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Maximizing cooperation in the prisoner’s dilemma evolutionary game via optimal control
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The prisoner’s dilemma (PD) game offers a simple paradigm of competition between two players who can
either cooperate or defect. Since defection is a strict Nash equilibrium, it is an asymptotically stable state
of the replicator dynamical system that uses the PD payoff matrix to define the fitness landscape of two
interacting evolving populations. The dilemma arises from the fact that the average payoff of this asymptotically
stable state is suboptimal. Coaxing the players to cooperate would result in a higher payoff for both. Here
we develop an optimal control theory for the prisoner’s dilemma evolutionary game in order to maximize
cooperation (minimize the defector population) over a given cycle time T , subject to constraints. Our two
time-dependent controllers are applied to the off-diagonal elements of the payoff matrix in a bang-bang sequence
that dynamically changes the game being played by dynamically adjusting the payoffs, with optimal timing that
depends on the initial population distributions. Over multiple cycles nT (n > 1), the method is adaptive as it
uses the defector population at the end of the nth cycle to calculate the optimal schedule over the n + 1st cycle.
The control method, based on Pontryagin’s maximum principle, can be viewed as determining the optimal way
to dynamically alter incentives and penalties in order to maximize the probability of cooperation in settings
that track dynamic changes in the frequency of strategists, with potential applications in evolutionary biology,
economics, theoretical ecology, social sciences, reinforcement learning, and other fields where the replicator
system is used.
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I. INTRODUCTION

Game theory models, originally developed by von Neu-
mann and Morgenstern in 1944 [1], are widely used as
paradigms to study cooperation and conflict in fields ranging
from military strategy [2], social interactions [3], economics
and social sciences [1,4], computer science [5], the physics
of complex systems [6], evolutionary psychology [7], evo-
lutionary biology [8], and, more recently, cancer [9–13]. To
characterize the game, a payoff matrix, A, is introduced which
for a two player game is of the generic form:

A =
[

a11 a12

a21 a22

]
. (1)

The entries of the payoff matrix determine the cost-benefit
trade-off associated with each game between the two com-
petitors who rationally compete with the goal of maximizing
their own payoff [14]. We show, in Fig. 1, 12 possible games
that can be played (of a total of 78 [15]) using (1) as the
payoff matrix. Notice for a given value of a22 which we place
at the origin without loss of generality, and with a11 > a22

(hence the reduction in the total number of games), we can
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play any game if we choose the off-diagonal elements of A
appropriately in the (a12, a21) plane. The prisoner’s dilemma
(PD) region of the plane occupies special territory among all
other regions as it is by far the most studied and used in
models that focus on the evolution of cooperation [16–18]. A
well-studied framework is the iterated PD game between two
players that are allowed to both view their opponent’s past
strategies, and adjust their own strategy for each new game
based on past information. Predicting which strategy will
work best is difficult, and the famous Axelrod tournaments
in which competitors submitted their strategy, and the pool
of strategies competed through computer simulations to see
which ones worked best was the beginning of the study of such
systems [3]. Recent contributions to this literature introduced
a new, previously undiscovered successful strategy [19].

Evolutionary game theory, used in population dynamics
models involving evolution by natural selection [8] similarly,
makes use of the payoff matrix (1) but embeds it directly
into a dynamical setting by assigning the payoff matrix to
a dynamical system and associates payoff with reproductive
prowess. A common evolutionary game theory model is the
replicator dynamical system [20], in the context of two popu-
lation frequencies �x = (x1, x2)T ∈ R2:

ẋi = xi[(A�x)i − �xT (A�x)] (i = 1, 2) (2)
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FIG. 1. Twelve regions in the (a12, a21) plane define which of the
games is being played. There is no loss of generality in choosing
a22 at the origin. Our control problem starts (t = 0) in the Prisoner’s
dilemma corner and asks what is the best path to travel, subject to a
constraint, in order to minimize the defector population at the end of
time t = T .

