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Simple Summary: We describe an evolutionary game theory mathematical model to investigate the
robustness and accuracy of adaptive chemotherapy schedules in a stochastic environment in a tumor.
The model assumes tumors are made up of a finite cell population of chemo-sensitive cells, and two
populations of resistant cells, each resistant to one of two separate drugs that can be administered on
different schedules. The goal of the adaptive schedules are to delay chemoresistance in the tumor by
keeping the cell populations in competition with each other without any of the populations reaching
fixation leading to treatment failure.

Abstract: We investigate the robustness of adaptive chemotherapy schedules over repeated cycles and
a wide range of tumor sizes. Using a non-stationary stochastic three-component fitness-dependent
Moran process model (to track frequencies), we quantify the variance of the response to treatment
associated with multidrug adaptive schedules that are designed to mitigate chemotherapeutic resistance in
an idealized (well-mixed) setting. The finite cell (N tumor cells) stochastic process consists of populations
of chemosensitive cells, chemoresistant cells to drug 1, and chemoresistant cells to drug 2, and the
drug interactions can be synergistic, additive, or antagonistic. Tumor growth rates in this model are
proportional to the average fitness of the tumor as measured by the three populations of cancer cells
compared to a background microenvironment average value. An adaptive chemoschedule is determined
by using the N → ∞ limit of the finite-cell process (i.e., the adjusted replicator equations) which is
constructed by finding closed treatment response loops (which we call evolutionary cycles) in the
three component phase-space. The schedules that give rise to these cycles are designed to manage
chemoresistance by avoiding competitive release of the resistant cell populations. To address the question
of how these cycles perform in practice over large patient populations with tumors across a range of sizes,
we consider the variances associated with the approximate stochastic cycles for finite N, repeating the
idealized adaptive schedule over multiple periods. For finite cell populations, the distributions remain
approximately multi-Gaussian in the principal component coordinates through the first three cycles, with
variances increasing exponentially with each cycle. As the number of cycles increases, the multi-Gaussian
nature of the distribution breaks down due to the fact that one of the three sub-populations typically
saturates the tumor (competitive release) resulting in treatment failure. This suggests that to design an
effective and repeatable adaptive chemoschedule in practice will require a highly accurate tumor model
and accurate measurements of the sub-population frequencies or the errors will quickly (exponentially)
degrade its effectiveness, particularly when the drug interactions are synergistic. Possible ways to extend
the efficacy of the stochastic cycles in light of the computational simulations are discussed.

Keywords: chemotherapy schedules; adaptive chemotherapy; uncertainty quantification; Moran
process model; evolutionary game theory model; evolutionary cycles; tumor chemoresistance
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1. Introduction

The design of adaptive chemotherapy schedules [1], motivated and aided by mathe-
matical/computational models [2], is a rapidly developing field that has great potential for
mitigating chemoresistance in tumors [3]. The advantage of an adaptive schedule over a
more widely accepted pre-determined schedule, such as a maximum tolerated dose (MTD)
schedule, or a low-dose metronomic (LDM) schedule [4,5], is that adaptive schedules are
able to evolve and change along with the tumor [6]. However, as has been observed [7],
the efficacy of sequential adaptive cycles depends crucially on the ability to monitor and
track the balance of heterogeneous sub-populations of cells that comprise the tumor [8],
or at least an accurate surrogate biomarker [9,10], which can be challenging. Additionally,
the fact that any complex finite population of cells will evolve stochastically [11–13] makes
it particularly important to assess the effectiveness of adaptive schedules under a range of
diverse conditions, such as different patient populations and tumor sizes and over many
therapy cycles. We present a mathematical model that addresses these issues.

Standard pre-scheduled chemotherapy dose-delivery schedules suffer from the com-
mon occurrence of chemoresistance of the tumor [14], leading to treatment failure [15]
after multiple cycles. To overcome this, adaptive schedules are designed with the goal of
managing resistance [1]. Adaptive therapies typically leverage tumor heterogeneity [8]
by exploiting evolution via competition of the tumor sub-populations [16] to steer evolu-
tion and designing an advantageous chemoschedule [17–19] that delays chemoresistance
by maintaining a sufficient fraction of the sensitive population in order to suppress the
resistant population, a strategy used in the context of avoiding antibiotic resistance [20]
as well.

