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Anyone who has visited a science museum has seen the demonstration where a beach (or ping-

pong) ball is suspended in mid-air at a fixed position by constant blowing from below. After a

while, the ball inevitably tumbles to the ground but can easily be rebalanced, by hand, again at the

suspension point. Here, we ask a different more delicate question. Can we blow the ball from rest,

starting at the nozzle opening (x¼ 0), moving it up to the suspension point x ¼ x* above the

nozzle? We show that it is not possible to do this using constant blowing because the point at

which the downward gravitational force balances the upward blowing force is an elliptic fixed

point of the governing equations, so there is no transfer trajectory that connects the origin to x*. To

overcome this problem, we design time-dependent blowing schedules that achieve the transfer,

making use of orbit transfer ideas developed in the orbital mechanics literature. Then, we ask

which of these time-dependent schedules are optimal? We show that, generally, it is bang–bang

(on–off) blowing schedules that achieve the transfer in minimal time, using minimal energy

(action) and minimal air volume. For certain parameter values, however, there are more

complicated blowing schedules that are optimal (with respect to energy), which can be designed

using the Pontryagin Maximum Principle (PMP) and singular control. We use elementary

concepts from mechanics, nonlinear dynamics, and control theory and challenge the

inclined experimentalist to try to implement some of these nonconstant blowing schedules in the lab.
VC 2021 American Association of Physics Teachers.
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I. INTRODUCTION

Is it possible to levitate a ping-pong ball from rest to a
fixed height by constant blowing? At first glance, one might
imagine that the answer is as simple as supplying a blowing
force from below, which exactly balances the gravitational
force pushing down at the height x� where you want the ball
to remain suspended, as shown in Fig. 1. An experiment,
such as the one shown here (https://www.youtube.com/
watch?v=bCRjPFhlSYk), might even confirm that it is
achievable, as the ball is clearly suspended at the balance
point x�. Achieving this balancing act is not difficult, if one
places the ball by hand at this point, and can be seen as a
standard demonstration (typically using a beach ball) at sci-
ence museums around the world. Here, we ask a different
question. Instead of asking if a ball can be suspended at this
point, we ask whether a ball, starting from rest at the base of
the straw, x¼ 0, can be levitated to the point x� using con-
stant blowing. If one supplies a constant blowing force that
is required to balance the ball at height x� > 0, it turns out,
surprisingly, that it is not possible to drive the ball from posi-
tion x¼ 0 to position x ¼ x� required for the forces to bal-
ance. We will show why and describe how to overcome the
problem by using nonconstant blowing schedules designed
appropriately. In short, we will show that the problem of bal-
ancing a ball at the fixed point x ¼ x� using constant blowing
is easier than blowing the ball from x¼ 0 to x ¼ x� and hav-
ing it remain there.

We formulate the problem as one in Hamiltonian mechan-
ics, nonlinear dynamics, and optimal control theory and
show how some blowing schedules are better than others.
Some methods are borrowed from nonlinear orbit transfer

ideas developed initially in the orbital mechanics literature1

in which intersecting phase-space trajectories at different
fixed parameter values are pieced together by switching from
one parameter value to the other at precisely the time at
which the trajectories intersect, creating a time-dependent
control protocol that drives the system to a desirable state
not achievable without the switching time. We became inter-
ested in developing these methods in the context of design-
ing optimized time-dependent chemotherapy schedules in
tumor growth models2 that can steer the fitness landscape of
the co-evolving cell populations in such a way as to delay
chemotherapeutic resistance. While there is no connection
between these models and the ones detailed in this paper,
many of the mathematical techniques are quite similar. We
develop the levitation problem from the ground up in terms
that an undergraduate physics, engineering, or applied math-
ematics major could appreciate, and maybe in the process,
learn some key ideas from control theory without the extra
baggage of unnecessarily complex models and abstract
mathematical notation.3 Ideally, this article will stimulate
readers to learn more about applications of control theory by
reading the excellent article by Bechhoefer.4

