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Abstract
We introduce and analyze a coupled system of partial differential equations which 

model the interaction of shocks with a dispersive wave envelope. The system mimics 

the Zakharov equations from weak plasma turbulence theory but replaces the linear 

wave equation in that system by a nonlinear equation allowing the formation of shocks. 

This nonlinear equation is a hyperbolic conservation law forced by the dispersive wave. 

Chapter 1 considers a weak coupling in which the nonlinear wave evolves independently 

but appears as the potential in the time dependent Schrodinger equation governing 

the dispersive wave. We solve the Riemann problem by constructing solutions to the 

Schrodinger equation that are steady in a frame of reference moving with the shock. 

As in nonlinear WKB approaches, the Schrodinger equation is separated into phase- 

amplitude form. A viscous diffusion term is then added to the shock equation and 

by explicitly constructing asymptotic expansions in the small diffusion coefficient, we 

show that the Riemann problem steady states are zero diffusion limits of the regularized 

problem. The expansions are unusual in that it is necessary to keep track of exponen­

tially small terms to obtain algebraically small terms. We then construct a family of 

time dependent solutions in the case that the initial data for the nonlinear wave equa­

tion evolves to a steady-state shock in finite time. We prove that the shock formation 

drives a finite time blow-up in the phase gradient of the dispersive wave, and identify a 

family of transient solutions of the Riemann problem steady states. In Chapter 2 , the 

incompressible limit of the fully coupled equations is considered. In this limit, the ratio 

of the shock speed to the group velocity is large: as the coefficient of the time derivative 

of the shock wave goes to zero, the wavespeed becomes infinite. When this coefficient 

equals zero, the full system reduces to the single linear or nonlinear Schrodinger equa­

tion for the dispersive wave envelope. After presenting some exact solutions of the 

full system, a multi-time-scale perturbation method is used to resolve the interaction 

of solutions of the Schrodinger equations and a rapidly propagating shock wave. The 

leading order interaction equations are analyzed by the method of characteristics. The

iii
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details of the interaction process depend on the relative sizes of the shock strength and 

the dispersive wave amplitude. We show, for example, that if the shock strength is 

small compared to the dispersive wave amplitude, the shock can be completely blocked 

by the dispersive wave. Also, the dispersive wave can cause transient shocks to develop. 

The influence of the shock on the dispersive wave is manifested, to leading order, in 

the generalized frequency of the dispersive wave: the fast-time part of the frequency is 

the shock wave itself. Hence the frequency undergoes sudden jumps across the shock 

layers. Numerical experiments are presented which exemplify how, to leading order, 

the shock wave and dispersive wave frequency evolve in fast time.

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



To Bettina Axel.

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Acknowledgments
I thank my advisor, Professor Paul Newton, for teaching me how to be a mathematician 

and for making the lesson so enjoyable. I thank my friend, James Colliander, for the 

inspiring mathematical conversations over the years. I thank my brothers, Jonathan 

and Howard, and my parents, Peter and Bettina, for everything.

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Contents
Introduction........................................................................................................................ 1

1 The weak coupling lim it................................................................................6

1 The Riemann problem ...................................................................................7

1.1 Case 1: z  =  0 ........................................................................................................ 8

1.2 Case 2 : z ^  0 .......................................................................................................10

1.3 Construction of periodic orbits.........................................................................12

2 The zero diffusion lim it................................................................................14

2.1 The general perturbation expansion............................................................... 16

2.2 Asymptotic approximation in region.1 .......................................................... 23

2.3 Asymptotic approximation in region I I .........................................................25

2.4 Asymptotic approximation in region I I I .......................................................27

3 Dynamics prior to shock onset.................................................................................28

3.1 The general procedure: variation of parameters............................................29

3.2 Derivation of solutions...................................................................................... 31

3.3 Transients of the Riemann problem................................................................33

3.4 Some phase-amplitude plots through break tim e........................................... 35

2 The incompressible lim it............................................................................. 43

4 Exact solutions...........................................................................................................44

5 The 6 =  0 problem ........................................................................................ 47

6 The multi-scale expansions.....................................   49

6.1 Leading order shock equations.........................................................................50

7 Modulation equations for the dispersive wave........................................................ 51

7.1 0(1) modulation equations for Problem 1 .....................................................51

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



7.2 0(1) modulation equations for Problem 2 .................................................... 52

7.3 Generalized frequency of the dispersive wave............................................... 53

7.4 0(e) modulation equations for Problem 1..................................................... 54

7.5 0(e) modulation equations for Problem 2 ..................................................... 55

7.6 Expansion sum m ary..........................................................................................56

8 Solution of the shock equation for Problem 1 ...................................................... 57

8.1 Solution of the Riemann problem ...................................................................59

8.2 Shock structure for Problem 1........................................................................ 60

9 Solution of the shock equation for Problem 2 ...................................................... 62

9.1 Characteristic equations...................................................................................64

9.2 Single or multiple shocks.................................................................................. 67

9.3 Long-time dynam ics..........................................................................................72

10 Numerical experiments..............................................................................................79

Appendix...........................................................................................................................96

References....................................................................................................................... 100

V ita .................................................................................................................................. 105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Introduction
The simplest equation which allows shock formation even for smooth initial data is the 

hyperbolic conservation law

ut +  uuz = 0 . (0 .1)

It is a special case of the equation u t -F /(u )z  =  0. Much work in the past fifty years has 

been devoted to the development of a general theory for this equation and its extension 

to systems of conservation laws [1 , 2]. See also [3] for a very thorough list of significant 

contributions up to 1980. Dissipative or dispersive effects may be introduced in (0.1) 

by adding appropriate terms, typically higher order derivative terms or source terms, 

which may compete with the nonlinearity and suppress shock formation. The basic 

model of a shock wave in the presence of diffusion is Burgers’ equation [4]

Ut +  UUr  = TfUxx. (0.2)

The Tjtixx term smoothes out the solution and prohibits shock formation. For a large 

class of initial data, Burgers’ equation is exactly solvable [5] via the Cole-Hopf trans­

formation. Another method of introducing damping effects is seen in the model

Ut +  uu* =  <t(x )u. (0.3)

The source term ctu can act as a damping term [2] which in some cases may prevent 

shock formation [6]. This equation is studied in [7] as a model of gas flow through a 

nozzle. For some recent results on stability of the solutions of (0.3) when <r is constant, 

see [8]. In [9, 10], more general nonlinearities are considered.

The fundamental and perhaps most well studied model which includes dispersive 

effects in the conservation law is the scalar KdV equation [2 ]

U t +  UU* +  Uz z z  =  0. (0.4)

The effect of the additional dispersive term, with its accompanying oscillations, has 

been well studied [11, 12, 13]. The KdV equation is a rather special model of shock- 

dispersion competition in that it has a completely integrable structure [14, 15]. For a

1
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general discussion of various models of wave propagation through a dispersive environ­

ment, see [16, 17]. Equations which incorporate both diffusive and dispersive effects 

are also of interest [18, 19, 20]. These equations have the form

Ut 4* / (u )x =  OtUxx 4* fiUxxxi (0*5)

where, for example, /(u )  =  u2 (KdV-Burgers) or f[u) =  u3 (modified KdV-Burgers).

Examples (0.2)-{0.5) are scalar equations which include nonlinear terms that favor 

shock formation and diffusive or dispersive terms which discourage shock formation. As 

such, they are limited in the sense that they describe a single mode subject to various 

competing forces (friction, advection, dispersion, etc.). More complicated models occur 

as systems of equations governing the dynamics of two or more modes interacting with 

each other in various ways. A simple example of such a system is a  spring oscillating in 

the transverse direction (like a tight string) while compressive waves propagate along 

it in the longitudinal direction. To describe certain long wave/short wave resonant 

interactions in shallow water, Djordjevic & Redekopp [21] derived the system

ut 4- a ( |£ |2)x =  0 (0.6a)

iE t -I- Exx — uE = 0 . (0 .6b)

Here, the real part of E(x, t) represents a short ‘compressive’ wave (a capillary wave due 

to water surface tension) and the real-valued u(x, t) represents a long wave oscillating in 

the transverse direction (a water wave due to gravity). The governing equation (0 .6b) 

for E  is the dispersive Schrodinger equation with potential u. In [22], this system is 

solved via the inverse scattering transform developed by Ablowitz et aL [23]. A similar 

pair of equations originating from plasma turbulence theory is the so-called Zakharov 

system [24]

e2u tt — (u + 1 E\2)xx =  0 (0.7a)

iEt + Exx - u E  = 0, (0.7b)

coupling an ion-sound wave u with a dispersive plasma envelope E. Although the cou­

pling is nonlinear, the acoustic wave u is governed by a linear wave equation. Therefore,

2
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unless shocks are introduced in the acoustic wave as initial data, they will not develop. 

Gibbons et ai. show in [25} that (0.7) has a canonical Hamiltonian structure, but it is 

not known if the system is completely integrable. As the parameter e goes to zero in 

(0.7a), the speed of the acoustic wave goes to infinity. This limit is therefore called the 

incompressible limit. A general program for studying incompressible limits has been 

initiated by Ebin [26} and Klainerman k  Majda [27]. For small e, (0.7) has two widely 

separated time scales: t  and t/e. Letting e 0 in (0.7a) gives u  =  - \E \2 (modulo a 

function of t), and substituting this into (0.7b) shows that when e —► 0, E  satisfies

iE t +  £** +  \E\2E  =  0, (0.8)

the completely integrable cubic nonlinear Schrodinger equation (NLS). See [14, 28, 29] 

for a discussion of NLS. The incompressible limit is thus an integrable limit: for small 

e, system (0.7) is a perturbation of NLS, but the perturbation term u is a fast wave, 

not a small magnitude wave. This limit is studied by Schochet & Weinstein in [30], by 

Ozawa & Tsutsumi in [31], and by Newton in [32]. In [32], the incompressible limit 

is investigated by a multi-time-scale perturbation method which takes advantage of 

the widely separated time scales when e is small. The method is used to analyze the 

interactions of a fast unidirectional acoustic plane wave and a soliton solution of the 

nonlinear Schrodinger equation.

In this doctoral thesis, a similar program is carried out for a system based on the 

Zakharov system, but one which allows the development of shocks in the acoustic wave

u. Mimicking the Zakharov system, the model we consider here is

cut +  u(u +  6 |£ ]2)* =  0 (0.9a)

iE t +  £** -  u E  =  0. (0.9b)

Although not explicitly derived from physical principals, it is a natural generalization 

of the Zakharov and Djordjevic-Redekopp systems in that it replaces the acoustic 

wave equations in those systems by the simplest possible nonlinear equation which 

allows shock formation. This is seen by comparing the three systems in the absence

of a dispersive wave envelope (E  =  0). The Djordjevic-Redekopp system reduces to

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ut =  0 , the Zakharov system reduces to e2utt - U q  =  0 , while system (0.9) reduces 

to eut +  uux =  0, hence shock formation is admitted. System (0.9) is designed to 

incorporate the interaction of shock waves and dispersive waves while not straying too 

far (structurally) from these well-known physical models. In particular, the equation 

governing the dispersive wave envelope E  is exactly the same in all three systems. We 

note some immediate observations regarding (0.9).

• Like the Zakharov system, there is no known integrable structure for system (0.9).

•  When <5 =  0, the equations are coupled only by the presence of u(x, t) in (0.9b) 

as the time dependent potential. We call this the weak coupling limit; it is the 

subject of Chapter 1 of this thesis1.

•  When there is no dispersive wave (E(x, t) = 0), the acoustic wave is governed by 

the scalar conservation law

e u t+ tx u s = 0 , (0.10)

whose wavespeed is inversely proportional to e. In the singular limit e -* 0, 

equation (0.9a) can be solved by setting u =  —6\E\2. When this is substituted 

into (0 .9b), we get the NLS equation for E (x,t) . Hence, this limit, as in the 

Zakharov system, is an integrable limit. It is an incompressible limit in the sense 

that the wavespeed u /e  —► oo. The incompressible limit of the fully coupled 

(5 =  1) system, is the subject of Chapter 2 of this thesis.

Despite the fact that, to our knowledge, this is the first comprehensive study of 

two mode shock-dispersive wave interactions, the propagation of shock waves through 

a dispersive environment occurs in many natural settings. One example comes about 

when acoustic shocks (e.g., underwater explosions) propagate through the ocean where 

they potentially can interact with surface gravity waves or internal waves [34, 35]. For 

general background on these and related issues, see [36]. A second example arises 

when a supersonic object travels over the ocean, generating a sonic boom and leaving

lThis work appears in [33].

4
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a footprint on the water’s surface. The interaction of this N-wave shock on the flat 

ocean surface is examined in [37, 38, 39). The more complicated situation in which deep 

ocean waves interact with the N-wave has not been studied and is a clear example of the 

interaction of shocks with finite amplitude dispersive waves. Another example arises 

in medical applications where acoustic waves propagate through tissue and internal 

organs and are used for non-destructive imaging, or as destructive devices, for example, 

to break up kidney stones. A basic introduction to some of these issues can be found in 

[40]. See also [41, 42]. As a last example, we mention the propagation of shock waves 

through interstellar plasma media [43, 44, 45]. This may result from energetic events 

such as mass loss by massive stars, supernova explosions, and cloud-cloud collisions, 

for example. Such wave interactions can trigger a weak form of plasma turbulence [44] 

and are thought to periodically cause interruptions in satellite based communication 

systems on earth. The results of this thesis are intended as a first step in describing 

such complex interaction problems.

5
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Chapter 1 

The weak coupling limit

The weak coupling limit is obtained by letting 6 —► 0 in (0.9a). This gives

u£ -f uux =  0 (1.0a)

iEt +  Exx -  uE  =  0 . (1.0b)

To solve (1.0), one must specify initial data u(x, 0) =  uo(x), E (x, 0) =  Eq(x ) as well as 

boundary conditions as |x| —► oo. The main question we are concerned with is how the 

formation of shocks in the conservation law (1.0a) affects the dispersive wave envelope 

governed by (1.0b).

Chapter 1 is organized as follows. In section 1 we consider the Riemann problem for 

( 1.0a) in which an acoustic shock propagates at a fixed constant speed determined by 

the initial data. We solve for the dispersive wave envelope E (x, t) — R(x, t) exp(t'0(x, t)) 

by moving in a frame of reference with the shock and solving the resulting coupled 

ode’s for the amplitude R  and phase 9. In section 2 we replace (1.0a) with the Burgers’ 

equation and study the zero diffusion limit. We construct small diffusion asymptotic 

expansions for the amplitude R  and show that solutions constructed in section 1 are 

zero diffusion limits of the augmented problem. For the asymptotic expansion, it is 

necessary to keep track of algebraically small as well as exponentially small terms. 