Aside from schedule design (dose and timing), the use of two or more drugs is helpful
in mitigating resistance, if combined strategically [2,21]. A key challenge associated with
dose scheduling and the optimal design of multidrug combinations is that both the drug
schedules and the multidrug mixture rely on an accurate dynamical assessment of the
relative balance and mixture of the evolving cell types in the tumor, which is hard to obtain
in clinical practice [7]. Quantitative assessments are, generally speaking, much easier to
obtain in a mathematical model.

Even within the framework of a mathematical model, how exactly to quantify the
effectiveness of the schedule and multidrug mixture when the schedule is adaptive (i.e.,
not fixed and repeatable) is not at all straightforward. We address this important issue
of uncertainty quantification and robustness [22–24] of tumor response to adaptive ther-
apy schedules and synergystic vs. antagonistic multidrug interactions [25,26] by using a
stochastic finite-cell fitness-dependent Moran process evolutionary game theory tumor
model with an adaptive schedule designed from the deterministic adjusted replicator
dynamical system [27], which is the large cell limit (N → ∞) of the finite-cell stochastic pro-
cess [28,29]. We describe the main features of our model as well as the connections between
the finite cell stochastic model and infinite cell deterministic model in the next section.

2. Model Description

The model we use to investigate the potential efficacy of designing closed evolu-
tionary cycles to avoid chemoresistance in a stochastic setting consists of the following
basic elements:

1. We implement a version of the adjusted replicator dynamics equations to track the
frequency evolution of the three sub-populations of cancer cells that make up the
tumor. Our model consists of a chemo-sensitive population (S), a population resistant
to drug 1 (R1), and a population resistant to drug 2 (R2). The competition among the
three populations is determined by a 3× 3 payoff matrix A that builds in a fitness
cost of resistance. In the absence of chemotherapy, the sensitive population is most fit
and will outcompete the resistant populations, saturating the tumor.

2. We use two time-dependent control functions C1(t) and C2(t) to model the chemother-
apy dosing schedules. These chemotherapy dosing functions control three selection
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pressure parameters w1(t), w2(t), and w3(t) by altering the relative fitness values of
the three sub-populations. A dose of chemotherapy (Ci(t) > 0; t0 ≤ t ≤ t1) lowers the
relative fitness of the targeted cell population by altering the selection pressures on the
sub-populations to effectively favor ones that are not targeted. This mechanism allows
us to ‘design’ favorable fitness landscapes indirectly by adaptively monitoring the
sub-population frequencies and altering our dosing schedule in response. Our goals
when we design chemotherapy schedules are to: (i) avoid fixation of the sensitive
cell population; (ii) avoid chemoresistance (fixation of either of the resistant popu-
lations) by keeping the three populations of cells in competition without allowing
any of them to saturate the tumor. We implement this by designing schedules that
keep us confined to a closed ‘evolutionary cycle’ which keep the sub-populations in
competition forever (ideally) for the deterministic (N = ∞) model.

3. We then test the performance of these designed schedules on a finite cell (N < ∞)
stochastic Moran process model to track the sub-population frequencies during these
cycles, where the limit N → ∞ corresponds to our adjusted replicator model from
which the cycle was designed.

4. Since the Moran process model uses a fixed value of N (hence, it cannot be used
directly to determine tumor growth where the total cancer cell population increases),
we add a tumor growth equation with growth rate determined as a function of the
average fitness of the three cancer cell sub-population frequencies comprising the
tumor. When the average fitness of the cancer cell populations is above a fixed
microenvironmental average, the tumor grows (exponentially), and when it is below,
it shrinks (exponentially).

Details of each of these elements are described in the next section.

