
CONTROLLED AND UNCONTROLLED MOTION IN THE

CIRCULAR, RESTRICTED THREE-BODY PROBLEM:

DYNAMICALLY NATURAL SPACECRAFT FORMATIONS

by

Ralph Ramos Basilio

A Dissertation Presented to the

FACULTY OF THE GRADUATE SCHOOL

UNIVERSITY OF SOUTHERN CALIFORNIA

In Partial Fulfillment of the

Requirements for the Degree

DOCTOR OF PHILOSOPHY

(AEROSPACE ENGINEERING)

August 2007

Copyright 2007 Ralph Ramos Basilio

UMI Number: 3287118

Copyright 2007 by

 Basilio, Ralph Ramos

 All rights reserved.

 __

UMI Microform 3287118
Copyright 2007 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

 ii

Epigraph

In this life we get only those things for which we hunt, for which we strive, and for which

we are willing to sacrifice.

-George Matthew Adams

 iii

Dedication

This work is dedicated to my loving wife, Eleanor, and to our son, Andrew, who is and will

always be our pride and joy.

 iv

Acknowledgements

Completing a challenging graduate degree program was only possible through the guidance,

encouragement, assistance, and patience of a number of individuals. My sincere thanks go to:

• Paul Newton, Professor, Department of Aerospace and Mechanical Engineering, for

supervising this body of work and understanding my need to balance my academic

interests with a professional career and family responsibilities;

• Peter Baxendale, Professor, Department of Mathematics, and Larry Redekopp,

Professor, Department of Aerospace and Mechanical Engineering, for serving on both

my dissertation and guidance committees;

• Henryk Flashner, Professor, and Firdaus Udwadia, Professor, both of the Department of

Aerospace and Mechanical Engineering, for serving on my guidance committee;

• Eleanor, my darling wife, and Andrew, our son, for their enduring patience, support,

understanding, and for representing the three of us during those family events and

outings I missed out on, because of my academic commitments;

• Greg and Teresita Basilio, my parents, Joseph Basilio, my brother, Pat Basilio, his wife

and my sister-in-law, Matthew, their son and my nephew, Sergio and Suerte Vasco, my

in-laws, Elizabeth Vasco-Belen, my other sister-in-law, Glenn Belen, her husband,

Christina Belen, their daughter, and Glenn Belen, Jr., their son for understanding why

and allowing me to miss out on those family events and outings;

• Marrietta Penoliar, Student Programs Advisor, Department of Aerospace and

Mechanical Engineering, for guiding me through much of my entire graduate school

experience;

• Elliot Axelband, Associate Dean for Research Development, Viterbi School of

Engineering, Conrad Newberry, Professor Emeritus, Naval Postgraduate School, and

Richard Stanton and Mike Jahan, my former managers at the Jet Propulsion Laboratory,

California Institute of Technology who all believed that I could complete a challenging

 v

graduate engineering program while working full-time and demonstrating that

conviction by writing and submitting letters of recommendation;

• Martin Lo of the High Capability Computing and Modeling Group, Jet Propulsion

Laboratory, California Institute of Technology for his support, encouragement in this

endeavor, and assistance in identifying and developing a research topic;

• Randy Paffenroth, formerly a Staff Scientist in the Applied and Computational

Mathematics Department, California Institute of Technology for tutoring me on the

inner workings of the AUTO 2000 continuation and bifurcation analysis software tool;

and finally,

• Mohamed Abid, Richard “Jim” Aragon, Cindy Bevans, Ron Boain, Dave Braun,

Shannon Brown, Randy Coffey, Mike Davis, Ben Dominguez, Angie Dorsey, Chuck

Eidem, Steve Durden, Diane Evans, Lee Fu, Mike Gallagher, Jim Graf, Steve

Greenberg, Dave and Bobbi (Grable) Gregorich, David Guarino, Natalie Guzman, Mary

Ann Hall, Gail Hammitt, Paul Hernandez, Debbie Higuera, Eastwood Im, Bill Kert, Ami

Kitiyakara, John Kreigenhofer, Bruce Krohn, Ron Kruid, Try Lam, Thomas Livermore,

Scott Michel, Alex Nicolson, Mark Rokey, Dawn Skinner, Deborah Vane, Parag Vaze,

K. Charles Wang, Ray Welch, John Wirth, Charlie Yamarone, and others not mentioned

– my managers and colleagues, past and present, who allowed me to further my

education without making me feel guilty that I did not spend ‘all’ of my extra off-hours

on CloudSat, OSTM (Ocean Surface Topography Mission), and/or OCO (Orbiting

Carbon Observatory) related work.

The Jet Propulsion Laboratory, California Institute of Technology, under contract with the

National Aeronautics and Space Administration, provided tuition re-imbursement.

 vi

Table of Contents

Epigraph ...ii

Dedication .. iii

Acknowledgements ..iv

List of Tables ... viii

List of Figures..x

Acronyms and Abbreviations..xv

Abstract ...xvi

Preface... xvii

Chapter 1: Introduction..1

1.1 Synchronization ..1

1.1.1 Coordinated Action ..1

1.1.2 Coordinated Motion ...2

1.2 Astrodynamics and Spacecraft Formation Flying...3

1.2.1 Current Methods and Scientific Applications ...4

1.2.2 Future Possibilities and the Thesis...6

1.3 The Structure of the Ph.D. Dissertation...7

Chapter 2: Two-Body Systems, Modeling, and Analysis ..8

2.1 Two-Body Systems ..8

2.1.1 General Two-Body Problem ..8

2.1.2 Central Force Motion ...11

2.2 Computer Simulations and General Analysis..13

Chapter 3: The Circular, Restricted Three-Vortex Problem..19

3.1 Equations of Motion...21

3.2 Equilibrium Points..23

3.3 Level Curves of the Hamiltonian...23

3.4 Phase-Lock Controller..28

3.5 Formation Establishment..44

3.5.1 Resonant Frequency Approach ..45

3.5.2 Controller Method ..48

3.6 Proof-of-Concept Problem and Solution ...52

 vii

Chapter 4: The Circular, Restricted Three-Body Problem...57

4.1 Equations of Motion...58

4.2 Equilibrium Points..62

4.3 Jacobi Integral...70

4.4 Periodic Orbit Generation ..72

4.5 General Stability and Other Periodic Orbit Characteristics..86

4.6 Problem No. 1: Lyapunov (Planar) Case...99

4.6.1 Periodic Orbits..99

4.6.2 Phase-Lock Controller..101

4.6.3 Formation Establishment ...108

4.6.3.1 Resonant Frequency Approach..108

4.6.3.2 Controller Method ..109

4.6.4 Example Problem and Solution ...117

4.7 Problem No. 2: Three-Dimensional Case..118

4.7.1 Periodic Orbits..119

4.7.2 Phase-Lock Controller..120

4.7.3 Formation Establishment ...124

4.7.3.1 Resonant Frequency Approach..124

4.7.3.2 Controller Method ..124

4.7.4 Example Problem and Solution ...130

Chapter 5: Evaluation and Assessment...132

5.1 Verification & Validation...132

5.2 Limitations ..133

5.3 Lessons Learned ...134

5.4 Potential Scientific Applications..135

5.5 Recommendations for Future Work ..135

Chapter 6: Conclusions..136

Glossary ...138

Bibliography ..139

Appendices...141

Appendix A: MATLAB and AUTO 2000 Computer Tools ...142

Appendix B: MATLAB Scripts, Function Files, and Programs...149

Appendix C: AUTO 2000 Program Files ..188

Appendix D: Catalogue of Periodic Orbits Around the Earth-Moon L4 Point..................................197

Appendix E: Floquet Theory and the Monodromy Matrix ...212

Appendix F: 2005 SIAM Dynamical Systems Conference Presentation Charts216

Appendix G: 2006 SIAM PDE Conference Presentation Charts..223

Appendix H: Dissertation Defense Presentation Charts ...232

 viii

List of Tables

Table 2.1. The relationship between the magnitude of eccentricity, e , and the shape of the orbit........12

Table 3.1. Equilibrium point coordinates for the case with equal strength primary vortices.23

Table 3.2. Attributes of the two periodic orbits, P1 and P2, surrounding the second vortex27

Table 3.3. Circular, restricted three-vortex problem: Controller no. 1 parameter values41

Table 4.1. The coordinates for the five equilibrium points in the earth-moon system.64

Table 4.2. The coordinates for the five equilibrium points in the Saturn-Titan system..........................65

Table 4.3. The eigenvalues for the five equilibrium points in the earth-moon system...........................68

Table 4.4. The eigenvalues for the five equilibrium points in the Saturn-Titan system69

Table 4.5. A description for each of the four AUTO 2000 input files...73

Table 4.6. Earth-moon L4 equilibrium point periodic orbit families...74

Table 4.7. Earth-moon L5 equilibrium point periodic orbit families...77

Table 4.8. Planar case: Floquet multipliers for the inner most periodic orbit in Figure 4.2188

Table 4.9. Planar case: Floquet multipliers for the second smallest periodic orbit in Figure 4.21.........88

Table 4.10. Planar case: Floquet multipliers for the middle periodic orbit in Figure 4.2188

Table 4.11. Planar case: Floquet multipliers for the second largest periodic orbit in Figure 4.2189

Table 4.12. Planar case: Floquet multipliers for the outer most periodic orbit in Figure 4.2189

Table 4.13. General attributes for six planar periodic orbits..90

Table 4.14. Green’s theorem-derived area bounded by each planar periodic orbit.................................91

Table 4.15. Three-dimensional case: Floquet multipliers for orbit no. 126 ...97

Table 4.16. Three-dimensional case: Floquet multipliers for orbit no. 128 ...97

Table 4.17. Three-dimensional case: Floquet multipliers for orbit no. 130 ...97

Table 4.18. Three-dimensional case: Floquet multipliers for orbit no. 132 ...98

Table 4.19. Three-dimensional case: Floquet multipliers for orbit no. 134 ...98

Table 4.20. Stokes’ theorem-derived area bounded by each three-dimensional periodic orbit..............98

Table 4.21. Planar case: Controller no. 1 parameter values ...105

 ix

Table 4.22. Planar case: Staging, transfer, and total time to reach the desired orbit.............................107

Table 4.23. Planar case: Controller no. 2 parameter values ...112

Table 4.24. Three-dimensional case: Controller no. 1 parameter values...121

Table 4.25. Three-dimensional case: Staging, transfer, and total time to reach the desired orbit122

Table 4.26. Three-dimensional case: Controller no. 2 parameter values...125

 x

List of Figures

Figure 2.1. A sketch of a two-body system located in three-dimensional physical space........................9

Figure 2.2. A MATLAB plot of orbit traces for a two-body system with equal masses.13

Figure 2.3. A plot of the barycenter speed for a two-body system with equal masses14

Figure 2.4. An orbit trace using ode23 with reltol=1.0E-03 and abstol=1.0E-06...................................14

Figure 2.5. An orbit trace using ode23 with reltol=1.0E-05 and abstol=1.0E-08...................................15

Figure 2.6. An orbit trace using ode45 with reltol=1.0E-03 and abstol=1.0E-06...................................15

Figure 2.7. An orbit trace using ode45 with reltol=1.0E-05 and abstol=1.0E-08...................................16

Figure 2.8. A MATLAB plot of the differences in barycenter speed..16

Figure 2.9. A plot of potential, kinetic, and total energy of a two-body system.....................................17

Figure 3.1. A hurricane churning the air and water around the Atlantic Ocean......................................19

Figure 3.2. A vortex moving only in a flat, two-space surface..20

Figure 3.3. The primaries, V1and V2 , lying on the real axis of the rotating coordinate frame..............21

Figure 3.4. Level curves of the Hamiltonian surrounding one of the two primary vortices...................24

Figure 3.5. A plot of characteristic distance versus orbit period ...24

Figure 3.6. A plot of characteristic distance versus angular rate ...25

Figure 3.7. A plot of characteristic distance versus angular rate using the log-log scale25

Figure 3.8. A plot of characteristic distance versus energy level ..26

Figure 3.9. A plot of two periodic orbits that formed the foundation for the study................................27

Figure 3.10. A test particle under the influence of a time independent controller..................................28

Figure 3.11. The same plot shown in Figure 3.10b, but using a different scale......................................29

Figure 3.12. A test particle under the influence of a time dependent controller where =1.030

Figure 3.13. A test particle under the influence of a time dependent controller where =4.031

Figure 3.14. A state diagram for both the time independent and time dependent cases.........................32

Figure 3.15. A test particle moving along a periodic orbit between the P1 and P2 orbits32

Figure 3.16. A test particle being placed on the same periodic orbit as another.....................................33

 xi

Figure 3.17. The trajectory of a test particle under the influence (driven by) controller no. 1...............34

Figure 3.18. Test particle trajectories where controller no. 1 is active..35

Figure 3.19. A state diagram for controller no. 1 ...36

Figure 3.20. Test particle no. 1 shown moving in a periodic orbit about V2 ..36

Figure 3.21. Test particle no. 1 shown moving under the influence of the controller37

Figure 3.22. Test particle no. 1 shown moving in a new periodic orbit ..37

Figure 3.23. A plot of the energy level as a test particle moves along the transfer trajectory................38

Figure 3.24. Four test particles, P1- P4 , each traveling along their respective initial orbits...................39

Figure 3.25. A plot of the trajectory needed to place the first test particle, P1, on the new orbit39

Figure 3.26. Controller no. 1 trajectories at four different initial starting positions40

Figure 3.27. The trajectory showning a test particle leaving and arriving on a tangent41

Figure 3.28. Transfer trajectory curves for each of the four test particles...42

Figure 3.29. The staging times and transfer trajectory times for each of the four test particles.............42

Figure 3.30. The staging times and transfer trajectory times for each of the four test particles.............43

Figure 3.31. The actual and desired test particle positions at t=1.48 units of time.................................44

Figure 3.32. The flowchart for the script file, i.e. main_script_v5_1.m..45

Figure 3.33. A plot showing how many times each particle must traverse their periodic orbits............47

Figure 3.34. Motion of a test particle using a scale factor for controller no. 249

Figure 3.35. Motion of a test particle using a time element for controller no. 2.....................................49

Figure 3.36. Motion of a test particle using a trigonometric function for controller no. 250

Figure 3.37. Trajectory/orbit plots for four different scale factor values for controller no. 250

Figure 3.38. A plot of scale factor versus orbit period plus curve-fit residuals51

Figure 3.39. A trajectory/orbit plot for a scale factor value of 2.6 ..51

Figure 3.40. The initial states and periodic orbits for four test particles ...52

Figure 3.41. Test particle formation establishment timeline using controller no. 253

Figure 3.42. Initial positions and periodic orbits for four test particles ..54

 xii

Figure 3.43. Four test particles traveling in controlled (controller no. 1) motion...................................55

Figure 3.44. Four test particles traveling in controlled (controller no. 2) motion...................................55

Figure 3.45. Initial and final states and periodic orbit for four test particles ..56

Figure 4.1. The geometry of the circular, restricted three-body problem..57

Figure 4.2. The five equilibrium points of the circular, restricted three-body problem64

Figure 4.3. An earth-moon L4 family w/initial orbit period = 6.283185 [XY planar projection]..........75

Figure 4.4. An earth-moon L4 family w/initial orbit period = 6.283185 [XZ planar projection]76

Figure 4.5. An earth-moon L4 family w/initial orbit period = 6.283185 [YZ planar projection]76

Figure 4.6. An earth-moon L5 family w/initial orbit period = 6.283185 [XY planar projection]..........78

Figure 4.7. An earth-moon L5 family w/initial orbit period = 6.283185 [XZ planar projection]79

Figure 4.8. An earth-moon L5 family w/initial orbit period = 6.283185 [YZ planar projection]79

Figure 4.9. An earth-moon L4 family w/initial orbit period = 21.070352 [XY planar projection]........80

Figure 4.10. An earth-moon L4 family w/initial orbit period = 21.070352 [XZ planar projection]80

Figure 4.11. An earth-moon L4 family w/initial orbit period = 21.070352 [YZ planar projection]81

Figure 4.12. An earth-moon L5 family w/initial orbit period = 21.070352 [XY planar projection]......81

Figure 4.13. An earth-moon L5 family w/initial orbit period = 21.070352 [XZ planar projection]82

Figure 4.14. An earth-moon L5 family w/initial orbit period = 21.070352 [YZ planar projection]82

Figure 4.15. Orbit no. v. orbit period for each L4 equilibrium point periodic orbit.83

Figure 4.16. Some orbit traces of the earth-moon L4 equilibrium point periodic orbit family..............84

Figure 4.17. A MATLAB plot of average distance from the L4 equilibrium point................................84

Figure 4.18. A MATLAB plot of average distance from the L5 equilibrium point................................85

Figure 4.19. A plot of average distance from the L4 equilibrium point as a function of period............85

Figure 4.20. A plot of average distance from the L5 equilibrium point as a function of period.86

Figure 4.21. Five periodic orbits around the earth-moon L4 equilibrium point.87

Figure 4.22. An arbitrary state vector for a MATLAB initial value problem. ..87

Figure 4.23. A linear plot of orbit frequency versus area...92

Figure 4.24. A semi-log plot (1 of 2) of orbit frequency versus area ..92

 xiii

Figure 4.25. A semi-log plot (2 of 2) of orbit frequency versus area. ...93

Figure 4.26. A log-log plot of orbit frequency versus area..93

Figure 4.27. A linear plot of minimum distance versus orbit period...94

Figure 4.28. A semi-log plot (1 of 2) of minimum distance versus orbit period94

Figure 4.29. A semi-log plot (2 of 2) of minimum distance versus orbit period.95

Figure 4.30. A log plot of minimum distance versus orbit period...95

Figure 4.31. Five periodic orbits around the earth-moon L4 equilibrium point96

Figure 4.32. An attempted MATLAB initial value problem periodic orbit plot......................................96

Figure 4.33. Planar case: Spacecraft, S1 through S4, initial state vectors...100

Figure 4.34. Planar case: Spacecraft, S1 through S4, uncontrolled motion animation.........................101

Figure 4.35. Planar case: A spacecraft placed in controlled motion using controller no. 1..................102

Figure 4.36. Planar case: Two spacecraft traveling in uncontrolled motion ...103

Figure 4.37. Planar case: A spacecraft moves from an inner to an outer periodic orbit103

Figure 4.38. Planar case: Desired spacecraft formation, i.e. equally spaced in time............................104

Figure 4.39. Planar case: Spacecraft staging points, i.e. controlled motion initial condition...............105

Figure 4.40. Planar case: Individual spacecraft transfer trajectories ...106

Figure 4.41. Planar case: Spacecraft transfer trajectories plotted together..106

Figure 4.42. Planar case: Spacecraft initial conditions and desired formation107

Figure 4.43. Planar case: Schematic of actual versus desired spacecraft relative positions.................108

Figure 4.44. Planar case: Example spacecraft trajcctories that close on themselves109

Figure 4.45. Planar case: Example spacecraft trajcctories that do not close on themselves.................110

Figure 4.46. Planar case: Curve-fit of orbit period versus controller no. 1 1 parameter110

Figure 4.47. Planar case: Curve-fit of orbit period versus controller no. 1 2 parameter111

Figure 4.48. Planar case: Spacecraft 2 (S2) initial and final controller no. 2 states..............................112

Figure 4.49. Planar case: Spacecraft 2 (S2) controlled motion (controller no. 2) trajectory113

Figure 4.50 Planar case: Spacecraft 1 (S1) initial and final controller no. 2 states...............................113

 xiv

Figure 4.51. Planar case: Spacecraft 1 (S1) controlled motion (controller no. 2) trajectory114

Figure 4.52. Planar case: Spacecraft 3 (S3) initial and final controller no. 2 states..............................114

Figure 4.53. Planar case: Spacecraft 3 (S3) controlled motion (controller no. 2) trajectory115

Figure 4.54. Planar case: Spacecraft controller no. 2 trajectories..115

Figure 4.55. Planar case: Schematic of spacecraft final states...116

Figure 4.56. Planar case: Plot of spacecraft final states ...116

Figure 4.57. Planar case: Spacecraft controlled motion (controller no. 1) animation...........................117

Figure 4.58. Planar case: Spacecraft controlled motion (controller no. 2) animation...........................118

Figure 4.59. Three-dimensional case: Spacecraft, S1 through S4, initial state vectors119

Figure 4.60. Three-dimensional case: Spacecraft, S1 - S4, uncontrolled motion animation................120

Figure 4.61. Three-dimensional case: Spacecraft transfer trajectories plotted together122

Figure 4.62. Three-dimensional case: Spacecraft initial conditions and desired formation.................123

Figure 4.63. Three-dimensional case: Schematic of actual versus desired positions123

Figure 4.64. Three-dimensional case: Spacecraft 2 (S2) initial and final controller no. 2 states126

Figure 4.65. Three-dimensional case: Spacecraft 2 (S2) controlled motion trajectory126

Figure 4.66. Three-dimensional case: Spacecraft 3 (S3) initial and final controller no. 2 states127

Figure 4.67. Three-dimensional case: Spacecraft 3 (S3) controlled motion trajectory127

Figure 4.68. Three-dimensional case: Spacecraft 1 (S1) initial and final controller no. 2 states128

Figure 4.69. Three-dimensional case: Spacecraft 1 (S1) controlled motion trajector...........................128

Figure 4.70. Three-dimensional case: Spacecraft transfer trajectories plotted together129

Figure 4.71. Three-dimensional case: Schematic of spacecraft final states ..129

Figure 4.72. Three-dimensional case: Spacecraft final states ..130

Figure 4.73. Three-dimensional case: Spacecraft controlled motion (controller no. 1) animation131

Figure 4.74. Three-dimensional case: Spacecraft controlled motion (controller no. 2) animation131

 xv

Acronyms and Abbreviations

AVI Audio-Visual Interleaved

BSD Berkeley Software Distribution

BVP Boundary-Value Problem

CDE Common Desktop Environment

CR3BP Circular, Restricted Three-Body Problem (co-planar case)

ESA European Space Agency

HCW Hill-Clohessy-Wiltshire (Equations)

IVP Initial Value Problem

KAM Kolmogorov-Arnold-Moser

LISA Laser Interferometer Space Antenna

MATLAB Matrix Laboratory

NASA National Aeronautics and Space Administration

NOAA National Oceanic and Atmospheric Administration

ODE Ordinary Differential Equations

OS Operating System

POSIX Portable Operating System

 xvi

Abstract

Spacecraft formation flying involves operating multiple spacecraft in a pre-determined

geometrical shape such that the configuration yields both individual and system benefits. One

example is an over-flight of the same spatial position by spacecraft in geocentric orbit with the intent

to create a complementary data set of remotely sensed observables. Another example is controlling to

a high degree of accuracy the distance between spacecraft in heliocentric orbit to create a virtual,

large-diameter interferometer telescope. Although Keplerian orbits provide the basic framework for

general and precision spacecraft formation flying they also present limitations. Spacecraft are

generally constrained to operate only in circular and elliptical orbits, parabolic paths, or hyperbolic

trajectories around celestial bodies. Applying continuation methods and bifurcation theory techniques

to the circular, restricted three-body problem - where stable and unstable periodic orbits exist around

equilibrium points - creates an environment that is more orbit rich. After surmounting a similar

challenge with test particles in the circular, restricted three-vortex problem in fluid mechanics as a

proof-of-concept, it was shown that spacecraft traveling in uncontrolled motion along separate and

distinct planar or three-dimensional periodic orbits could be placed in controlled motion, i.e. a

controller is enabled and later disabled at precisely the proper positions, to have them phase-locked on

a single periodic orbit. Although it was possible to use this controller in a resonant frequency/orbit

approach to establish a formation, it was clearly shown that a separate controller could be used in

conjunction with the first to expedite the formation establishment process. Creation of these

dynamically natural spacecraft formations or multi-spacecraft platforms will enable the ‘loiter,

synchronize/coordinate, and observe’ approach for future engineering and scientific missions where

flexibility is a top-level requirement and key to mission success.

 xvii

Preface

The motivation for this research is the firm belief that even with collaboration among

research and development centers, academia, and industry as well as partnerships between nations

scarce budgets and competing interests will remain realities. Continuous innovations in science,

engineering, and technology are necessary for mankind to continue to expand the frontiers of space.

It is hoped that this body of work will in some way contribute to the actual formulation, development,

and implementation of scientific missions that until now exist only in the imagination.

1

Chapter 1: Introduction

The use of words such as disorder, randomness, and chaos is commonplace these days not

only in science and mathematical circles, but also in casual conversation. Are we to believe that we,

the world as we know it, and the universe are doomed to a fate of absolute entropy? There is

anecdotal evidence to suggest otherwise, i.e. there appears to be a tendency for order/synchronization

to emerge from chaos. If we expand this to the field of astrodynamics - the study of the motion of

artificial satellites, spacecraft, and rockets - we can also cite a number of examples where coordinated

motion yields scientific or societal benefits. How are these types of coordinated motion

implemented? Can a novel implementation approach be developed to enable new, different types of

scientific missions? These questions are examined and serve as the impetus in the identification and

formation/structure of the thesis described later in this chapter.

1.1 Synchronization

1.1.1 Coordinated Action

For hundreds if not thousands of years, people had been fascinated with the pulsing rhythm

of fireflies, bioluminescent beetles of the Lampyridae family described by Eisner [10]. However, they

could not understand the mechanism behind the spectacle, i.e. when fireflies congregated in large

numbers they would flicker on and off in unison as if they were members of an orchestra following

the lead of a conductor. In compiling information on the general subject of synchronization, Strogatz

2

[26] stated that research conducted in the early 1960s finally concluded that the fireflies, each with its

own internal oscillator, would adjust themselves to the rhythm of those in close proximity – a natural

feedback control loop of sorts. Strogatz goes on to describe how pacemaker cells in the heart

synchronize themselves with one another rather than to rely on a single lead or master cell. This

allows the overall system to be more robust and resilient to individual cell death. These are but two

examples in nature where many behave as one. Since these examples involve intrinsic qualities and

do not generally involve spatial translation or rotation we will simply call them instances of

coordinated action.