with x1 + x2 = 1, 0 � x1 � 1, 0 � x2 � 1, where each vari-
able has the alternative interpretation as a probability. One
can also think of the variables �x = (x1, x2)T as strategies that
evolve, with the most successful strategy, say, x2(t ) → 1,
while the other x1(t ) → 0 (as in the PD game). (A�x)i is the
fitness of population i, and �xT (A�x) is the average fitness of
both populations, so xi in (2) drives growth if the population
i is above the average and decay if it is below the aver-
age. The fitness functions in (2) are said to be population
dependent (selection pressure is imposed by the mix of pop-
ulation frequencies) and determine growth or decay of each
subpopulation.

The PD game captures, in a simple framework, the com-
petition between two players, one of whom is labeled a
cooperator (say, x1), while the other is labeled a defector
(say, x2). As such, the prisoner’s dilemma game presents a
situation where if each player cooperated, they would receive
a better payoff than if they both defected. The dilemma is, if
they are rational players, they will both choose to defect, as
this state is a Nash equilibrium of the system [21], defined
as a strategy �p∗ ≡ (x∗

1, x∗
2 ) where �p∗T A �p∗ � �pT A �p∗, for all �p

[21]. This paradigm is well understood and has been discussed
extensively in the literature [16,17].

Motivated by the use of the replicator equations and PD
payoff matrix in cancer models [22,23], we develop an op-
timal control framework for the replicator equations (2) by
allowing the off-diagonal elements of the payoff matrix,
a12(t ), a21(t ), to be time-dependent functions that allow us
to exogenously shape the fitness landscape of two coevolving
populations. As these fitness values change in time, we move
to different regions of the plane shown in Fig. 1 which dynam-
ically changes the instantaneous game being played during
the course of the population evolution. Stated differently, if
we start in the Prisoner’s dilemma corner, what is the opti-
mal path to travel in time t = T that minimizes the defector

population? This interpretation has been suggested recently in
the context of developing adaptive therapy schedules for can-
cer [12,13]. The interplay between the timescales associated
with the control functions a12(t ) and a21(t ) and the underlying
dynamical timescales associated with the replicator system
[governed by the eigenvalues of the linearized system (2)]
makes the optimal control problem interesting. As far as we
are aware, the only works we know of in which the payoff
matrix is altered during the course of evolution in the context
of the replicator equations is the interesting paper by Weitz
et al. [24], who allow the payoff entries to coevolve, using
feedback, along with the populations. In other contexts, such
as social interactions, there is a body of work focusing on
dilemma resolution by eliminating defectors, such as in the
recent works of Tanimoto [25,26], as well as Refs. [27–29]
and the book [4]. Our goal in this paper is, by using optimal
control theory with time-dependent controllers, to show how
to optimally reduce the defector population x2 (i.e., maximize
cooperation) after a fixed cycle time T in which we apply
our time-dependent controller schedule, subject to fixed con-
straints on the control laws. We then extend the method to n
(to n = 5) cycle times nT with an adaptive method that uses
the defector population at the end of the nth cycle, x2(nT ),
to compute the optimal control schedule for the n + 1st cycle
and x2[(n + 1)T ]. We develop the mathematical framework
to implement this, independent of the physical, biological,
and sociological interpretations of the controllers and defector
population, although we motivate our methods with an adap-
tive chemotherapy model. A nice, more generally focused
review paper on the combined use of game theory and control
is Ref. [30].

II. REPLICATOR DYNAMICS AND OPTIMAL
CONTROL THEORY

A. Replicator dynamical system

We start with the uncontrolled payoff matrix of prisoner’s
dilemma type:

A =
[

a11 a12

a21 a22

]
= A0 =

[
3 0
5 1

]
, (3)

where the population x1 are the cooperators and x2 are the
defectors. The Nash equilibrium, �p∗, is the defector state
x1 = 0, x2 = 1, which is easily shown to be a strict Nash equi-
librium since �p∗T A �p∗ > �pT A �p∗ for all �p �= �p∗. This implies
that the defector state is also an evolutionary stable state (ESS)
of the replicator system (2) as discussed in Ref. [21].