2.1. Three-Component Two-Drug Adjusted Replicator Dynamics Model

The deterministic model we use to determine the sub-population frequencies
(x1, x2, x3) ≡ (S, R1, R2) and the dosing schedules (C1(t), C2(t)) to determine the adap-
tive therapy are the adjusted replicator equations:

ẋα =
( fα − 〈 f 〉)
〈 f 〉 xα (α = 1, 2, 3) (1)

x1 + x2 + x3 = 1 (2)

Here, fα denotes the fitness of sub-population α:

fα = 1− wα + wα(A~x)α (α = 1, 2, 3) (3)

while 〈 f 〉 denotes the average fitness of the entire population (tumor):

〈 f 〉 = f1x1 + f2x2 + f3x3 (4)

We restrict 0 ≤ wα ≤ 1 and note that for wα = 0, fitness is constant ( fα = 1), while for
wα = 1, fitness is determined by the payoff matrix A. The growth or decay of population
α in Equation (1) is determined by the deviation of the fitness of population α from the
average, normalized by the average fitness of the tumor.

The relative fitness values of the three sub-populations are controlled by the selection
pressure parameters wα:

w1(t) = w0(1− C1(t)− C2(t)− eC1(t)C2(t)) (5)

w2(t) = w0(1− C2(t)) (6)

w3(t) = w0(1− C1(t)), (7)

where ~C(t) = (C1(t), C2(t)) is the chemotherapy delivery function, with C1 controlling
drug 1, C2 controlling drug 2, and e is a parameter that determines whether the two drugs
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act synergistically (e > 0), antagonistically (e < 0), or additively (e = 0). We take w0 = 0.1,
which sets the timescale in our simulations. Notice that when drug 1 is applied (C1(t) > 0),
it acts to reduce the selection pressure parameters w1, w3, but leaves w2 (the parameter
controlling the R1 population) unchanged, so the R1 population is resistant to drug 1.
When drug 2 is applied (C2(t) > 0), it acts to reduce the selection pressure parameters
w1, w2, leaving w3 unchanged (the parameter controlling the R2 population), so the R2
population is resistant to drug 2. Thus, our model steers evolution by exploiting the effect
that chemotherapy has on the selection pressure applied to different sub-populations. The
total dose delivered over time-period t is denoted ~D ∈ R2:

~D(t) = (D1(t), D2(t)) =
∫ t

0
~C(t)dt, ~D(0) = 0. (8)

Then:

~̇D(t) = ~C(t) (9)

and:

~D(T) =
∫ T

0
~C(t)dt = ~DT (10)

~DT denotes the total dose delivered in fixed time T. The system (1) is a nonlinear
non-constant coefficient dynamical system governing the frequency distributions.

To fix the evolutionary game being played by the population of cells, we consider the
3× 3 payoff matrix A:

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 (11)

In order to model tumor kinetics, we take our payoff matrix to be of Prisoner’s
Dilemma (PD) type [30]. The reasons why the PD matrix is useful as a cancer model
are discussed in more detail in [19,30], but arise from the fact that this choice allows the
sensitive cell population (the defectors) to reach fixation with an S-shaped growth curve in
the absence of chemotherapy (C1(t), C2(t)) = (0, 0) and enforces a ’cost-of-resistance’ on
the two resistant sub-populations (the cooperators) [31]. The PD inequality bounds for the
entries of the payoff matrix are:

a21 < a11 < a22 < a12 (12)

a31 < a11 < a33 < a13 (13)

a32 < a22 < a33 < a23 (14)

For definiteness, we choose the specific values:

A =

 2 2.8 2.8
1.5 2.1 2.3
1.5 1.8 2.2

 (15)

Our chemotherapy delivery functions are constrained so that 0 ≤ C1(t) ≤ 1,
0 ≤ C2(t) ≤ 1, 0 ≤ C1(t) + C2(t) ≤ 1, and from Equations (5)–(7) reduce the fitness
of the relevant sub-populations by altering the relative selection pressures.

Since the Moran process model tracks frequencies while keeping N fixed, we need an
additional tumor growth equation to complete our model. For this, we use the following
equation to track the tumor volume V(t):

V̇ = (〈 f 〉 − g)V (16)
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Here, g denotes a positive constant we take as generally representing the fitness of the
average microenvironment surrounding the tumor. Hence, the growth rate (or decay) of
the tumor, (〈 f 〉 − g), is given by the deviation of the average tumor fitness from the average
fitness of the local microenvironment, as represented by the gray region surrounding the
tumor cells in Figure 1.