The exponentially small terms play an important role in enforcing continuity of the 

amplitude in the region of rapid transition of the smoothed shock profile of Burgers’ 

equation. In section 3, we specify initial data for u(x, t) which evolves to a shock in 

finite time and study the resulting time dependent dispersive wave. It is shown that 

the formation of the shock drives a blow-up in the phase gradient, 9X, of the dispersive 

wave: the shock for u(x, t) develops algebraically in time, the phase gradient blows up 

logarithmically in time. We then show that a  subset of these time dependent solutions

6
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are transients of the Riemann problem steady states of section 1. In section 3.3, we 

show plots of three time dependent solutions. The first is a solution that evolves to 

a steady state constructed in section 1. The second is a solution that evolves to a 

phase-kinked steady state, i.e. a traveling wave with a phase discontinuity. The third 

is a non-transient solution.

1 The Riemann problem

We first consider the Riemann problem for system (1.0). Given initial data

u(x,0) =  < (1 .1)
U{ x  < 0 

U r X  > 0,

where u(x, t) : R  x R + -+ R , uj -  Ur > 0, we seek solutions, E(x, t ) : R  x R + -* C, of 

the time dependent Schrodinger equation (1.0b).

The solution to the conservation law (1.0a) with initial data (1.1) is given by a 

propagating shock with speed c =  j(u j +  Ur), [1, 46]. We assume without loss of 

generality that uj 4- U*. > 0. In terms of the traveling variable £ =  x  -  ct, the shock 

solution is

u . 2>
Ur £ >  0 .

We seek solutions to the time dependent Schrodinger equation that move with the 

same speed as the shock, hence are steady in the traveling variable. Substituting 

£(£) =  R(£) exp(i0(O) into (l-0b) leads to the coupled ordinary differential equations

u ( 0  =  <

Qf'R +  (2^ -  c)Bf =  0 (1.3a)

# '  + ( c 8 '- ( t f ) 2 - u ) R  = 0, (1.3b)

where prime is differentiation with respect to £. Since only derivatives of 6 appear, it

is convenient to define a new variable

z{0  = 2 # - c .  (1.4)

7
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We write

and seek Ri(£) and &(£)> t =  I, r. We then obtain solutions of (1.3) by piecing together 

the solutions for £ <  0 and £ > 0 subject to the continuity condition

f t( (T )  =  ft.(0+) and ftOT) =  0r (O+).

We consider two cases.

1.1 C a se  1: z  — 0

In this case, both parts of the phase, Qi and 0r > are linear in Equation (1.4) implies

The constants 71 and 7r are defined modulo multiples of 2ir. In the case 7 j /  7r (mod 

27t), (1.5) represents a steady state phase-kink, i.e, a phase with a jump discontinuity 

across £ =  0. If 7* =  j r (mod 27r), the phase is continuous. Equation (1.3b) reduces to 

the time-independent Schrodinger equation for the amplitudes Ri and Rr'.

where VjP =  ^  — ujP. The bounded solutions of (1.6) depend on the signs of Vj and 

Vr. Figure 1 displays the regions of the (ttr, u<) plane in which Vj and Vr have definite 

signs. Because uj ±  Ur > 0, there are only three allowable subregions of shock values. 

Region I corresponds to Vi < 0, Vr < 0, region II to Vi < 0, Vr > 0, while region III 

corresponds to Vj >  0, Vr > 0. The dashed line in Figure 1 is the line ttj =  Ur. The 

bounded continuous solutions in the three regions are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(1.5)
c£/2 +  7r £ > 0 .

Rfj +  ViRi =  0 e <  0

R% +  VrRr =  0 f  >  0 ,

(1.6a)

(1.6b)

8
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III
6

4

2

0
- 4 - 2  0 2 „ 4 6 8

u r

Figure 1: The (ur. U() plane consisting of allowable shock strengths on either 
side of £ =  0. Region I: amplitude R  decays exponentially on each side of 
£ =  0. Region II: R  decays on the left, oscillates on the right. Region III: R  
oscillates on both sides. All regions are above the dashed line uj =  Ur.

region I:

a  exp £ < 0

aexp( — £ > 0 ,

region II:

region III:

m  =

a e x p i^ -V it)  £ < 0

y / ^ a  s i n (  +  a  c o s (  a / T O  £  >  0,

^/?sin(>A TO  +  a c o s (v ^ O  £ <  0

k ^ s i n ( ^ )  +  a c o s ( ^ )  £ > 0 .

The constants a  and 0  are determined by 12(0) and f2'(0), respectively.

(1.7a)

(1.7b)

(1.7c)

9
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1.2 C ase  2: z  ^  0

Solving (1.4) for d(£) gives

c£/ 2 +  M O  +  71 £ <  0
m  = ( 1.8)

cf/ 2  +  tfP( 0 + 7 r  f > 0 ,

where

1 f t
M O  = \ J Q i = l,r, (1.9)

and 7 i, 7r are constants. In the limit z% -* 0, (1.8) reduces to the linear phase (1.5). 

With 9 given by (1.8), equation (1.3a) separates as

2* Ri'

or equivalently

( 1. 10)

=  ’ Ki constant- (LU) vl*(OI

Substituting (1.11) into (1.3b) gives a nonlinear oscillator equation for Zi\

*" +  / ( * . ^ ) + 0 (* ) = 0 , (1.12)

where

/ (* >  4 )  =  - | ( * 0 a*Tl . 9(k ) =  j* ?  ~  2 ^ .  (1.13)

To analyze (1.12) in more detail, we write it in first order form:

z!i=Wi (1.14a)

w[ = ~ £  + 2ViZ i- \ z l  (1.14b)

If Vi > 0, i =  I, r  (region III in Figure 1), then (1.14) has the fixed points

h  = ±2y/Vi (1.15)

Wi =  0. (1.16)

10
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The fixed points correspond to solutions

.f§ V r~  f > 0 ,
(1.17)

( c / 2 ± v / V j ) £  +  7 i ^ < 0
(1.18)

(c /2± y/V r)^  + Jr S > 0 ,

of system (1.3), where Ki, K r , 7 j, 7r are constants. We show that these fixed point 

solutions are centers, hence in the neighborhood of the fixed points there exist periodic 

solutions.

Without loss of generality, we choose the plus sign in (1.15). A suitable transfor­

mation of the fixed point and a  rescaling of the dependent and independent variables 

renders system (1.14) in normal form. Let =  Zj +  q i/z i and define £ — Zj£ and 

92 =  dqi/d£- With • =  d/d£  and q =  (91, 92). (1-14) becomes

We make three observations about system (1.19).

1. The linear part of (1.19) has pure imaginary eigenvalues A =  ±t, hence no con­

clusion can be drawn on the nature of the fixed point 9  =  0 based on linear 

theory.

2 . f(q) is analytic at the origin.

q = Aq + f(q), (1.19)

where

( 1.20)

and

A  (9) =  0, ( 1-21)

( 1.22 )

11
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3. (1.19) is symmetric under time reversal, i.e., if (9 i(0 ,92(f)) is a solution, so is 

(<7i(-0. -? 2 (~ 0 ) .

By the Center Theorem of Liapunov [47], the first two observations allow us to conclude 

that the equilibrium point q =  0 is either unstable, asymptotically stable, or a center. 

The third observation implies that the fixed point q =  0 is a center.

The periodic solutions for q near 0 correspond to solutions of (1.3) that have oscil­

latory amplitudes. Although these amplitudes are qualitatively similar to the solutions 

discussed in the z = 0 case, they are not simple sinusoidal oscillations. In the next 

section we construct an approximation of these periodic orbits.

1.3 Construction of periodic orbits

We approximate the periodic solutions for Zi(£) near the fixed points z% defined in 

(1.15), i.e., near 9  =  0. For this approximation, we transform to polar coordinates and 

follow the general method described in [47]. Let 91 =  rcos(0) and 92 =  — rsin(0). Then 

system (1.19) becomes

r = R(r,6), 0 = 1  +  0 (r ,0 ). (1.23)

The right-hand sides are given by

R(r,9) =  /i( rc o s0 ,-rs in 0 )c o s0  -  / 2(rco s0 , - rs in 0 )s in 0 , (1.24)

9 (r ,0 ) =  —-/i( rc o s 0 ,- r s in 0 )s in 0  —/ 2(rco s0 , —rsin0)cos0, (1-25)
r

where 0(0 ,0) is defined to be 0. Both f?(r, 0) and 0 (r , 0) are 2ir-periodic functions 

of 0, and in a neighborhood of 9 =  0 we have 0 >  0. Dividing the first equation by 

the second in (1.23) gives a  scalar ordinary differential equation governing the radial 

variable:

=  (1.26) 

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where

R(r,6) =
R(r,6)

1 +  0 (r ,0) '

By (1.21), (1-22), equations (1.24), (1.25) are

R(r, 9) =  - - sin(0)

0 ( r ,0) =  - - c o s ( 0)

r2 sin2(0 ) r2 cos2(0) r 3 cos3(0 )

3ijz j  +  rcos(0) 

r2 sin2 (0) r2 cos2 (0) r3 cos3 (0)
3£*j

(1.27)

(1.28)

(1.29)
z2 +  rcos(0 )

Expanding the right-hand sides of (1.28), (1.29) in terms of r  for r  near the origin and 

substituting into (1-27) gives

R(r, Q) =  -a s in (0 )r2 +  0 ( r 3), (1.30)

where
_ 3 sin2(0) 3cos2(0) „  01,
CX = - — —--------— ~ — • (1-31)2 z j  2 z j  •

We transform the radial variable in (1.26) to eliminate coefficients depending on 9. Let

r  =  p +  /?(0)p2 +  0 (p3), 

where 0(6) is to be determined. Then

S-IS-a+wS+'W
Using this in (1.26) gives the new radial equation

^  =  - ( a s in ( 0) +  ff)p 2 +  0 (p3).

For p to be independent of 6 through O(p0), 0(6) must satisfy:

0f =  - a s in ( 0).

Integrating gives

0 ( 9 )  =  2 | ? C06W  “  ~  2 F *

where the integration constant was chosen so that 0(0) = 0 . Hence, through 0 (p 2), we 

have the approximate periodic orbit given by (1.32), (1.36) with p =  constant. Note 

that in (1.36), the z2 term in the denominators is 4Vj if £ <  0 and 4VJ. if £ >  0.

(1.32)

(1.33)

(1.34)

(1.35)

(1.36)

13
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u

Figure 2 : Smooth shock layer initial data (2 .2 ) for Burgers’ 
equation (2 .1a).

2 The zero diffusion limit

For pure conservation laws, the zero diffusion limiting process picks out a  unique and 

physically meaningful shock solution in what is otherwise a  problem with many solu­

tions [1, 46, 48, 49, 50]. In this section we show that the solutions to the Riemann 

problem (1.0), (1.1) constructed previously are zero diffusion limits of an augmented 

model that incorporates the effects of viscosity. The augmented model for u£(x, t; e) 

and E*(x, t ; e) is

u\ +  u£u‘ =  6T4 * 

iE ; + E£x - u eEt = 0,

(2 .1a)

(2.1b)

where 0 <  e <  1. As initial data for Burgers’ equation (2 .1a) we take the smoothed 

profile (Figure 2) corresponding to (1.1):

(U( -  Ur)
ue(z, 0 ; e) =  Ur + (2 .2)

1 + exp(az7 e)’

where a =  \(u i  -  Ur) >  0. In the limit € -* 0, for x  £  0, it is easy to verify that 

ue(z, 0 ; e) —► u(x, 0) given in (1.1). The solution to (2.1a) with initial data  (2 .2 ) can be 

explicitly written [2j:

(2.3)

14
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where the traveling variable £ and wavespeed c are those given in the previous section. 

We construct explicit asymptotic expansions for E e in regions I, H, III which, in the 

limit e —► 0, reduce to (1.5), (1.7) of section 1.1. The asymptotic expansions for Re(0  

are summarized first for convenience.

T heorem  1 (Sm all diffusion expansions). Consider solutions to (2.1b) o f the form  

£<(£ e) =  e) exp(tfl*(C; e)), with £ = x  -  ct, c =  (uj +  Ur)/2. I f  the phase e) 

is independent o fe and corresponds to the limiting (e =  0) form in equation (1.5), then 

the amplitude Rf{£) satisfies the Schrddinger equation

+ ( 7 '  “ e® ) ”  ° ’ (24)

where ue(£) is given in (2.3). The approximate solutions through 0 (e2) are:

region I:

Re($) =

* ( 0  =

15

jot +  ^ e 2 +  0 (e3) -  ^ e x p ( f ) +  t.s.t|  exp (>/-Vfc) £ < 0,

(2.5a)

| a  ~  l l r e2 +  0 (e3) +  ^  +  J  e^P ( - V ^ )  £ > 0 ,

r e g i o n  / / :

| a  +  ^ e 2 + 0 (e 3) -  ^ e x p ( f )  +  f.s .t.| exptV^Tfc) £ < 0,

| a > / ^ [ 1 +  ^ €2 +  ° ( £3) (2.5b)

+  ^ e x p ( ^ ) ]  +  U . f .  j  s i n ( v ^ f )

+  { a  -  +  0 { £ )  +  ^ e x p ( ^ )  +  t.s.t. 1 cos (\ZvT0  £ >  0,
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region III:

{ w , + t $ r ' - $ : & + 0 ^

-  jjT f « p (§ )  +  ! s t  j sto (V5ff)

+  ( a  + ^ e 2 + Oie3) +  ^  exp(£) +  U . t  1 cos (\/Vf£) £ < 0,

* ( 0  = (2.5c)

{ ^ r  +  ^  +  ^ ^  +  o ^ )

+  e x p (^ )  +  t.s. A  sin (V ^ f)

^ (e3) +  ^  e x p (^ )  +  i  cos (a/W'O £ >  0 ,
V

u/Aene ts .t. denotes terms which, for fixed £, are transcendentally small as e —► 0 .

In the limit e —► 0, these solutions correspond to the solutions (1.5), (1.7) of the 

zero diffusion model. Note that the terms in brackets are either algebraic in e or 

transcendentally small. We have included the first transcendentally small term  in each 

case, as it represents the most important contribution to  the solution in the inner 

region |f| <  1. In the terminology of matched asymptotics [51], the algebraically small 

terms constitute the outer solution while the transcendentally small terms constitute 

the inner solution. The composite expansions (2.5) are obtained by adding the inner 

and outer contributions. The remainder of this section is devoted to constructing these 

asymptotic expansions. In Figures 3-5, plots of the expansions are presented. Each 

figure contains three plots: the first two plots show the outer and composite expansions 

in each region, the third plot compares the composite expansion to a numerical solution 

of equation (2.4).