Using air to levitate objects (as opposed to acoustic or
magnetic levitation) is a common method of conveyance and
has been explored in micro-manufacturing settings as dis-
cussed in Ref. 5, but to our knowledge, the observation that a
nonconstant blowing is required to levitate an object to a
fixed height has not been discussed in the literature.
Reference 6 discusses the design of a low-cost air levitation
system for teaching control engineering, and a more detailed
recent description of a nice experimental setup that could be
used to test the ideas in this paper is described in Ref. 7.
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II. THE MODEL

The model we consider is a simple dimensionless nonlin-
ear system,

m€x ¼ �mgþ mgbðtÞ exp ð�axÞ: (1)

Here, b(t) is a dimensionless blowing parameter (propor-
tional to the amount of air per unit of time) that we will use
to levitate the ball from rest vð0Þ ¼ 0; x(t) is the vertical
height; m is the mass; and a > 0 is a constant that controls
the distance over which the blower’s influence is felt. (Our
model is strictly one-dimensional because fluctuations from
side to side are mollified by the Bernoulli effect as shown
nicely in the following link: http://sciphile.org/lessons/
bernoullis-beach-ball.) The ball starts at position xð0Þ ¼ 0
where the blower is located, as shown in Fig. 1, and the goal
is to levitate it to height marked x�. Our assumption in (1) is
that the influence of the blowing decreases exponentially
from the location of the blower (x¼ 0), but our results are
not sensitive to that choice, as long as the influence decreases
monotonically with the height. We also assume that there is
no frictional loss of energy as the ball levitates and that the
ball does not rotate; hence, we treat it as a point mass. We
emphasize that our model is simple in that it does not take into
account the detailed fluid mechanical forces and dynamics at
the jet-ball contact point (that would create effects such as dissi-
pation and rotation of the ball). Our model is just complex
enough to show that (i) it is not possible to drive the ball from
its resting state at the base to the levitated state at height x�

with constant blowing and (ii) it is possible to drive the ball
from its resting state to the levitated state by piecing together
time-dependent blowing schedules with precise switching times
determined from crossing phase-space trajectories. To levitate
the ball initially, the upward blowing force must exceed the
downward gravitational force at x¼ 0, which implies that the
right-hand side of Eq. (1) must be greater than zero (at x¼ 0).
The condition for this is that b> 1.

The governing Hamiltonian for the system is given by

Hðx; vÞ ¼ 1

2
mv2 þ mgxþ mgb exp �axð Þ

a
� Eb; (2)

where we highlight the fact that b is a parameter, which we
will vary in order to change energy values. Once b is fixed
and the corresponding value Eb is chosen, Eq. (2) represents
a curve (level curve) in the (x, v) plane. Notice that for fixed
x and v, it is evident that Eb1

> Eb2
when b1 > b2 since

Eq. (2) is linear in b. The corresponding Hamiltonian equa-
tions of motion are

m _x ¼ @H

@v
¼ mv; (3)

m _v ¼ � @H

@x
¼ �mgþ mgb exp ð�axÞ: (4)

For any given b, the forces balance (i.e., acceleration is
zero) when

x � x� ¼ ln bð Þ
a

(5)

making the right-hand side of Eq. (4) zero. With the condi-
tion b> 1, the equilibrium position is positive (x� > 0).

The phase-space diagram in the (x, v) plane, obtained
from plotting level curves Hðx; vÞ ¼ Eb ¼ constant, is shown
in Fig. 2(a) for different energy values. The elliptic fixed
point where the forces balance corresponds to

E�b ¼ H x�; 0ð Þ ¼ mg

a
ln bð Þ þ 1ð Þ: (6)

Fig. 2. (a) Phase curves in the (x, v) plane for five different values of the

energy Eb. xmax marks the maximum height that the ball can achieve on the

energy curve Eb ¼ E0
b, while the elliptic point x* marks the levitation point

where the forces balance Eb ¼ E�b. (b) Energy curves Eb ¼ E0
b going through

the origin for four different values of b. (c) Phase curves of free fall (b¼ 0)

with different values of energy. (d) xmax marks the intersection of the two

curves defined by the left (blue color online) and right (red color online)

hand sides of Eq. (8).