1.1.2 Coordinated Motion

Coordinated motion is another type of synchronization that clearly results in system benefits.

Fish that swim in schools and wildebeest that travel in herds are less likely to fall victim to predators,

thus supporting the old adage that there is safety in numbers. Another familiar example of formation

flying is a flock of Canadian Geese traveling in a V-formation. Numerous studies have shown that

this type of formation allows for each of the birds behind the lead to benefit from the upwash, i.e.

upward moving vortices resulting from turbulent air created by the bird in front. When the birds

alternate the lead position the collective group is able to remain aloft longer than they would have if

each had to fly alone. Organisms, it appears, tend to aggregate themselves relative to environmental

conditions and to other similar individuals. Acebron [1] states that the Kuramoto model, where each

member of a given population is represented as a phase oscillator, helps explain the latter from a more

mathematical perspective. Each oscillator is described as a phase on a circle. On one side of the

spectrum the oscillators are different, so that they all move at different speeds and are permanently

disorganized. The order parameter value in this case is “0”. On the other side of the spectrum, where

the oscillators are identical and there is no coupling or perturbation, each oscillator would move at the

same speed as the others – perfect synchronization. In this case, the order parameter value is “1”.

3

Strogatz [26] points out that there is a critical order parameter value that must be achieved before any

level of synchronization can take place. Said differently, the individuals must be similar enough for

coordinated motion to emerge from what seems like chaos. As human beings, our driving desire to

better understand the world in which we are part has given rise to emulating behaviors of organisms

from coarse computerized simulations of flocks of birds by Reynolds [23] to detailed mathematical

modeling of schools of fish by Leonard [16]. Since these cases involve spatial translation and/or

rotation we will call these examples of controlled motion.

1.2 Astrodynamics and Spacecraft Formation Flying

Although Johannes Kepler developed the three fundamental laws governing the motion of

the planets in the early 1600s, Hill [13] produced the definitive reference on the relative motion of

celestial bodies while studying the earth-moon system in the late 1800s. He became fascinated with

one of the most interesting problems of the time. He sought to understand the reason for the

discrepancy between the predicted motion of the lunar perigee and actual observations. Some thought

that higher-order terms in the approximation should not have been disregarded while others believed

that there were other forces and torques acting on the moon that had not yet been accounted for.

Although Hill assumed a circular orbit for the moon, Barrow-Green [6] states that Hill’s novel

approach was to introduce solar perturbations to vary the motion of the moon and then allow the

motion to vary again by introducing the eccentricity of the lunar orbit. In the 1960s, Clohessy and

Wilshire [7] followed up on this investigation. They determined that the motion of a second

(follower) satellite relative to the first (leader) satellite could be described by a system of nonlinear

differential equations. They noted that in a special case where the orbit of a lead satellite is circular,

the orbit radius and the angular rate become time-invariant. Therefore, any non-linear coupling would

be insignificant as long as the distance between the two satellites was much smaller than the orbit

radius. One could then solve for the position of a second satellite (follower) relative to the first

4

(leader) through a system of linearized equations of motion known as Hill’s or the Hill-Clohessy-

Wiltshire (HCW) equations. In these equations, the acceleration terms are assumed to be zero. In

addition, there are two limitations that must be noted. First, the orbits of both satellites must be nearly

circular, and second, the orbit periods must be identical. The equations produce satisfactory results as

long as the assumptions are valid and the limitations are not in violation.

1.2.1 Current Methods and Scientific Applications

The aerospace community has come to realize the significance and value in multi-spacecraft

operations. The concept of distributing the functionality traditionally found on a single spacecraft to

two or more operating in a coordinated manner yields advantageous system benefits. Gurfil and

Kasdin [11] state that this model allows for lower life-cycle costs, enhanced performance, the

flexibility to adapt to changing mission objectives and operational conditions, and improved fault

tolerance. Atkins and Penneçot, [3] state that formation flying may increase data coverage and

Tollefson [28] states that reductions in overall launch costs could be realized. Based on the earlier

work of Hill, Clohessy, and Wiltshire on the relative motion of satellites, research and development

centers, academia, and industry over the past forty years have devoted much time and directed

resources to the general subject of spacecraft formations. These are some specific instances:

• The Jet Propulsion Laboratory, California Institute of Technology, under contract with

NASA (National Aeronautics and Space Administration) has responsibility for several

instruments and spacecraft that are currently or are planned to be a part of the A-Train

Constellation. Basilio et al. [4] describe the concept for general formation flying in this

specific case as over-flights of the same spatial position by multiple spacecraft in

geocentric orbit with the intent to create a complementary data set of remotely sensed

observables. Boain [5] states that frequent, periodic maneuvers are required to maintain

the spacecraft formation, since environmental forces and torques such as solar pressure,

5

atmospheric drag, and the planet’s equatorial bulge (that produces an out-of-plane force

causing a gyroscopic orbit precession) complicate any attempt at precision spacecraft

formation flying. Active control systems would be needed to sense and compensate for

these external effects.

• The Intelligent Servosystems Laboratory, University of Maryland, has recently

completed more specific work on the subject of spacecraft formation flying from

dynamics to control laws. Zhang and Krishnaprasad [31] developed/obtained control

laws by introducing a Lyapunov function in the space developed for a system of two

spacecraft operating in geocentric orbit. The desired formation is achieved

asymptotically by the controlled dynamics of the each spacecraft.

• The School of Aeronautics and Astronautics, Purdue University has also been involved

in the spacecraft formation flight. Marchand and Howell [17] have completed an

investigation where a transition from the three-body problem to the more general,

complete n-body ephemeris, so that environmental forces and torques such as

gravitational perturbations and solar radiation pressure can be accounted for.

• The joint ESA (European Space Administration) and NASA LISA (Laser Interferometer

Space Antenna) concept mission [9] is one of the most pertinent investigations to date in

regards to dynamically natural formations. Unlike previous space missions where

gravity wave detection was limited in scope and duration, the primary objectives of the

five-year LISA mission will be to detect gravity waves generated by binary stars in the

Milky Way Galaxy and large black holes in distant galaxies. The space antenna consists

of three spacecraft flying in an equilateral triangle formation with a separation distance

of five million kilometers or about 13 times the distance from the earth to the moon.

Each spacecraft will carry a payload of sensitive instruments to measure changes in

distance between free-floating test masses. After launch, it will take approximately

thirteen months for each spacecraft to reach its operational heliocentric orbit and be

placed in its requisite position to created the desired formation. Once the formation has

6

been established, the main on-board propulsion system on each spacecraft will be

jettisoned preventing any active control of the formation for the next five years. Only

micronewton thrusters will be used to compensate for small disturbance forces and

torques to keep the test masses floating freely in space.

• The School of Aeronautics and Astronautics, Stanford University was involved in the

Orion mission. Robertson et al., [24] state that the results of the spacecraft formation

flying development mission will eventually help to enable controlling to a high degree of

accuracy the distance between spacecraft in heliocentric orbit to create a virtual, large-

diameter, interferometer telescope. This special case is called precision spacecraft

formation flying.

1.2.2 Future Possibilities and the Thesis

In all but one of the examples described in the previous section, spacecraft formation flying

is performed in the basic framework of Keplerian orbits - circular or elliptical orbits, parabolic paths,

or hyperbolic trajectories. Although multi-body physics was being used as a backdrop for the

investigation of spacecraft formation flying at the School of Aeronautics and Astronautics, Purdue

University, the work performed by both the Control and Dynamical Systems Division and Applied &

Computation Mathematics Department, California Institute of Technology made it possible to explore

a novel approach to spacecraft formation flying. Firstly, Koon et al. [15] performed a study of

dynamical systems and its actual application to single-spacecraft mission design (e.g. Genesis) that is

based on the circular, restricted three-body problem that Henri Poincaré first investigated in the late

1880s. This served to define the fundamental equations of motion in this realm. Secondly,

Paffenroth, et al. [25], through the use continuation and bifurcation methods, were able to densely

foliate periodic orbits about the equilibrium points creating an environment that is more orbit rich than

that defined by Kepler’s laws. The next logical step was to take what was learned from both studies

7

to demonstrate the feasibility of spacecraft formation flying in regions that were previously

overlooked, i.e. near equilibrium points. Three assertions are made. First, spacecraft traveling along

separate and distinct planar or three-dimensional periodic orbits can be placed in controlled motion,

i.e. a controller is enabled and later disabled at precisely the proper positions, to have them phase-

locked on a single periodic orbit. Second, when used in a resonant frequency/orbit approach the

controller can be used to establish a formation. Finally, a separate controller can be used in

conjunction with the first to expedite the formation establishment process. Creation of these

dynamically natural formations or multi-spacecraft platforms will enable the ‘loiter,

synchronize/coordinate, and observe’ approach for future engineering and scientific missions where

flexibility is a top-level requirement and key to mission success.

1.3 The Structure of the Ph.D. Dissertation

Chapter 2 provides background information on the two-body problem and the specialized

case of central force motion that Johannes Kepler studied as well as the results of initial computer

simulations that proved useful for subsequent modeling and analysis. Chapter 3 is the proof-of-

concept for the eventual solution. The simulation and analyses of test particle motion in the circular,

restricted three-vortex problem provided the basic framework for developing the methodology

necessary to solve the more complex celestial mechanics problems. Techniques and lessons learned

were directly carried over to Chapter 4 where spacecraft phase-locking and formation establishment in

the circular, restricted three-body problem for both planar and three-dimensional cases were

examined. An evaluation of the solution techniques, general lessons learned, and recommendations

for future work are documented in Chapter 5. Conclusions are given in Chapter 6. Finally, the

appendices contain general information on the computer applications used, software source code,

background material on general stability of periodic orbits, as well as several sets of briefing charts on

the topic of dynamically natural spacecraft formations.

8

Chapter 2: Two-Body Systems, Modeling, and Analysis

Background information on the two-body problem and the specialized case of central force

motion that Johannes Kepler studied is described in this chapter. The results of initial computer

simulations that proved useful for subsequent modeling and analysis are provided as well.

2.1 Two-Body Systems

2.1.1 General Two-Body Problem

The two-body problem is a classical problem involving the use of Newton’s law of universal

gravitation. Danby [8] considers it the fundamental problem in celestial mechanics. To a first-order,

the motion of the planets about the sun exemplifies the situation in which two bodies move only under

mutual gravitational attraction. In reality, perturbations - caused by the force of attraction of a third

body, for example - may alter the motion of one or both of the bodies, but are not consider a

significant factor here. Consider two bodies of uniform mass, i.e. the center-of-mass of each is

located at the geometrical center of each body, located in inertial space as shown in Figure 2.1. From

Newton’s law of universal gravitation, we know the following:

F = ma =
Gm1m2
r 2

r
r

2.1

9

Here, G is the universal constant of gravitation, m1 is the mass of the first body, m2 is the mass of

the second body, and r is the magnitude of the vector r . The force acting on m1 and m2 are shown

respectively as,

F1 = m1a1 =
Gm1m2
r 2

(r1 r2)
r

2.2

F2 = m2a2 =
Gm1m2
r 2

(r 2 r1)
r

2.3

Y

Z

X

m2

m1

c

r2
rc

r1

Cartesian Coordinate System

r

Figure 2.1. This is a sketch of a two-body system located in three-dimensional

physical space.

Now sum the forces acting on the two-body system.

F1 + F2 = m1a1 +m2a2 = m1˙ ̇ r 1 +m2˙ ̇ r 2 = (
Gm1m2

r 2

r1 r2

r
) + (

Gm1m2

r 2

r2 r1

r
) 2.4

This leads to:

m1˙ ̇ r 1 + m2˙ ̇ r 2 = 0 2.5

10

Both ˙ ̇ r 1 and ˙ ̇ r 2 must be equal to zero for this to be true. One can only conclude that ˙ ̇ r 1 and ˙ ̇ r 2 is of the

form,

r = c1t + c2 2.6

Here, c1 and c2 are constant coefficients. Since the end point of rc is along the line formed by the

end points of r1 and r2 , rc must also be of the form given in equation 2.6. Therefore, ˙ ̇ r c is also

equal to zero. This result is important, since it means that the center-of-mass of the system, c, does

not accelerate and plays an important part in development of the governing equation of motion. Let’s

return to Figure 2.1. Through inspection, one can see that the following relationships are true:

m1(r1 rc) + m2 (r2 rc) = 0 2.7

r2 = r1 r 2.8

r1 rc = (
m2

m1 +m2

)r 2.9

r2 rc = (
m1

m1 +m2

)r 2.10

Equating the forces acting on the two bodies results in the following:

F1 = F2 = m2˙ ̇ r 2 = m2˙ ̇ r c +
m1m2

(m1 + m2)
˙ ̇ r 2.11

Since ˙ ̇ r c =0,

F1 =
m1m2

(m1 +m2)
˙ ̇ r 2.12

or

11

Gm1m2

r 2

r
r

=
m1m2

(m1 +m2)
˙ ̇ r 2.13

Through simplification the following result is obtained:

G (m1 +m2)

r 2

r
r

= ˙ ̇ r 2.14

or

˙ ̇ r +
μ

r 3
r = 0 2.15

where μ = G(m1+ m2) .

2.1.2 Central Force Motion

The result in equation 2.15 is a second-order, non-linear ordinary differential equation. The

equation describes the motion of m1 about m2 and vice-versa. However, there is a special, simplified

case where one of the masses orbits the other while the other remains fixed in inertial space. This is

the central-force motion problem that Johannes Kepler studied and developed three laws of celestial

mechanics for in the early 1600s. The first of these is described as follows: planets move in elliptical

orbits with the sun at one focus. The orbital elements that help to define/describe the orbit of m1

about the fixed mass,m2 , are as follows:

• Semi-major axis, a : A constant that defines the largest dimension of the orbit

• Inclination, i : The angle between the vector normal to the orbit plane and the vector

normal to the plane of interest

• Eccentricity, e : A constant that describes the shape of the orbit

• Longitude of the ascending node, : The angle at which the orbit plane crosses the

plane of interest

12

• Argument of periapsis, : The angle measured from the longitude of the ascending

node to the periapsis as measured on the orbit plane

• Time of periapsis passage, T : The time when the orbiting object was at periapsis

Of the six orbital elements it is the orbit eccentricity, e , which defines the only possible paths for m1

and m2 in a two-body problem. The unit-less magnitude of the eccentricity vector, e , is important,

since it defines the orbit shape. How the magnitude and orbit shapes are related is shown in Table 2.1

below.

Eccentricity, e Orbit Shape

0 Circle

0 < e < 1 Ellipse

1 Parabola

e > 1 Hyperbola

Table 2.1. Relationships between the magnitude of eccentricity, e , and the shape of the

orbit are shown in this table.

It is interesting to note that the orbit shapes are all conic sections, i.e. each orbit can be defined as the

intersection of a plane with a right circular cone. These conic sections then create a family of curves.

What has just been described is the first of Kepler’s Laws. This forms the basis for the other two,

both of which are only briefly described below.

Kepler’s second law states that in a central-force motion problem, where m1 orbits m2 and

m2 remains fixed in inertial space, the line joining the two masses sweeps out equal areas in equal

time. For this to be true, the velocity of m1 must be inversely proportional to its distance from m2 or,

vm1 1 /d(m1 m2)
2.16

Finally, Kepler’s third law states that the square of the orbit period for m1 is proportional to

the cube of the semi-major axis,

P2 a3 2.17

13

2.2 Computer Simulations and General Analysis

Equation 2.15, the second-order general equation of motion for the two-body case, was

phrased as a system of first-order differential equations and coded into a function file,

two_body_func.m, for use in MATLAB [see Appendix A]. A MATLAB script initially using a

standard ODE (Ordinary Differential Equation) solver, i.e. two_body_init_v5.m, was then written that

called this function file. Both of these files are included in Appendix B. One of the plots created by

executing these files is shown in Figure 2.2 below.

Figure 2.2. This is a MATLAB plot of orbit traces for a two-body system where

the two masses are identical (mass 1 = mass 2 = Earth mass).

In this particular case, the two bodies are of identical mass. Therefore, the orbit traces should be

identical, and the inertial speed of the barycenter should be zero. The former can easily be seen in this

figure and the latter can be seen in Figure 2.3. The speed of the barycenter is less than 1 mm/sec. For

a two-body system where each mass is equal to the mass of the Earth, this is essentially 0. It was also

possible to do some investigation of ODE solvers. Specifically, we examined the 2
nd

 and 3
rd

, 4
th

 and

14

5
th

, and 7
th

 and 8
th

-order Runge-Kutta techniques as well as relative and absolute tolerance levels.

Figure 2.4 shows an orbit trace using the 2
nd

 and 3
rd

-order Runge Kutta technique (a.k.a. ode23), and

the default values for relative (reltol) and absolute (abstol) error tolerance of 1.0E-03 and 1.0E-06,

respectively. At first, it looks like the orbit trace shows good accuracy.

Figure 2.3. This is a MATLAB plot of the speed of the barycenter over time for a

two-body system where the masses are identical (mass 1 = mass 2 =

Earth mass).

Figure 2.4. This is a MATLAB plot of an orbit trace using ode23 with default

values for reltol and abstol of 1.0E-03 and 1.0E-06, respectively.

15

Figure 2.5. This is a MATLAB plot of an orbit trace using ode23 with user-

defined values for reltol and abstol of 1.0E-05 and 1.0E-08,

respectively.

Figure 2.6. This is a MATLAB plot of an orbit trace using ode45 with default

values for reltol and abstol of 1.0E-03 and 1.0E-06, respectively.

16

However, when reltol and abstol are changed to 1.0E-05 and 1.0E-08, respectively, one can see in

Figure 2.5 there is improved accuracy. This is indicated by the “thinner” orbit trace/line.

Figure 2.7. This is a MATLAB plot of an orbit trace using ode45 with user-

defined values for reltol and abstol of 1.0E-05 and 1.0E-08,

respectively.

Figure 2.8. This is a MATLAB plot of differences in barycenter speed using

default and user-defined values for reltol and abstol.

17

How the values for reltol and abstol affect the accuracy of the solution or orbit trace is more clearly

evident in Figures 2.6 and 2.7. Figure 2.6 shows an orbit trace using the 4
th

 and 5
th

-order Runge Kutta

technique (a.k.a. ode45), and the default values for reltol and abstol of 1.0E-03 and 1.0E-06,

respectively. Here it is clearly evident that the solution does not show good accuracy, because of the

multiple orbit traces. However, when reltol and abstol are changed to 1.0E-05 and 1.0E-08,

respectively, one can see in Figure 4.7 much better accuracy. This is indicated by the single orbit

trace/line. It is interesting to note that although reltol and abstol have a profound effect on the orbit

trace, in actuality the position components of the state vector for each mass, it appears that the default

values are sufficient for other attributes. Taking a look at Figure 2.8, it is clearly evident that the

difference in the barycenter center speed calculations using default and user defined values for reltol

and abstol are insignificant, i.e. the differences are at least ten orders of magnitude less than the values

themselves. Finally, potential, kinetic, and total energy for a two-body system were calculated. It can

be seen in Figure 2.9 that the total energy of the system is a conserved quantity, which is a requisite

for any Hamiltonian system.

Figure 2.9. This is a MATLAB plot of potential, kinetic, and total energy of a

two-body system.

18

An examination of the simple two-body problem served as the initial ‘spade work’ in

understanding the accuracy of MATLAB numerical solution techniques and the affects of the relative

and absolute tolerance values used in the calculations. A decision was made to forgo the 2
nd

 & 3
rd

 and

4
th

 & 5
th

-order approach in favor of the 7
th

 & 8
th

-order Runge-Kutta method for even better accuracy.

A pre-existing MATLAB script, ode78.m, was used as function call for the two-body case as well as

the circular, restricted three-body and circular, restricted three-vortex problems described in

subsequent chapters [see appendix B]. In addition, reltol and abstol were changed to 1.0E-05 and

1.0E-08, respectively.

19

Chapter 3: The Circular, Restricted Three-Vortex Problem

The three-body problem involves investigating the behavior or motion of three mutually

attracting bodies. The circular, restricted three-body problem is a specialized case where one of the

three bodies is of negligible mass and does not influence the behavior of the other two bodies.

However, the two primary bodies directly drive its motion. Since the late nineteenth century

considerable research has been conducted on the circular, restricted three-body problem in the field of

celestial mechanics. In order to solve this complex problem, the circular, restricted three-vortex

problem in fluid mechanics was studied as a proof-of-concept. Specifically, can a number of test

particles traveling in different periodic orbits of this realm be controlled such that they can be placed

in the same (equal period) orbit? Additionally, can the same or a different controller be used to fix the

relative positions of the test particles such that a virtual or dynamically natural formation can be

established? It will be shown that the answer to both questions is, ‘yes’.

Figure 3.1. A hurricane churning the air and water around the Atlantic Ocean,

but headed in a northwesterly direction to the warm waters of the

Gulf of Mexico. [Credit: National Oceanic and Atmospheric

Administration (NOAA)]

20

The 2005 Atlantic hurricane season was one for the record books. There were at least

twenty-four named storms in a season that resulted in much devastation and loss of life in the states

bordering the Gulf of Mexico (see Figure 3.1). A hurricane is a tropical cyclone or rotary circulation

with sustained wind speeds. We will call the hurricane a vortex. Motion of an object within or in

close proximity to a hurricane is determine by its distance from and the strength of the vortex. Take

for example a soccer ball dropped from an aircraft traveling at a high altitude. If the aircraft is 1,000

miles away from the vortex center, the motion of the soccer ball will not be influenced by it at all. If

it is dropped 100 miles from the vortex center, the rotating air will most certainly influence the motion

of the soccer ball, i.e. transfer horizontal energy or motion. However, the ball will have negligible

influence on the motion of the vortex itself. We will call the relatively mass-less soccer ball a test

particle. Since dealing with vortices on sphere can be more complicate than we really desire for this

study, we will make some simplifying assumptions. The first of which is to assume only planar

motion. See Figure 3.2 below.

Figure 3.2. A vortex moving only in a flat, two-space surface (real component

and imaginary component of a complex number) helps to simplify

the problem. [Credit: National Oceanic and Atmospheric

Administration (NOAA)]

Now we will place two vortices of equal strength, which we will call the primaries, on a complex

Cartesian coordinate frame with one axis defined as the real and the other the imaginary axis. In order

to fix the locations of both primaries along the real axis, we will allow the coordinate frame to rotate

about the origin at the same rate of rotation that each primary will experience around the center of

21

vorticity. The test particle defined earlier will actually be the third vortex. Being of negligible mass

and insignificant vortex strength, the test particle identified above meets the definition for the third

vortex in the circular, restricted three-vortex problem, i.e. it’s motion is influenced/driven by the

primaries, but itself exerts no influence on the primaries. Figure 3.3 is a simple schematic of the

circular, restricted three-vortex problem.

x

y

V3 (test particle)

V1 V2
real axis

imaginary axis

Figure 3.3. The primaries, V1 and V2 , lie on the real axis of the rotating,

complex Cartesian coordinate frame. The third vortex, V3 , will be

referred to as the test particle. The triangles represent stable and

unstable equilibrium points associated with this problem.

3.1 Equations of Motion

Newton [19] states that contrary to solving the circular, restricted three-body problem in

celestial mechanics, solving the circular, restricted three-vortex problem in fluid mechanics is more

straightforward. He gives the equation of motion for the third vortex of negligible strength as:

˙ 3 = i 3 +
i 1

2

(3 1)

3 1
2

+
i 2

2

(3 2)

3 2
2

3.1

22

In equation 3.1, there is a special relationship between several of the parameters. This is shown in

equation 3.2 below.

1 1 + 2 2 = 0 3.2

In equations 3.1 and 3.2 as appropriate, is the orbit frequency of each primary about the center of

vorticity; 1 and 2 are the vortex strengths of the two primaries; and 1 , 2 , and 3 are each the

vortex position states fixed in the rotating, complex Cartesian coordinate frame. Similar to what is

typically done with the circular, restricted three-body problem, normalizing by choosing appropriate

values for units of length and time simplifies the problem. Let the sum of the primary vortex

strengths and the absolute value of the difference between the two primary position states be equal

to 2 and 1, respectively. Then choose the primaries to lie on the real axis of the rotating, complex

Cartesian coordinate frame. The system can be further simplified by defining the relationships in

equations 3.3 through 3.5 below.

1 = 3.3

2 = 1 3.4

2 = 2 3.5

The position state for 3 is given as:

3 u + vi 3.6

The Hamiltonian for this fully conserved system is given as:

H (u,v) =
1

2
(u2 + v 2) + (1) log((u +)2 + v 2) + log((u + 1)2 + v 2) 3.7

For expediency the MATLAB application was used to simulate the circular, restricted three-vortex

problem. As with the general two-body problem the 7
th

-8
th

 order Runge-Kutta technique was used to

solve the ordinary differential equation given in equation 3.1 and the Hamiltonian given in equation

23

3.7. The MATLAB script, main_script_v5_1.m, and the function file, three_vortex.m are both

provided in Appendix B.

3.2 Equilibrium Points

Equilibrium points in the circular, restricted three-vortex problem in fluid mechanics can be

found using the same approach for the circular, restricted three-body problem in celestial mechanics.