2.1 The general perturbation expansion

Our analysis is based on system (1.3) with potential ue(£) given by (2.3). With z =  

2& - c  = 0, the phase 0 is given by (1.5). It is then straightforward to show that (1.3b)

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0.8

R(<;) 0-6
0.4

0.2

2 60-2 4-6 -4

0.8

0.6

0.4

0.2

2 6-2 0 4-6 -4

(b) 5

0.8

0.6

0.4

0.2

60 2 4-2-6 -4

(C ) 5

Figure 3: Region I (m =  2 , Ur =  1, a  =  1). (a) Outer expansion. Solid: e =  0. 
Dashed: e =  0.3. (b) Composite expansion (2.5a). Solid: 6 =  0 . Dashed: 6 =  0.3. 
(c) Composite expansion (2.5a) (dashed) vs. numerical solution of equation (2.4) 
(solid) each with 6 =  0.3.
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Figure 4: Region II (uj =  6, Ur =  2, a  =  1). (a) Outer expansion. Solid: e =  0 . 
Dashed: e =  0.3. (b) Composite expansion (2.5b). Solid: e =  0. Dashed: e =  0.3. 
(c) Composite expansion (2.5b) (dashed) vs. numerical solution of equation (2.4) 
(solid) each with e =  0.3.
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Figure 5: Region III (uj =  6 , Ur =  4, a  =  1, 0  =  I), (a) Outer expansion. 
Solid: e =  0 . Dashed: e =  0.3. (b) Composite expansion (2.5c). Solid: 6 =  0 . 
Dashed: e =  0.3. (c) Composite expansion (2.5c) (dashed) vs. numerical solution 
of equation (2.4) (solid) each with 6 =  0.3.
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reduces to the Schrodinger equation (2.4). We seek solutions of (2.4) which, have the 

same form as (1.7) but with coefficients a  and 0  replaced by functions A, B, C, D of

where VjP =  ^  — u/r, we are led to seek similar expansions for the coefficients A, B,C, 

D. Expansion (2.6) displays V e as the sum

The outer part of the expansion, Out(Ve), is a step function. The inner contribution, 

Inn(Vre), depends only on the scaled variable £/e, and for £ ^  0, is transcendentally 

small as e —► 0. As £ —► 0, however, Inn(V£) is of the same order of magnitude as 

Out(Ve). The expansions for A, B, C, and D  will also be sums of outer and inner parts. 

These expansions will be subjected to matching conditions at £ =  0. The matching 

conditions will ensure that #*(0) =  a, and that in regions II and III, ^ - ( 0 )  =  y/—Via 

and ^ ( 0 )  =  0, respectively. We define several operators that are needed to describe 

the solutions.

D efinition: For n  > 1, define the operators

£ and e. Since the potential Ve(£) = —■ — u£(£) can be expanded as

V

Vf+ 2aCJL1( - l ) ,H-l exp(na£/e) £ < 0

Vr - 2a ^ ^ =l( - l ) n+1exp(-na^/e) f  >  0,
(2 .6)

V e = Out(Ve) +  Inn(Ve), (2.7)

where

(2 .8)

and

Inn(Ve) =  < (2.9)

. - 2o E ^ i ( - I ) n+1e x p (= ^ )  ^ > 0 .

(2.10)

20
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S" “ n(na +  2v^V ;e ) ’ (2 ' 12)

o,2
S i   ■\-+ r —  . (2.13)

n(na + 2y/—Vie)

Definition: Let 6 = (S i,. . .  , 8j), j  >  1, be a multiindex with positive, integral entries. 

We say that 6 has length j .  Define Tj by

T ls = TlS l-T ls, - - - T is ., (2.14)

where the product is interpreted as a composition of operators. Define 7 J, S ls, 

and Sg similarly. Let A j be that set of all multiindices of length j .  Define

A} =  {d €  Ay : Si =  k, St > > ••• >  6j}. (2.15)

D efinition: Define the operators

po(Tl) =  / ,  the 2 x 2 identity matrix, (2.16)

M T 1) =  £  ( ( -1 )" -^  £  7f  ) n >  1. (2.17)
J=1 V J

Define PnC*’’’), pn(5<), and pn(5r ) similarly.

We shall need the following lemma and corollary.

L em m a 1. Let m  =  R2 -+ R  be the projection operators:

(x \  j  x  i f i  =  1,

y )  " I  V i f i  = 2 .

21
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We have the following expansions:

Ln
\ v j

\V )

4 y/Vfy— _  
n2a n3 a2 '

= 4 ^ +n*a
Ay/VrX 
n3 a2

- 2*^2 4 y/Vty
n2a n3a2

(2.18)

(2.19)

(2.20)

(*) = + (2-21> \ y j  n  a  n  a

% ( x ) = % f -  + ° (e<)' (2'22)

s i w  =  S e2 +  1 ^ e3 +  c>(£4)- (2'23)

Prw/. Formulas (2.18)-(2.23) are obtained by expanding the operators T£, T^, S£, and 

S ln in powers of e using geometric series. □

C orollary  1 . I f  x  and y are 0(6®), then

( * * ,

pn(5)(x) =  ( - l ) n+l5n(®) +  0(ea+4), (2.25)

where superscripts r and I have been suppressed.

Proof. The only degree one term in the polynomial pn(T) is (—l)n+l Tn. The same is 

true for pn(5). □

The derivations of the asymptotic expansions listed in Theorem 1 are presented next.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.2 Asym ptotic approximation in region I

We seek a solution of the form

f A fc e )e x p (V :=7i£) £ < 0  

# (£ ;€ ) =  < (2-26)

k B ^ e J e x p C - v /^ O  f > 0 .

Substituting (2.26) into equation (2.4) gives the system

A!' 4- 2yf—V\,A' 4- (Ve — Vi)A =  0, (2.27)

B" - 2 y /^ V r &  + {V * -V r)B  = Q. (2.28)

These equations for A(£;e) and £(£; e) are at least as hard to solve as equation (2.4) 

for /?(£; e). We therefore introduce the following expansions:

A( 6  e) =  M e )  + Y ,  e* P ( ~ ) .  (2-29)

B(ft e) =  Bb(e) +  j ;  B„(c) e x p (-2 2 i), (2.30)

where the coefficients have expansions in powers of e:

An( e ) = Y A»>ej n ^°> (2-31)
J=0

oo
Bn(€) =  ^ 5 n;V « >  0. (2.32)

J=0

Several points are worth emphasizing:

1. The terms A q , B o are the outer contributions, important away from £ =  0. They 

can be represented as algebraic expansions in e as in (2.31), (2.32).

2. The terms An,B n, n  > 1, also have expansions in powers of e, but the expres­

sions £ i °  A»(e)exp(2f i ) and Bn{e) e x p ( ^ ^ )  have summands which are 

transcendentally small for £ ^  0 as e —► 0. These terms constitute the inner 

contributions, important near £ =  0 .

23
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3. The continuity of the solution at £ =  0 involves all of the terms An, Bn, n >

0. This is because the inner terms and outer terms are of the same order of 

magnitude at £ =  0. The expansions listed in Theorem 1 are constructed so as to 

satisfy the continuity conditions at £ =  0 with all of the transcendentally small 

terms included.

Equations (2.27) and (2.28) give algebraic equations for the coefficients An(e) and 

£ n(e). These algebraic equations are easily solved. The solutions are

where pn(Sl) and Pn(S') are defined in (2.16) and (2.17). The coefficients Ad and Bq 

will be determined by the matching condition

An — Pn(5 ) Aq n >  0, (2.33)

and

Bn — Pn(5r )-So n  >  0 , (2.34)

£ ‘(0 - 6) =  H<(0+ ;e) = a . (2.35)

This matching condition is equivalent to the two conditions

1. A(0 ; e) =  a.

2 . £?(0 ; e) =  a.

By (2.29), condition 1 gives the equation
00

(2.36)

By (2.33), this is
OO

A0 + '52(pn(Sl)A o )= a . (2.37)

With Ao(e) =  ^ o °  A>nen, (2.37) becomes

(2.38)

24
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Using Lemma 1 and Corollary 1, we collect powers of e on both sides of the equation. 

The first three equations obtained are:

0 ( 1 ) :  Aqq =  at,

0 (e ) : i4oi =  0 ,

Ofe2) : A »  +  £ ^ ^ ( - 2Ajo) =  0 .

The result is

i4o(e) =  a  ( l  +  ^ e 2 +  0(e3) )  . (2.39)

Therefore, A(£; e) =  i4o(e) +  t.s.t. as claimed in the first paragraph of Theorem 1. 

Matching condition 2 gives the equation
OO

Bb +  X > n ( S r )B b )= a . (2.40)
i

W ith Bo =  Sone", we have the equations

0(1) :B oo  = a,

0 ( e ) : Boi =  0 ,

0(e2) :Bq2 + T  ^ -----(2Boo) =  0 ,Y '  n*a

which results in

Bo(e) =  a  ( l  -  ^ e 2 +  + 0 (e3) )  , (2.41)

as in Theorem 1. This concludes the region I analysis.

2.3 A sym ptotic approximation in region II

In region II we seek a solution in the form

A(£; e) exp(v/ — £ < 0

B(£;e)sin(VTr£) +C '(^;e)cos(>/T^) £ > 0. 

25
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The equations for A(£; e), £?(£;e), and C(£;e) are

A" +  2 y /^V tA! +  ( ^ e -  Vf)A =  0, (2.43)

and the coupled system

fl" -  2 y f-V TC  +  (Ke -  V;)5 =  0, 

C" +  2 s /-V r&  +  -  v ;)c  =  0 .

With C(£;e) =  53* Cn(e)exp(-na£/e), and A, B  as before, we find

An =  pn(S*)Ao n > 0, (2.44)

and

The matching conditions in region II are

5 n l = P n C H n > 0 . (2.45)

1. A(0;e) =  a .

2. C(0;e) =  a .

3. A'(0; e) +  y/=7iA(Q\ e) =  v ^ B (0 ;  c) +  C'(0; e).

Condition 3 is the requirement that ^ - ( 0 “ ) =  ^j|-(0+). As in the region I analysis, 

the result of condition 1 is

(2.46)

Condition 2 gives the equation

Co 4 - ^ 7 r 2pn(Tr) 
l

(2.47)

which implies

0 (1 ) : Coo =  a , 

0(e ) : Coi =  0 ,

0 (e 2) : C02 +  T  ^ ^ ( 2 0 o o )  =  0.Tl*<X

26
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The result is

C0( e ) = a ( l - ^ € 2 +  O(e3) )  

Condition 3 gives the equation

(2.48)

^2 (™ )p n (S l)Ao +  y /-V ia  =  y/Vr < Bq +  y^7TiPn(7,r)
Bo

vC q .

+ D :7 £ ) * » - ( r r )
Bo

(2.49)

i ” \Coj

Setting powers of e on both sides of (2.49) equal to zero gives

0(1) : y f - V { =  s/V rB o o,

( - l ) n+l,

: E B02 +  y / V r f ^  t̂ l(2aoo)
: E  ^ p ^ A n )  =  y/K B oi + £ " —~ ~ ( 2Croo)

o).

The result is

5 0(e) =  a y f - f i - i }  +  +  ° ( c3))  •

This concludes the region II analysis.

2.4 A sym ptotic approximation in region III

The expansion in this region takes the form

e) sinfvlfc) +  B(£; e) cos(v/W<f) <f <  0

=  <

k C(£; e) s i n ( ^ )  +  D(ft «) c o s ( ^ ) . £ >  0 . 

The equations for A , B, C , and £> are

A" -  2y/VlB > +  (V* -  Vj)A =  0 

fl" +  2 ^ A '  +  (V* -  Vt)B  =  0,

(2.50)

(2.51)
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and

C" - 2 ^ / V r t f  +  (V* -  Vr)C  =  0 

+  2sf^V rC 1 +  (F £ -  Vr)D =  0.

The solutions of the resulting algebraic equations are

n >  0 (2.52)

~ f t . c n n > 0 . (2.53)

The matching conditions are

1. B(0; e) =  a .

2. D(0; e) =  a .

3. y/V[A(Qi e) +  B '(0 ; e) =  0.

4. ^ T C (0 ;e )+ D '(0 ;e )  = 0.

Conditions 3 and 4 are equivalent to ^ ( 0 “ ) =  ^ ( 0 + )  =  0. The remaining analysis 

is essentially the same as the region I and II analysis and so is omitted. This concludes 

the derivations of the expansions in Theorem 1.

3 Dynamics prior to shock onset

We turn again to system (1.0) for u(x, t), E{x, t), but now with initial data (Figure 6) 

for u:
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u(x,0) =  u< (3.1)
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u(x,0)

• -u

-h/2 h/2

Figure 6 : Initial data (3.1).

where a =  j(u j — Ur) > 0 , and h is a fixed but arbitrary positive constant. It is well 

known [1, 2] that the initial data (3.1) evolves according to the conservation law (1.0a) 

into a shock steady in the £ = x  — ct variable, c =  ^(m + Ur) >  0 . The shock formation 

occurs at time t* =  h /2a. In this section, a family of piecewise smooth solutions 

of (1.0), (3.1) is described. One feature of these solutions is that Q(£, t) is piecewise 

linear in £. Though 0(£, t) does evolve in time, its spatial structure remains piecewise 

linear. On a certain interval described later, the slope of 0(£, f) becomes infinite as 

u(£, t) forms a shock. These solutions thus show how shock formation in u can drive a 

finite time blow-up in Of. Since Of can be interpreted as a generalized wavenumber for 

the modulated wave Rexp(iO), the result shows that shock formation of u provides a 

mechanism by which small scales (high wavenumbers) are generated in the dispersive 

system. Moreover, we show that the rate at which the wave number becomes infinite 

is 0 (log(t* — t)) as t  —► t* while the shock forms at the rate 0 ( 1 /(t* - 1)) as t  —► t*.

3.1 The general procedure: variation of parameters

For ease of notation, let ‘gap’ denote the time dependent interval ( - h /2 + at, h/2 —at), 

which is centered about 0 and collapses to 0 as t -* h/2a. By £ <  gap, we mean points

29
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to the left of this interval, etc. The solution of (1.0a), (3.1) can then be written as

ui £ < gap

c -  £ 6  gap

Ur £ > gap

for £ < £*, (3.2a)

u (f , 4) =  <
u i £ < 0

Ur £ > 0

for £ >  £*, (3.2b)

where £* =  h/2a. The evolution of u(£, t) given by (3.2) is particularly simple: as 

£ -* £*, the slanted line segment in Figure 6 steepens as the interval (—h/2+at, h /2 - a t)  

collapses to the origin. Then at time £*, u(£,£) becomes the steady-state step function

(1.2) considered in section 1. Motivated by equation (1.5), we seek 0(£, £) in the form

(3.3)

This is simply a variation of parameters applied to (1.5). We break up 0(f, £) into three 

parts corresponding to the intervals on which u(£, £) is linear:

*(£,«) =  <

wi(t)£ +  Xi(t) £ < gap

^ 2{t)S +  X2 (t) £ € gap

W3(0 €  +  X3(t) $ > gap,

(3.4)

and use (1.0b) to derive equations for w, and x»  i =  1,2,3. We shall see that |u/2(£)| 

oo as £ —► £*. For the amplitude R, let

R ifo t) £ < gap

II «a(f,£) £ €  gap

£ >  gap.