Figure 1. A sequence of adaptive chemoschedules that lock the tumor in a closed evolutionary cycle
is difficult to achieve for finite cell (shown for N = 12) populations since sub-population frequencies
fluctuate stochastically and are difficult to measure with precision. Middle inset shows a discrete
tri-linear plot of a stochastic realization in the (S, R1, R2) plane, with n = 24 steps, starting at point
A, using the chemoschedule designed from the deterministic (N → ∞) model.

2.2. Three-Component Two-Drug Discrete Stochastic Moran Process

In more detail, our finite cell model is a three component stochastic birth–death
process [32,33], with frequency-dependent fitness governed by a payoff matrix, and popu-
lation size N comprised of a fluctuating mixture of cells of type S (sensitive), cells of type
R1 (resistant to drug 1), and cells of type R2 (resistant to drug 2), with S + R1 + R2 = N.
At every step n in the process, a cell is randomly selected for reproduction with prob-
ability proportional to its fitness. The offspring produced replaces a randomly chosen
cell in the population. The fitness of cells in the sub-populations S, R1, and R2 are given
respectively as:
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fij = 1− w1 (17)

+ w1

[
a11

i− 1
N − 1

+ a12
j

N − 1
+ a13

N − i− j
N − 1

]
gij = 1− w2 (18)

+ w2

[
a21

i
N − 1

i + a22
j− 1

N − 1
+ a23

N − i− j
N − 1

]
hij = 1− w3 (19)

+ w3

[
a31

i
N − 1

+ a32
j

N − 1
+ a33

N − i− j− 1
N − 1

]
.

Here, i denotes the number of cells of type S, j denotes the number of cells of type R1,
and N − i− j denotes the number of cells of type R2, with 0 ≤ i ≤ N; 0 ≤ j ≤ N, i + j ≤ N.
The state of the system is given by (i, j) (visualized as a grid point on a triangular grid as
in Figure 1) with probability of residing in that state after n steps given by p(n)ij .

As in the continuous model, the parameter wα ∈ [0, 1] (α = 1, 2, 3) controls the
selection pressure and allows us to independently adjust the fitness landscape. At the two
extremes, when wα = 0, the payoff matrix makes no contribution to fitness, so only random
drift governs the dynamics. At the other extreme, when wα = 1, the payoff matrix makes a
large contribution to the fitness, with selection pressure driving the dynamics. We define
the average tumor fitness, 〈 f 〉N , as the discrete analogue of (4):

〈 f 〉N =
Sij

N
(20)

where:

Sij = i fij + jgij + (N − i− j)hij (21)

The transition probabilities at each step of the birth–death (Markov) process are
written as:

pSR1
ij =

i fij

Sij

j
N

(22)

pR1S
ij =

jgij

Sij

i
N

(23)

pSR2
ij =

i fij

Sij

N − i− j
N

(24)

pR2S
ij =

(N − i− j)hij

Sij

i
N

(25)

pR1R2
ij =

jgij

Sij

N − i− j
N

(26)

pR2R1
ij =

(N − i− j)hij

Sij

j
N

(27)

pconst
ij = pSS

ij + pR1R1
ij + pR2R2

ij (28)

= 1− (pSR1
ij + pR1S

ij + pSR2
ij + pR2S

ij + pR1R2
ij + pR2R1

ij )
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To implement chemotherapy in the discrete Markov process, we discretize time 0 ≤
t ≤ T in (8)–(10) so that at each time-step n in the process (with n = tN), we enforce the time-
dependent chemotherapy schedules (5)–(10) by adjusting the selection pressures where:

wn
1 = w0(1− Cn

1 − Cn
2 − eCn

1 Cn
2 ) (29)

wn
2 = w0(1− Cn

1 ) (30)

wn
3 = w0(1− Cn

2 ), (31)

~Dn = (Dn
1 , Dn

2 ) (32)