In addition, the find_libration_point.m MATLAB script can be employed to expedite problem

solving. Both are described in detail in Chapter 4. In the case where the two vortices are of equal

strength the equilibrium point locations are those shown in Table 3.1.

Equilibrium Point X Coordinate Y Coordinate

L1 0 0

L2 1.1180 0

L3 -1.1180 0

L4 0 0.8660

L5 0 -0.8660

Table 3.1. The coordinates for the five equilibrium points in rotating

Cartesian coordinate frame for the case where the two primaries

are of equal strength are given in this table. Note “L” stands for

“libration”, which is synonymous with “equilibrium” point.

3.3 Level Curves of the Hamiltonian

Figure 3.4 shows a number of level curves of the Hamiltonian in the rotating, complex

Cartesian coordinate frame for the symmetric case of the circular, restricted three-vortex problem. A

test particle in this realm would traverse along a line of constant energy in the absence of external

forces or torques. We will call this uncontrolled motion. We will concentrate on the area near the

primary vortex located at (0.5,0.0i), denoted as V2 , and call the level curves of the Hamiltonian that

surround this vortex, periodic orbits. It is interesting to note that test particles on these periodic orbits

24

– orbits that resemble, but are not technically ellipses - traverse in a counterclockwise direction in the

complex, rotating Cartesian coordinate frame.

Figure 3.4. Level curves of the Hamiltonian surrounding one of the two primary

vortices and one of the five equilibrium points for the symmetric case of the

circular, restricted three-vortex problem are shown in this plot. The two

equal primaries, shown as circular markers, are located at (-0.5, 0.0i) and

(0.5, 0.0i), and the equilibrium points of the system are shown as triangles.

Figure 3.5. This is a plot of characteristic distance versus orbit

period. Note that as characteristic distance, d,

increases, so does the orbit period, T.

25

Figure 3.6. This is a plot of characteristic distance versus

angular rate. Note that as characteristic distance, d,

increases, the angular rate decreases.

We define characteristic distance, d, as the distance from the primary vortex at (0.5, 0.0i) along the

real axis in the negative direction to the point at which the periodic orbit crosses the real axis (refer to

Figure 3.4). Plots of characteristic distance versus orbit period, T , and angular rate, r , are shown in

Figure 3.5 and 3.6, respectively. One can easily see in Figure 3.5 that the orbit period increases as the

characteristic distance increases, i.e. proportional relationships of one another.

Figure 3.7. This is a plot of characteristic distance versus angular rate using

the log-log scale. Note the linear curve in this scale that leads to a

power law relationship.

26

This is similar to what is seen with two-body approximations, i.e. Kepler’s third law where the square

of the planetary orbit period is proportional to the cube of its semi-major axis. The angular rate used

in producing Figure 3.6 is inversely proportional to the orbit period or simply 2 /T . As expected,

the angular rate decreases as the characteristic distance increases. A closer look at Figure 3.6 leads

one to believe that there could be a special relationship between characteristic distance and angular

rate. Plotting the same points, but now on a log-log scale produces the plot shown in Figure 3.7. One

can easily see that this produces a linear curve, and therefore, compiles with the power law. It is

relatively easy to show that the resulting relationship or empirical equation is:

r = 0.42d 2.034 3.8

Figure 3.8 is a plot of characteristic distance versus energy level or the value of the Hamiltonian, H .

Note that in general, the value of the Hamiltonian increases as the characteristic distance increases.

Figure 3.8. This is a plot of characteristic distance versus energy level, i.e.

value of the Hamiltonian. Note that the two are proportional to

one another. The energy levels for two periodic orbits, P1 and P2,
are singled out, since they were the focus of immediate attention.

27

A fifth order polynomial curve-fit produces a good approximation, i.e. R2 = 0.996 . This relationship,

d = f (H) rather than H = f (d) is given as:

d = 0.659H 5
+ 5.4193H 4

+17.392H 3
+ 27.307H 2

+ 21.183H + 6.6785 3.9

Shown in Figure 3.9 are the attributes associated with two different periodic orbits, P1 and

P2. For convenience, this information is also shown in Table 3.2. These two periodic orbits formed

the foundation for the investigation process, specifically, what controller(s) can be used to phase-lock

a number of test particles and later establish a relative, virtual formation.

Figure 3.9. This is a plot of two periodic orbits that formed the foundation for

the controller study, P1 and P2. Test particles, not under the

influence of external forces or torques, would traverse along each

of the two orbits in a counterclockwise direction in the complex,

rotating Cartesian coordinate frame.

Attribute P1 Orbit P2 Orbit

Characteristic Dist, d 0.15 0.35

Orbit Period, T 0.3 1.7

Angular Rate, r (or) 20.9440 3.6960

Hamiltonian, H -1.0911 -0.7516

Table 3.2. Attributes for two periodic orbits, P1 and P2, surrounding the

second primary vortex, V2 , are shown in this table for

convenience.

28

3.4 Phase-Lock Controller

The basic premise was to find a new term to add to the fundamental equation of motion

given in equation 3.1. We call this new term a controller. Three different types of controllers were

examined: (1) time independent, (2) time dependent, and (3) one where a trigonometric function is

introduced, specifically, to produce a sinusoidal variation. A test particle influenced/driven by a

controller is said to be in controlled motion.

Time-independent term – This is simply the addition of a scale factor term, , to equation

3.1 as shown below:

˙ 3 = i 3 +
i 1

2

(3 1)

3 1
2

+
i 2

2

(3 2)

3 2
2

+ 3.10

Refer to Figure 3.10a. If a test particle is placed on the inner orbit resembling an ellipse it

will traverse the periodic orbit in an uncontrolled motion state in the counterclockwise direction.

(a) (b)

Figures 3.10a-3.10b. These are plots of two periodic orbits that formed the

foundation for the controller study, P1 and P2, the outer

and inner periodic orbits resembling ellipses, respectively.

A test particle originally on the P2 orbit would be placed

on the periodic orbit resembling a circle under controlled

motion, i.e. under the influence of a time independent

controller. The value of is 1.0 and 2.0 in (a) and (b),

respectively. In both cases, the initial position for the test

particle was (0.35, 0.0i).

29

If we let = 1.0 when the test particle is at (0.35,0.0i), the particle will now be in a

controlled state and will follow the new periodic orbit. The orbit period is approximately 0.3 units of

time, and this orbit is offset in the positive imaginary axis direction and more closely resembles a

circle rather than an ellipse. Let’s now let = 2.0, when the particle is again at (0.35,0.0i). The test

particle will again be in a controlled state, but will follow a different trajectory as shown in Figure

3.10b. It seems obvious that the test particle would no longer be in a simple periodic orbit around V2 ,

but is this absolutely true? If we propagate the motion of the test particle >>0.3 time units and change

the scale of the complex, rotating coordinate frame, we get the plot shown in Figure 3.11.

Figure 3.11. This is the same plot shown in Figure 3.10b with two

changes: (1) test particle motion is propagated over a

much longer period of time, and (2) the view of the

rotating complex, Cartesian coordinate frame has been

expanded.

One can now readily see that the test particle still traverses along a periodic orbit, albeit one

with a large period and one that is oddly shaped. However, this is not necessarily the most important

observation. If we return to Figure 3.10b, one can plainly see that the controlled motion trajectory

crosses both the inner and outer ellipse-like orbits. The interesting insight is that placing a test

particle in a controlled motion orbit/trajectory will allow it to move from one uncontrolled motion

30

orbit to another enabling phase-locking. This will be discussed further. However, simulations where

= 2.0,3.0,...5.0 produced results similar to that shown in Figures 3.10b and 3.11.

Time-dependent term – This is simply the addition of a product term, t , to equation 3.1 as

shown below:

˙ 3 = i 3 +
i 1

2

(3 1)

3 1
2

+
i 2

2

(3 2)

3 2
2

+ t 3.11

Again, is a scale factor, and t is time. Refer to Figure 3.12. If a test particle is placed on

the inner orbit, it will traverse the periodic orbit in an uncontrolled motion state in the counter-

clockwise direction. If we now let = 1.0 when the test particle is at (0.5,0.0i), the particle will now

be in a controlled state and will follow a new trajectory.

Figure 3.12. This is a plot of two periodic orbits that formed the foundation

for the controller study, P1 and P2, the outer and inner periodic

orbits resembling ellipses, respectively. A test particle originally

on the P2 orbit, the inner orbit, would be placed on the trajectory

shown when under controlled motion, i.e. under the influence of

a time dependent controller where = 1.0. The initial position

for this test particle is (0.35, 0.0i).

One can readily see that the test particle no longer appears to be moving along a periodic orbit, but

rather on a trajectory where each successive rotation is more and more offset in the positive imaginary

31

axis direction. After a certain number of revolutions, the test particle would ‘fly off’ in the positive

real axis direction. Although it may be of some interest to some to determine if this new trajectory is

periodic, it is not necessarily germane to our investigation.

What were are more interested in is a transfer trajectory, independent on whether or not it is

periodic in the long run. Letting = 2.0 and 3.0 produces similar plots as that shown in Figure 3.12.

However, if we let = 4.0, the plot shown in Figure 3.13 is produced. The test particle motion begins

at (0.35, 0.0i) and slowly moves away from the original periodic orbit.

Figure 3.13. This is a plot of two periodic orbits that formed the foundation

for the controller study, P1 and P2, the outer and inner periodic

orbits resembling ellipses, respectively. A test particle originally

on the P2 orbit, the inner orbit, would be placed on the trajectory

shown when under controlled motion, i.e. under the influence of

a time dependent controller where = 4.0. The initial position

for this test particle is (0.35, 0.0i). Note the ‘kink’ in the new

trajectory.

At some point there is an abrupt change in the test particle motion, i.e. a ‘kink’ in the trajectory. One

perspective on matters is that this presents a limitation to which new periodic orbit the test particle can

be placed on. Is it reasonable to believe that the motion of a test particle can change so severely and

not challenge stability requirements? Another interesting aspect this brings to light is the notion of

32

being able to turn ON and OFF the controller as necessary to achieve a desired result. One way to

look at this is through the simple illustration shown in Figure 3.14.

t0

 = 0.0

 = 4.0

t1

Figure 3.14. This is a sample controller state diagram for both the time-

independent and time-dependent cases. At the initial time, to ,

the controller is turned ON and at some later time, t1, the

controller is turned OFF thereby returning the governing

equation of motion to its original, uncontrolled motion form.

Figure 3.15. When the controller is turned OFF in close proximity or just

prior to the ‘kink’, the test particle will be in an uncontrolled

motion state and circumscribe a new periodic orbit about V2
inside of P1 and outside of P2 as shown.

33

The controller is turned ON at the test particle initial condition/position (0.35,0.0i) by setting = 4.0.

When t = t1, the time corresponding to the ‘kink’ (0.5009,0.2465i), the controller is turned OFF by

setting = 0.0. If we propagate the motion of the test particle in an uncontrolled state from this

point, it will circumscribe a new, intermediate periodic orbit about V2 in the counter-clockwise

direction as shown in Figure 3.15. Therefore, if the desire were to place a test particle on the same

periodic orbit as another for phase-locking the periodic orbit of the latter would have to be no further

away than the ‘kink’ in the transfer trajectory. However, there is one other option, the same controller

scheme can be used to bring a second test particle, say one that is traveling along an outer periodic

orbit, to the new intermediate periodic orbit. This exact scenario is shown in Figure 3.16.

Figure 3.16. In this plot the inner orbit represents the new periodic orbit that a

test particle was placed on after traversing along a transfer

trajectory. A second test particle originally on the outer P1 orbit

would be placed on the trajectory shown when under controlled

motion, i.e. under the influence of a time dependent controller

where =4.0. The initial position for this test particle is (0.15,

0.0i). The controller can then be turned OFF at some point

where the transfer trajectory crosses the inner periodic orbit. At

this point, the second test particle would also be in an

uncontrolled motion state on the same intermediate periodic

orbit as the first.

However, the new periodic orbit the first test particle was placed in is now the inner orbit. At the

second test particle initial condition/position (0.15,0.0i) the controller is turned ON by setting =4.0.

34

When t=0.3, the time corresponding to what is actually the second orbit crossing (0.6167,-0.2165i),

the controller is turned OFF by setting =0.0. At this point, the second test particle would also be in

an uncontrolled motion state on the same intermediate periodic orbit as the first. In a situation where

there were no external forces or torques, the two test particles would continue to follow this periodic

or uncontrolled motion orbit indefinitely.

In a generally ‘trial and error’ process, the next step involved expanding the controller term

to include sinusoidal variability by adding a trigonometric function. After a number of misses and

near hits, the following relationship proved to yield the biggest benefit:

˙ 3 = i 3 +
i 1

2

(3 1)

3 1

2 +
i 2

2

(3 2)

3 2

2 + sin((t T)) 3.12

The term, , is just a multiplier with a value of 1/2, 1, or 2. We will call the new term in the equation

not just a controller, but controller no. 1. In three particular cases of interest, the parameter values

were set as follows:

T = P1 orbit period = 0.3; = 1; t = 0.3; and = 1/2, 1, and 2

The corresponding controller trajectory plots are shown in Figures 3.17a-3.17c.

(a) (b) (c)

Figures 3.17a-3.17c The trajectory of a test particle under the influence/drive by

controller no. 1 is shown in each of the plots above. For all three

cases, the values for T and are 0.3 and 1. For (a), (b), and (c),

the value for is 1/2, 1, and 2, respectively.

35

Figure 3.17b proved to be the most promising, since it appeared that the transfer trajectory went

further than the one previously seen with the ‘kink’ in it. Next, the value for was set to 1, but the

value for was varied, i.e.

T = P1 orbit period = 0.3; = 1.1, 1.2, and 1.3; t = 0.3; and = 1

This produced the series of plots shown in Figures 3.18a-3.18c. Figure 3.18c clearly shows that

controller no. 1 can be used to move a test particle from P1 to P2 where the second test particle is

moving. Additionally, this allows the test particles to be phase-locked in a shorter amount of time

than the time dependent case, and also allows the test particle to ‘leave on a tangent’ and ‘arrive on a

tangent’ avoiding abrupt changes that could arguably be considered unrealistic particle motion.

(a) (b) (c)

Figure 3.18a-3.18c. Test particle trajectories where controller no. 1 is active are

shown in each of the three plots above. For all three cases,

the values for T and are 0.3 and 1. For (a), (b), and (c),

the value for is 1.1, 1/2, and 1.3, respectively.

A piecemeal simulation of this phase-locking scenario is described here. Referring to the controller

state diagram in Figure 3.19, the controller is in the OFF state until ti. Up to this point in time, in the

absence of any external forces or torques, the test particle traversed around V2 in its initial periodic

orbit as shown in Figure 3.20.

36

ti

 = 0.0 [OFF]

 = 1.3 [ON]

t1 tf- tf

Figure 3.19. This is a state diagram for controller no. 1. The controller is turned

ON from ti to t1, but remains OFF at all other times.

Figure 3.20. Test particle no. 1 moves in a periodic orbit about V2 in the

absence of any external forces or torques, i.e. uncontrolled motion.

At ti the controller is turned ON and left ON until t1. In this time interval, the test particle moves

away from the initial periodic orbit and moves along a non-periodic trajectory as shown in Figure

3.21. At t1, the controller is turned OFF.

37

ti

t1

Figure 3.21. Test particle no. 1 is now under the influence of the controller.

The particle leaves the initial periodic orbit and moves on a non-

periodic trajectory until the controller is turned OFF.

tf-

t1

Figure 3.22. Test particle no. 1 moves in a new periodic orbit once the

controller is turned OFF.

The test particle then returns to an uncontrolled motion state using the position at t1 as the initial

condition. This is shown in Figure 3.22. This confirms that it is possible to move a test particle from

one periodic to another using a controller.

38

Figure 3.23. The energy level (i.e. Hamiltonian) varies as a test particle

moves along the transfer trajectory. In this case, the test particle

moves from a lower energy value (i.e. a periodic orbit in close

proximity to V2) to a higher energy value (i.e. a periodic orbit

further away from V2).

As stated a number of times earlier periodic orbits around V2 are simply level curves of the

Hamiltonian. Said differently, a test particle moving in a periodic orbit maintains a certain energy

level. If we refer back to Figure 3.21 where a test particle moves along a non-periodic transfer

trajectory, one question that arises pertains to the energy level. How does it vary from ti to t1? The

energy level generally moves from a lower to a higher value for this specific case as shown in Figure

3.23.

Now that a general investigation has identified a viable controller, which we’ve ‘coined’ controller

no. 1, a more specific example can be studied. This example involves four test particles, P1-P4, each

traveling along separate periodic orbits around V2. These test particles are to be moved to a single,

lower energy periodic orbit for phase locking. Then a mechanism needs to be identified that adjusts

the relative position of each test particle to maintain a virtual geometric shape or dynamically natural

formation, in this case a rhombus or diamond shape. This scenario is illustrated in Figure 3.24. Initial

conditions for the four test particles are also shown on the plot. The original concept was to follow

what was done during the general investigation (i.e. turn ON the controller when the test particle is in

39

the ‘left most’ position, i.e. minimum value of the imaginary component of the complex number, of

the uncontrolled, periodic orbit).

Figure 3.24. Four test particles, P1- P4 , are each traveling along different

periodic orbits. The desire is to eventually place each on single,

lower energy periodic orbit for phase locking and then to adjust

their relative positions to establish a desired shape or formation.

Figure 3.25. The transfer trajectory for placing the first test particle, P1 on the

new, desired periodic orbit requires =16.0. Smaller values of

 do not allow for the particle to reach the other periodic orbit.

The controlled is turned ON when the particle is at (0.15,0.0i).

40

Figure 3.25 shows that a transfer trajectory to the new, desired orbit is achieved when =16.0 for the

first test particle, P1. Even though the use of a sine function allows the test particle to ‘leave on a

tangent’ and ‘arrive on a tangent’, it still appeared that the test particle would have to deal with an

abrupt trajectory change almost immediately.

This prompted more examination and lead to the plot shown in Figure 3.26. The transfer

trajectory on the left side of the plot is identical to the one shown in Figure 3.25 where =16.0. The

one on right and the one at the bottom do not cross the new, desired periodic orbit, so are not valid.

The one at the top, at first glance, doesn’t appear to be fruitful. However, when the controller

parameter values were changed from T=1.7, =16.5, t=0.130, and =1 to T=1.7, =2.3, t=0.330,

and =1, something interesting happens. The transfer trajectory shown in Figure 3.27 was produced.

This is significant, because leaving from another extrema, i.e. maximum positive imaginary axis

position of the periodic orbit (0.5,0.3i), and given a certain set of parameter values allows a test

particle to follow a more natural or realistic type of motion as it moves from one periodic orbit to

another.

Particle No. Kappa t T Alpha Controller Value (at tf)

1 16.5 0.130 1.70 1.0 3.9259

Figure 3.26. The controlled parameter values remained fixed as shown in the

table below the plot, but the point at which the controller is

turned ON varies. Here the spacing is /4 or every 1/4

revolution.

41

Figure 3.27. The transfer trajectory shown still allows a test particle to ‘leave

on a tangent’ and ‘arrive on a tangent’. However, the general

shape of the trajectory is such that there are no abrupt changes

and is more consistent with shapes one expects of natural or

realistic motion.

The appropriate controlled parameter values required to place P1 and the other test particles

on the new, desired periodic orbit are shown in Table 3.3. Individual transfer trajectory curves for P1-

P4 are shown in Figure 3.28.

Particle t T

P1 1.7 0.400 1.70 1

P2 1.4 0.340 1.20 1

P3 1.1 0.260 0.85 1

P4 0.7 0.200 0.55 1

Table 3.3. Shown here are the controller no. 1 parameter values required to

place each test particle from their uncontrolled periodic orbits to

the new, desired periodic orbit.

42

tf

Particle No. 1 = 0.5 + 0.30i

Particle No. 2 = 0.5 + 0.27i

Particle No. 3 = 0.5 + 0.23i

Particle No. 4 = 0.5 + 0.19i

ti

Figure 3.28. Transfer trajectory curves for each of the four test particles, P1
through P4 , are shown in the plot above. The general shape of

each curve is such that there are no abrupt changes and is more

consistent with shapes one expects of natural or realistic motion.

Figure 3.29. The staging times and transfer trajectory times for each of the

four test particles, P1 through P4 , are shown in this plot. One

can see that, P1, whose initial periodic orbit is furthest way from

the new, desired periodic orbit requires the most amount of time

for staging and transfer.

43

We will now introduce the notion of staging time. This is the amount of time required for a

given test particle to traverse along the uncontrolled motion periodic orbit from its initial position to

the extrema, i.e. maximum positive imaginary axis position of the periodic orbit, at which time

controller no. 1 should be turned ON. Staging times and transfer trajectory times for each test particle

are shown in Figure 3.29.

0.01 0.40+0.01=0.41

P4 Staged P4 in Final Orbit

0.37 0.37+0.54=0.91

P3 Staged P3 in Final Orbit

P2 Staged

0.45 0.45+0.67=1.12

P2 in Final Orbit

P1 Staged P1 in Final Orbit

0.67 0.67+0.81+1.48

t

P1

P2

P3

P4

Figure 3.30. The staging times and transfer trajectory times for each of the

four test particles, P1 through P4 , are shown in this plot, but this

time on a common timeline. One can see that P1, whose initial

periodic orbit is furthest way from the new, desired periodic

orbit requires the most amount of time for staging and transfer.

A more meaningful chart might be Figure 3.30. It shows when each of the four test particles

is staged and when it enters the new, desired periodic orbit on a single timeline. It shows that all four

test particles are phase-locked at t=1.48 units of time. The next challenge is how to establish the

desired naturally dynamic formation, since the relative positions of each test particle are not as desired

(see in Figure 3.31).

44

P3

P4

P2

P1

P2

P3

P4

Desired particle
position [typical
3 places]

Figure 3.31. The actual test positions at t=1.48 units of time are shown in

black. The desired virtual geometric shape is a rhombus or

diamond with each of the test particles placed at each corner in

the proper order (shown in grey shade above).

3.5 Formation Establishment

Two methods of formation establishment were examined. The orbit or resonant frequency

approach was used to allow for both test particle phase-locking and formation establishment using a

single controller, i.e. controller no. 1. In this case, an interactive MATLAB program that accepts user

defined or random test particle initial conditions was written to define wait/traverse times, staging

times, and transfer times as well as to produce desired plots. Since it was determined through many

successive test cases that it would take a relatively long period of time to complete the test particle

phase locking and formation establishment process, there was impetus to identify a second controller

to use in conjunction with the first.

45

3.5.1 Resonant Frequency Approach

Provide User Inputs

Define Energy Level of

New, Desired Periodic Orbit

Calculate the Initial Orbit

Period for Each Test Particle

Calculate the Staging Time

for Each Test Particle

Calculate the Transfer Trajectory

 Time for Each Test Particle

Determine Orbit Resonance

Between Each Particle’s Initial Orbit

and the new, Desired Orbit

Calculate Time Required to

Phase-Lock and Adjust Each Test

Particles Position

Calculate Total Time Required for

Phase-Locking and Formation

Establishment

Figure 3.32. The flowchart for the script file, i.e. main_script_v5_1.m, is

comprised of the eight main steps shown above.

46

One method for establishing the test particle formation actually requires that we implement a

solution prior to the time the test particles are placed on the new, desired periodic orbit. In the general

field of physics and waves, there is what is called resonant frequencies. In this case two or more

waves have a special relationship where their frequencies are common multiples of one another. In

celestial mechanics we talk of orbital resonances where, for example, two orbit periods share a least

common multiple (i.e. orbit period of object A is x times the orbit period of object B, where x is an

integer). In a similar manner we can determine how many orbits/revolutions a test particle must make

on it’s original orbit before it can be ‘staged’ and placed on a transfer trajectory, so that it arrives at

precisely the correct time and position on the new, desired periodic orbit. In this case, a resonance

exists between the test particles original orbit and the new, desired orbit. This particular method was

used successfully to establish the desired test particle formation. Since we used the MATLAB

application to assist, in a piecemeal manner, with problem solving and creating simulations, a decision

was made to expand on this by creating a program with a user interface and capability to use the orbit

resonance method (i.e. use of controller no. 1 exclusively) to quickly solve the problem of phase-

locking and formation establishment. This required a single MATLAB script file, i.e.

main_script_v5_1.m, and a single function file, i.e. three_vortex.m. A flowchart of the script file is

given in Figure 3.32. The first step in this interactive program is for the user to provide inputs. These

inputs are:

• Select the default set of or use the random number generator to define the test particle

initial conditions

• Select the default or define the energy level for the new, desired periodic orbit

• Select the rhombus/diamond as the desired geometric shape or formation

• Select the default or define the acceptable formation error (e.g. ±0.01 units of time)

• Select the option to produce plots or not

• Select the option to produce animations or not

47

The second step is to define the energy level of the new, desired periodic orbit. The third step is to

calculate the initial orbit period for each test particle. This is done by propagating the position of the

each test particle over time and then determining at which time the test particle returns to the initial

position. The fourth step is to calculate the staging time for each test particle. This is easily done by

calculating the time it takes for each test particle to travel from its initial position to the point at which

the imaginary component of the orbit is at the maximum value. The fifth step is to calculate the

transfer trajectory time for each particle. This is easily done by determining the time it takes for a test

particle to travel from a position where the imaginary component is at the maximum value to its

minimum value.

Figure 3.33. This charts shows how many times each particle must traverse

their initial periodic orbits before being staged and placed on

their respective transfer trajectories to arrive at the new, desired

periodic orbit at precisely the right time and position. Note that

it requires 75 revolutions of the new, desired periodic orbit for

the formation to be established.