(3.5)
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3.2 Derivation of solutions

Equation (1.0b) in phase-amplitude form is

dR 
dt
dR  ( n d9 \ 3 R  n

+ { 2r r c) ^ + w R = 0  (36a)
&*r  . f  m  ( m y  m  \ (3.6b)

Substituting 9 =  Wi(f)£ 4- X» W and R  — Ri in t0  (3-6) gives

dR% . „ .d R i >(3.7a)

!?g§- + ( c U i - w ? - V i t - i ( x - u ) R i  = 0 , (3.7b)

where • =  d/dt. Equation (3.7a) is a first order wave equation for Ri with variable 

wavespeed. As long as R i  depends only on £4- rji, with rfc =  J q ( c -  2 u , ( s ) )  da, equation 

(3.7a) will be satisfied. The potential cm — uif — oj%Z — x» — u in (3.7b) must then be a 

function only of the variable £ 4- We state a simple lemma:

L em m a 2. I f  f ,g  and h are differentiable functions of a single variable and if the 

relation

h(t)S + g(t) = f(S  + Tk) (3.8)

holds for t > 0  and all Z, then h(t) =  A, A constant, and g(t) = Arfc +■/*, P constant.

Proof. Differentiating both sides of (3.8) with respect to Z gives

W ) =  / '(£  +  * ), (3.9)

where prime is differentiation with respect to £ 4- ffc. Since the left side of (3.9) is

independent of Z ,  both sides of (3.9) are equal to a constant, say A. Hence /(£  +  rfc) =

X ( Z  +  rj i )  + f i  for some constant f i ,  and the lemma is proved. □

We use Lemma 2 to derive equations for and Xi> i =  1,2 ,3 , so that the potential

{aJi -  u* -  UiZ -  X» -  u) (3.10)

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



in (3.7b) depends as generally as possible on the single variable f  +  r^. Each region is 

treated separately.

For £ < gap and t < £*, u (f , t) is the constant uj. Applying the lemma with

h(t) =  - u i ,  and g(t) =  (cwi -  w? -  Xi -  «() gives

W! =  A i  ( 3 .1 1 )

X i =  c u \  — Wj — u /  +  A 1J71 — h i , ( 3 .1 2 )

where Ai and m  are the constants from Lemma 2. Integrating (3.11) and (3.12) leads 

to

u/i =  Ait +/3i (3.13)

Xi =  - y 1 *3 +  Ai(c -  20i)t2 + {c01 - 0 \ - u i -  m ) t  +  7i» (3.14)

where 0 \ and 71 are constants of integration. Similarly, for £ > gap and t < tm, we 

have

U>3 =  A31 +03 (3.15)

X3 =  — 3 " ^ 3 — 2/?3)i2 +  (c03 — 03  — Ur — H3)t +  73i (3.16)

where A3 , /i3, 03, and 73 are constants. In the gap region, u(f, t) =  c -  f/(f* -  t). 

Applying the lemma with h(t) =  -d /2 + (t* — t)~ l and g(t) =  {cut — — X2 — c) gives

w2 =  A2 +  ( f - t ) " 1 (3.17)

%2 =  CU2 ~  -  C -F A2r/2 -  /X2, (3.18)

where A2 and m  are constants. This gives

w2 =  A2f -f* 02 — log (t — t) (3.19)

X2 =  J f , (3.20)

F  =  {c02 - 0 2 - c - H 2 ) +  2A2(c -2 0 2  +  l ) i - 2 A ^  (3.21)

4 - (2/32 -  c -  2A2t*) log(t* - 1) +  4A2i log(t* - 1) -  log2(t* - 1),
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where 02 is constant. Note that (3.19) implies |w2(t)| —► oo logarithmically as t -*■ t*. 

Also note (3.17), (3.18) show that <1)2 and X2 become infinite as t  —► f*.

VVe can now substitute u>i and x»» i = 1,2,3 into (3.7b) to derive the governing 

equation for the amplitudes Ri. The result is

Ri +  {-Ai(£ +  r*) +  m} Ri =  0, i =  1,2,3, (3.22)

where prime denotes differentiation with respect to £ +  rfc. If A< ^  0, then (3.22) is 

Airy’s equation and has the solution

fli(£ + Vi)= coAi { + r ji)-fX i)}+  ciB i { ^ ( M e  +  m) - IM) } (3.23)

where co, ci are constants.

Although we do not have continuity in £ for the solutions /?(£, t) and #(£, t), we can 

enforce temporal continuity through break time t* =  h /2a by defining

R(S,t) =

=

(e +  m(t)) £ < 0

R t f  + r i t ) )  e > o

Ui(t)Z + Xi{t) £ < 0  

W3{t)S +  X3(t) £ > 0

t > t m, (3.24)

t > tm. (3.25)

We have thus described a family of spatially piecewise smooth solutions of (1.0), (3.1) 

which are defined for t > 0. For these solutions, the phase 0(£, t) becomes infinitely 

steep on the collapsing interval (—h / 2  +  at, h/2 +  at) as u(£, t) shocks.

3.3 Transients of the Riemann problem

As t -* t* =  h/2a, the initial data (3.1) for u(£, t) evolves to (1.1), the initial data of 

the Riemann problem studied in section 1. In this sense, system (1.0), (3.1) extends 

the Riemann problem back in time to a state prior to shock formation. The solutions 

of (1.0), (3.1) derived in the previous section undergo phase gradient blow-up in the
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interval (—h/2a+at,  h /2 a —at), and then have evolutions given by (3.2b), (3.24), (3.25). 

The following question then arises: Do any solutions of (1.0), (3.1) described in the 

previous section coincide, for t > £*, with the solutions (1.5), (1.7) of the Riemann 

problem? The answer is yes. To identify which solutions evolve to the steady states 

of section 1, it suffices to find conditions under which (3.24) and (3.25), the governing 

equations for R  and 9 beyond £*, coincide with (1.5) and (1.6), the equations governing 

the steady-state solutions. Obviously, if solutions are going to coincide with steady- 

states beyond £*, they can not depend explicitly on £ beyond £*. This condition is, in 

fact, sufficient: we will show that as long as R  and 9, given by (3.24), (3.25), have no 

explicit £ dependence beyond time £*, they correspond to solutions (1.5), (1.7) of section

1. These are the transients of solutions (1.5), (1.7) (see Figures 7 and 8). The solutions 

which have explicit time dependence beyond £* can still be considered as solutions (for 

t > £*) of the Riemann problem, but they are not transients of the steady-states of 

section 1 (see Figure 9).

The solutions derived in the previous section are determined by the parameters A<, 

0 i ,  H i ,  and 7 i, i =  1,2,3. By equation (3.24), R(£, t) will be a function of £ alone for 

£ >  £* precisely when dr)i/dt =  0 , i =  1,3. Since r^(£) =  / 0‘(c -  2Ui(s)) ds, this is just 

the condition that u/i =  c/2, t =  1,3. By (3.13) and (3.15), this is equivalent to A, =  0, 

0i =  c/2, t =  1,3. Thus the steadiness of the amplitude for £ > £* is equivalent to the 

phase having the form (for £ >  £*)

9(S,t) = <
c£/2  +  (ea/ 4 - u l - / i l )t +  ‘n  ^ < 0

(3.26)
cf/2  4- (c74 -  Ur -  H3)t + 73 f > 0 ,

and the amplitude satisfying

R!l+H iRi = 0 £ < 0  (3.27)

# 3 + / i3i?3 =  0 f > 0 , (3.28)

where '  = d/d£. If we additionally require the phase to  be a function of f  alone for
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t > £*, we must set

m  =  c2/ 4 — U( =  Vi (defined after ( 1.6)), 

M3 =  C2/4  -U r  = Vr

in (3.26). Then for f > £*,

(3.29)
c^/2+ 73 £ > 0 ,\

and

#1 + VtR i = 0 

Bf' +  VrRz =  0.

(3.30)

(3.31)

These are exactly equations (1.5), (1.6) governing the steady-states in section 1. Thus 

transients correspond to parameter values =  0, f t =  c/2, (t =  1,3), and m  =  Vj, 

[i3 = Vr. We remark that no conditions on parameters with subscript 2 are given. 

These parameters determine the phase and amplitude in the gap region which vanishes 

at time t* and so play no role in the evolution beyond t*.

3.4 Some phase-amplitude plots through break time

Figures 7, 8 , and 9 show amplitude and phase evolutions which become steady state, 

phase-kinked steady state, and non-steady state, respectively, at break time. We have 

selected ui — 6 and Ur =  2 , which corresponds to shock values in region II (see Figure 

1, page 9). The length parameter h as defined in equation (3.1) is 2 which implies that 

break time is t* =  1/2. Figure 8 shows only the phase evolution since the amplitude in 

this example is the same as for Figure 7. The amplitude in Figure 7 is given by
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t < 1 /2  : f l( 6  t) =  <

t > 1 /2  : t) =  <

exp(V2 0  £ < - l + 2t

1 - l + 2 t < f < l - 2t

sin( \ / 2 0  +  cos(> /2 0  1 - 2t < 6

exp(%/2£) £ <  0

sin(\/%) +  cos(>/2£) £ >  0 .

(3.32)

The phase in Figure 7 is given by

2£ £ < - 1  +  2t

t < 1 /2  : 0 (6 0  =  < ^2 — log2 — log(l/2  — 0 ^£ - l + 2t < £ < l - 2f

[ 2£ 1 — 2£ <  6
(3.33)

i >  1/2  : 0 (f, t) =  <
2  ̂ e < o

2£ f > 0 .

The actual phase would include the term xi{t) in the interval —1 +  2£ <  £ < 1 — 2£ 

(see equations (3.3) and (3.20)). With the parameter values as specified, this term is

X2(0  =  (0.5 - 1) (2 -  2 log 2 +  (log2)a) +  2 (0.5 - 1) (log 2 -  1) log(0.5 -  t)
(3.34)

+  (0.5 -  t) log(0.5 - 1)2.

For ease of graphing, we have set X2(0  =  0 in each figure. As a  result, the phase always 

passes through the origin.

The phase in Figure 8 goes to a kinked steady state. It is

2£ — 5 f  < —1 +  2t

t <  1/2 : 0 ( 6 0 =   ̂ ( 7 - l o g 2 - l o g ( l / 2 - t ) ) e  - l + 2£ < £ < l - 2t  

2£ +  5 l - 2 t < 6
(3.35)

t > 1 /2  : 0 (6 0  =
2£ — 5 £ < 0  

2£ +  5 £ > 0 .
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We have excluded

X2 (t) =  (0.5 -  t) (37 -  12 log 2 -I- (log2)2) +  2 (0.5 -  t) (log2 -  6) log(0.5 - 1)

+  (0.5 -  t ) log(0.5 - t)2.

(3.36)

Figure 9 shows an example of phase and amplitude evolutions through break time 

t* =  1/2 which never reach steady states. The amplitude in Figure 9 is a function of 

the variable £ + rj, tj = —21, and is given by

exp(v/2( £ - 2t))

1

sin(2 (£ -  2 f))

t < 1 /2  : f?(£, t) = i

£ <  - 1  + 21 

- 1  +  2t < £ < 1 -  2f 

1 - 2t < £ ,
(3.37)

t > 1 /2  : fl(£,t) = <
exp(V2( £ - 21)) £ < 0

sin(2 ( £ - 2  0 ) £ > 0 .

The phase is

t <  1 /2  : 0(£, t) =  -

3 £ - f  £ < - 1  +  2*

(3 -  log2 -  log(l/2  -  t))£  - I  +  2f <  £ <  1 -  2f 

3£ — 3* 1 -  2t <  £,
(3.38)

t >  1/2  : 0 (£, f) =  <
3 £ - f  £ < 0

3 £ - 3 1 £ > 0 .

We have excluded

X2(t) =  (0.5 -  0  (5 -  4 log 2 +  (log2)2) +  2 (0.5 -  t) (log 2 -  2) log(0.5 -  t) 

+  (0.5 -  t) log(0.5 -  t)2.
(3.39)
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Figure 7: Amplitude evolution to steady state, 
(a) Amplitude (3.32) at t =  0. (b) t = 0.3. (c) 
t > 0.5.
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Figure 7: Phase evolution to steady state, 
(d) Phase (3.33) at t =  0. (e) t =  0.3. (f) 
t > 0.5.
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Figure 8 : Phase evolution to kinked steady state, 
(a) Phase (3.35) at t =  0. (b) t =  0.3. (c) t >  0.5.
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Figure 9: Amplitude evolution to non-steady state, 
(a) Amplitude (3.37) at t  =  0 . (b) t =  0.5. (c) 
t =  1.5.
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Figure 9: Phase evolution to non-steady state, 
(d) Phase (3.38) at t =  0. (e) t =  0.5. (f) 
t = 1.5.
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Chapter 2 

The incompressible limit

The fully coupled equations are obtained by setting 6 =  1 in (0.9a). They are

with initial data  given by u (x ,0) =  (7(x), E(x, 0) =  Eq(x ). In the incompressible 

limit (e —► 0), two widely separated time scales are discernible: a fast time scale of the 

hyperbolic wave u, and a slow time scale of the dispersive wave envelope E. This is seen 

by setting r  =  t/e  in (4.0a), which absorbs the coefficient e. Section 4 lists some exact 

solutions of system (4.0) which give insight into the nature of the nonlinear coupling 

and the various phenomena the system supports. In section 5, the two solutions of 

the e =  0 problem for (4.0) are presented: one in which E  satisfies the cubic nonlinear 

Schrodinger equation, and one in which E  satisfies the linear Schrodinger equation. 

This leads us to  seek two distinct asymptotic approximations to (4.0). In sections 6 

and 7, two multi-time-scale expansions for u and E  are constructed, one about each of 

the e =  0 solutions, and the equations governing the leading order dispersive wave terms 

are solved. The solutions are the well-known soliton solution of NLS and an analogous 

solution of the linear Schrodinger equation. In sections 8 and 9, the equations for the 

leading order term  in the expansions for u, what we call the effective shock equations, 

are analyzed in detail. These equations determine how u is influenced by E, and also 

how the phase of E  is affected by the rapidly moving shock. We show that to leading 

order, if the shock strength is weak compared to the soliton amplitude, the shock can 

be completely blocked. Section 10 consists of a series of numerical experiments which 

exemplify the shock phenomena described in sections 8 and 9.
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eut + u(u +  |f?|2)x =  0

iEt +  E „  -  uE  =  0 ,

(4.0a)

(4.0b)
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4 Exact solutions

Although it is not possible to solve (4.0) for arbitrary initial data, there are some special 

solutions which give insight into the phenomena the system supports..

Example 1: Decoupled solutions.

We start by looking at two decoupled cases: u =  0, E  ^  0, and u £  0, E  =  0. In 

the absence of a shock wave, i.e. u =  0, the system reduces to the linear Schrodinger 

equation for the dispersive wave envelope:

+  =  (4.1)

which is satisfied by a linear superposition of plane waves:

/oo
a(u) exp( i( i/u x  — ut)) du. (4.2)

•OO

To satisfy the initial data, we require that Eq(x ) = f  a(u) exp(iy/ux)du. This decou­

pled solution also solves (4.0) when e =  0. It is considered again in section 5. An 

analogous solution can be obtained by setting u =  c, where c is a constant. When the 

dispersive wave is absent, i.e. E  =  0, the system reduces to  the conservation law

cut +  uu* =  0, (4.3)

which we know shocks in finite time [1] as long as U'{x) <  0 a t some point x.