=
n−1

∑
k=0

(Ck
1, Ck

2). (33)

This renders the Markov process non-stationary [34]. The state-vector ~Pn ∈ R(N+2)(N+1)/2

represents the discrete probability distribution at each triangular grid point (i, j), p(n)ij (the
finite analogue of the Master equation and Fokker-Planck formulation in [29]):

~Pn = [p(n)00 , p(n)01 , ..., p(n)0N , ..., p(n)N0 ]
T (34)

Along with a 1
2 (N + 2)(N + 1)× 1

2 (N + 2)(N + 1) stochastic (non-stationary) tran-
sition matrix M ≡ {pij} (whose entries are Equations (22)–(31)) with rows adding to
1 driving the dynamical system:

~Pn+1 = M~Pn. (35)

We initiate the process with an initial discrete distribution ~P0. This framework al-
lows us to carry out Monte Carlo simulations to generate probability distributions (using
Equations (22)–(27) more practically) of the three cell types for any initial distribution.

2.3. Continuous Limit N → ∞ Which Relates the Moran Process to the Adjusted
Replicator System

The deterministic and stochastic models are connected by the limit N → ∞ in which
the discrete finite cell frequency-dependent model (35) converges to the adjusted replicator
system (1). This connection was first made explicit in [28,29] with an earlier approach
in [35]. These papers accomplished two things. First, the authors of [28] showed that
different microscopic stochastic processes for two-strategy games lead to either the repli-
cator system or the adjusted replicator system in the limit N → ∞. They also derived an
explicit mean-field Fokker–Planck equation describing the probability density function
for the different sub-populations. This work was extended in [29] to an arbitrary number
of strategies (sub-populations), with the possible inclusion of mutations leading to the
adjusted replicator dynamics as N → ∞. Our method of quantifying the uncertainty
associated with adaptive chemotherapy schedules exploits this stochastic–deterministic
connection. The deterministic adjusted replicator Equation (1) allows us to unambiguously
design a beneficial schedule giving rise to the closed evolutionary cycle, while the stochastic
fitness-dependent three-strategy Moran process allows us to quantify the variance associate
with repeated cycling of the schedule for finite N.

3. Results

To understand our results, we start with an example in Figure 2a of one (of many)
closed deterministic evolutionary cycle ABCA in the (S, R1, R2) tri-linear plane, along
with two stochastic realizations starting at the same point A but not closing the loop.
The deterministic cycle is exactly closed and repeatable, but the probability of a stochastic
cycle being closed is vanishingly small. Figure 2b depicts the chemoschedule that produces
the closed ABCA cycle, which we use as our adaptive chemoschedule for the finite N
model, repeating it in a series of cycles. The key to designing a deterministic closed cycle
(see [19,26] for more discussion) is to realize that (i) in the absence of chemotherapy, all



Cancers 2021, 13, 2880 8 of 16

trajectories converge to the S corner; (ii) with C1 on (above threshold levels) and C2 off,
all trajectories converge to the R1 corner, and (iii) with C2 on (above threshold levels) and
C1 off, all trajectories converge to the R2 corner. These three facts make it straightforward
to identify trajectories that cross, and then by turning off and on the drug schedules at
precisely the times when they cross (points A, B, and C), one can create a closed cycle.
These closed cycles are plentiful and can be designed so that they are located throughout
the triangular domain, with a large range in the sizes of the enclosed areas [19]. The results
described in this section do not depend, in any crucial way, on which closed cycle we
choose in the tri-linear plane and can be viewed as general.

(a)

(b)

Figure 2. (a) Tri-linear (S, R1, R2) coordinate representation of a deterministic evolutionary cycle
ABCA, from the adjusted replicator equation, and two stochastic realizations (from the Moran
process) with N = 10,000 and N = 1,000,000 cells. Inset shows that the stochastic paths are not closed.
Background colors show velocity field, hence instantaneous speed of convergence, from the adjusted
replicator system. (b) Adaptive chemotherapy schedule with drugs 1 and 2 for closed cycle ABCA.