However, in order to do this, the problem determines the best controller parameter values to

link the test particle’s initial periodic orbit to the new, desired periodic orbit. The sixth step is the

48

most complicated. The program is required to determine the orbit resonance for a given test particle’s

initial periodic orbit and the new, desired periodic orbit. It must then stage the test particle at the

appropriate revolution, cause it to move on the transfer trajectory, and then place it on the new,

desired periodic orbit. For each test particle, the time it takes for orbital resonance, staging, and

transfer are calculated, tracked, and reported at the end of the program and on a plot, if so desired.

Finally, all appropriate times are added together to determine the overall time required for phase

locking and formation establishment. The MATLAB script and function file source code is included

in Appendix B. The main_scrip_v5_1.m file is on the order of 1,350 source lines of code and the

three_vortex.m function file is on the order of 50 source lines of code.

Figure 3.33 shows many times each of the four test particles must traverse their original

periodic orbits before being stages and placed on their respective transfer trajectories. Note that the

formation is established at t=21.74 units of time.

3.5.2 Controller Method

In much the same manner used in Section 3.4, modifications to the fundamental equation of

motion (equation 3.1) were identified and investigated. Rather than adding yet another (controller)

term to the equation, a decision was made to see what would happen if one of the three existing terms

were slightly modified. In the first case, a scale factor, , was added:

˙ 3 = i 3 +
i 1

2

(3 1)

3 1

2 +
i 2

2

(3 2)

3 2

2
3.13

Setting =0.9 produces the plot shown in Figure 3.34. Although the test particle moves along a

slightly small orbit, it returns to its initial position at (0.35,0.0i). The second case was to replace the

scale factor, , in equation 3.13 with a time element, t. A test particle following this equation of

motion produces the plot shown in Figure 3.35. Notice that each successive ‘orbit’ that the test

49

particle makes is slightly offset in the positive real axis direction. The third case involves adding a

trigonometric time element/function to the first term rather than a scale factor or time element. A plot

of the results is shown in Figure 3.36.

Figure 3.34. If a test particle starts at (0.35,0.0i) and follows the motion

defined in equation 3.13, where =0.9, it circumscribes a

periodic orbit that is slightly smaller than the original (i.e.

=1.0).

Figure 3.35. If a test particle starts at (0.35,0.0i) and follows the motion

similar to that defined in equation 3.13, however, instead of a

scale factor a time element is used, it moves further and further

away from the initial position

50

Figure 3.36. If a test particle starts at (0.35,0.0i) and follows the motion

similar to that defined in equation 3.13, however, instead of a

scale factor a trigonometric time element/function is used, it

moves away from the initial position and appears to move along

a slightly smaller orbit.

Figure 3.37. This is a plot of four trajectories/orbits for the four different

scale factor values shown in the upper right-hand corner. The

orbit period changes from a low of 0.285 units of time to a high

of 0.685.

Of the three cases/controllers examined, it was the first that offered the most promise (e.g. a

test particle returns to its initial position). However, does this type of controller change the orbit

period? In order to adjust the relative position of each test particle in the new, desired periodic orbit,

51

we must be able to change the orbit period as an independent variable. Fortunately, the answer is

‘yes’. Referring to Figure 3.37, it is clear that the orbit period changes depending on the value of the

scale factor used.

Figure 3.38. The first is a plot of scale factor versus orbit period. The data

are curve-fit to a fifth-order polynomial. A plot of residuals is

shown on the bottom. One can readily see that the curve

provides a solution that is accurate to within 0.025 units of time

for a selected scale factor value.

Figure 3.39. This is the trajectory/orbit for a scale factor value of 2.6. One

can readily see that the energy value (or Hamiltonian) varies as a

function of the orbit position. A particle traveling along this

trajectory will eventually return to its original energy state.

52

The plot of scale factor versus orbit period is show in Figure 3.38. Notice that the rate of

change is greatest for scale factors from approximately 1.5 to 2.6. Another interesting observation is

that the energy level, i.e. Hamiltonian, varies over an orbit period. This is illustrated in the three

‘dimensional’ plot of Figure 3.39. This is similar to the inclined orbit in celestial mechanics.

3.6 Proof-of-Concept Problem and Solution

Figure 3.40. Four test particles, P1 through P4, are each traveling along

different periodic orbits. The desire is to eventually place each

on single, lower energy periodic orbit for phase locking and then

to adjust their relative positions to establish a desired shape or

formation. In this case, a diamond or rhombus on the inner most

periodic orbit.

Now we will examine how to use what we will now call controller no. 2 to adjust the relative

positions of each test particle to form the desired dynamically natural formation (i.e.

rhombus/diamond). Refer back to Figure 3.31. We will define the first test particle, P1, to be the

master reference, i.e. formation seed, and is deemed to be in the correct position in the new, desired

53

periodic orbit. As started earlier, P1 arrives on the new, desired periodic orbit at t=1.48 units of time.

We will call this arrival position, “bottom dead center”. Each of the three other test particles is to be

placed ‘behind’ P1 (i.e. later in time) in quarter rev increments apart as shown in red. As time moves

forward each test particle will move in a counter-clockwise direction. The next test particle to arrive

at bottom dead center is P4. This occurs at t=1.53 units of time. We know where the desired position

of P4 is and how much time it takes for it to arrive at bottom dead center. Since we know the period

of the new, desired orbit, we also know when it returns on each successive revolution. We will use

controller no. 2 to place P4 on a trajectory that allows it leave the new, desired periodic orbit, but also

allows it to return to the bottom dead center position at precisely the right time to be in the proper

position relative to P1. We do this by selecting the appropriate value for .

t = 1.48+0.05 = 1.53

Place P4 on orbit where period = 0.28+0.16 = 0.44
(Controller no. 2 scale factor = 2.37)
P4 in formation = 1.53+0.44 = 1.97

t = 1.48+0.20 = 1.68

Place P2 on orbit where period = 0.28+0.15 = 0.43
(Controller no. 2 scale factor = 2.37)
P2 in formation = 1.68+0.43 = 2.11

t = 1.48+0.26 = 1.74

Place P3 on orbit where period = 0.28+0.16 = 0.44
(Controller no. 2 scale factor = 2.37)
P3 in formation = 1.74+0.44 = 2.18

Figure 3.41. This is the timeline for establishing a formation with Controller

No. 2. The first particle that is placed temporarily on an

intermediate trajectory is P4. This is followed by P2, and finally,

P3.

54

We follow the same procedure for P2 and P3. The description of ‘what’ and ‘when’ is

summarized in Figure 3.41. The most significant result is shown at the bottom where P2, the final test

particle to be placed at the proper position, is shown to arrive at t=2.18 units of time. Comparing this

to the 21.74 units of time it took to phase-lock and establish a dynamically natural formation using

only Controller No. 1 in an orbit resonance method, this results in an order of magnitude reduction in

total time required!

Three animations in Audio Video Interleaved (AVI) format were created (converted from

MATLAB movies) to represent uncontrolled test particle motion, use of controller no. 1 to place each

of the four test particles in the new, desired periodic orbit, and use of controller no. 2 to establish the

desired dynamically natural formation.

Figure 3.42. This is the first frame of the two hundred frames in the first

animation. Each of the four test particles is shown in their initial

periodic orbits. Particle motion is in the counter-clockwise

direction as viewed from the Z or positive energy (i.e.

Hamiltonian) axis direction.

Each of the three animations is a three ‘dimensional’ perspective of the problem: X is the real

axis, Y is the imaginary axis, and Z is the energy (i.e. Hamiltonian) axis. This perspective provides

more insight than what could be obtained through simple planar projections or models. The first

frame of each animation is shown in Figures 3.42-3.44.

55

Figure 3.43. This is the first frame of the two hundred frames in the second

animation. Each of the four test particles is shown in their initial

periodic orbits shown in green. Particle motion is in the counter-

clockwise direction as viewed from the Z or positive energy (i.e.

Hamiltonian) axis direction. When each test particle reaches

desired extrema they travel on the transfer trajectories and

eventually arrive on the new, desired periodic orbit.

Figure 3.44. This is the first frame of the one hundred and sixty-five frames

in the second animation. Each of the four test particles is shown

in on the new, desired periodic orbit. Particle motion is in the

counter-clockwise direction as viewed from the Z or positive

energy (i.e. Hamiltonian) axis direction. When P4, P2, and P3
reach the necessary initial position they switch to the

intermediate periodic orbit and eventually return to the new,

desired periodic orbit at precisely the correct time and position

to establish the desired rhombus or diamond formation.

56

The initial and final states of the four test particles are shown in Figure 3.45. Where there

once was just four test particles in their respective orbits, they were eventually phased-locked on a

single new orbit and their relative positions adjusted to form a desired dynamically natural formation,

specifically a rhombus/diamond.

Figure 3.45. In this three-dimensional perspective, one can see the particle

initial conditions and the particle final conditions (on the single

periodic orbit defining the corners of a rhombus/diamond shape).

57

Chapter 4: The Circular, Restricted Three-Body Problem

The general three-body problem cannot be solved analytically. If one makes some

simplifying assumptions approximate solutions to particular problems can be generated. A problem

that has been often studied is the circular, restricted three-body problem in celestial mechanics. The

circular, restricted three-body problem is a special case of the general three-body problem. In this

case, the system is comprised of two bodies of significant mass that are in a circular orbit around the

barycenter. A third body of insignificant mass is then introduced into the system. The third body

does not influence the motion of the other two bodies, but they influence its motion. Refer to Figure

4.1. Let the mass, m2 , of the lesser of the two significant bodies be equal to μ , and the mass of the

greater m1 , be equal to (1 μ) . Let m3 be the mass of the third body.

Y

Z

X

m3

l

r2
r1

Cartesian Coordinate System

m1

m2

m1 (x1, 0, 0)
m2 (x2, 0, 0)
m3 (x3, y3, 0)

Figure 4.1. The geometry of the circular, restricted three-body problem is shown here.

58

4.1 Equations of Motion

The development of the equations of motion for the circular, restricted three-body problem is

as follows. The angular velocity, w , is equal to the mean motion, n:

w = n =
μ

a3
ˆ k = k

m1 + m2

(x2 x1)3
ˆ k 4.1

w = n =
[(1 μ) + μ]

1
ˆ k = ˆ k 4.2

The force acting on the mass of the third body must then be determined. This force is equal to the

gravitational force of m1 , gravitational force of m2 , a coriolis force, and a centrifugal force. Kaplan

[14] gives a general expression of this force. This is shown in equation 4.3. The coriolis force and

the centrifugal force are shown in equation 4.4 and in equation 4.5, respectively.

˙ ̇ r = ˙ ̇ r 0 + ˙ ̇ r b + 2w ˙ r b + ˙ w ˙ r + w (w r) 4.3

2w ˙ r b 4.4

w (w r) 4.5

The force acting on m3 is then:

F3 = F1 F2 m3 (2w ˙ r b) m3[w (w r)] 4.6

m3˙ ̇ r =
Gm1m2

r1
3

r1
Gm2m3

r2
3

r2 2m3
ˆ k r m3

ˆ k (ˆ k r) 4.7

a =
Gm1

r1
3
r1

Gm2

r2
3
r2 2 ˆ k v ˆ k (ˆ k r) 4.8

r = xˆ i + yˆ j + z ˆ k ,v = ˙ x ̂ i + ˙ y ̂ j + ˙ z ̂ k ,a = ˙ ̇ x ̂ i + ˙ ̇ y ̂ j + ˙ ̇ z ̂ k 4.9

ˆ k v =

ˆ i ˆ j ˆ k

0 0 1

 x y z

= y ˆ i + x ̂ j 4.10

59

ˆ k r =

ˆ i ˆ j ˆ k

0 0 1

x y z

= y ˆ i + xˆ j 4.11

k (ˆ k r) =

ˆ i ˆ j ˆ k

0 0 1

y x 0

= xˆ i yˆ j 4.12

 x ˆ i + y ˆ j + z ˆ k =
Gm1

r1
3

[(x x1)ˆ i + yˆ j + z ˆ k]
Gm2

r2
3

[(x x2) ˆ i + yˆ j + z ˆ k] 2(yˆ i + xˆ j) (xˆ i yˆ j) 4.13

 x

 y

 z

=
Gm1
r1
3

(x x1)

y

z

Gm2

r2
3

(x x2)

y

z

2

 y

 x

0

x

y

0

4.14

 x

 y

 z

+ 2

 y

 x

0

=
Gm1
r1
3

(x x1)

y

z

Gm2

r2
3

(x x2)

y

z

x

y

0

4.15

 x

 y

 z

+ 2

 y

 x

0

x

y

0

=
Gm1
r1
3

(x x1)

y

z

Gm2

r2
3

(x x 2)

y

z

4.16

Recall thatm1 = (1 μ) , and m2 = μ and G is a constant. Also,

(x x1) = x μ 4.17

(x x2) = x + (1 μ) 4.18

Equation 4.17 and 4.18 are true, since the distance from the barycenter to c is μ and (1 μ) ,

respectively. Therefore,

 x 2 y x =
(1 μ)(x μ)

r1
3

μ[x + (1 μ)]

r2
3

4.19

 y + 2 x y =
(1 μ)y

r1
3

μy

r2
3

4.20

 z =
(1 μ)y

r13
μz

r2
3

4.21

60

The equations of motion for the third body in a rotating coordinate system are shown in 4.22 through

4.24.

˙ ̇ x 2 ˙ y x =
(1 μ)(x μ)

r1
3

μ[x + (1 μ)]

r2
3

4.22

˙ ̇ y + 2 ˙ x y =
(1 μ)y

r1
3

μy

r2
3

4.23

˙ ̇ z =
(1 μ)y

r1
3

μz

r2
3

4.24

Equations 4.22 through 4.24 represent the second-order, non-linear differential equations of motion

for the third body. Developing a system of first-order linear equations (for the two-dimensional or

planar case) from the non-linear, second-order equations of motion given in equations 4.22 and 4.23

begins as follows:

x = x0 + 1, ˙ x = ˙ x 0 + 1, ˙ ̇ x = ˙ ̇ x 0 + 1 4.25

y = y0 + 2, ˙ y = ˙ y 0 + 2, ˙ ̇ y = ˙ ̇ y 0 + 2 4.26

z = z0 + 3, ˙ z = ˙ z 0 + 3,˙ ̇ z = ˙ ̇ z 0 + 3 4.27

r1 = (x μ)2 + y 2 + z 2 4.28

r2 = (x +1 μ)2 + y 2 + z 2 4.29

r1 = [x (μ + 1)]
2 + y 2 + z 2 4.30

r2 = [x +1 (μ + 1)]
2 + y 2 + z 2 4.31

(r1)
3 = [x (μ + 1)]

2 + y 2 + z 2{ }
3

4.32

(r2)
3 = [x +1 (μ + 1)]

2 + y 2 + z 2{ }
3

4.33

(r1)
3 = x0

2 2x0μ + μ2 + 2x0 1 + y0
2 + 2y0 2{ }

3 / 2
4.34

61

(r2)
3 = x0

2 2x0μ + 2x0 + μ 2 + 2x0 1 + 2 1 +1 2μ 2μ 1 + y0
2 + 2y0 2{ }

3 / 2
4.35

(r1)
3 = [(x0 μ)2 + y0

2 + 2 1(x0 μ) + 2y0 2]
3 / 2

4.36

(r2)
3 = [(x0 +1 μ)2 + y0

2 + 2 1(x0 μ +1) + 2y0 2]
3 / 2

4.37

= (x0 μ)2+ y0
2 = r10

2
4.38

= 2 1(x0 μ) + 2y0 2 4.39

k =
3

2
4.40

(r1)
3 = r10

2()
3 / 2 3

2
r10
2()

5 / 2
[2 1(x0 μ) + 2y0 2} + ... 4.41

(r1)
3 = r10()

3 3

2
r10()

5
[2 1(x0 μ) + 2y0 2} + ... 4.42

(r2)
3 = r20()

3 3

2
r20()

5
[2 1(x0 μ) + 2y0 2} + ... 4.43

The first equation of motion is therefore,

(˙ ̇ x 0 + ˙ ̇ 1) 2(˙ y 0 + ˙ 2) (x0 1) = (1 μ)(x0 + 1 μ) r10
3 3

2
r10

5 2 1(x0 μ) + 2y0 2[]

4.44

μ(x0+ 1+1 μ) r20
3 3

2
r20
5 2 1(x0 +1 μ) + 2y0 2[]

The second equation of motion is therefore,

(˙ ̇ x 0 2 ˙ y 0 x0) + (˙ ̇ 1 2 ˙ 2) =
(1 μ)(x0 + 1 μ)

r10
3

μ(x0 + 1 +1 μ)

r20
3

4.45

+
3

2

(1 μ)(x0 + 1 μ)

r10
5

2 1(x0 μ) + 2y0 2{ }

+
3

2

μ(x0 + 1 +1 μ)

r10
5

2 1(x0 +1 μ) + 2y0 2{ }

62

Simplifying, the first equation of motion becomes,

(˙ ̇ 1 2 ˙ 2 1) = 1 (1 μ)
1

r10
3

+
3(x 0 μ)

r10
5

 +μ

1

r20
3

+
3(x 0 +1 μ)

r20
5

4.46

+ 2
3(1 μ)(x0 μ)y 0

r10
5

+
3(x 0 +1 μ)y 0

r20
5

 4.47

and the second equation of motion,

(˙ ̇ 2 2 ˙ 1 2) = 1
3(1 μ)(x0 μ)y0

r10
5

+
3μ (x 0 +1 μ)y 0

r20
5

 4.48

+ 2 (1 μ)
1

r10
3

+
3y0

2

r10
5

 + μ

1

r20
3

+
3y0

2

r20
5

4.49

4.2 Equilibrium Points

Refer back to the standard equations of motion for the circular, restricted three-body

problem, equations 4.22 through 4.24. If we wish to identify the equilibrium points the velocity and

acceleration terms in the rotating Cartesian coordinate frame must be set to zero. This results in the

following:

x =
(1 μ)(x + μ)

r1
3

μ (x 1+ μ)

r2
3 4.50

y =
(1 μ)y

r1
3

μy

r2
3 4.51

0 =
(1 μ)z

r13
μz

r2
3 4.52

One can readily see in equation 4.52 that z = 0. Therefore, the equilibrium points must lie in the XY-

plane. Setting r1 = r2 = 1 satisfies equations 4.50 and 4.51. This locates two of the equilibrium points

63

at the vertices of two symmetric and adjacent equilateral triangles where the two primaries are at the

other two vertices. Finding the other equilibrium points is slightly more involved. Again, refer back

to equations 4.22 and 4.24. Noticing that y = 0 satisfies equation 4.23 tells us that the other

equilibrium points must lie along the X-axis. Setting r1 = r2 = 1 in equation 4.22, results in the

following:

f (x) = x
(1 μ)(x + μ)

(x + μ)3
μ(x 1+ μ)

(x 1+ μ)3
= 0 4.53

Expanding the above results in a quintic equation where the roots are the X-axis coordinates of the

three equilibrium points. The Analytical Graphics, Inc. technical note [2] reduces this into individual

equations, which are:

x 5 (3 μ)x 4 + (3 2μ)x 3 μx2 + 2μx μ = 0 4.54

x 5 (3 μ)x 4 + (3 2μ)x 3 μx2 2μx μ = 0 4.55

x 5 + (2+ μ)x 4 + (1+ 2μ)x 3 (1 μ)x 2 2(1 μ)x (1 μ) = 0 4.56

However, in equations 4.54 through 4.56, the variable x is defined as the equilibrium point

distance from the closest primary body. The MATLAB program, find_libration_points.m, was

written to expedite problem-solving and to explicitly identify the X and Y coordinates of all five

equilibrium points in the rotating Cartesian coordinate frame (see Appendix B). The relative positions

of the five equilibrium points with respect to the two primaries are shown in Figure 4.2. For the earth-

moon system the mass ratio is μ = 0.012150 . The coordinates for the five equilibrium points are

given in Table 4.1.

64

Figure 4.2. The five equilibrium points of the circular, restricted three-body

problem in celestial mechanics are identified with respect to the

two primary bodies in the plot above. Three equilibrium points

(i.e. L1, L2, and L3) lie along the X-axis and the other two (i.e.

L4 and L5) are at the vertices of the two equilateral triangles.

Equilibrium Point X Coordinate Y Coordinate

L1 0.8369 0

L2 1.1799 0

L3 -1.0051 0

L4 0.4879 0.8660

L5 -0.4879 -0.8660

Table 4.1. The coordinates for the five equilibrium points in rotating

Cartesian coordinate frame for the earth-moon system are given

in this table. Note “L” stands for “libration”, which is

synonymous with “equilibrium” point.

For the Saturn-Titan moon system the mass ratio is μ = 0.000238 . The coordinates for the five

equilibrium points are given in Table 4.2. Hamilton and Burns [16] describe the Hill Sphere as the

gravitational sphere of influence of a body. It turns out that we can use this relationship to check the

validity of the MATLAB script.

65

Equilibrium Point X Coordinate Y Coordinate

L1 0.9574 0

L2 1.0447 0

L3 -1.0001 0

L4 0.4998 0.8660

L5 -0.4998 -0.8660

Table 4.2. The coordinates for the five equilibrium points in rotating

Cartesian coordinate frame for the Saturn-Titan moon system are

given in this table. Note “L” stands for “libration”, which is

synonymous with “equilibrium” point.

For a circular, restricted three-body system where the mass of one primary is significantly less than

the other, as is the case with the Saturn-Titan moon system, the distance to L1 or L2 from the second

primary can be approximated by:

d μ /[3(1 μ)]3 4.57

For the Saturn-Titan moon system, d = 0.0430. Titan is located at (0.9998,0.0) and L1 at

(0.9574,0.0). The distance between the two is 0.0424. Therefore, the MATLAB results were valid.

Having established that there are five equilibrium points in the circular, restricted three-body

problem in celestial mechanics, the next step was to determine if they were stable or not through the

use of simple linear stability theory. In order to check the stability of a given equilibrium point, a

small displacement was introduced and a Taylor series expansion was carried out over the complete

set of equations of motion. However, the higher-order terms were disregarded to simplify matters.

Understanding what happens to the displacements over time then involved solving a fourth-order

differential equation by determining the eigenvalues and eigenvectors of an associated characteristic

equation. The structure of the eigenvalues will provide stability information, e.g. Re() < 0 indicates

stability.

Define the X-axis and Y-axis location of a given equilibrium point as xe and ye ,

respectively. Now assume that a spacecraft is first located at the equilibrium point, but is then slightly

displaced from it. The spacecraft position will then be:

66

x = xe + x 4.58

y = ye + y 4.59

z = z 4.60

The terms in these three equations represent a small displacement in each respective direction. If

we restricted ourselves to the XY-plane and perform a Taylor series expansion of a function (x, y)

around the equilibrium point (xe , ye) , the following is obtained:

f (x, y) = f (xe , ye) + xfx (xe , ye) + xfy (xe , ye) + ... 4.61

Incorporating the displacement terms and the Taylor series expansion in the standard equations of

motion shown in equations 4.22 and 4.23 and leaving the acceleration and velocity terms on one side

results in the following:

˙ ̇ x 2 ˙ y = (Ux) + x(Uxx) + y(Uxy) + ... 4.62

˙ ̇ y + 2 ˙ x = (Uy) + x(Uyx) + y(Uyy) + ... 4.63

Since we know that gravity potentials are

Ux = x
(1 μ)(x x1)

r1
3

+
μ (x x2)

r2
3

4.64

Uy = y
(1 μ)y

r1
3

+
μy

r2
3

4.65

where the X-axis positions of the first and second primary bodies are x1 = μ and x2 = 1 μ ,

respectively, the associated partial derivatives of each are:

Uxx = 1
(1 μ)

r1
3

+
μ

r2
3

3(1 μ)

r1
5

(x x1)
2 +

3μ

r2
5
(x x2)

2
4.66

Uyy = 1
(1 μ)

r1
3

+
μ

r2
3

3(1 μ)

r1
5

y 2 +
3μ

r2
5
y 2 4.67

67

Uxy =Uyx =
3(1 μ)

r1
5

(x x1)y +
3μ

r2
5
(x x2)y 4.68

Since the gravity potentials at the equilibrium point are zero, i.e. Ux = 0 and Uy = 0 , and the higher-

order terms are not of any concern, equations 4.62 and 4.63 simply to:

˙ ̇ x 2 ˙ y = x(Uxx) + y(Uxy) 4.69

˙ ̇ y + 2 ˙ x = x(Uyx) + y(Uyy) 4.70

When an operator, = / x = / y , is introduced as appropriate, equations 4.69 and 4.70 become

2 x 2 y = xUxx + yUxy 4.71

2 y + 2 x = xUyx + yUyy 4.72

Collecting like terms results in

(2 Uxx) x = (2 +Uxy) y 4.73

(2 Uyy) y = (2 Uxy) x 4.74

Now, operating on equation 4.73 with 2 Uxy and equation 4.74 with 2 +Uxy the following

relationships are developed

[4
+ (4 Uxx Uyy)

2
+ (UxxUyy Uxy

2)] y = 0 4.75

[4
+ (4 Uxx Uyy)

2
+ (UxxUyy Uxy

2)] x = 0 4.76

Since equations 4.75 and 4.76 are of the same form, it is obvious that x and y satisfy the fourth-

order differential equation

4
+ (4 Uxx Uyy)

2
+ (UxxUyy Uxy

2) = 0 4.77

68

Equilibrium Point Real Part Imaginary Part Stable or Unstable

L1 0 2.3325 Unstable

0 -2.3325

1.2337 0

-1.2337 0

L2 1.6879 0 Unstable

-1.6879 0

0 1.5971

0 -1.5971

L3 0 1.8930 Unstable

0 -1.8930

0.7569 0

-0.7569 0

L4 0 0.9545 Stable

0 -0.9545

0 0.2982

0 -0.2982

L5 0 0.9545 Stable

0 -0.9545

0 0.2982

0 -0.2982

Table 4.3. The eigenvalues of the characteristic equation are complex

numbers. The real and imaginary components of the

eigenvalues for the five equilibrium points in the earth-moon

system are shown above. One can see that L1-L3 are unstable,

while L4 and L5 are stable.