Example 2: Coupled standing wave.

The fully coupled problem supports a much richer set of nonlinear solutions. Prom 

the Zakharov system [25), we expect that our system should support a fully coupled

standing wave. It is straightforward to verify that an exact solution of this kind is

given by

u — G + B 2( l  -  2sech2(£ z ))  (4.4)

E  =  2£sech(£x) exp(-iG f). (4.5)

Notice that since u is independent of time, the parameter e does not play a role in the 

solution, hence this solution is somewhat special and is not expected to arise as a result
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of a general wave interaction. In fact, (4.4), (4.5) solve (4.0) in the case e =  0; (4.4) is 

a solution of the form u =  constant — |£ |2.

Example 3: Finite time blow-up.

Motivated by the solutions to the weakly coupled system described in section 3.2 of 

Chapter 1, a natural question to ask is whether the full system can support solutions 

in which the wave u  shocks in finite time. A solution of (4.0) demonstrating such shock 

development is constructed in the following way. Specify initial data (Figure 6 , page 

29)

where uj, itr, h > 0 are constants, and a =  ^(tq — Ur) > 0 ,  and express E  in phase- 

amplitude form as E  = Rexp(id). Let £ =  x — ct, where c =  j (uj 4- Ur). The interval 

( - h / 2  +  at, h/2 -  at) at time t =  0 is just ( - h / 2 , h f2); at time t* =  h/2a, it shrinks 

down to the point 0. We call this interval the gap region, or just, ‘gap’. With this 

notation, a solution of (4.0) can be given by

m x <  - f

«(* ,0) =  ! « ! _ £ ( *  +  £) * € ( - $ , $ ) (4.6)

R(£, t) =  constant, (4.7)

^before t K. t
(4.8)

$after t ^  t ,

U(£, t) =  <
U before t <  t

(4.9)
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where

^before — *

âfter — *

- u it £ <  gap

u(t)£ + x(t) £ €  gap

-Urt £ >  gap,

—tift £ <  0

- U r t £ > 0,

(4.10)

(4.11)

and

^before i (4.12)

Uafter — ‘ (4.13)

ui £ <  gap

c - i & t £ £  gap 

t*r £ >  gap,w 
f
uj £ <  0 

Ur £  >  0.%

The coefficients u(t) and x(£) are given by

u (t)  =  - lo g  (£*-£),  (4.14)

x (t) =  (t* - 1) {k>g(f - *)[l+** -  i ( t -  - 1)| -  i( t*  - 1) -I-1* - 1} (4.15)

-  (CU>2 ~ C)t.

(4.12) and (4.13) show that u develops a shock at time £ =  £* and that this shock 

remains steady in the £ variable for t > £*. Equation (4.14) implies that |w(£)| —► oo 

as £ —► £*. Thus system (4.0) has solutions in which shock formation in u drives 

a corresponding blow-up in the traveling phase gradient, 9$, of the dispersive wave 

envelope. Furthermore, for £ >  £*, u(£, £) and 9(£, t) satisfy the equation

—0t =  u. (4.16)

This equation will appear again in the small e multi-scale expansion of (4.0). In the 

context of dispersive waves, the quantity —9t is interpreted as a generalized frequency
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[2]. This is based on the simple observation that for a single linear mode, exp(i(fcc — 

uit)), -Qt is the usual frequency ui. Equation (4.16) shows that, for the special solution 

constructed here, the frequency of the dispersive wave beyond break time has a moving 

discontinuity: to the left of £ =  0 it is uj, and to the right of £ =  0 it is Ur.

5 The e =  0 problem

When e =  0, (4.0) reduces to

u ( u  +  |E |2)x =  0 (5.1)

iEt +  Exx -  uE  =  0 . (5.2)

The two possible solutions of (5.1) are u =  0 and u =  — |E |2 +  c, where c may depend 

on t. We will denote either one of these solutions by Uo and treat each e =  0 problem 

separately. If Uq =  0, equation (5.2) reduces to (4.1), the linear Schrodinger equation 

(LS) for E.  When Uq =  - |E |2 +  c, equation (5.2) becomes

iEt +  Exx +  (\E\2 — c)E =  0 , (5.3)

which, for c =  0, is the nonlinear Schrodinger equation (NLS). We will only be interested 

in the c =  0 case. The perturbations of u shall be of the form

u =  uo 4- eui +  0(e2), (5.4)

where

uo =  Uo +  v(x, t/e). (5.5)

Note that the perturbation term v(x, t/e) depends only on the fast time t/e. It is not 

assumed to be small in magnitude. The e —* 0 limit is singular in the sense that (i) 

v(x, t/e) is not analytic in a  neighborhood of e = 0 , and (ii) the magnitude of v(x, t/e)

need not go to zero with e, rather its wavespeed tends to infinity as e goes to zero. If one

thinks of v(x, t/e) as representing an acoustic wave, the e —* 0 limit corresponds to the 

incompressible limit of the dispersive medium: as the compressibility of the medium
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goes to zero, the sound wave’s speed through that medium becomes infinite- The choice 

of initial data for v depends on the phenomena we are interested in investigating. The 

Riemann data

v(x, 0 ) =  <
a x  < P

a  > 0 and P  6  R , (5.6)
0 x > P

is the natural choice for the analysis of shock wave/dispersive wave interactions: it is 

the simplest data which leads to shock propagation. In the case Uq = —\E\2, we shall 

focus on the interaction of a fast shock wave and a frozen soliton solution of NLS. When 

Uo =  0, the soliton is replaced by a particular solution of LS which, in some ways, is a 

linear analogue of the soliton. Expressing E  in phase-amplitude form as E  = Rexp(i0), 

the two fundamental problems are stated as follows:

Problem 1. Find an asymptotic (e —► 0) approximation to the solution o f (4.0) such 

that

Uo = -R $  + v(x ,t/e)  (5.7)

R  —► 0 as |z| —► oo, (5.8)

where v(x, 0) is defined in (5.6), and Ro is the leading term in the small e expansion 

for the amplitude R.

Problem 2. Find an asymptotic (e —► 0) approximation to the solution o f (4-0) such 

that

uo = Q + v{x , t/e) (5.9)

R  —> 0 as |x| —► oo, (5.10)

where v(x, 0) is defined in (5.6)

Note that for the singular Zakharov system [31,32], the e =  0 problem has the single 

solution u =  —\E\2 +  c (modulo a linear function of x). As such, it is a perturbation 

only of NLS and not of LS.
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6 The multi-scale expansions

To begin, rewrite system (4.0) in phase-amplitude form:

eut 4- u(u 4- R2)x =  0 (6.1)

Rt +  2 Bs Rx 4- QxxR = 0 (6 .2)

Rtx  -  R(0t 4- (9S)2 4- u) =  0 . (6.3)

The two time scales of the problem are given by

r i  =  t/e, the fast time scale of the hyperbolic wave,

T2 =  t, the slow time scale of the dispersive wave.

For ease of notation, drop the subscripts and use r  and t in place of t \  and v^, respec­

tively. Rewriting (6.1)-(6.3) in the x , t , r  variables using the transformation

dt -* dt 4-e~l9r,

gives the system

Ur 4- u(u 4- R2)x 4- eut =  0 (6.4)

e~^Rr 4- Rt 4- 29xRx 4" QxxR — 0 (6-5)

e~l9r -  Rxx 4- R(91 + (0*)2 4- u) =  0. (6 .6)

Expand u, R, and 6 in powers of e:

u =  uo(sc, t,r )  4 -eu i(x ,t,r) 4- (6.7)

R = Ro(x, t, t ) 4- ei?i(a;, t, r)  4----- (6 .8)

0 =  (k{x, t, t ) 4- e9i(x, t ,r )  4---- , (6.9)

substitute these expansions into equations (6.4)-(6.6), and collect like powers of e 

through 0 (e) to obtain the systems
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0(A) =

Ror =  0 (6.10)

0<yr =  0 . (6 .11)

0 (1) :

U o r  +  U o ( l l O  +  R q ) x  =  0  ( 6 . 1 2 )

i i l r  =  — (Rot +  2Rqx9qx +  RqQoxx) (6.13)

9\r =  ~~Roxx — (#ot +  (0Q*)2 +  Uo) • (6.14)no

0 ( e ) :

u it  +  uoUix +  (tio +  i?o)*wi =  — 2uo(RoRi)x — uot (6.15)

/?2r =  ~  (R it +  2i2o*^i* +  2R\x9qx +  Rq9\xx 4* R \ 9 o x x )  (6.16)

9 -zr =  ~ ^ ® lr +  ^ 0 x ^ l x  +  ~  (^°* (^°*)2 +  u°) • (6-17)

6.1 L e a d in g  o rd e r  sh o ck  e q u a tio n s

To derive the leading order shock equation for Problem 1, substitute (5.7) into (6 .12). 

This gives

|  + <6-18>
«(*,0) =  /(* ), (6.19)

where f(x )  is the Riemann data (5.6). For Problem 2, substitute (5.9) into (6.12) to 

find

^  +  v 9 ( v + ^ ) = 0  (620)
OT OX

t»(*,0  ) = / ( x ) ,  (6-21)

where f( x )  is the Riemann data (5.6).
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Since v must be independent of the slow time t in equations (6.18) and (6.20), it is 

necessary to enforce the condition

^  =  0. (6.22)

Since equations (6 .10) and (6 .11) state that Rq and Oo are independent of the fast time 

r , (6 .22) implies that Ro has only a spatial structure. Thus in the small e limit, Ro is 

frozen in time, which is reasonable in our approximation because the shock is moving 

so rapidly.

7 Modulation equations for the dispersive wave

For a description of the method of multiple time scales and many interesting applica­

tions of it, see [51]. The method is carried out by eliminating the r-independent, or 

secular, terms on the right-hand sides of equations (6.13), (6.14) and (6.16), (6.17). 

Setting the secular terms to zero gives the so-called modulation equations, or solvabil­

ity conditions, for the amplitude and phase at orders 0 (1 ) and 0(e). We derive the 

modulation equations for Problems 1 and 2 separately.

7.1 0(1) m odulation equations for Problem 1

Setting secular terms on the right-hand sides of equations (6.13) and (6.14) to zero and 

using equations (5.7), (6.22) gives the 0(1) modulation equations:

2^  +  fi»0 = °  ( 7 l )
1 < ? f i o _ ^ _ (^ )2 +  f l 3 = a  (7.2)

Ro dx2 dt dx 

Equation (7.1) can be rewritten as

(7.3)

which implies that

90(x, t) = a  J R q 2 + 0 , (7.4)
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where a  and rp may depend on t. Substituting (7.4) into (7.2) gives the leading order 

amplitude equation:

^ - / Z o ^ y l ^ 2 +  ^  +  a 2V - / l g )  = 0 . (7.5)

Since Ro is independent of f, we set a  =  0 and rp =  A =  constant in (7.5). Equations

(7.4) and (7.5) then become

Qo(x, t) =  a f n ?  +  At 4- constant (7.6)

f ^ - R 0 (X + a 2f£ 4 -  R$) =  0 . (7.7)

To focus on the interaction of a shock wave and a steady soliton, solve equations (7.6)

and (7.7) by setting a  =  0 and

R$(x) =  2Asech2(>/Ax) (7.8)

90(t) =  At. (7.9)

Equations (7.8), (7.9) represent the well-known single hump soliton solution of NLS 

[29].

7.2 0(1) modulation equations for Problem 2

The only difference here is that uo satisfies equation (5.9) instead of (5.7). The resulting 

equations for Ro and % are

9q(x , t )=  a  J R £ 2 +  At 4- constant (7.10)

^ ~ £ - f lo ( A  +  a 2f O = 0 - (7-u )

The linear analogue of the soliton solution (7.8), (7.9) (again setting a  = 0) is

f?o(a:) =  2Aexp(—2\/A |x|) (7.12)

do (t) =  At. (7.13)

The amplitude given by (7.12) is the Green’s function solution of (7.11) with a  =  0 

[52]. It is continuous but has a jump discontinuity in its derivative a t x  =  0. We shall
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0
x

Figure 10: Amplitudes (7.8) and (7.12).

refer to (7.12), (7.13) as a ‘linear soliton* since the shape of its amplitude is similar 

to (7.8) (Figure 10) and it decays to 0 as |z| -* oo. This term is introduced only for 

convenience and is not meant to suggest any connections to the theory of integrable 

systems.

7.3 Generalized frequency of the dispersive wave

Once the 0(1) modulation equations are satisfied, equations (6.13) and (6.14) become

This holds for both Problems 1 and 2. Equation (7.14) states that R\ is independent 

of the fast time r .  Integrating (7.15) gives

Compare equation (7.15) to equation (4.16) on page 46. In analogy with example 3 

in section 4, -Q \r is interpreted formally as the first correction term to the generalized 

frequency of the dispersive wave. In example 3, the steadily traveling shock wave 

consisted of the two constant states uj for £ < 0 , Ur for £ >  0 , and the frequency —dt

dR ijx , t , r ) 
dr

(7.14)

(7.15)

(7.16)

The terms 9\ and R\ will be determined by the O(e) modulation equations.
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jumped from one to the other across £ =  0. Here, if the leading order term v has a 

propagating shock separating two states, say uj(r) on the left and vr(r) on the right 

(which, in sections 8 and 9, is shown to be the case), then (7.15) suggests that the first 

correction to the generalized frequency undergoes a sudden shift from. Vi to vr across 

the shock layer.

7.4 0 ( e )  modulation equations for Problem 1

With uo =  — #o +  u> equation (6.15) becomes

*SL +  („ -  fig)3 (“ ■ + 3 W . +  g „ ,  =  0. (7.17)

The change of variables

t t i  =  « i  — 2 R q R \  (7 .1 8 )

transforms (7.17) to

f j T  +  (V -  * o ) | “  +  ^ ( f i i  -  2/Io/ I l) =  o. (7.19)

Substituting (7.6), (7.7), (7.16) and (7.18) into (6.16), (6.17) and setting r-independent 

terms on the right-hand sides to zero gives the general 0(e) modulation equations. They 

are

+  +  P.20)

^  -  (A +  -  3«8 ) f l l  =  f t .  ( ^  +  2a «o-J . (7.21)

This is a  linear system for R i(x, t) and 9i(x, t) with coefficients depending on x. Sub­

stituting the 0(1) soliton solution (7.8), (7.9) into (7.20), (7.21) gives

^  -  (A -  3I%)Ri = R o f .  (7.23)
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To solve this system, we make the additional ansatz

aex
t e  = ° -  <7-24>

Equation (7.22) then reduces to Rit =  0, and (7.23) separates as

(ft D
^ - J . - ( A - 3 f l § ) * i = / ? « o  (7.25)

0\(t) = 0 t + constant, (7.26)

where 0  is the constant of separation which we set to zero. We solve (7.25) by setting

(727)

Then (7.19) can be solved by setting

(7.28)

or equivalently

. , - 2 S = | ± S l .  (7.29)

When v  has shocks, (7.29) is interpreted in the small diffusion limit. It is well-known 

(see, for example, [46)) that by adding a diffusive term  of the form rjVxx to either of 

the leading order shock equations (6.18), (6.20), v^(x , t ) is smoothed out. Replacing v 

by vn when convenient still allows the qualitative aspects of the shock wave/dispersive 

wave interactions to come through. With this in mind, equation (7.29) is taken to 

mean

Bi =  a < - M  (7 30)

for small rj.