We then introduce an augmented payoff matrix A of the
form:

A =
[

a11 a12

a21 a22

]
= A0 + A1(t ), (4)

=
[

3 0
5 1

]
+

[
0 4u2(t )

−6u1(t ) 0

]
, (5)

where A1(t ) represents our control. The time-dependent
functions �u(t ) = (u1(t ), u2(t )) ∈ R2 are bounded above and
below, 0 � u1(t ) � 1, 0 � u2(t ) � 1 and have a range that
allows use to traverse the plane depicted in Fig. 1 to play
each of the 12 possible games at any given snapshot in time.
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We will use the two control functions to shape the fitness
landscape of the system appropriately by dynamically chang-
ing the game being played between the two populations as
the system evolves (only the difference in the row values
of A0 determine the dynamics which makes two controllers
sufficient).

To motivate our problem further and understand why the
prisoner’s dilemma game has been used as a paradigm for
tumor growth [10,22,23,31], think of a competing population
of healthy cells, x1, and cancer cells, x2, where the healthy
cells play the role of cooperators and the cancer cells play the
role of the defectors in a PD evolutionary game [9]. Using
(2), starting with any tumor cell population 0 < x2 � 1, it is
straightforward to show (i) x2 → 1, as t → ∞; (ii) the average
fitness of the healthy cell state x1 = 1, x2 = 0 is greater than
the average fitness of the cancer cell state x1 = 0, x2 = 1 since
�xT A0�x ≡ 3x2

1 + 5x1x2 + x2
2 is the average fitness and 3 > 1;

(iii) the average fitness of the total population decreases as
the cancer cell population saturates; and (iv) the tumor growth
curve x2(t ) vs. t yields an S-shaped curve very typical of
tumor growth curves [32].

In this context, the controller �u(t ) can be thought of as a
chemotherapy schedule which will alter the fitness balance
of the uncontrolled healthy cell–tumor cell populations. The
goal of a simple chemotherapy schedule might be to shape the
fitness landscape so that the defector (tumor) cells x2(t ) do
not reach the saturated state x2(t ) = 1. If we denote the dose
�D ∈ R2:

�D(t ) = (D1(t ), D2(t )) =
∫ t

0
�u(t )dt (6)

as the total dose delivered in time t , then:

�̇D(t ) = �u(t ) (7)

and:

�D(0) = 0, (8)

�D(T ) =
∫ T

0
�u(t )dt = �DT , (9)

where T denotes a final time in which we implement the
control. Thus, �DT denotes the total dose delivered in time
T which we will use that as a constraint on the optimiza-
tion problem. Then, our control goal is to maximally reduce
the tumor cell (defector) population x2(t ) at the end of one
chemotherapy cycle 0 � t � T , given constraints on the total
dose delivered. We are particularly interested in the optimal
schedule �u(t ) that produces the optimal response and we will
compare it with the responses produced by other schedules
(that have chemotherapeutic interpretations). Stated simply,
we are interested in obtaining the time-dependent schedule
(u1(t ), u2(t )) in (5) that maximizes cooperation x1(t ) for the
system (2) at the end of time t = T , subject to the constraint
�DT = const. We then extend our time-horizon to n cycles
t = nT (up to n = 5) by solving the optimal control problem
in each cycle. This general framework extends to most other
applications in which evolutionary game theory is used.