What is the size of the error made in using the stochastic (finite N) model with
the adaptive chemoschedule that puts us on the closed ABCA cycle in the deterministic
problem? In Figure 3a, we show the spread of the endpoints in the (S, R1, R2) tri-linear
plane after one evolutionary cycle, for the case e = 0 when the two drugs act additively
on the population. The cycle is initiated at (S, R1, R2) = (0.8, 0.1, 0.1) (point marked A
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in Figure 2), for 10,000 trials, with N = 100,000 cells. Additionally shown are the two
orthogonal principal components associated with the spread of the data, which we then
map, in Figure 3b, to the two principal axes. The kernel density estimates (KDE) for the
distributions are shown in Figure 3c,d. The distributions, after one loop, closely resemble
multivariate Gaussian distributions in the principal components.

(a) (b)

(c) (d)

Figure 3. (a) Spread of 10,000 trials starting at initial conditions S = 0.8, R1 = 0.1, and R2 = 0.1
with principal axis after 1 loop; (b) same spread of trials from (a) plotted with principal component
axes; (c) kernel density estimation (KDE) for trials in (a), with darker areas indicating a higher
concentration of data, with means µS = 0.784, µR1 = 0.106; (d) the spread of trials closely resembles
a multivariate Gaussian distribution composed of the principal components, with singular values
σ1 = 0.040, σ2 = 0.013.

After repeated loops of the cycle, the multivariate Gaussian distribution starts to break
down, as shown clearly in the principal component coordinates (Figure 4), which shows the
KDE after 2 loops (Figure 4a), 3 loops (Figure 4b), 4 loops (Figure 4c), and 5 loops (Figure 4d).
After the third loop, the distribution no longer approximates a multi-Gaussian distribution.
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(a) (b)

(c) (d)

Figure 4. Kernel density estimation showing distribution after successive loops and singular values
σ1, σ2. Gaussian spread starts to break down after loops 3 and 4 as some tumors began to saturate.
(a) Loop 2, σ1 = 0.072, σ2 = 0.021; (b) Loop 3, σ1 = 0.112, σ2 = 0.025; (c) Loop 4, σ1 = 0.184,
σ2 = 0.034; (d) Loop 5, σ1 = 0.261, σ2 = 0.043.

To examine why the multi-Gaussian nature of the distribution breaks down, we
show in Figure 5 histogrammed distributions of the three sub-population frequencies.
By the third loop, the distributions start to impinge on 0 (one of the sides of the tri-linear
plane) or 1 (one of the corners of the tri-linear plane), indicating that a sub-population
either vanishes or saturates, distorting the multi-Gaussian spread. By the fourth and fifth
loops, the distributions start to converge at these endpoints and the distribution no longer
resembles a multi-Gaussian.

The histogrammed distributions for synergistic (e > 0) and antagonistic (e < 0) drug
interactions are shown in Figure 6a,b. In both cases, the distribution begins to distort after
roughly three loops, with the synergistic interactions breaking down slightly sooner in the
third loop. This is shown nicely in Figure 7 which depicts the two principal components (on
a log–linear plot) as a function of cycle number for additive, synergistic, and antagonistic
interactions. In all three cases, the variance of the distribution grows exponentially with
loop number. Antagonistic drug interactions outperform additive interactions, which
both outperform synergistic interactions. One could argue this is because antagonistic
interactions are able to suppress competitive release of the resistant populations more
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efficiently than synergistic interactions, as discussed in [26]. As N → ∞, the variances will
go to zero.

Figure 5. Histogrammed distributions of the three sub-populations as the number of loops increases. Note that some
tumors began to fill at the S = 1 and R1 = 1 corners, distorting the multivariate Gaussian nature of the distributions. Mean
µ and standard deviations σ are shown.