7.5 0(c) modulation equations for Problem 2

The equations for Problem 2 are similar to those of Problem 1. In this case, we do not 

make the change of variables (7.18). The general 0(e) modulation equations obtained
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by substituting (7.10), (7.11) into (6.16), (6.17) are

®  t  n  o  \ ^  ( n 2 ^ 1  i

^  -  (A + e? V )  A, = *  ( £  + itaSJ* §

With the 0(1) solutions (7.12), (7.13), these reduce to

(7.32)

as, «>«,
- 5 r + 2 ' S " a r + f t o 8 ? - - 0 (7M )

d2# ! . „  „  d§i- g ^ . - A H ^ S o — . (7.34)

We again make the ansatz Q\x =  0. Equations (7.33), (7.34) are then separable, and

can be solved as in Problem 1 by setting

* - T  (™ 5>

§1 =  0. (7.36)

Equation (6.15) is then solved by setting

—  S -  (7'37)

which is again interpreted as ui =  dv^/dx  for a small diffusion coefficient t).

7.6 Expansion summary  

For Problem 1 (page 48), we have

u ~  (-R c (x )  +  v(x, t ) )  4-e (-/?o(®) +  »(*»T))x +  (7-38)

+  + 0 (e 2) (7.39)

X t - e ( ^ J ? j + 0 ( e 2), (7.40)
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where i?o(x) =  2Asech2(\/Ax), and v(x, r)  satisfies

dv , n2\ dv

u(x,0) =  Riemann data (5.6).

For Problem 2,

u  ~  v(x, r)  +  e (vx(x, r)) +  0 (e2) (7.41)

R ^ R o + e  +  0(e2) (7.42)

0 ~  A t - e ( ^ f v j +  Oie2) , (7.43)

where Rq(x) =  2Aexp(-2v^A|x|), and v (x ,r)  satisfies

dv d(v + R$) 
d r  dx
v(x,0) =  Riemann data (5.6).

To understand the leading order interactions, it is thus necessary to analyze v. We 

address this issue for Problems 1 and 2 in the next two sections.

8 Solution of the shock equation for Problem 1

In this section the exact solution of equations (6.18), (6.19) is presented. The solution 

includes a detailed description of the shock structure. We think of (6.18) as a conser­

vation law with a spatially dependent wavespeed given by v — R$(x). The equation 

may be thought of as a conservation law governing a shock propagating through an 

inhomogeneous medium [16]. We shall show that the the shock speed is reduced as the 

shock approaches the hump of the soliton, and if the soliton is large enough, the speed 

may go to zero. Furthermore, if the shock starts in a particular interval centered about 

the peak of the soliton, its direction mat be reversed.
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We first consider the characteristic equations derived by rewriting (6.18), (6.19) as 

a system of ode’s for v(x(s), r(s)). The system is

dv n dx n2, . . .  dr 
d s ~  *  = * - « » « * » .  * - 1.

with initial conditions

r ( 0) = 0 , x(0) =  £, u(0 ) =  /(£),

where f( x )  is the Riemann data (6.19), and Pj} *s given by (7.8). These equations are 

equivalent to the system

v = m  (8 .i)

£  =  m  -  ^ (* (T )) (8 .2)

i ( 0 ) = « .  (8.3)

The characteristic curve emanating from the point (£,0) will be denoted by x^(r). 

Equation (8.2) can be written as

S  =  (w )

and in this form, the exact solution r(x; £) can be expressed in closed form. Since the 

exact formulas are not needed, we do not give them here. The shock structure for 

equation (6.18) with data (5.6) is well known in the case A =  0, i.e., in the absence of 

a dispersive wave. The curves x$(r) are straight lines of slope a  for £ <  P , vertical 

lines for £ >  P, and the shock curve s(r) is a straight line of slope a /2  (Figure 11).

This means that the discontinuity simply travels to the right a t the constant speed

a /2 . Figure 13 on page 65 graphs the characteristic curves for various values of A. 

The curves in the figure are obtained by exact integration of equations (8.1)-(8.3). 

The following lemma shows that for the Riemann data (6.19), no new shocks develop 

beyond r  =  0 .

Lem m a 3. There exists a unique shock curve s(r) in the characteristic plane. It starts 

at the point (P, 0).
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Characteristic plane

t s  ( t)

Xp

Figure 11: Straight characteristics impinging upon the 
shock curve s(r) in the absence of a dispersive wave.

Proof. It suffices to show that characteristic curves emanating from either side of P  

do not cross. If £1 <  £2 <  P. then equations (8.1)-(8.3) for the characteristic curves 

x?1(t)  and x ^ (r )  are

^  =  a - «?(*<,) (8.5)

iji(O ) =  f t ,  (8.6)

and

^  (8.7)

l 6 (0) =  f t .  (8.8)

In the (r, x) plane, the curves, when considered as functions r(x), are vertical translates 

of each other and thus can not intersect. That is, each curve is of the form t (x ) — r ( f ), 

where r(x ) solves (8.4). The same holds for curves emanating from the right of P . □

8.1 Solution o f the Riemann problem

T h eo rem  2. The solution of equation (6.18) with data (6.19) is

v(x ,r) =

where s(r) is described in Theorem 3.

a  x  < s(r) 

0 x  > s(r),
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Proof. Equation (8.1) states that v is constant on characteristic curves. At any point 

(x, t ), v is thus determined by tracing the characteristic curve through (x, r) backwards 

in time to the r  =  0 axis. Points to the left of the shock trace back to the value a , and 

points to the right of the shock trace back to the value 0 . □

8.2 Shock structure for Problem 1

The shock motion in the presence of the soliton depends on where the shock starts, 

given by P, and the ratio of the unperturbed shock speed a /2  to the soliton amplitude 

2A. To summarize,

• The shock either travels right for all time or left for all time, depending on where 

it starts in relation to the center of the soliton.

•  Depending on the size of a /2  compared to 2A, the shock may be trapped in either 

direction, or it may escape to infinity in the forward direction.

•  If the shock escapes, its speed converges to a /2 .

We thus see that the shock front may be completely blocked by the soliton if the soliton 

is large enough (or, equivalently, if the shock strength is weak enough). Furthermore, 

the influence of the soliton is localized in the sense that if the shock passes through the 

soliton, it recovers its unperturbed speed of a / 2 , the propagation speed in the absence 

of a dispersive wave. We will see that this is not the case for the leading order shock 

equation of Problem 2. There, the effect of the soliton on the long term shock speed 

can, in some cases, be permanent. Figures 18, 19, and 20 show numerical solutions of 

equation (6.18) which demonstrate the phenomena described in the following theorem.
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T h eo rem  3 (Shock dynam ics).

Case a  < 4A. Let iV\ < 0 < N2 be the zeros o f a /2  — 2Xsech2(y /\x ).

Forwards capture: I f  P < N\, the shock location increases to Ni as r  —► 00 

(Figure 19).

Backwards capture: I f  N \ < P  < JV2, the shock location decreases to N i as 

r  —► 00 (Figure 18).

Escape: I f  P  > N2 , the shock location increases to infinity as r  —► 00, and 

its speed converges to a /2  (Figure 20).

Steady state: I f  P  — N\ or if  P  =  W2, shock location does not move.

Case a  =  4A.

Forwards capture: I f P < 0 , the shock location increases to 0 as r  —*■ 00 .

Escape: I f  P  > 0 , the shock location increases to infinity as r  —► 00 , and its 

speed converges to a /2.

Steady state: I f  P  — 0 , the shock location does not move.

Case a  > 4A.

Escape: For any P, the shock location increases to infinity as r  —*• oo, and 

its speed converges to a /2 .

Proof. We first derive the Rankine-Hugoniot condition which governs the motion of 

the shock. In [53], it is shown that for an equation of the form

UT +  UUS =  a{x)U, (8 .10)

the shock curve S (r) satisfies

! |  = !(cr + c/+), (8.11)

where

£ / * ( ! • ) =  11m  U ( x , t ) .  (8. 12)
* -S (r)±

In equation (6.18), if we set U =  v — Rq then the shock location, S (r), for U is the

same as the shock location, s(r), for v. Equation (6.18) in the U variable is (8 .10) with
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a(x) =  —̂ /2q- Since v~ =  a  and u+ =  0, then U = a  — R%(s) and U+ =  0 — R%(s). 

Therefore

| - 3 ( t r  + tr*)-5(«-iu«(.))-f-J4W.

Since s starts a t P , the equations for s(r) are simply

£  =  f - f l o W  (813)

s(0) =  P. (8.14)

The dynamics of s(r) as described in Theorem 3 follow from the (s, s) phase-plane 

diagrams below (Figure 12). In each diagram, the arrows indicate the direction the 

shock moves. Figure 12a shows the case a  < 4A. There are fixed points a t N i and iV2. 

If s(0) e  (JVx, iV2), then ds/dr  < 0 and s -» N t . If P  £ N2), d s /d r > 0, so s -> Ni

if s(0) <  N i, and s —*■ 00 if s(0) > Nv. The a  =  4A case is shown in Figure 12b. Here

the interval (N i, A^) collapses to the point at the origin, so if s(0) <  0, s increases to 

0, if s(0) =  0, then s stays at 0, and if s(0) >  0, then s -+ 00 . Figure 12c shows the 

a > 4A case. In  this case, ds/dr  is always positive, and no equilibrium points exist, 

hence s —► 00 . Each phase portrait is essentially the graph of a /2  — 2Asech2(\/Xs), 

which approaches a /2  as |s| —► 00. Thus the shock speed approaches a /2  if the shock 

escapes. □

9 Solution of the shock equation for Problem 2

We now consider equations (6.20), (6.21). Although it is not possible to write down 

an exact formula for the solution as we did for Problem 1, there are exact formulas for 

the long-time solution profile which make the effect of the dispersive wave on the shock 

wave apparent. We think of equation (6.20) as a conservation law with a  spatially 

varying friction term —v(dR$/dx) due to the dispersive wave amplitude [7], which in 

this case is the linear analogue of the soliton. For Problem 1, we saw that v retained 

the shape of the initial data as the discontinuity propagated in fast time. For Problem
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d a /d i

(a)
ds/dx

(C)
Figure 12: (s, i)  phase plane, (a) a  <  4A. (b) at =  4A. (c) 
at > 4A. Ni and N? are the zeros of a /2  — 2Asech2(A1/2 s).

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2 , though v remains positive, it may increase or decrease depending on the sign of the 

friction term. If the linear soliton is large enough, it may push v down to zero thereby 

reducing the shock speed to zero. In section 10 we show some numerical solutions 

of (6 .20) (6 .21) (with an added small diffusive term) that give a clear picture of how 

v evolves and how the long-time states described in this section are obtained. The 

analysis is again based on the characteristic equations.

9.1 Characteristic equations

The characteristic equations for (6.20), (6.21) are

dv d , 2\ dx dr 
5 « - » $ ( * » ) .  * = « •  2» ’

with initial conditions

r(0) =  0, * (0)= &  u(0) =  /(O ,

where f( x )  is the Riemann data (5.6) and Rq(x) is given by (7.12). These equations 

are equivalent to the system

« =  r n  +  *02(0  -  ag(*(T)) (9.1)

^  =  / ( 0  +  ^ ( 0 - f l o  (*(r)) (9.2)

x (0 )= £ . (9.3)

The phase plane (x^, dx^/dr) for each characteristic curve now depends on the param­

eter £, in contrast to the situation in Problem 1. In this sense system (9.1)-(9.3) is 

nonautonomous. If (9.2) is written as

±   ___________1 (9 4)
dx / ( 0  + *3(0-«?(*)■  1 '

the exact solution r(z ; 0  is expressible in closed form. Since the closed form solution

is not needed, we do not write it here. Figure 13c graphs the characteristic curves

for various values of A. The curves in the figure are obtained by exact integration of 

equations (9.1)-(9.3).
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Physical plane

o.s

0 . 4  ■

0 . 2

ol. - ...........................     T a
( a )  - 0 . 5  0 O . S  X I 1.5

Characteristic plane for Problem 1

0 . 7

X
0 . 3

0 . 2

(b) -0.5 0 . 5 1 1 . 50
X

Characteristic plane for Problem 2

0 . 7

X

0 . 3

0 . 2

Figure 13: Comparison of characteristic curves, (a) Initial 
data (5.6) with a  =  1. (b) Problem 1. Solid: A =  0, small 
dash: A =  0.1, large dash: A =  0.3. (c) Problem 2. Solid: 
A =  0, small dash: A =  0.3, large dash: A =  0.7.
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With data (5.6), the characteristic equations become

v =  a  4- flo(£) -  flo(x(r)) (9.5)

^  =  a  +  f l g ( f l - ^ ( * ( r ) )  for $ < P, (9.6)

*(0) =  £ (9.7)

v =  flo(0 -  flo(*0")) (9.8)

^  =  flo(£) -  flo(*(r)) for £ >  P. (9.9)

x(0) =  £ (9.10)

Denoting by x?(r) the characteristic curve from the point (£,0), the solution of the 

£ > P  system is simply

v =  0 (9.11)

*?(r) =  6  r > 0 .  (9.12)

Thus for f  >  P, characteristic curves are vertical lines along which v =  0. For <f < P,

the curves x$(r) are not straight, but have initial slope a  since

( ^ f )  =  ( a  +  flo (f)-f io (ze (T ))^ | (9.13)

=  a  +  « g (f)  -  «g(€)

=  a.

The next lemma describes the long-time behavior of the characteristic curves originat­

ing to the left of P .

Lem m a 4. Suppose £ < P . I f  a  > 2A, the curves x^(r) increase (travel right) to

infinity as r  -* oo. I f  a  <  2A, define Cl by

C K O , a  + I%(Cl) =2A, (9.14)

and for £ <  Cl, define

( 9 - I5 )
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Then for  £ <  ft, x^(r) increases to a vertical asymptote at A^, while for  £ > Cl, x^(r) 

increases to infinity as r  —*•00.