Fig. 1. Ping-pong ball suspended at a fixed height x* by blowing through a

straw. The streaming air blows upwards along the positive x direction

against the gravity. x* marks the equilibrium position where the forces bal-

ance, stabilized by the Bernoulli effect. Our question is not whether the ball

can be suspended, as shown in the picture, but how we can drive (levitate)

the ball from rest at x¼ 0 to the equilibrium point x ¼ x*? For the full video,

see https://www.youtube.com/watch?v=bCRjPFhlSYk.
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At the origin where the blower is located, the energy value
is

E0
b ¼ Hð0; 0Þ ¼ mgb

a
> E�b: (7)

In Fig. 2(b), we show the curves E0
b for the increasing values

of b. We also show in Fig. 2(c) the family of free-fall trajec-
tories (b¼ 0) associated with energy values E0 ¼ 1

2
mv2

þmgx, which start at ðx; vÞ ¼ ð0; v�Þ.
To compute the point xmax shown in Fig. 2(a), we follow

the phase curve that passes through the origin to the point
xmax, using the fact that the Hamiltonian is constant, which
gives rise to the transcendental equation for xmax,

axmax ¼ bð1� exp ð�axmaxÞÞ: (8)

The left and right sides of Eq. (8) are plotted in Fig. 2(d)
where the intersection defines xmax. Because x� is an elliptic
fixed point, it is not possible to traverse from the origin to
this point on a phase curve, i.e., there is no constant energy
trajectory that passes both through the origin and x�. Instead,
the levitating ball starting at the origin will reach height
xmax > x� and then drop back down to the origin in a periodic
orbit, always overshooting the height x� where we want to
position the ball.

For future use, notice that solving Eq. (2) for velocity
yields

v ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

m
Eb � mgx� mgb

a
exp ð�axÞ

� �s
: (9)

III. TIME-DEPENDENT BLOWING

To levitate the ball from the origin to x�, we need to
decrease the energy from its initial energy value E0

b to the
final energy E�b by altering our blowing parameter b.
Consider the family of phase curves for two different choices
of the blowing parameter b ¼ b1 > b2 > 0, as shown in Fig.
3. The diagram depicts two different paths to traverse from

point O to point x�. The blue (color online) curve corre-
sponds to energy value Eb ¼ E0

b for value b ¼ b1, giving rise
to the elliptic balance point x�jb1

¼ ln b1ð Þ=a. The large
dashed red (color online) curve that intersects x�jb1

corre-
sponds to energy value Eb ¼ E0

b obtained by choosing blow-
ing parameter b ¼ b2 < b1, where xmaxjb2

¼ x�jb1
. To

traverse the dashed red (online) elliptical path that connects
O to the resting point x�, we first use blowing parameter
value b2, where b2 > 1, until the ball arrives at x�, say, at
time t ¼ t1. Then, we can balance it there if we instanta-
neously change to the value b1 > b2 at t1, which traps the
ball at the elliptic fixed point. We call this a two-step sched-
ule since it requires choosing two different values of b with
one switch-time t1. To calculate t1, we evaluate

Ð
dx=v from

O to x� using Eq. (9),

t1 ¼
ð ln ðb1Þ=a

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
m E0

b2
� mgx� mgb2

a
exp ð�axÞ

� �s :

(10)

A useful quantity to track is

S ¼
ðtf

0

EðtÞdt; (11)

which we think of as the action (since it has units of energy
� time). If divided by the total time tf over which it acts, it
would be equivalent to the average energy expended. What
is the value required to achieve a given transfer (tf is the time
the ball reaches x�)? In this case, we have

S ¼ E0
b2
� t1 (12)

¼ mgb2

a
� t1; (13)

where tf � t1. A second quantity we track is the area under
the b(t) curve,

B ¼
ðtf

0

bðtÞdt; (14)

which we think of as the total volume of air used to transfer
the ball through time tf. Similarly, if divided by the total time
tf through which it acts, it would be equivalent to the average
value of the blowing parameter b(t). In this case, we have

B ¼ b2 � t1: (15)

The second path illustrated in Fig. 3, which takes the ball
from O to x�, traverses through point A. Consider the piece-
wise differentiable path O! A! x�. On the first piece
from O! A, we launch the ball using blowing parameter
value b1 until time t1 when we reach point A. At that time,
we set b¼ 0 and let the ball free-fall along path A! x� on
the small dashed pink curve (color online) until time t2 when
we arrive at x�. This part of the path is described by the free-
fall trajectory,

x ¼ � 1

2
gt2 þ vAtþ xA; (16)

v ¼ �gtþ vA; (17)

Fig. 3. Diagram showing two different paths from point O to point x*.