B. Pontryagin maximum principle

We utilize the standard form for implementing the maxi-
mum (minimum) principle with boundary value constraints:

�X = [�x(t ), �D(t )]
T
, �X ∈ R4, (10)

�̇X = �F ( �X ) = [�̇x, �̇D(t )]
T
, �F : R4 → R4, (11)

with the goal of minimizing a general cost function:
∫ T

0
L(�x(t ), �u(t ), t )dt + ϕ(�x(T )). (12)

Since the method is standard, we will just briefly describe
the basic framework and refer readers to Ref. [33–36] for
more details on how to implement the approach. Following
Ref. [36] in particular (see Theorem 4.2.1), we construct the
control theory Hamiltonian:

H (�x(t ), �D(t ), �λ, �u(t )) = �λT �F (�x) + L(�x, �u(t ), t ), (13)

where �λ = [λ1, λ2, μ1, μ2]T are the costate functions (i.e.,
momenta) associated with �x and �D respectively. Assuming
that �u∗(t ) is the optimal control for this problem, with cor-
responding trajectory �x∗(t ), �D∗(t ), the canonical equations
satisfy:

ẋi
∗(t ) = ∂H

∂λ∗
i

, (14)

Ḋi
∗(t ) = ∂H

∂μ∗
i

, (15)

λ̇i
∗(t ) = − ∂H

∂x∗
i

, (16)

μ̇i
∗(t ) = − ∂H

∂D∗
i

, (17)

where i = (1, 2). The corresponding boundary conditions are
as follows:

�x∗(0) = �x0, (18)

�D∗(0) = 0, �D∗(T ) = �D∗
T , (19)

λ∗
i (T ) = ∂ϕ(�x(T ))

∂x∗
i (T )

. (20)

Then, at any point in time, the optimal control �u∗(t ) will
minimize the control theory Hamiltonian:

�u∗(t ) = arg min
�u(t )

H (�x∗(t ), �D∗(t ), �λ∗(t ), �u(t )). (21)

The optimization problem becomes a two-point bound-
ary value problem [using (18)–(20)] with unknowns
(λ∗

2(0), x∗
2 (T )) whose solution gives rise to the optimal trajec-

tory �x∗(t ) (from (14)) and the corresponding control �u∗(t ) that
produces it [33–36]. For the optimization, we take �D(T ) =
(0.5, 0.5) and to minimize the defector frequency at the end
of one cycle t = T , we choose our cost function (12):

L = 0; ϕ(�x(T )) = x2(T ). (22)

We solve this problem by standard shooting type methods
[37].
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FIG. 2. Optimal trajectories and optimal control sequences for
small, medium, and large initial defector populations, with �DT =
(0.5, 0.5). (a) Defector frequency for initial state x2(0) = 0.1; (b) op-
timal control sequence for initial state x2(0) = 0.1; (c) defector
frequency for initial state x2(0) = 0.5; (d) optimal control sequence
for initial state x2(0) = 0.5; (e) defector frequency for initial state
x2(0) = 0.9; (f) optimal control sequence for initial state x2(0) =
0.9; (g) defector frequency for initial state x2(0) = 0.95; and (h)
optimal control sequence for initial state x2(0) = 0.95.

III. RESULTS

Because the Hamiltonian (13) is linear in the controllers
[with L = 0 in (21)], it is straightforward to prove that the
optimal control �u∗(t ) is bang-bang. We compare the optimal
schedule and trajectories with two other (nonoptimal) ones in
Fig. 2, for a small value of x2(0) = 0.1 [Figs. 2(a) and 2(b)],
intermediate value of x2(0) = 0.5 [Figs. 2(c) and 2(d)], large

FIG. 3. (a) Relative reduction as a function of initial defector pro-
portion. Maximum reduction (shown as dashed vertical line) occurs
for initial defector proportion of around 22%. In the limits x2(0) →
0, 1, the exact schedule �u(t ) does not matter, only the total dose
�D(T ). The controls schedule is much more efficient at reducing the
proportion of defectors for small populations than for large; (b) turn-
on time for u1(t ) and u2(t ) as a function of initial defector population
x2(0). In the narrow (approximate) range 0.89 � x2(0) � 0.91, the
times change abruptly and the control sequence has five segments as
shown in Figs. 2(e) and 2(f).

value of x2(0) = 0.9 Figs. 2(e) and 2(f)], and a value near
saturation x2(0) = 0.95 [Figs. 2(g) and 2(h)]. There are sev-
eral interesting points to make. First, for initial values x2(0) <