Proof. If a  > 2A, then for a fixed point f , a  +  > 2A +  e where e >  0 depends on

the point ft Then

and so X ( ( r )  increases to infinity as r  —► 0 0  . This is true for each ft

For a  < 2A, refer to the (x(,±() phase planes shown in Figure 14. If £ < ft 

(Figure 14a), there are equilibrium points at A$ and - A f .  Since ft <  A^, then x$(t) 

increases to A^ as r  —► 0 0 . If £ =  ft (Figure 14b), the equilibria coalesce at the origin: 

=  A q  =  0. Since f t  <  0, then x^(r) increases to 0 as r  0 0 .  If f t  <  £  <  - f t  

(Figure 14c), then R%(£) > 2A —a, so there are no equilibrium points, and a^(r) -* 00  

as r  -> 0 0 . If £ >  —ft (Figure 14d), there are equilibria at ±A^, but since x^(r) starts 

to the right of these equilibria, x^(r) increases to infinity. □

Note that the asymptote location A$ increases with £ on ( —0 0 , ft] and satisfies

This means that if f t  <  f t  then x ^ (r)  asymptotes before X ( 2( r ) ,  and that all the

under certain conditions on P, this is the interval in which the shock can stop.

9.2 Single or multiple shocks

Regions where characteristic curves cross correspond to regions where v would be multi­

valued. Shock curves prevent the crossing of characteristic curves [1, 2]. In this section 

we show that if P < 0, there is only one shock, and if P  >  0 is sufficiently large, a 

transient shock develops at some positive time. In section 10, numerical examples are 

presented which show the development of the transient shock when P  is large enough 

(Figure 21) and the suppression of the transient shock for P  near 0 (Figure 22).

5  =  o  +  R g(0 -R o2(x )> e ,

(9.16)

asymptote locations are within the interval ( ^ - l o g ( § )  ,0 . We shall see later that 
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-Q

(a)
dx  ̂ /d t

- a(b)
dx  ̂ /d t

(C)

(d)

Figure 14: (x(, ±() phase planes for a  <  2A.
(a) £ < ft. (b) £ = n. (c) f  e  (fl, - f i) .  (d) £ >  - 0 .
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Chanaemtic plme

'shock 
curve 1(1)

Ps 3

Figure 15: Problem 2 pullbacks. is the left pullback; it 
decreases in time. The right pullback, £7> increases in time.

Lem m a 5. The Rankine-Hugoniot condition for a shock curve s ( t ) is

| = i ( v - + , 4  (*17)

where v* are defined in equation (8.12).

Proof. Since (6 .20) has the same form as (8.10), then equations (8.11) and (8.12) hold 

with U  replaced by v. □

By equation (9.1), the terms v*  in (9.17) are

V" =  m )  +  R 8 (€ T )-* o (* ) (9-18)

t>+ =  f ( £ ) + % ( £ ) - > Rg(«), (9-19)

where £7  (£7 ) is the left (right) pullback from the shock curve to the r  =  0 axis. 

That is, to find £ 7  (£7), follow the left (right) impinging characteristic curve down to 

where it originates (Figure 15). Lemma 4 shows that characteristic curves always have 

positive slope. By equation (9.1), this implies that v is always positive, hence are

always positive. Therefore, shocks always travel to the right. Because of this, £ 7  must

decrease as r  increases, and £ 7  must increase with r .
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Characteristic plane

t

P 0

Figure 16: The characteristic curves x ^  (r) and 
X(3( t ) .  If P < 0, then X(3{r)  is always flatter and 
lower than (r).

T heorem  4. I f  P  < 0, the shock curve s(r) starting at (P, 0) is the only shock that 

occurs.

Proof. Since characteristic curves to the right of P  are vertical lines, they clearly do 

not intersect each other. Let & < f t  ^  P  (Figure 16). We show that x ^ ( r )  can not 

intersect x^3( t ) .  This will prove that one shock curve suffices to prevent all crossing 

of characteristics. The curve x ^ (r) starts at the point (ft,0 ) in the (x ,r) plane. If it 

has a vertical asymptote before ft, i.e., if <  f t ,  then it can not intersect xja(r). 

Suppose that either x&(r) has no vertical asymptote or that Afl > ft. When xfl (r) 

increases to f t, it is above the point (ft,0), the starting point for the curve x^3(r). 

Comparing the slopes of the curves at any point x  > f t  gives

d_
dr *€i (r) =  a +  -  *g(«) < a + «g(ft) -  ± x(3(r), (9.20)

where the inequality comes from the fact that fi§(ft) <  #o(ft). Since x(3(r) starts 

below a?&(r) and is always flatter than x ^ ( r ) ,  the curves can not intersect. □

T heorem  5. Suppose P > 0. I f  P is sufficiently large, in addition to the shock s{r) 

starting at (P, 0), there is a second, transient shock s (r) which starts at some time
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r* > 0 and merges with s(r) in finite time.

Figure 21 on page 86 shows the development of the transient shock.

Proof. If 0 <  < & < P. then since R$ is decreasing on (0, oo) we have

A  xCl (r) =  a  +  Rg(ft) -  «§(*) >  a  +  P ftfc ) -  flg(*) =  J :  *&(r). (9.21)

Thus the curve x ^ (r) is always flatter than x^2(r). Since x ^ ( r )  starts to the left 

of Xfr(r), the curves will eventually intersect. This holds for all characteristic curves 

starting between 0 and P. If P  is close to 0, the shock s(r) may prevent the crossing 

of these characteristic curves. But if P  is sufficiently large, a new shock s must form 

to prevent crossing.

To prove that s merges with s, we consider the right pullbacks of the transient 

shock, and the left pullbacks of the permanent shock. The right pullbacks increase 

in time, while the left pullbacks decrease in time. We show that they converge to the 

same point. Since all characteristic curves emanating from the right of P  must hit the 

shock s(r), we have that £+ < P . Since is increasing and bounded above by P, 

then —► k  for some k < P . Likewise, since is decreasing and bounded below by 

0, -» k for some k > 0. We certainly have k < k .  We show that equality holds. If

not, we could pick a point 6 with k < b < k  and consider the characteristic curve r&(r). 

It could not impinge on either shock curve. Its slope at a point x  is a  +  Pq(b) - R q ( x ) .  

But since b < k  <  £“ , then

This implies that Xb(r)  would eventually intersect s(r), which is a contradiction. There-

intersect. After their intersection, the single shock s(r) prevents any further crossing

a  +  >  a +  « 8 ( t ) - / $ ( * )

> a+Ji8<r )-«?(*)
>

(9.22)

(9.23)

(9.24)

ds I
dr  lj=*

(9.25)

fore, we must have k =  fc. Since Zfc(r) impinges on both s and s, the shocks must

of characteristics. □
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9.3 Long-time dynamics

In the discussion, following the proof of Lemma 4, we noted that ds/d r  is always posi­

tive. This implies that s(r) either increases to infinity or to a finite supremum. We call 

the former case shock escape and the latter case shock capture. The analysis is divided 

into two parameter regimes: a  > 2A and a  < 2A. In each case, numerical experiments 

and analytical arguments are used to describe when shock capture or escape occurs. 

Exact formulas are given for the long-time structure of the solution for various ranges 

of the parameters a , A and P. In short, there is no shock capture for a  > 2A, while for 

a < 2A there can be shock capture or escape depending on P.

Case: a  >  2A

T heorem  6 (Shock escape—no speed change). I f  a  > 2 A, the shock passes through 

the linear soliton and goes to infinity as r  —► oo. The shock speed converges to a/2, 

which is the shock speed for equation (6.20) in the absence of a dispersive wave.

A numerical example demonstrating Theorem 6 is shown in Figure 23 on page 90.

Proof. Let a  — 2A =  e >  0. The slope of the shock curve satisfies

^  =  i ( o  +  m o  -  «o<*)) >  j ( «  -  « o M ) >  «• 0-26)

For s to converge to a finite point, its slope would have to converge to zero, which 

(9.26) shows is not possible.

To find the limiting slope of s, we consider the left pullbacks £7  (r). The left 

pullbacks are decreasing in time, so go either to minus infinity or to a finite infimum. 

We claim that they go to minus infinity. For suppose £ 7  decreased to an infimum

k > —00 . By Lemma 4, we know that the characteristic curve Xk(r) increases to

infinity. By (9.2), its slope at a point x  is

^  =  0  +  fl8( f c ) - « 8(*), (9.27)
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which goes to a  4- B^(k) as x —► oo. The slope of the shock curve is

§ = j ( a  + fl8(S-)-/*oW), <9'28)

which goes to 3 ( a  +  fto(fc)) as s -*■ oo. This implies tha t x\t(r) eventually intersects 

s(r). Any point on the shock beyond where Xfc(r) impinges upon it will have a left 

pullback less than k. This contradicts the fact that k  is the infimum over all left 

pullbacks. Thus —* —oo as r  -+ oo. Therefore,

ds 1
£  = j ( a  + «2(C) -  RoW) -  a/2,dr 2

which completes the proof. □

T heorem  7. The long-time structure of the solution o f (6.20), (6.21) when a  >  2A is 

given by the formula

f a - / $ ( * )  x < s ( r )  
v(x, r)  -+ < (9.29)

[o x  > s(r).

Figure 17a shows the long-time profile (9.29).

Proof. By (9.11) and (9.12), v is always zero to the right of the shock. Pick a point 

X  <  s(r). The left pullbacks ^ ( r )  of the vertical line x  =  X  decrease to minus infinity. 

If not, they would decrease to a finite infimum, k, and by looking at the characteristic 

curve Xfc(r), we could derive a contradiction. By (9.5), we have

l̂im  ̂v(X , r) =  l̂im  ̂a  + Pq((x ) — jRqPO =  ct — f2o(X).

This proves the theorem. □

The proofs of Theorems 6 and 7 go through when a  =  2 A provided we restrict to the 

case P  > 0. The only alteration required is in proving th a t the shock can not stop at 

a finite point X .  This is done as follows. Since s(0) =  0 and s(0) =  a /2 , then beyond 

some time tq > 0, we know that s > 6 for some 6 > 0. Then since R$ is decreasing on

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(0, oo) and /Iq(0) =  a, then a  -  R$(s) > e > 0 for all r  >  m* As a result, the shock 

speed at any finite point X  satisfies

%  =  J  ( a  +  *o(f7) -  floW ) >  j ( a  "  * o M ) 5  e . (9-30)

for r  > ro. This shows that the shock can not stop at any finite point X . Numerical 

evidence suggests that Theorems 6 and 7 extend to the case a  =  2A and P  < 0, though 

no proof of this is currently available.

Case: a  < 2A

In this case, the long-time dynamics depend on the starting point P  of the shock. 

Using the notation introduced in Lemma 4, let A_«  =  j^ j lo g  ( j j ) .  Recall that for 

£ 6 (-oo, Cl], is location of the vertical asymptote for the characteristic curve a:?(r).

T heorem  8 (Shock c ap tu re ) . I f  at < 2 \  and P  < Cl, then the shock is blocked by 

the linear soliton (Figure 25), that is

lim s(r) =  S, (9.31)
T - »  OO

where

A .oo < £  < A P < 0. (9.32)

Proof. We have already seen that the shock increases either to infinity or to a finite 

supremum, and that the shock speed is the average value of the slopes of the left and 

right impinging characteristic curves. The right impinging curves have zero slope so 

contribute nothing to the shock speed. By Lemma 4, all characteristic curves originat­

ing from (-oo , P] approach vertical asymptotes in the interval (A_oo, Ap\. The left 

impinging slopes can therefore contribute nothing to the shock speed at or beyond Ap. 

This shows that the shock can not pass beyond A p  because it can not have positive 

slope beyond Ap. To see that it can not stop before A_<», pick a point X  < A_oo-

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Then R%(X) < /2q(A_«,) =  a  so a -  R%(X) =  e > 0 for some e. For all time, the slope 

of the shock curve at X  satisfies

ds . ,  . , > €.dr 3 - X  2

Therefore the shock can not stop at any point X  < A_oo- □

T heorem  9. I f  a  < 2A and P  <  fi, the solution v (x ,r) o f (6.20), (6.21) approaches

the steady state solution Voo(z) given by
/

a  -  flo(x) x <  A_oo 
v<x>(x) — (9.33)

0 x > A -oo-
V

Figure 17b shows the profile (9.33). It is has a discontinuous derivative at x =  A_oo 

but has no jump discontinuity. Theorem 9 thus shows tha t when the initial shock 

strength (the size of the jump) is smaller than the amplitude of the linear soliton, the 

shock strength is pushed to  zero as time goes on. This is in contrast to the long-time 

behavior of v(x, r) in the case a > 2A. Theorem 7 shows that in this case, the shock 

strength is weakened to some nonzero minimum, but then returns to its original value 

as r  increases to infinity.

Proof. Let £* (t), or just £*, denote the left pullbacks of the vertical line x =  X.

must decrease either to  minus infinity or to a finite infimum as r —► oo. It is 

straightforward to show that if X  <  A_<», then £*(r) -* —oo. If A_oo <  X  < Ap, 

then X  is the vertical asymptote location for some characteristic curve starting to the 

left of X . This follows from the definition of A^. Suppose the curve starting from the 

point Y  has its vertical asymptote at X .  It is then straightforward to show (using the 

definition of an infimum) tha t the left pullbacks of the vertical line x =  X  decrease to 

the point Y  as r  —► oo. These observations imply that

lim v(X,  r) =  Urn a  +  fig(Cx) -  R$(X)  =  a  -  P§(X ), i f X <  A .* ,r-*oo r-*oo

and

lim v(X , t ) =  lim a  + flo(£x) — fljj(X) = 0 , if A_«> < X  < Ap.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Since v =  0 to the right of the shock, the theorem is proved. □

Theorems 8 and 9 addressed the case P  < Cl (and a < 2A). The next two theorems 

cover the case P > 0 (and a  <  2A).

T heo rem  10 (Shock escape w ith  speed  increase). I f  a  < 2A and P > 0, the 

shock passes through the linear soliton, and the shock speed converges to A (Figure 24).

Proof. Fix a point X  > P. We show the shock speed can not go to zero at X , so the 

shock can not converge to a finite supremum. Since X  > 0 and R$ is decreasing on 

(0, oo), then 2A -  B^(X ) =  e >  0 for some e. Since P > 0, characteristic curves starting 

to the left of Cl can not impinge upon the shock. This is because all of these curves hit 

vertical asymptotes before 0. The left pullbacks £7 must therefore decrease to a finite 

infimum, say fc, with k> C l. We will show that k — Cl. But first note that at any time 

r , the slope of the shock curve at X  satisfies

so the shock must increase to infinity. To prove that its long-time speed is A, we show 

that k = Cl. Since the characteristic curve x n (r ) asymptotes at the line x  =  0, XQ+i(r) 

intersects the line x =  0 at a time re which goes to infinity as e —► 0. Therefore, 

characteristic curves starting close enough to Cl can be made to intersect the line 

x =  0 arbitrarily high up. Curves starting close enough to Cl will thus pass over any 

transient shock that may have developed (see Theorem 5). By looking at the slopes of 

these characteristic curves, we can show that they must eventually intersect the shock. 