Orbits corresponding to energy Eb ¼ E0
b for two different values, b ¼ b1

(blue online) and b ¼ b2 < b1 (long dashed red online). Height x* represents

the elliptic fixed point associated with b ¼ b1. The value of b2 is chosen so

that xmax for the red (online) orbit intersects x*. The small dashed pink (color

online) orbit corresponds to a free-fall trajectory b¼ 0 with an initial upward

launch velocity v* so that the trajectory intersects x*. Point A, with coordi-

nates (xA, vA), marks the intersection of the free-fall trajectory with the blue

(color online) orbit.
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where (xA, vA) marks the position and velocity coordinates at
point A in Fig. 3. We know from Eq. (17) that v¼ 0 (maxi-
mum height) at time t ¼ vA=g. Therefore, for the total time
to traverse the free-fall trajectory, we have

t2 � t1 ¼ vA=g: (18)

Here, we use

t1 ¼
ðxA

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

m
E0

b1
� mgx� mgb1

a
exp ð�axÞ

� �s : (19)

Eliminating t in Eqs. (16) and (17) gives the parabolic
curve,

x ¼ � v2

2g
þ v2

A

2g
þ xA

 !
; (20)

beginning at (xA, vA) and ending at the point ðx�; 0Þ, where

x� ¼ v2
A

2g
þ xA

 !
¼ ln b1ð Þ

a
: (21)

At time t2, we then let

b ¼ b1 ¼ exp a
v2

A

2g
þ xA

 !" #
(22)

to trap the ball at this resting point. We call this a three-step
sequence since it requires three sequential values of b
(b ¼ b1; b ¼ 0; b ¼ b1) and two switching times t1 and t2.
The total action along the trajectory is

S ¼ E0
b1
� t1 þ E0 � ðt2 � t1Þ (23)

¼ mg

a
b1 � t1 þ ln ðb1Þðt2 � t1Þ½ �; (24)

where E0 is the free-fall value with b¼ 0, and ðx; vÞ
¼ ðx�; 0Þ, i.e., E0 ¼ mgx�. For this trajectory, we have

B ¼ b1 � t1 þ 0 � ðt2 � t1Þ ¼ b1 � t1: (25)

It is clear that once we allow for a time-dependent blow-
ing function b(t), there exist many schedules that allow us to
achieve the goal of moving the ball from the origin to the
resting point x�, each taking a different total time to achieve
the transfer and each requiring a different action value and
air volume. We show in Table I numerically computed val-
ues for the two different paths described in Fig. 3, which
shows the three-step path: O! A! x� (which includes a

free-fall segment) is more efficient than the more direct
two-step path: O! x�. A more comprehensive panel of
schedules, using different fixed values of parameter b, and
the trajectories that achieve the transfer to the levitation
point, is shown in Fig. 4.

We are now in a position to formulate the problem as one
in optimal control theory to ask, of all possible schedules,
which one achieves the transfer from O to x� in minimal
time? Which transfer uses minimal action? Which transfer
uses minimal amounts of air?

IV. OPTIMAL BLOWING SCHEDULES

Consider the problem of finding time-dependent blowing
schedules b(t) and the corresponding trajectories ðxðtÞ; vðtÞÞ
in the phase plane, which accomplish the task of moving the
ball from (0, 0) to ðx�; 0Þ in total time tf, subject to the fol-
lowing equations:

m€x ¼ �mgþ mgbðtÞ exp ð�axÞ; (26)

xð0Þ ¼ 0; _xð0Þ ¼ 0; (27)

xðtf Þ ¼ x�; _xðtf Þ ¼ 0: (28)

We use the fact that x � 0, and we assume that the blowing
function is bounded from below and above:
0 	 bðtÞ 	 bmax.