0.95, the optimal control schedule allows the defector propor-
tion to increase for a short time before u2 turns on, which is
perhaps counter-intuitive. For initial values sufficiently small,
this initial growth phase is compensated by keeping u1 turned
on until the end of the cycle time T [Figs. 2(b) and 2(d)]. The
larger the initial defector proportion, the earlier the control
u2 turns on [Figs. 2(f) and 2(h)], until for values above a
threshold of x2(0) ∼ 0.91, the initial time abruptly goes to
zero [Fig. 3(b)]. It is more beneficial to control the growth
of x2(t ) at the beginning of the cycle than at the end [Fig. 2(g)
and 2(h)]. Also, notice that for the optimal control sequences
shown in Figs. 2(b), 2(d) 2(f), and 2(h), the controllers u1

and u2 partially overlap in the time they are turned on in the
middle of the cycle at the expense of leaving both off either
at the beginning or end. We compare the optimal trajectories
[Figs. 2(a), 2(c) and 2(e)] with the case where there is no time
overlap (i.e., sequential: first u2 followed by u1), and the case
where u1 and u2 are held constant throughout the cycle time
T , all with the same value of �DT . For small initial values
[Fig. 2(a) and 2(b)] there is very little difference between
the optimal trajectory and the one produced by a sequential
controller, particularly for small initial conditions.

In Fig. 3(a) we show the relative reduction of the defector
frequency [1 − x2(T )/x2(0)] as a function of the initial fre-
quency x2(0). The maximum reduction (dashed vertical line)
occurs for an initial defector proportion of around 22%. The
curve also shows that the optimal schedule is much more
efficient at reducing the proportion of defectors for small pop-
ulations than for large ones, with reduction approaching zero
as the initial defector population approaches one. Also, in the
limits x2(0) → 0, 1, all three schedules converge to the same
value, showing that the exact schedule �u(t ) matters less than
the total dose �DT which is the same for each. This is because
in those regimes the system is essentially linear, and the exact
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FIG. 4. The sequence of four games that produce the optimal
trajectory if the switching times are chosen as shown in Fig. 2.
(a) The first game is a prisoner’s dilemma game, where x2 = 1 is an
asymptotically stable fixed point; (b) the second game is a Leader
game with interior fixed point x2 = 2/5 being an asymptotically
stable fixed point; (c) the third game is a Deadlock game with x2 = 0
being the asymptotically stable fixed point; (d) the fourth game is
game No. 10 in Fig. 1 with x2 = 0, 1 being asymptotically stable
fixed points.

solution depends only on
∫ t

0 u(t )dt . Figure 3(b) shows the
time at which each of the controllers is turned on, with an
abrupt change for large enough initial defector populations
x2(0) ∼ 0.91 as mentioned.

Figure 4 shows the sequence of distinct games that we
cycle through to produce the optimal trajectory:

(1) Prisoner’s dilemma (asymptotically stable state
x2 = 1);

(2) Leader (asymptotically stable state x2 = 2/5);
(3) Deadlock (asymptotically stable state x2 = 0);
(4) Game No. 10 in Fig. 1 (asymptotically stable states

x2 = 0, 1).
This is easiest to understand by decoupling the replicator

system (2) and writing the cubic nonlinear ordinary differen-
tial equation for x2:

ẋ2 = x2(1 − x2)[(A�x)2 − (A�x)1],

= x2(1 − x2)[(2 − 6u1) − (1 − 6u1 + 4u2)x2]. (23)

The sequence of games is obtained using:
(i) u1 = 0, u2 = 0
(ii) u1 = 0, u2 = 1
(iii) u1 = 1, u2 = 1
(iv) u1 = 1, u2 = 0.