Therefore, the left pullbacks of the shock must converge to Cl. That is,
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> i ( a  +  S ?(!5)-flJ(X ))

> e, (9.35)

k =* lim £7 (r) =  Cl.
T —* OO
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As a result

which concludes the proof. □

T h eo rem  11. I f  a  <  2A and P > 0, then the long-time structure of the solution of 

equations (6.20), (6.21) is given by the formula
f

a  — flo(x) x <  >l-oo

Figure 17c shows the profile (9.36). In the case a  > 2 A, we saw that when the shock 

escaped, its strength returned to its original state. In contrast to this, when a  <  2A 

and the shock escapes, its strength increases to 2A, the amplitude of the linear soliton. 

In this sense, the effect of the dispersive wave on the shock wave is nonlocal. Though 

the shock passes through the linear soliton, it does not return to its original speed as 

it did in the case a  > 2A; it undergoes a permanent strength increase.

Proof. The proof comes down to looking at the left pullbacks £x  of the vertical line 

x  =  X  when X  is in each of the intervals on the right-hand side of equation (9.36). 

The arguments used in the proof of Theorem 9 show that for X  <  A_ooi -+ -oo, 

and for A_oo < X  < 0, £x  —► Y  where A y  =  X . Therefore,

For 0 < X  < s ( t ) ,  the arguments used in the proof of Theorem 10 show that £x (r) —► 

ft. So for 0 <  X  < s (r), we have

lim v(X , r ) =  lim a  +  flg(fr) -  flg(X) =  a  +  R%(Q) -  flg(X) =  2A -  Rg(X).
T —* 0 0  T  —*O0

0 A_oo < x  < 0
(9.36)v(x, r) -* <

2A -  /Zo(x) 0 <  x  < s(r) 

0 x  > s(r).

As always, v =  0 to the right of the shock, hence the theorem is proved. □
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Figure 17: (a) Long-time profile (9.29) for v in the case a  >  2A. Shock 
strength decreases to a nonzero minimum, then returns to a  as r  —► oo. (b) 
Long-time profile (9.33) in the case a  < 2A, P  <  fl. Shock strength goes 
to zero as r  —► oo. This is a steady-state solution of equation (6.20) (c) 
Long-time profile (9.36) in the case a  <  2A, P  >  0. Shock strength increases 
from a  to 2A.
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We next consider the case a  < 2A and P  6 (ft,0). We make the following obser­

vations: If s starts at P  and ft <  P  <  0, the characteristic curve Xn(r) may impinge 

on the shock curve or may not. If it does, all of the other left impinging characteristic 

curves for later times originate from points left of ft. Thus if xn (r) impinges on the 

shock curve, the shock will stop in the interval [A_oo.0] because the left impinging 

characteristics have asymptotes in this interval. Alternatively, if the shock increases 

to the point s =  0 before xq  impinges upon it, none of the characteristic curves which 

asymptote in [A_ooi 0] can reach the shock. In this case, the shock will escape. Re­

gardless of P , the initial slope of the shock is a /2 , while the initial slope of xn(r) is a. 

Thus one would expect s to  intersect xn if it starts close to ft, or to reach 0 if it starts 

close enough to 0. Numerical trials confirm this: they show that if P  is negative but 

near 0, the shock escapes, and if P  is near but larger than ft, the shock stops before 0. 

These observations lead to the following conjecture:

C onjecture  Suppose a  <  2A. There exists a point A with ft <  A <  0 such that for 

P  < A the shock stops in the interval [A_oo,0] and has the long-time structure (9.33). 

For P  > A, the shock escapes with long-time structure given by (9.36).

10 Numerical experiments

In this section we present numerical solutions1 of the leading order shock equations

(6.18), (6.20) of Problems I and 2, respectively. In every case, the initial data is

This corresponds to the choice a  =  1 in equation (5.6) on page 48. In all of the figures, 

v is compared to the solution of the conservation law

'The software was written by Peiji Chen, Department of Aerospace Engineering, University of 

Southern California, Los Angeles, CA.
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(10.1)

lb  +  UUx =  0 (10.2)
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with data (LO.l). The solution of (10.2) in each case is shown in dashed lines. Both 

shock equations reduce to (10.2) when the dispersive wave amplitude A —► 0.

The first three examples (Figures 18, 19, 20) are numerical solutions of equation

(6.18), the effective shock equation of Problem 1 . The evolution is described in The­

orems 2 and 3. In each case, a  — I and A =  0.55, so the values of and iV2 defined 

in Theorem 3 are approximately ¥1.28, respectively. The only difference in each run 

is the value of the shock starting point P . In Figure 18, P  =  0.5, which is between 

N\ and iV2, so the shock move backwards to the stopping point N \. In Figure 19, 

P = —2.5 <  JVi, and so the shock moves forwards to the same stopping point. In 

Figure 20, P  = 1.5 > A^, and the shock travels right without stopping.

The next five figures (21-25) show numerical solutions of equation (6.20), the shock 

equation of Problem 2. Figures 21 and 22 show the transient shock phenomenon 

described in Theorem 5. In both runs, A =  0.8 but P  varies. In Figure 21, P  =  6, 

and the transient shock develops, while in Figure 22, P  =  2.5, and the transient shock 

is suppressed. Figure 23 shows an example of shock escape with no speed change as 

described in Theorems 6 and 7. Here, A =  0.3 and P  =  —0.5. In Figure 24, A =  1.5 

and P  =  0, so Theorems 10 and 11 imply that the shock escapes but increases in 

size from a  to 2A. In agreement with formula (9.36), v decreases to 0 in the interval 

[A_oo,0], where, in this case, A-oo ~  -0 .45. The last example, Figure 25, shows the 

shock capture described in Theorems 8 and 9. In this example, A =  1.5 and P  =  -0.5, 

which is to the left of Cl«  —0.17 (defined in equation (9.14)).

Two comparisons are worth emphasizing. First, in Figures 24 and 25, A is the same, 

only P  varies. Thus for a fixed shock strength of 1 and linear soliton amplitude of 3, 

starting the shock to the left of the soliton results in shock capture, while starting it 

in the center of the soliton results in shock escape. Second, in Figures 23 and 25, P  is 

the same but A varies. This comparison shows that for a fixed shock strength of 1 and 

a fixed starting point of —0.5, if the soliton’s amplitude is small enough, the shock will 

pass through it (Figure 23), but if the amplitude is larger, the shock will be trapped 

(Figure 25).
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Figure 18: Problem 1: Backwards shock capture, (a) r  
r  =  3. (c) r  =  6. (c) r  =  9. a  =  1, A =  0.55, P  =  0.5, N\
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Figure 19: Problem 1: Forwards shock capture, (a) r  =  0. 
(b) r  =  2. (c) r  =  4. a  =  1, A =  0.55, P  =  —2.5, IVi ~  
-1.28. (Dashed: A =  0).
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Figure 19: Problem 1: Forwards shock capture, (d) r  =  6.
(e) r  =  8. (f) r  =  10. a  =  1, A =  0.55, P  =  —2.5, Ny ~  
—1.28. (Dashed: A =  0).
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Figure 20: Problem 1: Shock escape, (a) t =  0. (b) t =  2 
(c) t =  4. a  =  1, A =  0.55, P  =  1.5, N x «  -1.28. (Dashed 
A =  0).
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Figure 20: Problem 1: Shock escape, (d) t =  6. (e) t = 8.
(f) t =  10. a  =  1, A =  0.55, P  = 1.5, Ni «  -1.28. (Dashed: 
A =  0).
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Figure 21: Problem 2: Development of transient shock, (a) 
t = 0. (b) t = 2. (c) t =  4. a  =  1, A =  0.8, P = 6. (Dashed: 
A =  0).
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Figure 21: Problem 2: Development of transient shock, (d) 
4 =  7. (e) t =  9. (f) t =  10. a  =  1, A =  0.8, P  =  6. (Dashed: 
A =  0).
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Figure 22: Problem 2: Suppression of transient shock, (a) 
t =  0. (b) t =  2. (c) t =  4. a  =  1, A =  0.8, P  =  2.5. 
(Dashed: A =  0).
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Figure 22: Problem 2: Suppression of transient shock, (d) 
t =  7. (e) t  =  9. (f) t =  10. a  =  1, A =  0.8, P  =  2.5. 
(Dashed: A =  0).
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Figure 23: Problem 2: Shock escape -  no speed change, (a) 
t =  0. (b) t =  2. (c) t =  4. a  =  1, A =  0.3, P  =  -0 .5 . 
(Dashed: A =  0).
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Figure 23: Problem 2: Shock escape -  no speed change, (d) 
t =  6. (e) t =  8. (f) t =  10. a  =  1, A =  0.3, P  = -0 .5 . 
(Dashed: A =  0).
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Figure 24: Problem 2: Shock escape with speed change, (a) 
t = 0. (b) t =  0.02. (c) t  =  0.3. a  =  1, A =  1.5, P = 0, 
A_oo ~  —0.45. (Dashed: A =  0).
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Figure 24: Problem 2: Shock escape with speed change, (d) 
t =  0.7. (e) t =  1. (f) t =  1.5. a  =  1, A =  1.5, P  =  0, 
A_oo ~  —0.45. (Dashed: A =  0).
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Figure 25: Problem 2: Shock capture, (a) t =  0. (b) t = 0.5. 
(c) t =  1. a  =  1, A =  1.5, P  =  -0 .5 , A-oo ~  -0.45, 
h  «  -0.17. (Dashed: A =  0).
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Figure 25: Problem 2: Shock capture, (d) t =  3. (e) t  =  5. 
(f) t =  7. a  =  1, A =  1.5, P  =  —0.5, A-oo ~  —0.45, 
h  «  —0.17. (Dashed: A =  0).
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Appendix
In Chapters L and 2, system (0.9) (page 3) was analyzed in the weak coupling limit as 

well as in the incompressible limit. This system is one of a family of equations which 

model shock wave-dispersive interactions. In this appendix, several other models are 

identified and briefly compared to (0.9). In some cases, the work in Chapters 1 and 2 

carries over without much alteration. The general form of all the systems considered 

here is

eut 4- W(u, E)ux =  F(u, E)
(Al)

iEt 4- Exx =  E)E,

where

W  =  wavespeed coefficient 

F  =  forcing term 

V  =  potential.

System (0.9) is obtained by setting

W  = u

F = —u(5|E |2)*

V  = u.

Other systems result from different choices of W , F, and V .  One is

eut +  (u -  6\E\2)ux = 0
(A2)

iEt +  Exx +  uE  =  0.

When 6 = 0 (weak coupling), all of Chapter 1 (with a  slight modification to account 

for the sign change in the potential) is applicable. The work of Chapter 2 also applies, 

but the positions of the soliton and cusped exponential are switched. More specifically, 

consider the e =  0 problem (with 6 =  1). It has solutions u =  |F |2 or u =  c, which lead
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to the NLS equation for E  in the latter case, and the linear dispersive equation

iEt ■+■ Exx ■+• cE — 0,

in the former. We set c =  0, though generally it may depend on t. After carrying out 

the multi-scale expansions for u, R, and 9, the effective shock equations about each 

e =  0 solution are 

Problem 1 tto  = R % + v (x , t ) :

vr 4- v(v +  Rq)x =  0, (A3)

Rq =  2Asech2(>/Aa;).

Problem 2 uo =  v(x, r):

Vr  + ( v -  Rq)vx = 0, (A4)

Rq =  2Aexp(—2>/A|x|).

The soliton now appears in the variable friction equation (A3), while the cusped expo­

nential appears in the variable wavespeed equation (A4). The theorems in Chapter 2 

describing the shock dynamics for each problem still hold because they did not make 

use of the formulas for Rq, only their shapes. If one wanted to focus only on soliton-

shock interactions, system (0.9) would model soliton-shock interactions in the case of

a variable wavespeed coupling, and system (A2) would govern these interactions in the 

case of a variable friction coupling.

An interesting variation of (0.9) is given by

€Ut +  u(u +  S\E^)X =  0 ^

iE t + Exx + (u + \E\2)E  = Q,

where a nonlinearity appears in the potential of the E  equation. The weak coupling 

limit is more difficult, yet Chapter 1, excluding the small diffusion limits, carries over. 

In particular, the steady-state Riemann problem and the transient problem can be 

solved with little modification. The main difference is that all of the equations for
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R  contain an additional R2 term, so the solutions for R  are less explicit. In the 

incompressible limit, system (A5) is, to leading order, identical to system (0.9), though 

the higher order correction terms are different. The effective shock equations are the 

same, but the e =  0 problems are switched. That is, when e =  0, the solutions are still 

u =  - \E \2 and u =  0, but these give LS and NLS, respectively, for E, instead of NLS 

and LS, respectively, in (0.9). The two problems are:

Problem 1 uq = —R$ + v(x , t ):

Vr + V(V +  R$)x =  0,

Rq =  2Aexp(—2>/A |x |) .

Problem 2 uq =  v(x ,r):

Vr + ( V -  R%)VX =  0, 

jRo =  2Asech2(VAa:).

Again, the shock dynamics of Chapter 2 still apply. As was done in system (A2), 

the soliton can be made to appear in the variable friction equation by considering the 

system

etit +  (u -  5 |£ |2)u* =  0 

iEt +  Exx — (u — |£ |2)27 =  0.

Systems (A5) and (A6) can be thought of as modeling two different types of soliton- 

shock interactions. The nonlinear potential in these systems leads to different dynamics 

at higher orders, but this is still being investigated.

A model whose associated effective shock equations are very different than the ones 

above and in Chapter 2 is

eut +  (u +  6\E\2)ux =  0 ^

iEt +  Exx —uE  = 0.

The E  equation agrees with that of (0.9), but now the x  derivative in the first equation 

has been moved. The weakly coupled system is identical to the one considered in 

Chapter 1, but the incompressible limit is very different. The two problems are:
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Problem 1 u q  =  —F§ -f- v(x, r):

Problem 2 u q  = t/(x, r ) :

vr +  (u +  =  0,

ilo =  2Asech2(\/Ax).

Ur +  v(v -  fio)* =  0, 

ilo =  2Aexp(-2>/A|x|).

(A8)

(A9)

(A10)

(All)

Compare (A8) to (A4) and (A10) to (A3). The sign difference has a great effect on 

the characteristic equations and on the resulting shock dynamics. In particular, one 

can immediately see that in (A8) no shock blocking occurs because the +/2q term can 

only increase the shock speed. The shock dynamics for (A10) are also different and are 

currently being studied. Variations of system (A7) are

eut +  u(u — 6 \E \2)s  = 0 

iE t  +  Exx +  u E  =  0,

(A12)

eu« +  (u 4- 6 |£ |2)ux =  0 

iE t  +  E xx  +  ( u  +  \E \2) E  — 0,

and

(A13)

(A14)
eut +  u(u -  6 |£ |2)* =  0 

iE t  +  E x x - ( u - \ E \ 2) E  =  0.

Systems (A12)-(A14) are related to (A10) as systems (A2)-(A4) are related to (0.9).
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