A. Minimum time strategy

The transfer time tf is given by

tf ¼
ðtf

0

dt ¼
ðx�

0

dx

dx=dt
¼
ðx�

0

dx

v
: (29)

To minimize tf, we need to minimize the area under 1=vðxÞ
from 0 < x < x�, as shown in Eq. (29). We claim that a
bang–bang strategy, in which we choose b ¼ bmax initially,
until switching time ts at point ðx; vÞ ¼ ðxs; vsÞ, when we
choose a free-fall trajectory b¼ 0, accomplishes the minimi-
zation. To see this, consider the trajectories associated with
the two extreme (constant) values b¼ 0 and b ¼ bmax as
shown in Fig. 5(a). The lower dashed red (online) trajectory
is given by the curve using parameter value E0

bmax
. At the

switching time t ¼ ts, we switch the values of the blowing
parameter to b¼ 0, so that the ball travels on a free-fall tra-
jectory E0 to the final resting point ðx�; 0Þ at time tf. These
curves define a sector in the first quadrant of the (x, v) plane
as shown in the figure. We show in Fig. 5(b) the same curves
in the 1=v vs x plane and consider the areas under the curve
using E0

bmax
from 0 < x < xs and E0 from xs < x < x�. In the

interval 0 < x < xs, for any ðvðtÞ; xðtÞÞ associated with the
schedule b(t), the following function will be used to derive
the maximum velocity vmax for each fixed x,

d

dt

1

2
v tð Þ2 þ gx tð Þ þ bmaxg

a
e�ax tð Þ

� �
(30)

¼ b tð Þ � bmaxð Þvge�ax tð Þ (31)

	 0: (32)

Thus, the initial value gives the upper bound,

Table I. Time, action, and air volume values for two trajectories shown

in Fig. 3. The results are simulated using the following variables: b1 ¼ 6,

a ¼ 1 m–1, g¼ 9.8 m/s2, and m¼ 1 kg.

Path Time tf Action S Air volume B

O! x� 1.036 21.83 2.227

O! A! x� 0.6662 16.84 0.7482
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1

2
mv tð Þ2 þ mgx tð Þ þ mbmaxg

a
e�ax tð Þ (33)

	 1

2
mv 0ð Þ2 þ mgx 0ð Þ þ mbmaxg

a
e�ax 0ð Þ (34)

¼ mbmaxg

a
¼ E0

bmax
: (35)

From this, we know that v(t) is bounded by

v 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

m
E0

bmax
� gx� bmaxg

a
e�ax

� �s
¼ vmax: (36)

Hence,ðxs

0

dx

vmax

<

ðxs

0

dx

v
: (37)

Similarly, in the interval xs < x < x�,

d

dt

1

2
v tð Þ2 þ gx tð Þ

� �
(38)

¼ b tð Þvg (39)

� 0: (40)

Thus, the final value gives the upper bound,

1

2
v tð Þ2 þ gx tð Þ (41)

	 1

2
v tfð Þ2 þ gx tfð Þ (42)

¼ gx�: (43)

From this, we know that v(t) is bounded by

v 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 gx� � gx½ �

p
¼ vmax: (44)

Hence,ðx�

xs

dx

vmax

<

ðx�

xs

dx

v
: (45)

Therefore, the minimum-time transfer is achieved using
the bang–bang strategy. An example of an optimal time tra-
jectory and schedule is shown in Fig. 6.

B. Minimum air volume strategy

To minimize Eq. (14), first consider that

Fig. 4. Examples of piecewise constant blowing schedules that move the ball from the origin to the target point ðx; vÞ ¼ ðx�; 0Þ. Parameter values are given by

b 2 ½0; 6�, a ¼ 1 m�1, g¼ 9.8 m/s2, x� ¼ ln(2) m, and m¼ 1 kg, and we choose T¼ 1.34 s for time scale. (a) Two-step schedule: b(t) starts with b ¼
ax�eax�=eax� � 1 and then switches to b ¼ eax� . (b) The corresponding trajectories for the two-step schedule. Note that the ball will remain at equilibrium on

second step, so the trajectory only has one segment. (c) Three-step schedule with blowing on the first segment, followed by free falling (b¼ 0) for the second

segment. (d) The corresponding trajectory for (c). The trajectories will get closer and closer to the vertical axis with the increase in initial b(t). (e) Examples of

the general three-step schedule, with b1 for the first segment and b2 for the second. (f) The corresponding b(t) for the examples of the general three step sched-

ule. (g) A schematic of a four-step schedule where t1, t2, and t3 mark three switching points. (h) The corresponding trajectory for (g).