To solve this equation we set f =
t
. Therefore, equation 4.77 becomes

4
+ (4 Uxx Uyy)

2
+ (UxxUyy Uxy

2) = 0 4.78

The roots of this equation are the eigenvalues needed to determine stability. The equation can be

solved numerically, e.g. Newton-Rhapson method. However, to expedite problem solving, a

MATLAB script, eigenvalues.m, was developed (see Appendix B). It uses the poly and roots

functions to find the eigenvalues. The definitions of stability are:

• If any of the eigenvalues have imaginary parts, then the solution orbits around the

equilibrium point and can be considered stable

• If any of the eigenvalues have a real part that is less than or equal to zero the solution is

stable

• If any of the eigenvalues have a real part that is greater than zero the solution is unstable

69

Equilibrium Point Real Part Imaginary Part Stable or Unstable

L1 0 2.3643 Unstable

0 -2.3643

1.2640 0

-1.2640 0

L2 2.2983 0 Unstable

-2.2983 0

0 1.9451

0 -1.9451

L3 0 1.8873 Unstable

0 -1.8873

0.7495 0

-0.7495 0

L4 0 0.9982 Stable

0 -0.9982

0 0.0401

0 -0.0401

L5 0 0.9982 Stable

0 -0.9982

0 0.0401

0 -0.0401

Table 4.4. The eigenvalues of the characteristic equation are complex

numbers. The real and imaginary components of the

eigenvalues for the five equilibrium points in the Saturn-Titan

moon system are shown above. One can see that L1-L3 are

unstable, while L4 and L5 are stable.

The eigenvalues associated with the five equilibrium points in the earth-moon system as well as the

assessment of stability for each are provided in Table 4.3. The eigenvalues associated with the five

equilibrium points in the Saturn-Titan moon system as well as the assessment of stability for each are

provided in Table 4.4. While we state that L4 and L5 are stable equilibrium points for the earth-moon

and Saturn-Titan moon systems, Valtonen and Karttunen [29] state that there is a limitation based on

the mass ratio of the system being examined. The equilibrium points, L4 and L5 are only stable if

μ<μ lim , where

μ lim =
1

2

23

108
0.0385 4.79

70

It just so happens that restricted three-body systems in the solar system meet this constraint. Systems

outside of the solar system must be checked against this constraint to determine if the L4 and L5

equilibrium points are stable.

4.3 Jacobi Integral

The next key step is to develop the Jacobi integral. Although some would believe that this is

the energy of the system, it actually represents the total energy plus the angular momentum of the

system given the rotating Cartesian coordinate system. The first step is to multiply the equations of

motion with the corresponding velocity component. This is shown in equations 4.80 through 4.82.

˙ x ˙ ̇ x 2 ˙ y x =
(1 μ)(x μ)

r1
3

μ[x + (1 μ)]

r2
3

4.80

˙ y ˙ ̇ y + 2 ˙ x y =
(1 μ)y

r1
3

μy

r2
3

4.81

˙ z ˙ ̇ z =
(1 μ)y

r1
3

μz

r2
3

4.82

Multiplying through results in:

˙ x ̇ ̇ x 2 ˙ x ̇ y ˙ x x =
˙ x (1 μ)(x μ)

r1
3

μ˙ x [x + (1 μ)]

r2
3

4.83

˙ y ̇ ̇ y + 2 ˙ x ̇ y y˙ y =
˙ y (1 μ)y

r1
3

μ˙ y y

r2
3

4.84

˙ z ̇ ̇ z =
˙ z (1 μ)y

r1
3

μz˙ z

r2
3

4.85

71

Summing both side of the equations:

(˙ x ̇ ̇ x 2 ˙ x ̇ y ˙ x x) + (˙ y ̇ ̇ y + 2 ˙ x ̇ y y ˙ y) + ˙ z ̇ ̇ z =

(1 μ)

r1
3

˙ x (x μ) y ˙ y z˙ z [] +
μ

r2
3

˙ x (x +1 μ) y˙ y z˙ z [] 4.86

˙ x ̇ ̇ x + ˙ y ̇ ̇ y + ˙ z ̇ ̇ z = x ˙ x + y ˙ y
(1 μ)

r1
3

(x μ) ˙ x + y˙ y + z ˙ z []
μ

r2
3

(x +1 μ) ˙ x + y˙ y + z ˙ z [] 4.87

Recall that the distance from c to the center of m1 is μ or μ = x1, the distance from c to the center of

m2 is (1 μ) or (1 μ) = x2 , and m2 = μ = m , so:

˙ x ̇ ̇ x + ˙ y ̇ ̇ y + ˙ z ̇ ̇ z = x˙ x + y˙ y
(1 m)

r1
3

(x x1) ˙ x + y ˙ y + z˙ z []
μ

r2
3

(x x2) ˙ x + y˙ y + z˙ z [] 4.88

Now,

r1 = (x x1)ˆ i + yˆ j + z ˆ k ,r2 = (x x2)ˆ i + yˆ j + z ˆ k 4.89

r1 ˙ r 1 = (x x1) ˙ x + y˙ y + z˙ z ,r2 ˙ r 2 = (x x2) ˙ x + y ˙ y + z˙ z 4.90

d
1

r1

 =

1

r1
2

 dr1 =

˙ r 1
r1

2
=

r1 ˙ r 1
r1

3
=

(x x1) ˙ x + y˙ y + z˙ z

r1
3 4.91

x˙ x + y˙ y + z˙ z = d
1

2
[˙ x 2 + ˙ y 2 + ˙ z 2]

4.92

x˙ x + y˙ y = d
1

2
[˙ x 2 + ˙ y 2]

4.93

Therefore,

x˙ x + y˙ y + z ˙ z = x ˙ x + y ˙ y
(1 m)

r1
3

(x x1)x + y˙ y + z ˙ z []
m

r2
3

(x x2)x + y˙ y + z ˙ z [] 4.94

This results in equation 4.95 or in more simplified form, equation 4.96.

72

d
1

2
(˙ x 2 + ˙ y 2 + ˙ z 2)

 d

1

2
(x 2

+ y 2)

 (1 m)d

1

r1

 md

1

r2

 4.95

1

2
˙ x 2 + ˙ y 2 + ˙ z 2()

1

2
(x 2

+ y2)
(1 m)

r1

m

r2

= C 4.96

Again, the Jacobi integral, C , is equal to the total energy plus the angular momentum of the system,

because of the rotating Cartesian coordinate system.

4.4 Periodic Orbit Generation

Equations 4.22 through 4.24, the general equations of motion for the circular, restricted

three-body case, were coded into a MATLAB function file, three_body_v4_1.m. A MATLAB script

was then written that called this function file, i.e. three_body_script_v5_1.m. Both of these files are

included in Appendix B. As stated earlier, even though MATAB has library functions for 2
nd

 and 3
rd

order as well as 4
th

 and 5
th

 order Runge-Kutta routines a decision was made to utilize a custom 7
th

 and

8
th

 order approach for better accuracy. These MATLAB files formed the foundation for much of the

computer simulations.

The governing equations of motion for the circular, restricted three-body problem shown in

equations 4.22 through 4.24 were also augmented use in AUTO 2000 [see Appendix A]. The first of

three steps was to phrase the computation of a periodic orbit as a two-point boundary value problem

to (1) normalize the periodicity to a value of “1” and to solve for the unknown period, T. The next

step was to discretize the system, so that Newton-Rhapson method could be used to find the solution.

Finally, the damping, or “unfolding” parameter, , was introduced. This gives rise to a vertical Hopf

bifurcation. Hilborn [12] states that a Hopf bifurcation signals the birth of a stable limit cycle, and is

one of the most common two-dimensional bifurcations for models with a single control parameter.

The equations of motion (as a system of first-order differential equations) are therefore transformed to

the following set (equations 4.97 through 4.102).

73

˙ x = Tvx + Ex 4.97

˙ y = Tvy + Ey 4.98

˙ z = Tvz + Ez 4.99

˙ v x = T [2vy + x
(1 μ)(x + μ)

r1
3

μ (x 1+ μ)

r2
3

]+ Ev x 4.100

˙ v y = T [2vy + y
(1 μ)y

r1
3

μy

r2
3

]+ Ev y 4.102

˙ v z = T [
(1 μ)z

r1
3

μz

r2
3

]+ Ev z 4.103

As one can plainly see, the period, T, has been incorporated as scale factor to the baseline set

of equations, and the unfolding parameter has been added as another term in each of the equations.

Here, the energy, E , merely the Jacobi Constant, C, has also been added to each of the new terms. A

list of the AUTO 2000 input and output files is shown in Table 4.5.

Input File Name Description

c.3d Parameter definitions and values

3d.c Equations

compute_lagrange_points_0.5.auto Script for computing equilibrium points

compute_periodic_orbits.xauto Script for solving two-point BVP

Table 4.5. The four AUTO2000 input files are described above.

Each of the four input files can be found in Appendix C. The syntax for use of the

compute_periodic_orbits.xauto script is as follows, i.e. this is the command that one would enter at

the AUTO 2000 command prompt:

compute_period_orbits_xauto (option) (Lagrange Point of interest) (Mass ration of system)

Finally, output files are of the form: l1_mu_0.000233_period_3.040533_-_21.

74

The prefix denotes the selected equilibrium point. Imbedded in the file name are the mass ratio,

period, and bifurcation point.

File Name

s.l4_mu_0.012150_period_21.070352

s.l4_mu_0.012150_period_21.070352~

s.l4_mu_0.012150_period_6.283185

s.l4_mu_0.012150_period_6.283185~

s.l4_mu_0.012150_period_6.283185_-_101

s.l4_mu_0.012150_period_6.283185_+_101

s.l4_mu_0.012150_period_6.283185_-_112

s.l4_mu_0.012150_period_6.283185_+_112

s.l4_mu_0.012150_period_6.283185_-_16

s.l4_mu_0.012150_period_6.283185_+_16

s.l4_mu_0.012150_period_6.283185_-_27

s.l4_mu_0.012150_period_6.283185_+_27

s.l4_mu_0.012150_period_6.283185_-_39

s.l4_mu_0.012150_period_6.283185_+_39

s.l4_mu_0.012150_period_6.283185_-_46

s.l4_mu_0.012150_period_6.283185_+_46

s.l4_mu_0.012150_period_6.283185_-_53

s.l4_mu_0.012150_period_6.283185_+_53

s.l4_mu_0.012150_period_6.283185_-_64

s.l4_mu_0.012150_period_6.283185_+_64

s.l4_mu_0.012150_period_6.283185_-_76

s.l4_mu_0.012150_period_6.283185_+_76

s.l4_mu_0.012150_period_6.283185_-_83

s.l4_mu_0.012150_period_6.283185_+_83

s.l4_mu_0.012150_period_6.283185_-_89

s.l4_mu_0.012150_period_6.283185_+_89

s.l4_mu_0.012150_period_6.582675

s.l4_mu_0.012150_period_6.582675~

s.l4_mu_0.012150_period_6.582675_-_53

s.l4_mu_0.012150_period_6.582675_+_53

s.l4_mu_0.012150_period_6.582675_-_55

s.l4_mu_0.012150_period_6.582675_+_55

s.l4_mu_0.012150_period_6.582675_-_61

s.l4_mu_0.012150_period_6.582675_+_61

s.l4_mu_0.012150_period_6.582675_-_70

s.l4_mu_0.012150_period_6.582675_+_70

s.l4_mu_0.012150_period_6.582675_-_79

s.l4_mu_0.012150_period_6.582675_+_79

s.l4_mu_0.012150_period_6.582675_-_84

s.l4_mu_0.012150_period_6.582675_+_84

Table 4.6. These are the earth-moon L4 equilibrium point periodic orbit families.

75

AUTO 2000 was used to identify earth-moon periodic orbits associated with the stable

equilibrium points, L4 and L5. Table 4.6 identified the files produced for the L4 equilibrium point.

The file names include the magnitude of the initial orbit period and also indicate whether or not there

were bifurcations. Each file may contain multiple orbits and comprise a single orbit “family”.

However, each of the orbits may actually have a different period than the initial orbit period. [Note:

Since the period is normalized to one orbit of the moon about earth, an initial orbit period of 6.283185

means that that moon will make a little more than six full revolutions about the earth in the same time

it will take a spacecraft to fully transit one of the orbits described in the file.] If there are any period-

doubling effects, the file name will be appended with a two or three-digit suffix. It is interesting to

note that the initial period of 21.070352 does not have any bifurcations. However, the initial period of

6.283185 has more than twenty bifurcations points. To give one a sense of the number of periodic

orbits possible in a given L4 orbit family, the “egg-shaped” family for an initial orbit period of

6.283185 are shown in Figures 4.3 through 4.5. The XY planar projection is essentially a view from

the celestial North Pole.

Figure 4.3. AUTO 2000 plot of the earth-moon L4 equilibrium point periodic

orbit family. Initial orbit period = 6.283185. [XY planar projection]

76

The XZ planar projection can be regarded as a side-view of the system, and the YZ planar

projection is a view from the axis joining the two primary bodies. One can see that there is symmetry

in each of the views.

Figure 4.4. AUTO 2000 plot of the earth-moon L4 equilibrium point periodic

orbit family. Initial orbit period = 6.283185. [XZ planar projection]

Figure 4.5. AUTO 2000 plot of the earth-moon L4 equilibrium point periodic

orbit family. Initial orbit period = 6.283185. [YZ planar projection]

77

File Name

s.l5_mu_0.012150_period_21.070352

s.l5_mu_0.012150_period_21.070352~

s.l5_mu_0.012150_period_6.283185

s.l5_mu_0.012150_period_6.283185~

s.l5_mu_0.012150_period_6.283185_-_104

s.l5_mu_0.012150_period_6.283185_+_104

s.l5_mu_0.012150_period_6.283185_-_115

s.l5_mu_0.012150_period_6.283185_+_115

s.l5_mu_0.012150_period_6.283185_-_19

s.l5_mu_0.012150_period_6.283185_+_19

s.l5_mu_0.012150_period_6.283185_-_30

s.l5_mu_0.012150_period_6.283185_+_30

s.l5_mu_0.012150_period_6.283185_-_42

s.l5_mu_0.012150_period_6.283185_+_42

s.l5_mu_0.012150_period_6.283185_-_49

s.l5_mu_0.012150_period_6.283185_+_49

s.l5_mu_0.012150_period_6.283185_-_56

s.l5_mu_0.012150_period_6.283185_+_56

s.l5_mu_0.012150_period_6.283185_-_67

s.l5_mu_0.012150_period_6.283185_+_67

s.l5_mu_0.012150_period_6.283185_-_79

s.l5_mu_0.012150_period_6.283185_+_79

s.l5_mu_0.012150_period_6.283185_-_86

s.l5_mu_0.012150_period_6.283185_+_86

s.l5_mu_0.012150_period_6.283185_-_92

s.l5_mu_0.012150_period_6.283185_+_92

s.l5_mu_0.012150_period_6.582675

s.l5_mu_0.012150_period_6.582675~

s.l5_mu_0.012150_period_6.582675_-_56

s.l5_mu_0.012150_period_6.582675_+_56

Table 4.7. These are the earth-moon L5 equilibrium point periodic orbit families.

Table 4.7 identified the files produced for the L5 equilibrium point. One can see that the initial orbit

periods are identical to those associated with the L4 equilibrium point. However, it is interesting to

note that the total number of files or number of files containing bifurcation points is not identical.

One would initially think the opposite, since the L4 and L5 equilibrium points are at the same energy

level, i.e. the value for the Jacobi Constant or constant of integration is the same for each point. Even

though AUTO 2000 is using a flexible set of parameters to produce valid/real solutions, these

solutions are highly unstable do not necessarily produce identical results. To give one a sense of the

number of periodic orbits possible in a given L5 orbit family, the “clam shell” family for an initial

78

orbit period of 6.283185 are shown in Figures 4.6 through 4.8. Again, the XY planar projection is

essentially a view from the celestial North Pole. The XZ planar projection can be regarded as a side-

view of the system, and the YZ planar projection is a view from the axis joining the two primary

bodies. Again, one can see that there is symmetry in each of the views.

Figure 4.6. AUTO 2000 plot of the earth-moon L5 equilibrium point periodic orbit

family. Initial orbit period = 6.283185. [XY planar projection]

What AUTO 2000 has essentially done in solving a two-point boundary value problem is to move off

the initial orbit periods, solve for position and velocity along the length of the curve, i.e. orbit,

determine if there is a closed orbit, and identify the period for this closed orbit. In both L4 and L5

equilibrium point cases, most of the orbit families are three-dimensional (i.e. most orbit points have

Z-axis position and/or velocity components). A complete catalogue of periodic orbits is given in

Appendix D. However, to simplify the initial investigation of this problem, the focus was on a two-

dimensional (XY) or planar case first. This allowed for a relatively simple problem to be solved first

before examining and also solving for the more complex three-dimensional case.

79

Figure 4.7. AUTO 2000 plot of the earth-moon L5 equilibrium point periodic

orbit family. Initial orbit period = 6.283185. [XZ planar projection]

Figure 4.8. AUTO 2000 plot of the earth-moon L5 equilibrium point periodic

orbit family. Initial orbit period = 6.283185. [YZ planar projection]

80

Figure 4.9. AUTO 2000 plot of the earth-moon L4 equilibrium point periodic

orbit family. Initial orbit period = 21.070352. [XY planar

projection]

Figure 4.9 through 4.11 represents an L4 “kidney bean” orbit family. All of the orbits in this family

are planar and can be readily seen in Figures 4.10 and 4.11.

Figure 4.10. AUTO 2000 plot of the earth-moon L4 equilibrium point periodic

orbit family. Initial orbit period = 21.070352. [XZ planar projection]

81

Figure 4.11. AUTO 2000 plot of the earth-moon L4 equilibrium point periodic

orbit family. Initial orbit period = 21.070352. [YZ planar projection]

Figure 4.12 through 4.14 identifies an L5 “kidney bean” orbit family. All of the orbits in this family

are planar and can be readily seen in Figures 4.13 and 4.14.

Figure 4.12. AUTO 2000 plot of the earth-moon L5 equilibrium point periodic

orbit family. Initial orbit period = 21.070352. [XY planar projection]

82

Figure 4.13. AUTO 2000 plot of the earth-moon L5 equilibrium point periodic

orbit family. Initial orbit period = 21.070352. [XZ planar projection]

Figure 4.14. AUTO 2000 plot of the earth-moon L5 equilibrium point periodic

orbit family. Initial orbit period = 21.070352. [YZ planar projection]

For each of the forty-seven orbits that comprise the L4 “kidney bean” orbit family, the periods range

from approximately 21.07 to approximately 26.50. A plot is provided in Figure 4.15 and some

83

representative orbit shapes are shown in Figure 4.16. One can see that the periodic orbits do not

conform to the conic sections that most individuals are accustom to seeing, i.e. circle, ellipse,

parabola, or hyperbola. Many of the trajectories have small loops or move about the L4 equilibrium

point a number of times before the orbits close on themselves. It should be noted that the L5 “kidney

bean” orbit family results are similar if not identical. The average distance from the respective

equilibrium point for each L4 and L5 orbit family are shown in Figure 4.17 and 4.18, respectively. In

addition, the average distance from the respective equilibrium point for each L4 and L5 orbit family

as a function of orbit period are shown in Figure 4.19 and 4.20, respectively. One can see that the L4

and L5 plots are not identical. However, this has more to do with the method for determining these

parameters of interest. Specific, finite points on each of the orbits were used to determine the average

distance. If the element step size was infinitesimally small, the plots shown in Figures 4.17 and 4.18

would be identical, as would Figures 4.19 and 4.20.

Figure 4.15. This is a MATLAB plot of actual periods for each L4 equilibrium

point periodic orbit. Primary orbit period = 21.070352.

84

Figure 4.16. Orbit traces for the earth-moon L4 equilibrium point periodic orbit

family. Primary orbit period = 21.070352. Clockwise from lower

left: (a) 2.10944E+01, (b) 2.57786E+01, (c) 2.57317E+01, and (d)

2.54126E+01. [Note: The abscissa and ordinate scales are not

identical for the four subplots.]

Figure 4.17. This is a MATLAB plot of average distance from the L4 equilibrium

point for each periodic orbit. Primary orbit period = 21.070352.

85

Figure 4.18. This is a MATLAB plot of average distance from the L5 equilibrium

point for each periodic orbit. Primary orbit period = 21.070352.

Figure 4.19. This is a MATLAB plot of average distance from the L4 equilibrium

point as a function of period. Primary orbit period = 21.070352.

86

Figure 4.20. This is a MATLAB plot of average distance from the L5 equilibrium

point as a function of period. Primary orbit period = 21.070352.

4.5 General Stability and Other Periodic Orbit Characteristics

Several Lyapunov (planar) orbits of the earth-moon L4 equilibrium point periodic orbit

family generated in AUTO 2000 shown in Figure 4.9 were chosen for examination. These are shown

in Figure 4.21 below. It will be shown later that four spacecraft each traveling along one of the four

outer orbits can be phased-locked on the inner most periodic orbit and placed in a desired formation.

The first question asked was whether or not MATLAB and AUTO 2000 could produce comparable

results in generating periodic orbits. An arbitrary state vector, i.e. position and velocity, of the outer

most periodic orbit was selected. It then became the initial condition for the MATLAB initial value

problem. Propagating the point forward in time circumscribed the outer most trajectory shown in

87

Figure 4.22. As one can see, the trajectory closely resembles the closed periodic orbit generated by

AUTO 2000 validating the MATLAB simulation.

Figure 4.21. Five periodic orbits around the earth-moon L4 equilibrium point

are shown in this plot.

Figure 4.22. An arbitrary state vector, i.e. position and velocity, of the AUTO

2000 generated outer most periodic orbit shown in Figure 4.21

was used as an initial condition for a MATLAB initial value

problem. One can clearly see that propagating the trajectory

over time produces a closed periodic orbit.

88

The stability of periodic orbits can be found in a manner similar to that used for equilibrium

points. Floquet theory and the monodromy matrix provide the means for analyzing each periodic

orbit [see Appendix E]. As part of the periodic orbit generation process, AUTO 2000 produces a

diagnostic file containing the Floquet multipliers, which are simply the eigenvalues of the

characteristic or monodromy matrix. The Floquet multipliers for the five periodic orbits shown in

Figure 4.21 are given in Tables 4.8 through 4.12.

Multiplier No. Real Component Imaginary Component

0 1.000000 0.00000

1 -0.6054816 0.795859

2 -0.6054816 -0.795859

3 0.3036922 -0.952770

4 0.3036922 0.952770

5 1.000000 0.00000

Table 4.8. Floquet multipliers for the inner most periodic orbit shown in Figure 4.21.

Multiplier No. Real Component Imaginary Component

0 1.000000 0.00000

1 -0.6055769 0.795787

2 -0.6055769 -0.795787

3 1.000000 0.00000

4 0.3036721 0.952777

5 0.3036721 -0.952777

Table 4.9. Floquet multipliers for the second smallest periodic orbit shown in Figure

4.21.

Multiplier No. Real Component Imaginary Component

0 1.000000 0.00000

1 -0.6056854 -0.795704

2 -0.6056854 0.795704

3 0.3036495 -0.952784

4 0.3036495 0.952784

5 1.000000 0.00000

Table 4.10. Floquet multipliers for the third or middle periodic orbit shown in Figure

4.21.

89

Multiplier No. Real Component Imaginary Component

0 1.000000 0.00000

1 -0.6058069 0.795612

2 -0.6058069 -0.795612

3 1.000000 0.00000

4 0.3036245 -0.952792

5 0.3036245 -0.952792

Table 4.11. Floquet multipliers for the second largest periodic orbit shown in Figure

4.21.

Multiplier No. Real Component Imaginary Component

0 1.000000 0.00000

1 -0.6059415 0.795509

2 -0.6059415 -0.795509

3 1.000000 0.00000

4 0.3035971 0.952801

5 0.3035971 -0.952801

Table 4.12. Floquet multipliers for the outer most periodic orbit shown in Figure 4.21.

Since the Floquet multipliers all have a modulus less than or equal to 1.0, the periodic orbits are

stable, i.e. each multiplier when plotted on a complex coordinate system would either be on or within

a unit circle with the center at the origin.

Since each of the orbits resembled ellipses, a question arose as to whether or not the standard

equation for the area of an ellipse, see equation 4.104 below, would be a good approximation of the

actual area.

a = AB 4.104

The area, a , is merely equal to the product of , the semi-major axis, A , and the semi-minor axis,

B . Table 4.13 provides the maximum and minimum distances from the L4 equilibrium point. These

distances are synonymous with the semi-major and semi-minor axes, respectively. Green’s theorem

was used to calculate the actual area of the circumscribed by each orbit. Green’s theorem is given as

Pdx
C

+Qdy =
Q

x

P

y

R

dA 4.105

90

In order to use Green’s theorem to determine the area bound by a closed curve, P and Q must be

selected such that

Q

x

P

y
= 1 4.106

Equation 4.105 then becomes

Pdx
C

+Qdy = dA
R

4.107

However this equation can be expressed as

dA
R

= x
C

dy = y
C

dx =
1

2
C

xdy ydx = Area 4.108

Orbit No. Minimum Distance Maximum Distance Period Angular Rate

1 (Inner Most) 0.0042011 0.043135 21.0730 0.2982

2 0.012078 0.084334 21.0811 0.2980

3 0.023331 0.14577 21.0994 0.2978

4 0.035131 0.21119 21.1196 0.2975

5 0.046156 0.27794 21.1334 0.2973

6 (Outer Most) 0.055076 0.34547 21.1365 0.2973

Table 4.13. General attributes of the six periodic orbits shown in Figure 4.22

are provided in this table.

