curs at the critical value e(a)

c = −310/1701 = −0.1822 takes
place at the R1 corner, when the fixed point R1 = 1 goes
from unstable (e < e(a)

c ) to asymptotically stable (e > e(a)
c )

in a transcritical bifurcation (exchange of stability). Through
the bifurcation point, a stable fixed point (shown in Fig. 6(a)
outside the triangle below R1) moves up the R1 − S side of
the triangle (R2 = 0), and exchanges stability with the fixed
point at the R1 corner. The key point here is that when the
antagonistic interaction becomes sufficiently weak, suddenly
there are regions that allow for the R1 population to saturate
the tumor via competitive release. In Fig. 7 we show the de-
tails of the collision of eigenvalues that takes place [Fig. 7(a)]
and the process in the dS/dt versus S plane [Figs. 7(b)–7(e)].
Figure 7(b) shows the classic transcritical bifurcation diagram
(see Ref. [42]). When the level of antagonism is sufficiently
large, there are only the two evolutionary stable states S
and R2.

(a) (b)

(c) (d)

FIG. 6. The opening of the basin of attraction for R1 via a trans-
critical bifurcation at e = −310/1701 = −0.1822, C1 = 0.35, C2 =
0.27. At the bifurcation point, the areas of the basins of attraction of
the respective regions are S = 76.2%, R2 = 13.8%. (a) e = −0.21;
(b) e = −0.19; (c) e = −0.175; (d) e = −0.15.

In Fig. 8 we highlight the bifurcation that takes place in the
synergistic regime around values e = 0, 0.1, 0.2, 0.3 for fixed
values of C1 = 0.35 and C2 = 0.27. When synergistic interac-
tions are sufficiently strong [Fig. 8(c)], the basin of attraction
associated with the S population vanishes in a transcritical
bifurcation that occurs at the critical value e(s)

c = 30/189 =
0.1587. This is shown at the S corner, when the fixed
point S = 1 goes from unstable (e > e(s)

c ) to asymptotically

(a) (b)

(c) (d) (e)

FIG. 7. Four ways of depicting the antagonistic transcritical bi-
furcation. (a) Eigenvalue collision that takes place as the two fixed
points collide at the R1 corner. The other eigenvalue remains neg-
ative for both fixed points; (b) transcritical bifurcation diagram;
(c) prebifurcation phase plane; (d) bifurcation phase plane; (e) post-
bifurcation phase plane.
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(a) (b)

(c) (d)

FIG. 8. The closing of the basin of attraction for S via a trans-
critical bifurcation at e = 30/189 = 0.1587, C1 = 0.35, C2 = 0.27.
At the bifurcation point, the areas of the basins of attraction
of the respective regions are R1 = 72.3%, R2 = 17.7%. (a) e = 0;
(b) e = 0.1; (c) e = 0.2; (d) e = 0.3.

stable (e < e(s)
c ). The two resistant subpopulations are the only

remaining evolutionarily stable states for strong synergistic
multidrug interactions. The transcritical bifurcation diagram
is similar to that shown in Fig. 7 so we do not repeat it.

In Fig. 9 we show the areas of three basins of attraction
through the full range of values −0.3 � e � 0.3. The basin
areas begin to rapidly change in the antagonistic regime at e =
−0.2 and, in general, show much more sensitivity to changes
in e in the antogonistic regime than the synergistic regime.
The ability to make delicate and more nuanced changes in the
balance of populations is strongest for interaction parameter
e ∼ −0.1 when all three basin boundaries occupy similar
areas.

Figure 10 shows the average fitness curves [Fig. 10(a)] and
tumor growth curves [Fig. 10(b)] through a range of values of

FIG. 9. Areas of the three basins of attraction as a function of
the parameter e. Note the sensitivity of the S and R1 regions in the
antagonistic regime −0.2 � e � −0.1.

(a)

(b)

FIG. 10. (a) Average fitness curves for e = 0.3, 0.15,

0, −0.15, −0.3; (b) Tumor growth curves (log-plot) for
e = 0.3, 0.15, 0, −0.15, −0.3.

e. Notice, for early times, the average fitness of the antagonis-
tic case e = −0.3 is higher, but ends up lower as the system
evolves. The tumor growth curve in this case follows the
same trend—initially tumor growth is highest for antagonistic
interactions, but it finishes lowest. Most importantly, notice
that the tumor recurrence time for the antagonistic case is
also pushed later in time (t ∼ 300) showing the superiority of
antagonistic drug interactions over synergistic ones in terms
of managing resistance.

IV. DESIGNING ADAPTIVE EVOLUTIONARY CYCLES

Many new possibilities can be created using time-
dependent chemoschedules C1(t ),C2(t ), if we monitor the
balance of the subpopulations and adaptively make changes
at judiciously chosen time points. The basic idea is shown in
Fig. 2(d), where we see how the trajectories associated with
different constant chemotherapy schedules cross. At any of
the crossing times, it is possible to switch from one trajectory
to another by switching the values of C1 or C2 at those crossing
times as a form of control theory [43]. This basic procedure
allows us to design schedules that take us from any point A in
the triangle to any other point B along the legs of a path that
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(a) (b)

(c) (d)

(e) (f)

FIG. 11. Closed loop adaptive schedules OABO using three cy-
cles for e = 0, 0.3, −0.3. (a) e = 0, OA: C1 = 0.5,C2 = 0.2, AB:
C1 = 0,C2 = 0, BO: C1 = 0.2,C2 = 0.5; (b) corresponding adaptive
schedule; (c) e = 0.3, OA: C1 = 0.5,C2 = 0.2, AB: C1 = 0,C2 = 0,
BO: C1 = 0.2,C2 = 0.5; (d) corresponding adaptive schedule; (e)
e = −0.3, OA: C1 = 0.5,C2 = 0.2, AB: C1 = 0,C2 = 0, BO: C1 =
0.2,C2 = 0.5; (f) corresponding adaptive schedule.

are separated by the switching times. Using multiple time-
switching, we can also design trajectories that form closed
loops, called evolutionary cycles [13] that never converge to
any of the corners. This method of control was pioneered by
Marsden and coworkers [44] in the context of satellite orbit
design, and is also used in Ref. [1].