Fig. 5. (a) The schematic of the trajectory driven by a general blowing func-

tion b(t) as indicated in blue (color online). For comparison, we show what

we call the bang–bang strategy, starting with maximum blowing bmax from

t¼ 0 to t ¼ ts (dashed red online) and then free fall b¼ 0 from t ¼ ts to t ¼ tf
(black). (b) Any trajectory associated with a more general blowing schedule

b(t) (solid blue online) lies above the lower two segments.
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_v ¼ dvðxÞ
dx

dx

dt
¼ v0ðxÞv (46)

¼ �gþ gbðtÞ exp ð�axÞ; (47)

which gives

b ¼ v0ðxÞvþ g

g exp ð�axÞ : (48)

From this, we have

ðtf

0

bðtÞdt; (49)

¼
ðxf

0

bðtÞ dx

v
(50)

¼
ðxf

0

v0ðxÞvþ g

g exp ð�axÞ
dx

v
(51)

¼
ðxf

0

v0ðxÞ
g

exp ðaxÞ þ
ðxf

0

exp ðaxÞ
v

dx: (52)

The first term can be integrated by parts, and using the fact
that vð0Þ ¼ vðxf Þ ¼ 0 givesðtf

0

bðtÞdt ¼
ðxf

0

exp ðaxÞ
v

dx�
ðxf

0

av

g
exp ðaxÞdx: (53)

It is easy to see that maximizing v(x) will minimize both
integrals, which gives the same result as the bang–bang strat-
egy to minimize time (shown in Fig. 6).

C. Minimum action strategy

The problem of finding a minimum action strategy is more
complicated. We start withðtf

0

Hdt ¼
ðtf

0

ð1
2

v2 þ gxþ bg exp ð�axÞ
a

Þdt (54)

¼
ðtf

0

1

2
v2 þ gxþ _v þ g

a

� �
dt (55)

¼
ðx�

0

1

2
v2 þ gxþ _v þ g

a

� �
dx

v
(56)

¼
ðx�

0

1

2
v2 þ gxþ

dv
dx vþ g

a

� �
dx

v
(57)

¼
ðx�

0

1

2
v2 þ gxþ g

a

� �
dx

v
þ
ðx�

0

dv

a
: (58)

The last integral is simply vðx�Þ � vð0Þ ¼ 0, using the
boundary conditions. So,ðtf

0

Hdt ¼
ðx�

0

f v xð Þð Þdx; (59)

f ðvÞ ¼ 1

2
v2 þ gxþ g

a

� ��
v: (60)

To minimize this integral, we consider each fixed x and mini-
mize with respect to v(x), i.e.,

@f

@v
¼ 1

2
�

gxþ g

a
v2

¼ 0) vðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gxþ 2g

a

r
: (61)

However, the value above may not be achievable for all x,
e.g., we have vðx ¼ 0Þ ¼ 0, so

vðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gxþ 2g=a

p
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gxþ 2g=a

p
	 vmax

vmax;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gxþ 2g=a

p
� vmax:

(
(62)

According to Fig. 7, if the switching point (vs, xs) is on the

right side of the curve vðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gxþ 2g=a

p
, then the extra

transfer segment will exist connecting the bmax trajectory
with the b¼ 0 trajectory. This gives a sufficient condition,

vs >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gxs þ

2g

a

r
; (63)

Fig. 7. Minimum action strategy. (a) Phase space trajectory using parameters

bmax ¼ 20, a ¼ 1 m–1, x* ¼ ln(5) m, g¼ 9.8 m/s2, and m¼ 1 kg. (b)

Corresponding schedule for (a). (c) Phase space simulated with parameters:

bmax ¼ 5, a ¼ 1 m�1, x* ¼ ln(5) m, g¼ 9.8 m/s2, and m¼ 1 kg. (d)

Corresponding bang–bang optimal control.