The closed curve, C, could then be parameterized as follows

C
x1 + (x2 x1)t

y1 + (y2 y1)t

,0 t 1

dx = (x2 x1)dt

dy = (y2 y1)dt

1

2
x

C

dy ydx =
1

2
[x1 + (x2 x1)t](y2 y1)dt [y1 + (y2 y1)t](x2 x1)dt{ }

C

91

1

2
x

C

dy ydx =
1

2
[x1(y2 y1) + (x2 x1)(y2 y1) [y1(x2 x1) + (y2 y1)(x2 x1)]{ }

C

dt

1

2
x

C

dy ydx =
1

2
x1y2 x1y1 y1x2 + y1x1()

C

dt

1

2
x

C

dy ydx =
1

2
x1y2 y1x2()

C

dt

1

2
x

C

dy ydx =
1

2
x1y2 x2y1() 4.109

Equation 4.109 was encoded in a simple MATLAB script to expedite the problem solving process.

Table 4.14 shows the area of each periodic orbit shown in Figure 4.22 as determined by the ellipse

formula and Green’s theorem. One can clearly see that the former provides a good approximation for

the area bound by a periodic orbit.

Orbit No. Period Frequency Ellipse Formula Green’s Theorem

1 (Inner Most) 21.0730 3.3539 0.000569 0.000848

2 21.0811 3.3552 0.0032 0.0036

3 21.0994 3.3581 0.0107 0.0110

4 21.1196 3.3613 0.0233 0.0228

5 21.1334 3.3635 0.040 0.0386

6 (Outer Most) 21.1365 3.3640 0.0598 0.0586

Table 4.14. The area for each of the six periodic orbits shown in Figure 4.22,

using the ellipse formula and Green’s theorem are shown in this

table. One can clearly see that the ellipse formula provides a

good approximation.

It was asked whether or not there are any special relationships between the orbit frequency

and the area for the six periodic orbits being examined, e.g. power law relationship. Figure 4.23 is a

simple linear plot of the two values. One can see that the curve is non-linear. Figures 4.24 and 4.25

are semi-log plots, and Figure 4.26 is a log-log plot. In each of these three cases as well, there doesn’t

seem to be a simple relationship.

92

Figure 4.23. A linear plot of orbit frequency versus area is shown above.

Figure 4.24. A semi-log plot of orbit frequency versus area is shown above.

93

Figure 4.25. Another semi-log plot of orbit frequency versus area is shown above.

Figure 4.26. A log plot of orbit frequency versus area is shown above.

Finally, it was asked whether or not there are any special relationships between characteristic

distance, i.e. minimum distance, and orbit period for the six periodic orbits being examined, e.g.

power law relationship.

94

Figure 4.27. A linear plot of minimum distance versus orbit period is shown above.

Figure 4.27 is a simple linear plot of the two values. One can see that the curve is non-linear.

Figures 4.28 and 4.29 are semi-log plots, and Figure 4.30 is a log-log plot. In each of these three

cases as well, there doesn’t seem to be a simple relationship.

Figure 4.28. A semi-log plot of minimum distance versus orbit period is shown above.

95

Figure 4.29. Another semi-log plot of minimum distance versus orbit period is shown

above.

Figure 4.30. A log plot of minimum distance versus orbit period is shown above.

The five earth-moon L4 periodic orbits examined for the three-dimensional case were taken

from the l4_mu_0.012150_period_6.283185_+_16 periodic orbit family (see Appendix D) and are

96

shown in Figure 4.31. The orbit identification numbers from the outer to inner most are: 126, 128,

130, 132, and 134.

Figure 4.31. Five periodic orbits around the earth-moon L4 equilibrium point are

shown in this plot.

As with the Lyapunov (planar) case, it will be shown later that four spacecraft each traveling

along one of the four outer orbits can be phased-locked on the inner most periodic orbit and placed in

a desired formation.

Figure 4.32. Beginning with an arbitrary state vector for the outer most periodic

orbit, it is clear that a MATLAB initial value problem is unable to

replicate the periodic orbit generated by AUTO 2000.

97

A question was asked regarding whether or not MATLAB and AUTO 2000 could produce

comparable results in generating periodic orbits. An arbitrary state vector, i.e. position and velocity,

of the outer most periodic orbit was selected. It then became the initial condition for the MATLAB

initial value problem. Propagating the point forward in time produced the trajectory shown in Figure

4.32. As one can see, the trajectory the MATLAB initial value problem is unable to replicate the

AUTO 2000 two-point value problem produced periodic orbit. Given this, the Floquet multiplier

values were checked to determine if the periodic orbits are stable or unstable. The Floquet multipliers

are shown in Tables 4.15 through 4.19.

Multiplier No. Real Component Imaginary Component

0 1.000000 0.00000

1 0.2753528 -0.961343

2 0.2753528 0.961343

3 1.000000 0.00000

4 0.9050145 0.00000

5 1.104955 0.00000

Table 4.15. Floquet multipliers for the inner most periodic orbit (no. 126) shown in

Figure 4.31.

Multiplier No. Real Component Imaginary Component

0 1.000000 0.00000

1 0.2788031 -0.960348

2 0.2788031 0.960348

3 1.000000 0.00000

4 0.9029416 0.00000

5 1.107491 0.00000

Table 4.16. Floquet multipliers for the second smallest periodic orbit (no. 128) shown

in Figure 4.31.

Multiplier No. Real Component Imaginary Component

0 1.000000 0.00000

1 0.2823921 0.959299

2 0.2823921 -0.959299

3 1.000000 0.00000

4 0.9008275 0.00000

5 1.110090 0.00000

Table 4.17. Floquet multipliers for the third or middle periodic orbit (no. 130) shown

in Figure 4.31.

98

Multiplier No. Real Component Imaginary Component

0 1.000000 0.00000

1 0.2861243 -0.958193

2 0.2861243 0.958193

3 1.000000 0.00000

4 0.8986698 0.00000

5 1.112756 0.00000

Table 4.18. Floquet multipliers for the second largest periodic orbit (no. 132) shown in

Figure 4.31.

Multiplier No. Real Component Imaginary Component

0 1.000000 0.00000

1 0.2900044 0.957025

2 0.2900044 -0.957025

3 1.000000 0.00000

4 0.8964660 0.00000

5 1.115491 0.00000

Table 4.19. Floquet multipliers for the outer most periodic orbit (no. 134) shown in

Figure 4.31.

For each three-dimensional orbit, there is at least one Floquet multiplier with a modulus greater than

1.0. Therefore, all five periodic orbits are unstable, i.e. at least multiplier when plotted on a complex

coordinate system would either be outside the unit circle with the center at the origin. While the

MATLAB initial value problem method produces valid controlled motion trajectories and planar

periodic orbits (at least the five being examined), it cannot be generally used to produce three-

dimensional periodic orbits.

Orbit No. Period Frequency Area

126 6.27470 1.0014 1.3533

128 6.25227 1.0049 1.4603

130 6.20294 1.0129 1.4373

132 6.09248 1.0313 1.2363

134 5.87161 1.0701 0.9572

Table 4.20. The area, derived from Stokes’ theorem, for each earth-moon L4

equilibrium point periodic orbit is shown in this table.

99

Finally, similar to what was done using Green’s theorem from planar orbits, Stokes’ theorem

was used to calculate the area bounded by each periodic orbit. Results are shown in Table 4.20.

4.6 Problem No. 1: Lyapunov (Planar) Case

In the previous chapter, it was determined that phase-locking and formation establishment in

the circular, restricted three-vortex problem in fluid mechanics is possible. A controller was used in

conjunction with a resonant frequency (or orbit resonance) approach to produce the desired result.

This controller was essentially an additional term to the standard equation of motion. It was also

shown that the same controller could be used in combination with another, i.e. this time a scale factor

was incorporated in the standard equation of motion, to expedite the entire process. The next step was

to carry forward these methods to the Lyapunov (planar) case of the circular, restricted three-body

problem in celestial mechanics.

4.6.1 Periodic Orbits

The two-dimensional or planar orbits examined in Section 4.5, was used to develop the two

controllers needed. Again, it should be noted that contrary to the circular, restricted three-vortex

problem in the fluid mechanics, spacecraft motion is clockwise on the XY-plane when viewed from

the positive Z-axis. Shown in Figure 4.21, are the five periodic orbits that were used in the study.

The four spacecraft travel along the four outer periodic orbits, while the inner most periodic orbit is

the desired orbit for phase-locking and formation establishment.

100

Figure 4.33. The initial condition state vector for each of the four spacecraft

is shown in this plot. The terms given in each state vector are, in

the order shown, X-axis position, Y-axis position, velocity in the

X-axis direction, and velocity in the Y-axis direction.

In Figure 4.33, initial conditions, selected randomly, for each of the four spacecraft are

shown in the plot. The state vectors for each are given in the form [x,y,u,v,], where x and y are the

positions along and u and v are the velocities in direction of the X-axis and Y-axis, respectively. As

done in the circular, restricted three-vortex problem in fluid mechanics, animations were created for

the circular, restricted three-body problem in celestial mechanics. The first of these is represented in

Figure 4.34.

101

Figure 4.34. This is the first frame of the two hundred frames in the first

animation. Spacecraft motion is clockwise when viewed from

the Z-axis direction. Since each spacecraft is only driven by the

standard equations of motion, i.e. uncontrolled motion state, they

will continue to traverse the periodic orbits they are on until a

controller is enabled or turned ON.

4.6.2 Phase-Lock Controller

Equations 4.22 and 4.23 are the two standard equations of motion for the planar case of the

circular, restricted three-body problem in celestial mechanics. The controller term was added to each

resulting in the following equations:

˙ ̇ x 2 ˙ y x =
(1 μ)(x + μ)

r1
3

μ (x 1+ μ)

r2
3

+ sin
t

T

 4.110

˙ ̇ y + 2 ˙ x y =
(1 μ)y

r1
3

μy

r2
3

+ sin
t

T

 4.111

As in the circular, restricted three-vortex problem in fluid mechanics, is a term scale factor; is

equal to 1/2, 1, or 2; t is the time or the sine function angle multiplier; and T is the base orbit period.

102

The term here as well will be referred to as controller no. 1. Now refer to Figure 4.35. A spacecraft is

initially traveling along the outer periodic orbit. At a somewhat arbitrary position, the controller is

turned ON. After a series of ‘trial and error’ guesses, it was determined that if and T were set to

–0.027 and 21.070352, the spacecraft would traverse a trajectory that is tangent to the adjacent

periodic orbit, which is precisely what was desired. This allows a spacecraft to move from an outer to

an inner periodic orbit. Can the same controller be used to move a spacecraft from an inner to an

outer periodic orbit?

Figure 4.35. A spacecraft traveling along a periodic orbit is placed in

controlled motion at a somewhat arbitrary initial position. For

this specific case, the values for and T were set to –0.027 and

21.070352, respectively. However, t was left as a variable. One

can see that the spacecraft traverses a trajectory that is tangent to

the adjacent periodic orbit.

103

Figure 4.36. In the plot above two spacecraft travel along each periodic orbit

subject only to the standard equations of motion. This is called

the uncontrolled motion case.

Figure 4.37. At position (0.300, 0.942) a spacecraft traveling along the inner

periodic orbit is placed in controlled motion, i.e. when controller

no. 1 is turned ON. For this specific case, the values for and T

were set to 0.004 and 21.070352, respectively. One can see that

the spacecraft traverses a trajectory that is tangent to the

adjacent, outer periodic orbit.

104

In Figure 4.36, two periodic orbits are shown along with a selected initial state vector for a spacecraft

traveling along the inner periodic orbit, i.e. [0.300, 0.942, -0.006, 0.013]. If the spacecraft continues

to be driven only by the standard equations of motion it will continue along on the periodic orbit

shown. It will be a different case if controller no. 1 is turned ON. After a series of ‘trial and error’

guesses, it was determined that if and T were set to 0.004 and 21.070352, the spacecraft would

traverse a trajectory that is tangent to the adjacent periodic orbit, which is precisely what was desired

(see Figure 4.37).

Now that controller no. 1 has shown to be viable, we now want to phase-lock the four

spacecraft shown in Figures 4.33 and 4.34 onto a single orbit, that being the inner most one shown in

the two figures. Later we will want to establish a formation on that orbit that resembles a diamond or

rhombus (see Figure 4.38). For now, let’s decide on which extremas to use as staging points. After

running several test cases, it was determined that the points of the periodic orbits furthest from the L4

equilibrium point would be the best staging points, i.e. transfer trajectory starting points. Figure 4.39

shows the initial condition state vector for each of the four spacecraft.

Figure 4.38. After completing the phase-locking step we want each spacecraft

to be placed at the corners of a diamond or rhombus, i.e.

establish a formation as shown above.

105

Figure 4.39. Staging points for each of the four spacecraft are shown above.

They represent the points at which the periodic orbits are further

away from the L4 equilibrium point.

After several iterations, the proper values for each spacecraft transfer trajectory were determined and

are shown in Table 4.21 and a plot of each is shown in Figure 4.40. All four transfer trajectory curves

are plotted on a single graph in Figure 4.41 to provide one with a relative sense of location in physical

space.

Spacecraft No. T

1 0.0096 1 21.070352

2 0.0089 1 21.070352

3 0.0073 1 21.070352

4 0.0004 1 21.070352

Table 4.21. The controller no. 1 parameter values required to allow each

spacecraft to leave its initial periodic orbit and be placed on the

proper transfer trajectory are shown in the table above.

106

Spacecraft 1 (S1) Spacecraft 2 (S2)

Spacecraft 3 (S3) Spacecraft 4 (S4)

Figure 4.40. The transfer trajectory for each spacecraft is shown here. The

starting point for each is where the periodic orbit is furthest

away from the L4 equilibrium point.

Figure 4.41. The transfer trajectory for each spacecraft is shown on this

single plot to provide a sense of relative location in physical

space.

107

Spacecraft No. Staging Time

(Units)

Transfer Time

(Units)

Time to Reach

Desired Orbit (Units)

1 11.2 10.5 21.7

2 2.2 10.4 12.6

3 14.5 10.0 24.5

4 18.0 9.8 27.8

Table 4.22. The staging time, transfer time, and time to reach the desired

orbit are provided for each of the four spacecraft in this table.

The staging time, transfer time, and total time to reach the desired (inner most) periodic orbit are

provided in Table 4.22. At t=27.8 units of time, all four spacecraft have reached the final destination.

It should be noted that since Spacecraft 4 (S4) was the last reach the final orbit it will seed the desired

formation, i.e. its actual and desired position are one in the same. The relative locations of each

spacecraft with one another as well as the desired positions for formation establishment are shown in

Figure 4.42. A simple schematic is shown in Figure 4.43.

Figure 4.42. The relative positions of each spacecraft with respect to one

another (shown in black) and the desired positions for formation

establishment (shown in grey shade) are plotted here.

108

P3

P2

P4

P3

P2

P1

Desired particle
position [typical
3 places]

P1

Figure 4.43. This is a simple schematic of Figure 6.10. It more clearly shows

that Spacecraft 4 (P4) is already in the desired position for

formation establishment. Therefore, the positions of the other

three spacecraft will have to be altered with respect to it, e.g.

Spacecraft 1 (P1) should follow 1/4-revolution behind P4, but in

actuality is almost 3/4-revolution behind.

4.6.3 Formation Establishment

4.6.3.1 Resonant Frequency Approach

The resonant frequency (or orbit) approach based on the procedure and MATLAB computer

program developed for the circular, restricted three-vortex problem described in section 3.5.1 is valid,

but it is impractical for the planar case of the circular, restricted three-body problem in celestial

mechanics. Although the period for each of the five planar orbits is different they are so similar, e.g.

the difference in period between the inner most and adjacent orbit is less than 0.2%, that it would take

a significant number of orbit rotations (>100) to achieve synchronization for just two spacecraft. To

synchronize the entire formation would take greater than 300 revolutions.

109

4.6.3.2 Controller Method

As in the circular, restricted three-vortex problem in fluid mechanics, a second controller was

developed to expedite the formation establishment process. Again, equations 4.22 and 4.23 are the

two standard equations of motion for the planar case of the circular, restricted three-body problem in

celestial mechanics. The controller was incorporated to each resulting in the following equations:

˙ ̇ x 2 ˙ y x =
(1 μ)(x + μ)

r1
3

μ(x 1+ μ)

r2
3

4.112

˙ ̇ y + 2 ˙ x y =
(1 μ)y

r1
3

μy

r2
3

4.113

In both equations, is a scale factor. At first, this seemed to produce the desired results, i.e.

controlled motion trajectories or orbits that would close on themselves (see Figure 4.44). This would

allow a spacecraft to depart from a select extrema on an intermediate orbit with a desired period and

return where it started.

Figure 4.44. These are two examples where the second controller is turned

ON. In each plot, the uncontrolled motion periodic orbits

envelop the controlled motion trajectories. One can readily see

that a spacecraft traveling on the latter would return to its initial

starting point.

However, after evaluating several test cases, it was determined that the solution space was not

continuous, i.e. there were some desired periods where the trajectories or orbits would not close on

110

themselves (see Figure 4.45). After much investigation, it was determined that the problem was due

to the fact that the same controller value was being used in both equations.

Figure 4.45. These are also two examples where the second controller is

turned ON. However, one can clearly see, especially with the

second plot, that the controlled motion trajectory does not close

on itself.

Figure 4.46. This is a curve-fit for the 1 (shown as S1 in the plot) in the

controlled motion trajectory “period” range of interest.

111

If were to be separated into two different values, 1 and 2 , it would provide enough flexibility to

find a trajectory or orbit that would close on itself with a desired period. Equations 4.112 and 4.113

were slightly altered resulting in the following:

˙ ̇ x 12 ˙ y x =
(1 μ)(x + μ)

r1
3

μ (x 1+ μ)

r2
3

4.112

˙ ̇ y + 2 2 ˙ x y =
(1 μ)y

r1
3

μy

r2
3

4.113

The values for 1 and 2 for the controlled motion trajectory “period”, P’, range we are interested are

provided in Figures 4.46 and 4.47. The values are also provided in tabular form in Table 4.23.

Figure 4.47. This is a curve-fit for the 2 (shown as S2 in the plot) in the

controlled motion trajectory “period” range of interest.

Following the procedure outlined in the circular, restricted three-vortex problem in fluid

mechanics, three spacecraft, S2, S3, and S1, will be placed on an intermediate trajectory or orbit with

the necessary period and return to the inner most periodic orbit at precisely the right time and location

to establish the desired formation.

112

“Period”, P’ Value of 1 Value of 2

21.1 1.0 1.0

22.2 1.01 1.0085

23.5 1.02 1.0195

24.0 1.03 1.0295

25.1 1.0431 1.04

29.2 1.10 1.0975

33.5 1.15 1.1498

36.0 1.2 1.1942

41.0 1.27 1.2696

42.6 1.3 1.2987

Table 4.23. The controller no. 2 parameter values required to create a

number of controlled motion trajectories are shown in the table

above.

S3

S2

S4
S3

S2

S1

S1

t = 4.0

Figure 4.48. This is a simple schematic showing Spacecraft 2 (S2) at the

point at which it will be placed on a controlled motion trajectory.

It will leave the periodic orbit that it was on and only return at

the proper time and location necessary to establish the desired

formation.

113

Figure 4.49. The controlled motion trajectory or orbit for Spacecraft 2 (S2) is

shown in this plot. The final periodic orbit is shown as a dashed

curve.

At t = 27.8 + 6.5 = 34.3, Spacecraft 2 (S2) arrives at the identified extrema, i.e. [0.5528

0.8285 0.0002 -0.0062] and is placed on an orbit with period = 25.0730 (21.0730 + 4.0) by turning on

controller no 2. Here, 1=1.0431 and 2=1.04. The schematic and orbit plot for S2 are shown in

Figures 4.48 and 4.49, respectively.

S3

S1

S4

S3

S2

S1

S2

Figure 4.50. This is a simple schematic showing Spacecraft 1 (S1) at the

point at which it will be placed on a controlled motion trajectory.

It will leave the periodic orbit that it was on and only return at

the proper time and location necessary to establish the desired

formation.

114

Figure 4.51. The controlled motion trajectory or orbit for Spacecraft 1 (S1) is

shown in this plot. The final periodic orbit is shown as a dashed

curve.

At t = 27.8 + 15.5 = 43.3, Spacecraft 1 (S1) arrives at the identified extrema, i.e. [0.5528

0.8285 0.0002 -0.0062] and is placed on an orbit with period = 31.673 (21.0730 + 10.6) by turning on

controller 2. Here, 1=1.13 and 2=1.1278. The schematic and orbit plot for S1 are shown in

Figures 4.50 and 4.51, respectively.

S2

S3

S4
S3

S2

S1

S1

Figure 4.52. This is a simple schematic showing Spacecraft 3 (S3) at the

point at which it will be placed on a controlled motion trajectory.

It will leave the periodic orbit that it was on and only return at

the proper time and location necessary to establish the desired

formation.

115

Figure 4.53. The controlled motion trajectory or orbit for Spacecraft 3 (S3) is

shown in this plot. The final periodic orbit is shown as a dashed

curve.

At t = 27.8 + 18.0 = 45.8, Spacecraft 3 (S3) arrives at the identified extrema, i.e. [0.5528

0.8285 0.0002 -0.0062] and is placed on an orbit with period = 40.0730 (21.0730 + 19.0) by turning

on controller 2. Here, 1=1.255 and 2=1.2497. The schematic and orbit plot for S3 are shown in

Figures 4.52 and 4.53, respectively.

Figure 4.54. Transfer trajectories for Spacecraft 2 (S2), Spacecraft 1 (S1), and

Spacecraft 3 (S3) are shown in this plot.

116

The three transfer trajectories are plotted on a single graph, so as to provide a sense of

location in relative space (see Figure 4.54). When each of the three spacecraft have returned to the

original periodic orbit they will be placed in the proper location for the formation desired. The simple

schematic of this is shown in Figure 4.55.

S3

S2

S1

S4

Figure 4.55. In this simple schematic the four spacecraft, S1-S4, are shown to

be in the proper relative positions 1/4-revolution apart from one

another.

Figure 4.56. As shown in the plot figure above, once Spacecraft 3 (S3)

returns to the original periodic orbit the desired formation, i.e.

diamond or rhombus, has been established.

117

State vectors for each spacecraft at the point in time the formation is established are shown in figure

4.56. The total time for phase-locking and formation establishment is 85.8 units of time. From this

point on, the spacecraft will be in an uncontrolled motion state and will continue to traverse the

periodic orbit.

4.6.4 Example Problem and Solution

As in the case of the circular, restricted three-vortex problem in fluid mechanics, animations

were created for phase locking and formation establishment. Figure 4.57 represents the phase-locking

animation and Figure 4.58 represents the formation establishment animation.

Figure 4.57. This is the first frame of a two hundred-frame animation for

phase-locking in the circular, restricted three-body problem in

celestial mechanics.

118

Figure 4.58. This is the first frame of a two hundred-frame animation for

formation establishment in the planar case of the circular,

restricted three-body problem in celestial mechanics.

4.7 Problem No. 2: Three-Dimensional Case

In the previous chapter, it was determined that phase-locking and formation establishment in

the circular, restricted three-vortex problem in fluid mechanics is possible. A controller was used in

conjunction with a resonant frequency (or orbit resonance) approach to produce the desired result.

This controller was essentially an additional term to the standard equation of motion. It was also

shown that the same controller could be used in combination with another, i.e. this time a scale factor

was incorporated in the standard equation of motion, to expedite the entire process. It was shown

earlier in this chapter that the same methods could be carried forward and used for the two-dimension

or planar case of the circular, restricted three-body problem in celestial mechanics. The third and final

step is to show that the methods also apply in the three-dimensional case.

119

4.7.1 Periodic Orbits

The three-dimensional orbits examined in Section 4.5, was used to develop the two

controllers needed. Again, it should be noted that contrary to the circular, restricted three-vortex

problem in the fluid mechanics, spacecraft motion is clockwise on the XY-plane when viewed from

the positive Z-axis. Shown in Figure 4.40, are the five periodic orbits that were used in the study.

The four spacecraft travel along the four outer periodic orbits, while the inner most periodic orbit is

the desired orbit for phase-locking and formation establishment. In Figure 4.59, initial conditions,

selected randomly, for each of the four spacecraft are shown in the plot. The state vectors for each are

given in the form [x,y,z,u,v,w], where x, y, and z are the positions along and u, v, and w are the

velocities in direction of the X, Y, and Z-axis, respectively. As done in the circular, restricted three-

vortex problem in fluid mechanics, animations were created for the circular, restricted three-body

problem in celestial mechanics. The first of these for the three-dimensional case is represented in

Figure 4.60.

Figure 4.59. The initial condition state vector for each of the four spacecraft

is shown in this plot. The terms given in each state vector are, in

the order shown, position along the X, Y, and Z-axis and

velocity in the X, Y, and Z-axis direction.