What effect does this breakdown have on the ability of the model to suppress compet-
itive release and control tumor growth? For this, we use the tumor growth Equation (16)
as shown in Figure 8 where we plot treated vs. untreated volumetric tumor growth using
adaptive scheduling. The solid lines depict the deterministic growth curves (tumor recur-
rence occurs around t ≈ 50), while the error bars show the spread of the adaptive stochastic
runs. Our basic message from this plot is that while the stochastic spread (associated with
tumor growth) increases as time progresses, it is perhaps not as much as one might expect
from the fact that the adaptive schedule is not producing closed evolutionary cycles.
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(a)

(b)

Figure 6. Same as Figure 5, but for synergistic e > 0 and antagonistic e < 0 drug interactions. (a) e = 0.3; (b) e = −0.3.
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Figure 7. Variance σe of the principal components as a function of the cycle number n plotted on
log–linear axes, so σe ∼ a exp (αen). Note that antagonistic interactions grow the slowest, while
synergistic interactions grow the fastest. α0: 0.936 (PCA 1) and 0.580 (PCA 2). α0.3: 1.02 and 0.670.
α−0.3: 0.885 and 0.543.

Figure 8. Tumor growth curve with adjusted replicator model using g = 1.05 and the stochastic
Moran process model (100 runs). The black curve shows untreated growth, blue and yellow show
adaptive therapy results. Error bars indicate 90% confidence level. Tumor recurrence sets in at t ≈ 50
in dimensionless time units.

4. Discussion

The exponential increase in the distribution variance with each adaptive cycle de-
grades the precision of each subsequent round of chemotherapy since the cycles were
designed to stay in a closed evolutionary loop only in the deterministic limit N → ∞.
Ideally, the time-dependent chemoschedule keeps the three sub-populations in long-term
competition with each other to avoid chemoresistance indefinitely, although delaying
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chemoresistance through several cycles may be all that is practically achievable due to
stochastic fluctuations. When examining the tumor growth curves (Figure 8), we can see
that the mismatch between the deterministic chemoschedule, when run in a finite-cell
stochastic model, gives results that are nonetheless better than what could be expected
given the exponential increase in variance. Nonetheless, we point to several concrete
strategies that could help extend the timeframe over which the schedules could remain
precise, even if the evolutionary loops do not close. Three strategies are discussed in [36].
The first is to explore other possibilities than the commonly used and accepted 50% rule
which identifies a nominal baseline tumor size and advocates applying chemotherapy
until the size shrinks by half. Then, when the tumor reaches the nominal baseline size,
chemotherapy is again implemented for another cycle, etc. It is easy to imagine that there
could be better, more optimized options, but none have been clinically tested as far as
we are aware. The second is to explore the role of tumor size in deciding when to apply
chemotherapy. Typically, chemotherapy commences as soon as a tumor is discovered, but it
is conceivable that this may not be optimal in all cases. In [5], we explored using different
chemotherapy schedules for different tumor growth rates, but these ideas have not yet
been tested in the clinic. The third idea discussed in [36] is to explore the optimal frequency
distribution of the cell populations in which to begin adaptive therapy. From the point of
view of our mathematical model, these ideas generally relate to the size and location of the
ABCA cycle in the tri-linear phase plane that would be optimal for an adaptive schedule.
We, of course, have discretion over both where in the tri-linear plane the cycle starts (loca-
tion of point A in Figure 2a), and how large an area the evolutionary loop ABCA should
enclose, both of which are tied to the suggestions made in [36]. Optimizing these decisions
could very well have medical implications that could and should be explored further.

5. Conclusions

The lessons learned in probing our finite-cell stochastic model using a chemoschedule
design from a deterministic model are both sobering and encouraging. On the one hand,
it is clear that designing an adaptive schedule using the deterministic model is far more
practical than designing a tailored one for each individual stochastic run. The simplicity
of this approach, however, comes at the price of not having exactly the right timing and
dosing levels for any single realization, which leads to a mismatch between the designed
closed loop and the stochastic sub-population levels. This, in turn, leads to an exponential
increase in the error variances associated with repeated evolutionary loops meant to keep
the sub-populations in perpetual competition. The good news is that the effect that this
mismatch has on tumor growth curves seems small—it is possible that the chemotherapy
cycles will still be good enough to delay resistance in a wide range of patient populations
and tumor sizes. Of course. this is based on the results of a mathematical model and
computer simulations, not clinical trials in real-world settings, and should be interpreted
in that context.
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