Fig. 6. The bang–bang (on–off) strategy is optimal to attain the transfer in

minimum time and using minimum air volume. (a) The actual trajectory for

the transfer. (b) The time-dependent blowing schedule that achieves the opti-

mal transfer.
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where

xs ¼ �
ln 1� ax�

bmax

� �
a

; (64)

vs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gx� � 2gxs

p
: (65)

After we simplify the equations, we get

xs <
x� � 1

a
2

: (66)

Meanwhile, the inequality is the necessary condition as well
because the equations

xs �
x� � 1

a
2

; (67)

vmax �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gxþ 2g=a

p
(68)

have no solution in the interval 0 < x < xs. In summary,
Eq. (66) is both a necessary and a sufficient condition for the
existence of the extra transfer segment shown in Fig. 7(a).

V. PONTRYAGIN MAXIMUM PRINCIPLE

The Pontryagin maximum (or minimum) principle (PMP)8

is the most widely used method to find the optimal control
scheme for certain dynamical systems. We will first give a
statement of the PMP specifically for our problem. For
proofs or more general versions, see Refs. 8–11.

Following the notation of Ref. 11, consider a general
dynamical system with fixed initial condition X0, fixed final
condition Xf , and control b(t),

_XðtÞ ¼ fðXðtÞ; bðtÞÞ; (69)

Xð0Þ ¼ X0; (70)

Xðtf Þ ¼ Xf ; (71)

0 	 bðtÞ 	 bmax: (72)

The goal is to minimize some objective function,

min
bðtÞ2 0;bmax½ �

ðtf

0

LðXðtÞ; bðtÞÞdt: (73)

First, we construct the control theory Hamiltonian function
H by introducing the Lagrange multiplier vector k,

H XðtÞ; kðtÞ; b tð Þ
� 	

¼ Lþ kTf: (74)

The dynamical system for this optimal control problem is the
same as Eqs. (3) and (4). We have

X ¼ ðxðtÞ; vðtÞÞT ; (75)

f ¼ ðvðtÞ;�gþ gbðtÞ exp ð�axðtÞÞÞT : (76)

Suppose that k ¼ ðkx; kvÞT , and the control theory
Hamiltonian function for this problem will be

H ¼ Lþ kxvþ kvð�gþ gbðtÞ exp ð�axÞÞ: (77)

Assuming that b�ðtÞ is our optimal control function, with the
corresponding optimal trajectory ðx�ðtÞ; v�ðtÞÞ, there exist
functions k�x ; k

�
v , which satisfy the canonical equations of

Hamilton,

_x� ¼ @H x�; v�; kx
�; kv

�; b�ð Þ
@kx

;

_v� ¼ @H x�; v�; kx
�; kv

�; b�ð Þ
@kv

;

_k
�

x ¼ �
@H x�; v�; kx

�; kv
�; b�ð Þ

@x
;

_k
�
v ¼ �

@H x�; v�; kx
�; kv

�; b�ð Þ
@v

:

(78)

The optimal control b�ðtÞ will minimize the control theory
Hamiltonian H at any time point,

b�ðtÞ ¼ argmin
bðtÞ2 0;bmax½ �

H x�; v�; k�x ; k
�
v ; bðtÞ

� 	
: (79)

If we leave the final time tf as a free parameter, we need to
impose one extra constraint on the final state,

H x�ðtf Þ; v�ðtf Þ; k�xðtf Þ; k�vðtf Þ; b�ðtf Þ
� 	

¼ 0: (80)

Together with the initial condition in Eq. (27) and the final
condition in Eq. (28), the optimal control problem becomes a
two-point boundary value problem. For the three cases, we
considered in Sec. IV that L¼ 1 minimizes the time,
L ¼ bðtÞ minimizes the air volume, and L¼H minimizes the
average energy, respectively. It is not hard to observe that
for all the cases, the control theory Hamiltonian H is linear
with the control b, so Eq. (79) can be simplified based on the
sign of @H=@b,

b� tð Þ ¼
0;