120

Figure 4.60. This is the first frame of the two hundred frames in the first

animation. Since each spacecraft is only driven by the standard

equations of motion, i.e. uncontrolled motion state, they will

continue to traverse the periodic orbits they are on until a

controller is enabled or turned ON.

4.7.2 Phase-Lock Controller

Equations 4.22 through 4.24 are the three standard equations of motion for the three-

dimensional case of the circular, restricted three-body problem in celestial mechanics. The controller

term was added to each resulting in the following equations:

˙ ̇ x 2 ˙ y x =
(1 μ)(x + μ)

r1
3

μ (x 1+ μ)

r2
3

+ 1 sin 1 t

T1

 4.114

˙ ̇ y + 2 ˙ x y =
(1 μ)y

r1
3

μy

r2
3

+ 2 sin 2 t

T2

 4.115

˙ ̇ z =
(1 μ)z

r1
3

μz

r2
3

+ 3 sin 3 t

T3

 4.116

121

As in the circular, restricted three-vortex problem in fluid mechanics and the two dimensional or

planar case in the circular, restricted three-body problem in celestial mechanics, is a term scale

factor; is equal to 1/2, 1, or 2; t is the time or the sine function angle multiplier; and T is the base

orbit period. The term here as well will be referred to as controller no. 1. Table 4.24 shows the

parameter values needed for each spacecraft to leave its original periodic orbit from the extrema, i.e.

point on the periodic orbit furthest away from the L4 equilibrium point, and be placed an a transfer

trajectory to the desired inner most periodic orbit.

Spacecraft and

Equation

T Transfer Time

(Units)

Spacecraft 1 (S1) 0.89

X (Equation 6.7) 7.7 1 6.283185

Y (Equation 6.8) 7.7 1 6.283185

Z (Equation 6.9) -1.9 1 6.283185

Spacecraft 2 (S2) 1.50

X (Equation 6.7) 1.3 1 6.283185

Y (Equation 6.8) 1.3 1 6.283185

Z (Equation 6.9) -1.23 1 6.283185

Spacecraft 3 (S3) 1.90

X (Equation 6.7) 0.39 1 6.283185

Y (Equation 6.8) 0.39 1 6.283185

Z (Equation 6.9) -0.6 1 6.283185

Spacecraft 4 (S4) 2.00

X (Equation 6.7) 0.18 1 6.283185

Y (Equation 6.8) 0.18 1 6.283185

Z (Equation 6.9) -0.3 1 6.283185

Table 4.24. The controller no. 1 parameter values shown in the table will

produce the desired transfer trajectory for each spacecraft, i.e. a

trajectory that will take it from its initial periodic orbit to the

inner most periodic orbit.

Notice that the parameter values are not necessarily the same for all three equations, e.g. For

Spacecraft 1 (S1), is equal to 7.7 in equations 4.114 and 4.115, but equal to –1.9 in equation 4.116.

One of the lessons learned in the two-dimensional or planar case of the circular, restricted three-body

problem solved for earlier in this chapter was that the parameter values should not necessarily be the

same each equation of motion else flexibility is lost. Also shown in the table are the transfer times for

122

each spacecraft. It is interesting to note that even though Spacecraft (S1) is on the outer-most periodic

orbit, the transfer time is the least among the four. It turns out that that S1 is placed on a more direct

path the desired, inner most periodic orbit than the others.

Spacecraft No. Staging Time

(Units)

Transfer

Time (Units)

Time to Reach

Desired Orbit (Units)

1 3.52 0.89 4.41

2 1.11 1.50 2.61

3 1.50 1.90 3.40

4 6.03 2.00 8.03

Table 4.25. The staging time, transfer time, and total time required for each

spacecraft to reach the desired (inner most) periodic orbit are

provided in the table above.

Figure 4.61. Transfer trajectories for each spacecraft are shown in the plot

above along with the four original periodic orbits and the inner

most periodic orbit where each spacecraft will be phase-locked

and placed in the desired formation.

The staging time, transfer time, and total time to reach the desired (inner most) periodic orbit

are provided in Table 4.25 (see also Figure 4.61). At t=8.03 units of time, all four spacecraft have

123

Figure 4.62. The relative positions of each spacecraft with respect to one

another (shown in black) and the desired positions for formation

establishment (shown in grey shade) are plotted here.

S3

S2

S3

S2

S1

S4

Desired particle
position [typical
3 places]

S1

Figure 4.63. This is a simple schematic of Figure 4.62. It more clearly shows

that Spacecraft 4 (P4) is already in the desired position for

formation establishment. Therefore, the positions of the other

three spacecraft will have to be altered with respect to it, i.e.

Spacecraft 1 (P1) should follow 1/4-revolution behind P4, but in

actuality is almost 1/2-revolution behind.

124

reached the final destination. It should be noted that since Spacecraft 4 (S4) was the last reach the

final orbit it will seed the desired formation, i.e. its actual and desired position are one in the same.

The relative locations of each spacecraft with one another as well as the desired positions for

formation establishment are shown in Figure 4.62. A simple schematic is shown in Figure 4.63.

4.7.3 Formation Establishment

4.7.3.1 Resonant Frequency Approach

Again, the resonant frequency (or orbit) approach based on the procedure and MATLAB

computer program developed for the circular, restricted three-vortex problem described in section

3.5.1 is valid it is also impractical for the three-dimensional case of the circular, restricted three-body

problem in celestial mechanics. Although the period for each of the five planar orbits is different they

are so similar, e.g. the difference in period between the inner most and adjacent orbit is less than

0.3%, that it would take a significant number of orbit rotations (>100) to achieve synchronization for

just two spacecraft. To synchronize the entire formation would take greater than 300 revolutions.

4.7.3.2 Controller Method

As in the circular, restricted three-vortex problem in fluid mechanics and the two-

dimensional or planar case of the circular, restricted three-body problem in celestial mechanics a

second controller was developed to expedite the formation establishment process. Again, equations

4.22 through 4.24 are the standard equations of motion for the three-dimensional case of the circular,

restricted three-body problem in celestial mechanics. The controller was incorporated to each

resulting in the following equations:

125

˙ ̇ x 12 ˙ y x =
(1 μ)(x + μ)

r1
3

μ (x 1+ μ)

r2
3

4.117

˙ ̇ y + 2 2 ˙ x y =
(1 μ)y

r1
3

μy

r2
3

4.118

˙ ̇ z = 3 (1 μ)z

r1
3

μz

r2
3

4.119

In each equation, , i.e. 1, 2 , and 3 , is a scale factor. The values needed to produce the

intermediate trajectories or orbits are provided in Table 4.26.

Spacecraft No.
1 2 3

Orbit Period

(Units of Time)

2 -0.0066 -0.0290 0.7000 2.46

3 -0.0790 -0.0180 0.3350 3.17

1 -0.2000 -0.0550 -0.0720 5.49

Table 4.26. The controller no. 2 parameter values shown in the table will

produce the desired transfer trajectory for each spacecraft, i.e. a

trajectory that will take it from its initial periodic orbit to the

inner most periodic orbit.

Following the procedure outlined in the circular, restricted three-vortex problem in fluid

mechanics and the two-dimensional case in the circular, restricted three-body problem in celestial

mechanics, three spacecraft, S2, S3, and S1, will be placed on an intermediate trajectory or orbit with

the necessary period and return to the inner most periodic orbit at precisely the right time and location

to establish the desired formation.

At t = 8.03 + 2.31 = 10.34, Spacecraft 2 (S2) arrives at the identified extrema, i.e. [1.0568, -

0.1081, 0.3263, -0.3906, -0.2344, -0.0456] and is placed on an orbit with period = 2.46. The

schematic and orbit plot for S2 are shown in Figures 4.64 and 4.65 respectively.

126

S3

S2

S3
S1

S4

S1

S2

Figure 4.64. This is a simple schematic showing Spacecraft 2 (S2) at the

point at which it will be placed on a controlled motion trajectory.

It will leave the periodic orbit that it was on and only return at

the proper time and location necessary to establish the desired

formation.

Figure 4.65. The controlled motion trajectory or orbit for Spacecraft 2 (S2) is

shown in this plot. The final periodic orbit is shown as the

larger orbit in the figure.

At t = 8.03 + 3.05 = 11.08, Spacecraft 3 (S3) arrives at the identified extrema, i.e. [1.0568, -

0.1081, 0.3263, -0.3906, -0.2344, -0.0456] and is placed on an orbit with period = 3.05. The

schematic and orbit plot for S3 are shown in Figures 4.66 and 4.67 respectively.

127

S3

S2

S3

S1

S4

S1

S2

Figure 4.66. This is a simple schematic showing Spacecraft 3 (S3) at the

point at which it will be placed on a controlled motion trajectory.

It will leave the periodic orbit that it was on and only return at

the proper time and location necessary to establish the desired

formation.

Figure 4.67. The controlled motion trajectory or orbit for Spacecraft 3 (S3) is

shown in this plot. The final periodic orbit is shown as the larger

orbit in the figure.

128

At t = 8.03 + 4.10 = 12.13, Spacecraft 1 (S1) arrives at the identified extrema, i.e. [1.0568, -

0.1081, 0.3263, -0.3906, -0.2344, -0.0456] and is placed on an orbit with period = 4.10. The

schematic and orbit plot for S3 are shown in Figures 4.68 and 4.69 respectively.

S3

S2

S3

S1

S4

S1

S2

Figure 4.68. This is a simple schematic showing Spacecraft 1 (S1) at the

point at which it will be placed on a controlled motion trajectory.

It will leave the periodic orbit that it was on and only return at

the proper time and location necessary to establish the desired

formation.

Figure 4.69. The controlled motion trajectory or orbit for Spacecraft 1 (S1) is

shown in this plot. The final periodic orbit is shown as the larger

orbit in the figure.

129

The three transfer trajectories are plotted on a single graph, so as to provide a sense of

location in relative space (see Figure 4.70). When each of the three spacecraft have returned to the

original periodic orbit they will be placed in the proper location for the formation desired. The simple

schematic of this is shown in Figure 4.71.

Figure 4.70. Transfer trajectories for Spacecraft 2 (S2), Spacecraft 3 (S3), and

Spacecraft 1 (S1) are shown in this plot.

S1

S4

S3

S2

Figure 4.71. In this simple schematic the four spacecraft, S1-S4, are shown to

be in the proper relative positions 1/4-revolution apart from one

another.

130

State vectors for each spacecraft at the point in time the formation is established are shown in figure

4.72. The total time for phase-locking and formation establishment is 85.8 units of time. From this

point on, the spacecraft will be in an uncontrolled motion state and will continue to traverse the

periodic orbit.

Figure 4.72. Once Spacecraft 1 (S1) returns to the original periodic orbit the

desired formation, i.e. temporal separation between each

spacecraft are identical.

4.7.4 Example Problem and Solution

As in the case of the circular, restricted three-vortex problem in fluid mechanics, animations

were created for phase locking and formation establishment. Figure 4.73 represents the phase-locking

animation and Figure 4.74 represents the formation establishment animation.

131

Figure 4.73. This is the first frame of the two hundred frames in the

animation for phase-locking in the circular, restricted three-body

problem in celestial mechanics.

Figure 4.74. This is the first frame of a two hundred frames in the animation

for formation establishment in the circular, restricted three-body

problem in celestial mechanics.

132

Chapter 5: Evaluation and Assessment

5.1 Verification & Validation

Verification is an objective evaluation and involves asking the question, “Did we build it

correctly?” In other words, does the design meet requirements? In the circular, restricted three-vortex

problem in fluid mechanics the high-level requirements were to develop a controller or set of

controllers to phase lock and establish a formation of test particles. The first controller, a

trigonometric function added to the governing equation of motion, did provide a means for phase

locking a number of test particles. It was also shown that when used in a resonant frequency/orbit

approach, the controller could be used to create/establish a desired test particle formation as well.

However, a second controller - the inclusion of a scale factor to the first term in the governing

equation of motion - when used in conjunction with the first, helped to expedite the test particle phase

locking and formation establishment process. Although both procedures could be directly carried

over to the circular, restricted three-body problem in celestial mechanics as feasible/valid approaches,

the two-controller method was the obvious choice. Phase-locking and formation establishment of

multiple spacecraft was clearly demonstrated using this process.

Validation is more subjective and involves asking the question, “Did we build the right

thing?” In other words, does the product satisfy the customers? If these customers include mission

designers, navigation designers and analysts, attitude control engineers, propulsion system engineers,

and the scientists who will one day benefit from this work it is hoped that the answer is yes. While

133

not the complete or optimal solution, it is hoped that this work will form the foundation and serve as

an inspiration for a novel, but also practical approach to spacecraft formation flying.

Other verification & validation-related observations: (1) In the circular, restricted three-body

problem in fluid mechanics the level curves of the Hamiltonian look identical to those shown in

Newton [19], and propagating forward in time a state vector clearly generates orbits that close on

themselves, i.e. periodic orbits; (2) the output of the MATLAB script used to locate equilibrium

points in both the circular, restricted three-vortex problem and circular, restricted three-body problem

compared well to those predicted by the Hill Sphere method; and (3) using an initial value problem

approach in a MATLAB computer program produced valid trajectories and periodic orbits.

5.2 Limitations

Although valid for simulating trajectories and stable periodic orbits there is a limitation using

an initial value problem approach in a MATLAB computer program. It cannot simulate the periodic

orbits generated by AUTO 2000 using the two-point boundary value problem method if the orbits are

unstable (see Figure 4.32). AUTO 2000 was created to densely foliate periodic orbits around

equilibrium points, however, it would be a significant revision/augmentation effort to create

individual periodic orbits of interest with desired start and end states. The circular, restricted three-

body problem equations of motion do not include other terms needed for full-force modeling. In

actuality, forces such as solar pressure need to be included for more accurate modeling of spacecraft

motion. Most celestial body orbits possess some degree of eccentricity, and therefore, are not truly

circular. The elliptical restricted three-body problem would produce more accurate results. Finally,

the resonant frequency approach in the circular, restricted three-body problem is impractical in that it

takes too long to establish a spacecraft formation. The periods of the planar and three-dimensional

orbits under examination were so close to one another, e.g. 0.3%, it would take many, e.g. >100

orbits/revolutions to phase lock and establish a formation of even just two spacecraft.

134

5.3 Lessons Learned

Starting with a simple problem helps to develop the concepts needed to solve more complex

problems. Phase locking and establishing a formation of test particles in the circular, restricted three-

vortex problem in fluid mechanics provided the structure and basic approach needed to phase lock and

establish a formation of spacecraft in the circular, restricted three-body problem in celestial

mechanics. However, it must be understood that there are differences that need to be accounted for.

Where there was just one equation of motion for the circular, restricted three-vortex problem there

were two and three equations in the circular, restricted three-body problem depending on which case

was being examined. It was shown that the controllers developed for a single equation couldn’t be

directly carried over to the two or three equation case without some modification, e.g. the actual

controller parameters for each of the two or three equations should not be constrained to be identical.

Otherwise, it may not be possible to create the desired transfer and/or intermediate trajectory/orbit.

Although a single controller and the resonant frequency approach were demonstrated to be

viable and practical in the circular, restricted three-vortex problem, it was impractical for use in the

circular, restricted three-body problem. It was not realized until late in the investigation that this was

the case. Fortunately, a second controller had been developed that served to expedite the formation

establishment process for the circular, restricted three-vortex problem. In the example problem, the

total time required to phase lock and establish a desired formation using two controllers was an order

of magnitude less than that using a single controller and the resonant frequency approach, i.e. 2.18 v.

21.74 units of time. Use of the two controllers was carried over to the circular, restricted three-body

problem as really the only practical approach. In solving complex problems one might be tempted to

declare success prematurely, but cautious/guarded optimism should prevail. Hopefully, given

available time and resources it is best to clearly demonstrate a robust solution or develop alternatives

to demonstrate resiliency.

135

5.4 Potential Scientific Applications

Creation of dynamically natural formations or multi-spacecraft platforms will enable the

‘loiter, synchronize/coordinate, and observe’ approach for future engineering and scientific missions

where flexibility is a top-level requirement and key to mission success. Instruments on these

spacecraft can be those needed for remote sensing observations, e.g. infrared measurements, or those

needed for in situ field and particles measurements, e.g. magnetometer readings.

5.5 Recommendations for Future Work

The feasibility of dynamically natural spacecraft formations has been demonstrated in this

body of work. To bring the concept closer to practical application there are a number of addition

steps that can be taken. Firstly, the two controllers developed in this body of work can be optimized

to minimize the time to necessary to phase lock and establish a formation of multiple spacecraft.

Secondly, a two point boundary value problem approach in MATLAB or AUTO 2000 can be used so

that the velocity components as well as the position components at the point at which each controller

is turned OFF, i.e. the phase locking and formation establishment end states, match those at the

desired/final periodic orbit entry point. This would eliminate the need for an impulsive maneuver at

the conclusion of the phase locking and/or formation establishment stage. Thirdly, a low energy

propulsion system can be matched for each or for both controllers. Finally, the equations for both the

uncontrolled and controlled motion cases can be augmented to account for and allow for the

compensation of external forces, e.g. solar wind.

136

Chapter 6: Conclusions

The circular, restricted three-vortex problem in fluid mechanics was successfully used as a

proof-of-concept model and for development of two controllers. The first controller, a trigonometric

term added to the standard equation of motion, was used for phase locking of test particles originally

traveling along individual periodic orbits in the complex coordinate frame. The controller was used in

a resonant frequency approach that allowed for the creation of a desired geometric formation. A

second controller, the incorporation of a scale factor in the first term in the standard equation of

motion, was also developed. When used in conjunction with the first controller, it served to expedite

the formation establishment process. This resulted in an order of magnitude decrease in the time

required in the sample problem.

The two controllers developed in the circular, restricted three-vortex problem in fluid

mechanics were carried over to the planar case of the circular, restricted three-body problem in

celestial mechanics. It was shown that the first controller could be used for phase locking of

spacecraft originally traveling along individual periodic orbits. The controller could also be used in a

resonant frequency approach that allows for the creation of a desired geometric formation. However,

use of the second controller in conjunction with the first did expedite the formation establishment

process. It was clearly shown that the value of the scale factor could not be constrained to be the

same for both equations of motion. In the sample problem the values needed to be different in order

for the spacecraft trajectories/orbits to close.

The controllers used in the planar case of the circular, restricted three-body problem in

celestial mechanics were also valid for the three-dimensional case. However, while examining the

137

original spacecraft periodic orbits it was noticed many of the three-dimensional periodic orbits created

by the AUTO 2000 software tool were unstable. Spacecraft operating in unstable periodic orbits

would have to occasionally perform trajectory correction maneuvers to stay on course. However, the

mere creation of these orbits is testimony to the power of the tool and the two-point boundary value

problem method used.

With the advent of solar electric propulsion and other low thrust actuator systems, it appears

feasible for the controllers developed as part of this thesis to actually be used. Creation of

dynamically natural formations or multi-spacecraft platforms will enable the ‘loiter,

synchronize/coordinate, and observe’ approach for future engineering and scientific missions where

flexibility is a top-level requirement and key to mission success.

138

Glossary

AUTO 2000 A continuation and bifurcation analysis software package

Barycenter The center of mass of a multi-body system

Chaos Complex dynamical behavior characterized by a general lack of

periodicity and a great sensitivity to initial conditions

Constellation A collection or group of spacecraft or satellites in close proximity

where each one serves a common purpose or goal and some

mechanism is employed for centralized or distributed coordination

Controller A mechanism for affecting change in a dynamical system

Entropy A measure of disorder, disorganization, or degradation in a system

Equilibrium A state of balance, i.e. no net change

Formation A collection or group of spacecraft or satellites in close proximity

where each one serves a common purpose or goal and some

mechanism is employed for centralized or distributed coordination.

This term is sometimes used interchangeably with “constellation”.

Formation Flying Spacecraft or man-made satellites operating together to meet the intent

of a formation

General Formation Flying Spacecraft formation flying with relatively large error tolerances

Hamiltonian (system) A system where energy may change form, but the total energy is

constant over time

Interferometer Two or more telescopes working in unison where the effective

diameter of the interferometer - an instrument that measures wavefront

through interference of light waves - is equal to the distance between

the two furthest telescopes

Keplerian Pertaining to the motion described by Kepler’s laws

Libration Point In the context of this work is synonymous with equilibrium point

MATLAB A programming language and software application

Precision Formation Flying Spacecraft formation flying with relatively small error tolerances

Staging Time The time it takes for a test particle or spacecraft to move from it’s

initial periodic orbit to the desired periodic orbit via a controller-

enabled transfer trajectory

Vortex A rotary circulation with an associated strength

139

Bibliography

[1] Acebron, Juan A., et. al., “The Kuramoto Model: A Simple Paradigm for Synchronization

Phenomena”, Reviews of Modern Physics, vol. 77, Issue 1, pp. 137-185, 2005.

[2] Analytical Graphics, Inc., Technical Notes on Rotating Libration Points,

http://www.agi.com/resources/help/stk613/helpSystem/extfile/gator/eq-rlp.htm

[3] Atkins, Ella and Yannick Penneçot, “Autonomous Satellite Formation Assembly and

Reconfiguration with Gravity Fields”, IEEE, Paper #296, 2001.

[4] Basilio, Ralph R., Eastwood Im, Mark J. Rokey, and Deborah G. Vane, “A spaceborne

microwave radar system for looking inside clouds”, Proceedings of the SPIE (International

Society for Optical Engineering) Europe Remote Sensing Conference, Volume No. 6361,

September 2006.

[5] Boain, Ronald J., “The CloudSat Mission: A Virtual Platform”, Proceedings of the 13
th

AAS/AIAA Space Flight Mechanics Meeting, Puerto Rico, 09-13 February, 2003.

[6] Barrow-Green, June, Poincaré and the Three-Body Problem, American Mathematical Society,

1997.

[7] Clohessy, W. H. and R. S. Wilshire, “Terminal Guidance Systems for Satellite Rendezvous”,

Journal of Aerospace Sciences, 653-658, September 1960.

[8] Danby, John M. A., Fundamental of Celestial Mechanics, Willmann-Bell, Inc., 1992.

[9] The ESA (European Space Agency) and NASA (National Aeronautics and Space

Administration LISA (Laser Interferometer Space Antenna) web site,

http://lisa.jpl.nasa.gov/WHATIS/intro.html.

[10] Eisner, Thomas, For Love of Insects, Bleknap Press, Cambridge, MA, 2005.

[11] Gurfil, Pini, and N. Jeremy Kasdin, “Stability and control of spacecraft formation flying in the

trajectories of the restricted three-body problem”, Acta Astronautica, Elsevier Science Ltd.,

2003.

[12] Hilborn, R. C., Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers,

Oxford University Press, Second Edition, 2000.

[13] Hill, George William, “Researches into the Lunar Theory”, American Journal of Mathematics,

5-26, 1878.

[14] Kaplan, Marshall, Modern Spacecraft Dynamics and Control, John Wiley and Sons, 1976,

page 17.

[15] Koon, W. S., M. W. Lo, J. E. Marsden, and S. D. Ross, “Dynamical Systems, the Three-Body

Problem and Space Mission Design”, International Conference on Differential Equations,

Editors: B. Fiedler, K. Groger, and J. Sprekels, World Scientific, 2000, pp. 1167-1181.

140

[16] Leonard, Naomi, et. al., Adaptive Sampling Using Feedback Control of an Autonomous

Underwater Glider Fleet, Proc. 13th International Symposium on Unmanned, Untethered

Submersible Technology, 2003.

[17] Marchand, B. G. and K. C. Howell, “Formation Flight Near L1 and L2 in the Sun-Earth/Moon

Ephemeris System Including Radiation Pressure”, AAS 03-596.

[18] Meyer, K. R., Periodic Solutions of the N-Body Problem, Springer, 1999.

[19] Newton, P. K., The N-Vortex Problem: Analytical Techniques, Springer-Verlag, New York,

2001.

[20] Paffenroth, R., “Continuation of Periodic Orbits Around Lagrange Points and AUTO 2000:

The Three-Body Problem and Space Mission Design”, Caltech presentation charts, 19 Feb 02.

[21] Paffenroth, R. C., Doedel, E. J., and Dichmann, D. J., Continuation of Periodic Orbits Around

Lagrange Points and AUTO2000, AAS paper 01-303, Proceedings of the AAS/AIAA

Astrodynamics Specialist Conference, 2001.

[22] Paffenroth, Randy and Eusebius Doedel, “The AUTO2000 Command Line User Interface”,

Proceedings of the Ninth…, http://python9.org/p9-cdrom/02/index.htm.

[23] Reynolds, Craig W., “Flocks, Herds, and Schools: A Distributed Behavioral Model”, Computer

Graphics, 21(4), July 1987, pp. 25-34.

[24] Robertson, Andrew, Gokhan Inalhan, and Jonathan P. How, “Spacecraft Formation Flying

Control Design for the Orion Mission”, AIAA-99-4266, 1999.

[25] Sanchez, David A., Ordinary Differential Equations and Stability Theory: An Introduction,

Dover Publications, Inc, New York, 1979.

[26] Strogatz, Steven, Sync: How Order Emerges from Chaos in the Universe, Nature, and Daily

Life, Hyperion Books, New York, New York, 2003.

[27] Sourceforge AUTO2000 website: http://sourceforge.net/projects/auto2000

[28] Tollefson, Mark V., “Relative Orbit Design Tool”, IEEE, 2001.

[29] Valtonen, Mauri, and Hann Karttunen, The Three-Body Problem, Cambridge University Press,

2006.

[30] Verhulst, Ferdinand, Nonlinear Differential Equations and Dynamical Systems, Second

Edition, Springer-Verlag, Berlin, Heidelberg, New York, 2000.