Figure 11 shows examples of how closed (piecewise differ-
entiable) orbits are designed in practice. More discussion of
the design of these adaptive schedules, as well as discussion
of their robustness, can be found in Ref. [1] in the context of
the single-drug model. In each of the figures, point O is fixed,
as is the untreated (blue) curve with C1 = 0, C2 = 0. Consider
the loop OABO created Fig. 11(a), with additive interaction
parameter e = 0. In traversing the OA leg, we use C1 = 0.5,
C2 = 0.2. When the trajectory reaches point A, we switch
to C1 = 0, C2 = 0, i.e., no therapy. When we reach point B,
we switch to C1 = 0.2, C2 = 0.5 until we reach point O, and
then we start the schedule again to traverse the same loop
as many times as we desire. The dose density plot is shown
in Fig. 11(b). Figures 11(c) and 11(d) use the same dosing
values, but with e = 0.3 (synergistic). The loop in this case
is larger (encloses more area), so there is a larger deviation
in the subpopulations throughout the loop than there was for

TABLE I. Total dose (D), time period (T ), and average dose
(D/T ) associated with adaptive therapies with antagonistic, additive,
and synergistic drug interactions. Antagonistic interactions deliver
the smallest total dose over the shortest time period.

e −0.3 0 0.3

D 118.23 119.42 120.47
T 178.7 192.5 206.7
D/T 0.6616 0.6204 05828

the additive case. Figures 11(e) and 11(f) show an example
of an antagonistic e = −0.3 adaptive therapy loop. Table I
shows the total dose D, time period T , and average dose
D/T for each case. The most important takeaway from these
numbers is that the antagonistic evolutionary cycle delivers
the smallest total dose over the shortest time-period to achieve
one closed loop, whereas the synergistic cycle delivers the
smallest average dose over the loop, since the time-period is
longest.

Figure 12 shows the tumor growth curves for each of the
adaptive schedules as compared with the untreated growth
curve (exponential growth), and constant therapy curve (each
shows tumor regression followed by recurrence). In each case,
the adaptive evolutionary cycle overcomes recurrence, with
the antagonistic schedule minimizing the tumor regrowth leg
(AB) of the schedule.

A final metric that we use for comparisons is the rate of
adaptation of the subpopulation i, defined by

αi(t ) = 1

t

∫ t

0
xi(s)ds, (23)

which is the time-average of subpopulation level xi(t ). Fig-
ure 13 shows the rates of adaptation associated with the two
resistant subpopulations R1 and R2 during the course of the
adaptive schedules. Notice the rate of adaptation is lowest for
the antagonistic interaction, which is the main reason the tu-
mor growth curve in Fig. 12(c) is most effective at controlling
and delaying tumor recurrence as the cell population evolves.

V. DISCUSSION

The role of synergistic versus antagonistic combination
drug interactions on the dynamical balance of coevolving
subpopulations of cells is not simple to characterize. In gen-
eral terms, antagonistic interactions are able to exert a more
targeted and subtle range of influences on an evolving popu-
lation than synergistic ones which, roughly speaking, cause
the two-drug combination to effectively act as one. In an
coevolutionary setting, this has the effect of enhancing com-
petitive release of resistant cells and more effectively selecting
for resistance. Synergistic interactions offer less flexibility
for designing effective strategies to manage resistance as the
tumor evolves, although might be more beneficial in reducing
sensitive cells in static populations. As a byproduct of the
ability to deliver a more nuanced control on an evolving pop-
ulation of cells, the sensitivity to small changes in the relative
doses of the two drugs in an antagonistic setting seems to be
higher than in a synergistic setting (as shown best in Fig. 9).
This, perhaps, makes these interactions harder to control.
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(a)

(b)

(c)

FIG. 12. Tumor growth curves for the adaptive schedules from
Fig. 11 as compared with untreated growth (exponential) and con-
stant schedule which eventually leads to tumor recurrence. (a) e = 0;
(b) e = 0.3; (c) e = −0.3.

Tumor recurrence times for the antagonistic drug interactions
are delayed more effectively than for synergistic interactions,
consistent with the fact that adaptation rates are slower for
antagonistic interactions. Antagonistic drug interactions gen-
erally provide more flexibility in designing adaptive resistance
management schedules.

(a)

(b)

FIG. 13. Rates of adaptation for e = 0, 0.3, −0.3: (a) R1 rate of
adaptation; (b) R2 rate of adaptation.

Additional features to our model could be the introduction
of mutations that might occur in response to the chemother-
apy, which potentially could be handled using a mutational
replicator system [29], or a finite-cell Moran process based
model [39] to better understand stochastic effects. It might
also be possible to analyze existing individual patient data and
tumor response curves (as was done in Ref. [41]) to design and
optimize better multidrug strategies retrospectively, which is
ongoing by our group. There are also ongoing adaptive mul-
tidrug clinical trials at the Moffitt Cancer Center that show
promise in prostate cancer patients.
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