@H

@b
> 0

bmax;
@H

@b
< 0:

8>><
>>: (81)

This is the bang–bang schedule as calculated previously. The
special case @H=@b ¼ 0 will be dealt with in Sec. V A. If
@H=@b is nonzero almost everywhere, the optimal control b

will be switching between 0 and bmax and thus a bang–bang
control. After solving the two-point boundary value problem
for L¼ 1 and L ¼ bðtÞ, the optimal bang– bang control is
identical to Sec. IV.

A. Singular control

For the minimum action case L¼H, bang–bang control
may not provide a solution to the two-point boundary value
problem for the reason that @H

@b ¼ 0 will hold for at least
some time interval, in which case the Pontryagin minimum
principle fails to yield the complete solution. For this, we
need to implement what is called singular control.3

The most simple method to solve this problem is to repeat-
edly differentiate @H=@b and set it to zero.3,12 First, we
know that
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@H

@b
¼ 0 (82)

for some time interval, so set the first order and second order
time derivatives of @H=@b to 0 as well,

d

dt

@H

@b

� �
¼ 0; (83)

d2

dt2

@H

@b

� �
¼ 0: (84)

Since the canonical equations (78) give the formulas of
_x�; _v�; _k

�
x ;

_k
�
v , the time derivatives can be easily calculated

with the chain rule.
After solving Eqs. (82)–(84), we have the following:

k�vðtÞ ¼ �
1

a
; (85)

k�xðtÞ ¼ �v�ðtÞ; (86)

b�ðtÞ ¼ 2eax�ðtÞ: (87)

Now, we achieve the formula for b(t). We will show that
Eq. (61) in Sec. IV (the transfer segment) is actually a singu-
lar arc. Take the time derivative of Eq. (61),

d

dt
v xð Þ ¼ d

dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gxþ 2g=a

p
¼ 2g

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gxþ 2g=a

p dx

dt

¼ gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gxþ 2g=a

p v

¼ g: (88)

Together with Eq. (1), the control b(t) for this segment
will be

b tð Þ ¼ _v þ gð Þeax=g

¼ 2eax; (89)

which is identical to the singular arc in Eq. (87) [shown as
the transfer segment in Fig. 7(a)].

VI. DISCUSSION

We have shown, using elementary classical mechanics,
nonlinear dynamics, and control theory techniques, along
with orbit transfer ideas,1,2 that in almost all parameter cases,
it is a bang–bang control schedule that achieves the transfer
of the ball to the levitation point x� in minimum time, with
minimum air volume, while expending minimum action.
There are, however, some parameter values for which a min-
imum action transfer is only achieved with the use of an
extra transfer segment that connects two bang–bang arcs.
The transfer formula is obtained analytically and is an exam-
ple of the use of singular control methods,3 which typically
is not found in elementary texts on control theory. It might
be of some interest to formulate similar optimal control prob-
lems associated with other forms of levitation, such as acous-
tic levitation or magnetic levitation with perhaps more
complex models that include additional effects, such as

dissipation, rotation, lateral stability/instability aspects, or
even turbulent fluid fluctuations that might arise for small
enough spheres (gas-fluidized levitating particles), as
described in Ref. 13.

It is also worth pointing out that aside from choosing an
appropriate time-dependent function b(t) to levitate the ball
to the elliptic point, there are other physical mechanisms we
could exploit. The simplest would be to add a small amount
of dissipation to the model, proportional to the velocity,

m€x ¼ �mgþ mgbðtÞ exp ð�axÞ � c _x: (90)

Here, c is our dissipation parameter. In Fig. 8, we show a tra-
jectory that ends up at x� (as t!1) after oscillating around
it more and more tightly.

We end by posing a challenge to the experimentally
inclined readers to design an experiment that makes use of
the time-dependent schedules we describe in this paper. Will
they accomplish the task, or are they perhaps unnecessary
and need to be modified in light of the presence of dissipa-
tion in the system? Only a carefully designed experiment can
sort this out.
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