To produce the optimal trajectory, the switching times must
be chosen as shown in Figs. 2(b), 2(d) 2(f), and 2(h) [note in
Figs. 2(f) and 2(h) the game switches back to PD just before
T ], and these times depend on the initial state x2(0). The flow
associated with the sequence of four games depicted in Fig. 4

FIG. 5. Defector frequency reduction using optimal control over
five consecutive cycles. (a) Defector optimal frequency with x2(0) =
0.9 over five cycles as compared with frequency associated with
sequential control and constant control; (b) same as (a) plotted on
log-linear scale; (c) defector optimal frequency with x2(0) = 0.5 over
five cycles as compared with frequency associated with sequential
control and constant control; (d) same as (c) plotted on log-linear
scale; (e) defector optimal frequency with x2(0) = 0.1 over five cy-
cles as compared with frequency associated with sequential control
and constant control; and (f) same as (e) plotted on log-linear scale.

makes it clear why the switching times are tied to the initial
condition.

Figure 5 shows the defector frequencies x∗
2 (t ) over a se-

quence of five cycles 0 � t � 5T for the optimal control
sequence, as compared with the sequential and constant con-
trollers. In the case of optimization over multiple cycles, the
method is adaptive as it must use the frequency obtained at
the end of the nth cycle, x∗

2 (nT ), to calculate the optimal
schedule associated with the n + 1st cycle. For large initial
values x2(0) = 0.9 [shown in Figs. 5(a) and 5(b)], the fre-
quency reduction curves start decreasing (nearly) linearly, but
deviates from linear over time. For small initial values [shown
in Figs. 5(e) and 5(f) for x2(0) = 0.1], the reduction is very
close to linear.

IV. DISCUSSION

We have developed a constrained optimization proce-
dure for maximizing cooperation in the prisoner’s dilemma
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evolutionary game by dynamically altering the payoffs during
the course of evolution. The interpretation of the schedules
and payoffs depends on the application, but we focus on a
tumor growth model with adaptive chemotherapy schedules
as the controllers [10,22,23]. The optimal control schedule
is bang-bang for each of the two controllers, with switching
times that depend on the initial proportion of cooperators to
defectors. One interpretation of the method is that we cycle
through a sequence of four distinct payoff matrix types (PD
→ Leader → Deadlock → No. 10), switching the game
at precisely the right times to maximize group cooperation.
Interestingly, a recent paper interprets a strategy used by non-
small-cell lung cancer cocultures as one of switching from
playing a Leader game to playing a Deadlock game (which is
one transition of our four game sequence) in order to develop
resistance [13].

The interpretation of the control functions depends on the
specific application with many potential interpretations in the
context of controlling the balance of evolving populations.
Aside from optimizing chemotherapy schedules to control
tumors [22,23,38–40], one might think of the application of
antibiotic schedules to control microbial populations [41], or
the strategic application of toxins to control infestations using
integrated pest management protocols [42]. In economics,
one might think of time-dependent payoffs as dynamic policy
actions that seek to optimize certain societal economic goals
[43], in reinforcement learning applications [44], controlling
the payoff entries alters the learning dynamics of multi-agent

systems, or in traffic flow applications, one might seek dy-
namic incentives for minimizing transit times by dynamic
payoff schedules [45]. We see no particular technical road-
block to generalizing the optimal control method to N × N
evolutionary games, although the numerical challenges of
solving the necessary two-point boundary value problems
becomes more severe, particularly searching for appropriate
initial guesses to ensure convergence.

As a final note, we mention that a system related to (2) is
the adjusted replicator equation [31] with growth and decay
terms normalized by the average fitness. While the normal-
ization term has no effect on ratios ẋi(t )/ẋ j (t ), it does effect
the time scaling of each variable, hence changes the optimal
control problem. Most importantly, the control Hamiltonian
is no longer linear in �u(t ), so the optimal control may not
necessarily be bang-bang, and we have preliminary results
that show this. Since the adjusted replicator system is known
to be the deterministic limit of the finite-population stochastic
Moran process in the limit of infinite populations [46,47], this
deterministic optimal control problem should be related to the
stochastic optimal control problem associated with the Moran
process via a Markov chain approach.
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