[31] Zhang, F. and P. S. Krishnaprasad, “Formation Dynamics Under a Class of Control Laws”,

Proceedings of the 2002 American Control Conference, pp. 1678-1685, 2002.

141

Appendices

142

Appendix A: MATLAB and AUTO 2000 Computer Tools

During the research stage programming languages, e.g. C/C++, and several software tools,

e.g. Mathematica
®

 and FreeFlyer
®

, were investigated for applicability. A decision was made to utilize

MATLAB
®

 given the fundamental attributes of the programming language and software application.

For example, there is the ability of the software application to numerically-solve Ordinary Differential

Equations (ODEs) and Initial-Value Problems (IVPs). The software application also includes a

compiler. Therefore, programs developed in MATLAB can be converter to a stand-alone application

without having to first convert the code to another programming language like C/C++. MATLAB can

also be used to produce plots and create animations. Although MATLAB has the ability to solve

Boundary Value Problems (BVPs) as well, the AUTO 2000 software package was chosen to generate

closed/periodic orbits, since much of the capability already existed. MATLAB and AUTO 2000 as

well as some of the salient fundamental concepts associated with each are described in more detail

below.

Mathworks Matrix Laboratory (a.k.a. MATLAB)

MATLAB is a concatenation of essentially the first syllables in “matrix” and “laboratory”. It

is the name given to an interactive programming language and the commercial-off-the-shelf software

package offered by MathWorks, Inc. The programming language is intuitive and mathematical

relationships are expressed in familiar notation. However, this belies how powerful this computation

and visualization tool can be. The basic data element is the array or matrix, allowing for even the

most complex mathematical relationships to be solved in a relatively short amount of time.

MATLAB works with Windows, Mac, UNIX (e.g. Sun), and UNIX-type (e.g. Linux) operating

systems. Although MATLAB can be used for “batch jobs” or “background processing”, the system is

primarily used in interactive mode through single commands or “.m” functions, scripts, or programs

143

containing multiple commands. To acquaint the reader with the format and syntax of MATLAB a

simple example of a script is shown below, and the resulting plot is shown in Figure A.1.

% This script produces a two-dimensional plot representing

% a microwave radar system operating in pulsed (specifically,

% chirp) rather than continuous wave mode

x = 0:0.05:5;

y = sin(x.^2);

plot(x,y); xlabel(‘x’), ylabel(‘y’), title(‘Chirp Mode’)

One important note is that MATLAB is an interpretative rather than compiled language.

Unlike C/C++, header and source code files do not have to be “compiled” in order to create object

files or executable routines. The elimination of this step increases the efficiency of the

operator/programmer in debugging or modifying programs.

Figure A.1. This is a MATLAB plot of a microwave radar system operating in

pulsed (specifically, chirp) rather than continuous wave mode.

As stated earlier, MATLAB can quickly solved ODEs and IVPs. Specifically, MATLAB

uses the Runge-Kutta method to solve a system of first-order differential equations. Given a set of

initial conditions; the derivative function at the start, mid, and end-points of an integral; and the

144

unknown function at a previous point this technique produces fairly accurate solutions. However,

rather than utilize the existing 2
nd

-3
rd

 or 4
th

-5
th

 order Runge-Kutta library functions, a 7
th

-8
th

 order

function file obtained from Martin W. Lo was utilized.

Most of the time the MATLAB programs used to support this Ph.D. thesis were executed in

Version 7.0.1.24704 (Release 14), Service Pack 1, released on 13 September 2004 running on a

SunOS, Release 5.8 with CDE (Common Desktop Environment) 1.4.8, X11 Version 6.4.1. The

workstation platform is a Sun Microsystems Ultra 60. In instances were physical or remote access to

this computer was not possible, MATLAB programs were executed in MATLAB 7 (Release 14)

running on the Mac Operating System X, v10.3.9.

AUTO 2000 Continuation and Bifurcation Analysis Tool

AUTO 2000 is a software package that is used for dynamical system analysis in a number of

areas (e.g. fluid dynamics, cardiac electrophysiology, and the n-body problem). Simple algebraic

problems and ODEs can be solved using AUTO 2000. Specifically, continuation and bifurcation

analysis techniques are used to compute parameter-dependent families of solutions. Written in 1980,

it has since been ported to C and an interface, based on the Python programming language, has been

added. The software runs on Linux and Portable Operating System (POSIX)-compatible operating

systems such as UNIX and BSD, the version of UNIX developed at the University of California,

Berkeley. The AUTO 2000 software package solves equations of the form:

 F(x) = 0,F : Rn+1 Rn ,n W A.1

Basically, the dynamical system must be conserved, i.e. a Hamiltonian System, and possess

one or more fixed-points. Here the system has one more unknowns than equations and is, therefore,

considered underdetermined. Since n is an element of the manifold, solution sets lie on an “n”-

dimensional manifold in “(n+1)”-dimensional space. For example, if we are interested in a three-

145

dimensional system, the solution sets would lie on a two-dimensional manifold. Paffenroth [A2]

states that through the use of a number of continuation techniques, a user can vary one component of

the solution to develop a new solution. A basic introduction to continuation methods and a brief

description of the pseudo-arclength method used are described in the following paragraphs.

Continuation, a.k.a. homotopy, methods are numerical techniques for computing solution

manifolds/branches. Qualitatively, this method provides a connection between an easy problem and a

hard problem that is actually of interest. The solution to the simple problem is gradually transformed

to the solution of the difficult problem by tracing a path. Computing a piece of the solution manifold

near one solution usually through a predictor-corrector procedure, then selecting another solution

from this set, and repeating the process accomplishes this. There generally exists a solution branch,

i.e., a one-dimensional family of points, which passes through a solution, x0 . To compute another

nearby point, x1 , on this branch, an additional parameter called the continuation parameter, , can be

introduced. Therefore,

H (x,) = F (x) (1)F (x0) A.2

where x0 is a given point in
n
. The problem H (x,) = 0 is then solved for values of between 0

and 1. When = 0, x = x0 , and when = 1, H (x,1) = F (x) . The latter indicates that the solution of

H (x,1) = 0 coincides with the solution for F (x) = 0 . In the natural parameter continuation approach

one would merely introduce a small change, d , make an initial guess, and use an iteration scheme,

e.g. Newton-Rhapson Method, to search for a unique solution. However, one of the drawbacks of this

approach is if the guess is not “sufficiently close”, the solution may not converge. Tangent

continuation is similar to the natural parameter continuation method, except that a higher-order initial

guess is used. This higher-order initial guess usually allows for quicker convergence. However, there

is a limitation to this approach. At a “fold”, where the solution curve bends backwards, the

continuation parameter cannot be used for parameterization. Pseudo-arclength continuation can be

used. If one uses the arclength of the curve as the continuation parameter, the situation described

146

immediately above is avoided. It is summarized by Paffenroth et al. [A3]. A better guess for x1 is

defined as x1
#

= x0 + ˙ x 0 s , where ˙ x 0 is the unit tangent to the solution curve at x0 and s is the step

size. The step size approximates the arclength along the solution curve. The new solution, x1 , is

constrained to lie on a hyperplane perpendicular to the unit tangent vector, ˙ x 0 . This allows for the

value of the continuation parameter, , to vary. It will be shown later that AUTO 2000, one of the

two computer software tools used in this thesis, utilizes this approach, and therefore, provides a robust

method for solving complex problems. A simplified sketch of the three continuation methods

described is shown in Figure A.2.

Solution Curve
Natural Parameter

Continuation

Tangent Continuation
Pseudo-Arclength

Continuation

Figure A.2. This is a simple schematic of three different continuation or

parameterization methods.

The characteristics associated with a fixed point depend on the various parameters that

describe it. A bifurcation is a qualitative change as one of the control parameters is smoothly varied.

Take for example a dripping faucet with the water pressure being the control parameter. At a

relatively low pressure each drop follows the previous at a fixed period of time, T . The pressure is

then increased to a point where the drops come in pairs and each pair follows the previous every 2T .

This transition is called a period doubling effect. If the pressure is increased further the drops will

eventually fall in a random manner signaling a transition to chaos. A bifurcation diagram is

sometimes used to illustrate these transitions. It should be noted that a certain control parameter value

could also cause a fixed point to suddenly shift from an attractor to a repellor, or vice-versa.

147

Paffenroth et al. [A3] provides an example that is more germane to the thesis. However, it first must

be mentioned that there is a theorem that is applicable to Hamiltonian systems with a nondegenerate

first integral, e.g. circular, restricted three-body problem in celestial mechanics. Meyer [A1] describes

the Cylinder Theorem as follows: An elementary periodic orbit of a system with an integral I lies in a

smooth cylinder of periodic solutions parameterized by I. Therefore, this implies that a solution

branch without a parameter exists. Paffenroth et al. [A3] asks that the following simple conservative

system be considered

 x 1 = x2
 x 1 = x1(1 x1)

A.3

where the first integral is F = 1
2
x2
2

+ 1
2
x1
2 1

3
x2
3
. The set of equations in A.3 possesses a nested

branch of periodic orbits that are analogous to the level curves of the Hamiltonian. However,

equation A.3 needs to be rephrased to include a continuation parameter and associated term as follows

 x 1 = x2
 x 1 = x1(1 x1) + x2

A.4

Equation A.4 is equal to equation A.3 if = 0. Paffenroth et al. [A3] require that there be no periodic

orbits for 0 else the solution is not valid. They add a term, specifically a damping term, which

destroys all periodic orbits to satisfy this constraint. The bifurcation diagram is shown in Figure A.3.

The vertical axis is a measure of the solution and can be any number of attributes. Here it is just the

L2 norm, i.e., x = xk
2

k=1

n

. Each point on the bifurcation diagram represents a periodic solution. It

is obvious that one cannot use the natural or tangent continuation approach with as the parameter

given that is constrained to equal zero. Only the pseudo-arclength continuation method can be

employed, since the arclength is allowed to vary while can be fixed at a value of zero.

148

0 1-1

L2 norm

Figure A.3. This is the bifurcation diagram for the system shown in equation

2.27. [Credit: Paffenroth, R. C., Doedel, E. J., and Dichmann, D.

J., Continuation of Periodic Orbits Around Lagrange Points and

AUTO2000, AAS paper 01-303, Proceedings of the AAS/AIAA

Astrodynamics Specialist Conference, 2001]

The current version of AUTO 2000 is 0.9.7, and was created on 27 June 2002. The software

and release notes are publicly available. Paffenroth and Doedel [A4] provide some written

information on the software, and the software itself can be downloaded from the Sourceforge web site

[A5]. The AUTO 2000 scripts used to support this thesis were executed in a Linux Operating System

environment.

References:

[A1] Meyer, K. R., Periodic Solutions of the N-Body Problem, Springer, 1999.

[A2] Paffenroth, R., “Continuation of Periodic Orbits Around Lagrange Points and AUTO 2000:

The Three-Body Problem and Space Mission Design”, Caltech presentation charts, 19 Feb 02.

[A3] Paffenroth, R. C., Doedel, E. J., and Dichmann, D. J., Continuation of Periodic Orbits Around

Lagrange Points and AUTO2000, AAS paper 01-303, Proceedings of the AAS/AIAA

Astrodynamics Specialist Conference, 2001.

[A4] Paffenroth, Randy and Eusebius Doedel, “The AUTO2000 Command Line User Interface”,

Proceedings of the Ninth…, http://python9.org/p9-cdrom/02/index.htm.

[A5] Sourceforge AUTO2000 website: http://sourceforge.net/projects/auto2000

149

Appendix B: MATLAB Scripts, Function Files, and Programs

Contents

File Name Description Page No.

eigenvalues.m Finds the eigenvalues of the circular,

restricted three-body problem standard

equations of motion to determine the

stability of the selected equilibrium

point

150

find_libration_points.m Script for finding the libration point

coordinates of the circular, restricted

three-body problem

151

main_script_v5_1.m Script for the orbit resonance approach

for phase-locking and formation

establishment in the circular, restricted

three-vortex problem

153

ode78.m 7
th

-8
th

 Order Runge-Kutta ODE solver

function file

175

three_body_script_v5_1.

m

General script for the circular,

restricted three-body problem

177

three_body_v4_1.m Function file called by

three_body_script_v5_1.m

181

three_vortex.m Function file called by

main_script_v5_1.m

182

two_body_init_v5.m Script for the general two-body

problem

183

two_body_func.m Function file called by

two_body_init_v5.m

186

150

eigenvalues.m

% ==
% = program: eigenvalues.m =
% = =
% = MathWorks MATLAB script for the determining the stability =
% = of the equilibrium/libration points in the circular, =
% = restricted three-body problem by finding the eigenvalues =
% = of a characteristic (fourth-order differential) equation =
% = =
% = Written by Ralph R. Basilio, Ph.D. Candidate =
% = Version: 3.1 =
% = Date: 14 November 2006 =
% = =
% = AME 794 Dissertation - Advisor: Professor Paul K. Newton =
% = Aerospace and Mechanical Engineering Department =
% = Viterbi School of Engineering =
% = University of Southern California =
% = =
% ==

% ==
% Definitions
% ==
% m1 = mass of the greater of the two primary bodies
% m2 = mass of the lesser of the two primary bodies
% mu = m2/(m1+m2)
% Example 1: For the earth-moon system, mu = 0.012150
% Example 2: For the Saturn-titan system, mu = 0.000238
%
% x1 = X-axis position of the greater primary
% x2 = X-axis position of the lesser primary

% ==
% Inputs
% ==
% Define the value of mu
 mu = 0.000238;

% Select which equilibrium point to analyze,
% e.g. EP = 1 is the co-linear equilibrium point located
% between the two primary bodies along the line/axis jointing
% the two.
 EP = 4;

% ==
% Other Inputs
% ==
% Obtain the position of the equilibrium point of interest
% from the output of the find_libration_points.m script

 x = 0.4998;
 y = 0.8660;

% ==
% Calculation Section
% ==

x1 = -mu;
x2 = 1-mu;

151

r1 = 1.0;
r2 = 1.0;

if (EP <= 3)
 r1 = x+mu;
 r2 = x+mu-1;
 elseif (EP >=4)
 r1 = 1.0;
 r2 = 1.0;
end

A = 1;
B = -(1-mu)/r1^3;
C = -mu/r2^3;
D = 3*(1-mu)*(x-x1).^2/r1^5;
E = 3*mu*(x-x2).^2/r2^5;
Uxx = A + B + C + D + E;

F = 1;
G = -(1-mu)/r1^3;
H = -mu/r2^3;
I = 3*(1-mu)*y^2/r1^5;
J = 3*mu*y^2/r2^5;
Uyy = F + G + H + I + J;

K = 3*(1-mu)*(x-x1)*y/r1^5;
L = 3*mu*(x-x2)*y/r2^5;
Uxy = K + L;

polynomial = [1 0 (4-Uxx-Uyy) 0 Uxx*Uyy-Uxy^2];
eigen = roots (polynomial)

% ==
% Notes on stability
% ==
% If any of the eigenvalues have imaginary parts, then the
% solution orbits around the equilibrium point and can be
% considered stable.
%
% If any of the eigenvalues have a real part that is less than
% or equal to zero the solution is stable.
%
% If any of the eigenvalues have a real part that is greater
% than zero the solution is unstable.
% ==

find_libration_points.m

% ==
% = =
% = program: find_libration_points.m =
% = =
% = MathWorks MATLAB script for finding the locations, =
% = i.e. coordinates, of the equilibrium/libration points in =
% = the circular, restricted three-body problem =
% = =
% = Written by Ralph R. Basilio, Ph.D. Candidate =
% = Version: 2.0 =
% = Date: 23 November 2006 =
% = =

152

% = AME 794 Dissertation - Advisor: Professor Paul K. Newton =
% = Aerospace and Mechanical Engineering Department =
% = Viterbi School of Engineering =
% = University of Southern California =
% = =
% ==

% ==
% Definitions
% ==
% m1 = mass of the greater of the two primary bodies
% m2 = mass of the lesser of the two primary bodies
% mu = m2/(m1+m2)
% Example 1: For the earth-moon system, mu = 0.012150
% Example 2: For the Saturn-titan system, mu = 0.000238

% ==
% Input: Define the value of mu
% ==

 mu = 0.012150;

% ==
% Calculation Section
% ==

L1_polynomial = [1 –1*(3-mu) 3-2*mu -mu 2*mu -mu];
L2_polynomial = [1 –1*(3-mu) 3-2*mu -mu -2*mu -mu];
L3_polynomial = [1 (2+mu) 1+2*mu -(1-mu) -2*(1-mu) –1*(1-mu)];

L1_roots = roots(L1_polynomial);
L2_roots = roots(L2_polynomial);
L3_roots = roots(L3_polynomial);

for i = 1:5
 if isreal(L1_roots(i))
 L1_dist_from_m2 = L1_roots(i);
 end
 if isreal(L2_roots(i))
 L2_dist_from_m2 = L2_roots(i);
 end
 if isreal(L3_roots(i))
 L3_dist_from_m2 = L3_roots(i);
 end
end

L1_x_position = (1-mu) - L1_dist_from_m2;
L1_y_position = 0.0;
L2_x_position = (1-mu) + L2_dist_from_m2;
L2_y_position = 0.0;
L3_x_position = -mu - L3_dist_from_m2;
L3_y_position = 0.0;

L4_x_position = 0.5-mu;
L4_y_position = 0.5*sqrt(3);
L5_x_position = 0.5-mu;
L5_y_position = -0.5*sqrt(3);

L1_x_position
L1_y_position
L2_x_position

153

L2_y_position
L3_x_position
L3_y_position
L4_x_position
L4_y_position
L5_x_position
L5_y_position

main_scriptv5_1.m

% ===
% = =
% = script: main_script_v5_1 =
% = =
% = MathWorks Matlab Script for the Restricted Three-Vortex Problem =
% = =
% = This script takes a set of randomly distributed particles and =
% = phase-locks them at a desired energy-level (i.e. Hamiltonian) =
% = and orients them with respect to one another to create a =
% = dynamically-natural formation (i.e. geometric shape). =
% = =
% = Written by: Ralph R. Basilio, Ph.D. Candidate =
% = Version: 5.1 =
% = Date: 17 October 2005 =
% = =
% = AME 794 Dissertation - Advisor: Professor Paul K. Newton =
% = Aerospace and Mechanical Engineering Department =
% = Viterbi School of Engineering =
% = University of Southern California =
% = =
% = This script uses a seventh & eighth-order Runge-Kutta-Fehlberg =
% = integration method to produce an accurate solution. =
% = =
% ===

% ===
% Background
% ===

% The restricted three-vortex problem is synonymous with the
% restricted three-body problem in celestial mechanics. In this case
% there are two vortices that are called the primaries. The vortex
% strengths are cap_gamma_1 >/= cap_gamma_2 > 0. A third vortex of
% negligible strength, cap_gamma_3 = 0, is then introduced into the
% realm. The motion of the third vortex is affected by the
% primaries, but does not influence the motion of the primaries.
% The governing equation of motion given assumes a rotating
% coordinate frame, such that the primaries are at rest. We will
% call the third vortex (or any other vortex of negligible strength)
% a "particle".

% A controller term is added to the governing equation of motion.
% When the particle moves under the influence of the controller it
% will be said to be in a "controlled state", and when is it
% influenced only by the standard form of the equation it will be
% said to be in an "uncontrolled state".

% ===
% User Interface Section (Interactive Mode)
% ===

154

% ---
% Banner
% ---

 disp(' ');
 disp('===');
 disp('= This is a Mathworks Matlab(tm) program for phase-locking =');
 disp('= and establishing a relative formation of four (4) test =');
 disp('= particles in the Circular, Restricted Three-Vortex Problem, =');
 disp('= specifically in the vicinity of the second primary vortex. =');
 disp(' ');
 disp('= This program was written by Ralph R. Basilio, under the =');
 disp('= direction of Professor Paul K. Newton, Fall Semester 2005, =');
 disp('= University of Southern California. =');
 disp('===');
 disp(' ');

% ---
% Particle Initial Conditions
% ---

 disp('Let''s start with some general questions.');
 disp(' ');
 disp('1. Use the default set of particle initial conditions?');
 user_defined = input('Please type in "1" for "yes" or "0" for "no": ');

 disp(' ');
 if (user_defined == 0),
 disp('That''s fine. We''ll use the Matlab random number generator.');
 disp(' ');
 junk = input('(Please hit the return key again)');
 disp(' ');
 end

% ---
% Energy-Levels (i.e. Hamiltonian Values)
% ---

 disp('2. Use the default value for the desired energy-level?');
 default_H = input('Please type in a "1" for "yes" or "0" for "no": ');
 disp(' ');

 if (default_H == 0),
 disp('Energy-levels (i.e. Hamiltonian values) range from a low of
about');
 disp('-2.4 near the second primary vortex to a high of -0.7 further');
 disp('away.');
 disp(' ');
 H_Desired_user = input('What do you want the new energy-level to be?
');
 disp(' ');
 end

% ---
% Formation (i.e. Geometric Shape)
% ---

 disp('I assume that you wish the particle formation to resemble a
rhombus');
 disp('(or diamond shape). 3. Is this correct?');

155

 rhombus = input('Please type in "1" for "yes" or "0" for "no": ');
 disp(' ');
 if (rhombus == 0),
 disp('Sorry, you''re out of luck...at least for now.')
 disp(' ');
 junk = input('(Please hit the return key again)');
 disp(' ');
 end

% ---
% Formation Error Tolerance
% ---

 disp('4. Use the default value for the formation entry error tolerance?
');
 entry_tol_ques = input ('Please type in "1" for "yes" or "0" for "no" :
');
 disp(' ');

 if (entry_tol_ques == 0),
 entry_tol_user = input('Please type in a number from 0.01 to 0.50 :
');
 disp(' ');
 end

% ---
% Plots
% ---

 disp('5. Do you want to produce plots of the pertinent
information/data?');
 plots = input('Please type in "1" for "yes" or "0" for "no" : ');

% ---
% Animations
% ---

 disp(' ');
 disp('6. Do you want to create some of the more interesting
animations?');
 animation_check = input('Please type in "1" for "yes" or "0" for no : ');
 disp(' ');
 if (animation_check == 1),
 disp('Are you absolutely sure you want to create animations? This.');
 disp('will take several minutes.'),
 animations = input('Please type in "1" for "yes" or "0" for "no" : ');
 end
 if (animation_check == 0),
 animations = animation_check;
 end

 disp(' ');

% ===
% Set global parameters
% ===

 global cap_gamma_1 cap_gamma_2 D xi1 xi2 kappa

156

% ===
% User Input Section (Batch Jobs)
% ===

% Define initial and final times

 t0 = 0;
 tf = 002.5000;

% Define tolerance level

 tol = 1.0e-9;

% Define lambda [Note to Ralph: Define variable]

 lambda = 0.5;

% Define strength of the first primary, vortex no. 1

 cap_gamma_1 = pi;

% Define the distance between the two primaries

 D = 1.0;

% Default particle initial conditions

 xi_0(1) = 0.6898 - 0.2494i; % Particle No. 1
 xi_0(2) = 0.7181 - 0.1812i; % Particle No. 2
 xi_0(3) = 0.5844 - 0.2194i; % Particle No. 3
 xi_0(4) = 0.5179 + 0.1906i; % Particle No. 4

% xi_0 = 0.20 + 0.00i; % Test particle (scratch pad)

% Default desired energy-level (i.e. Hamiltonian)

 H_Desired = -1.0911;

% ===
% Matlab Calculation Section
% ===

% ---
% Set the new energy-level to the user-defined value
% ---

 if (default_H == 0),
 H_Desired = H_Desired_user;
 end

% ---
% Variables needed to create a line for "H_Desired"
% ---

 X = [0 6];
 Y = [H_Desired H_Desired];

% ---
% Calculate the strength of the second primary, vortex no. 2
% ---

157

 cap_gamma_2 = 2*pi*lambda;

% ---
% Locate the two primary vortices
% ---

 xi1 = -lambda;
 xi2 = 1 - lambda;

% ---
% Use random number generator for particle initial conditions
% ---

% if (user_defined == 0),
% imag_string = 'i';
% imag_str = sscanf(imag_string,'%c');
% xi_0(1) = rand*0.2 + 0.1 ...
% + (rand*0.4*str2num(imag_str) - 0.2i); % Particle No. 1
% xi_0(2) = rand*0.2 + 0.1 ...
% + (rand*0.4*str2num(imag_str) - 0.2i); % Particle No. 2
% xi_0(3) = rand*0.2 + 0.1 ...
% + (rand*0.4*str2num(imag_str) - 0.2i); % Particle No. 3
% xi_0(4) = rand*0.2 + 0.1 ...
% + (rand*0.4*str2num(imag_str) - 0.2i); % Particle No. 4
% end

 if (user_defined == 0),
 imag_string = 'i';
 imag_str = sscanf(imag_string,'%c');
 A1 = rand;
 B1 = rand;
 A2 = rand;
 B2 = rand;
 A3 = rand;
 B3 = rand;
 A4 = rand;
 B4 = rand;
 xi_0(1) = (A1*0.15+0.2)+(B1*0.4*str2num(imag_str)-0.2i);
 xi_0(2) = (A2*0.15+0.2)+(B2*0.4*str2num(imag_str)-0.2i);
 xi_0(3) = (A3*0.15+0.2)+(B3*0.4*str2num(imag_str)-0.2i);
 xi_0(4) = (A4*0.15+0.2)+(B4*0.4*str2num(imag_str)-0.2i);
 end

% ---
% Calculate energy-levels (i.e. Hamiltonians) for each particle
% ---

 for i=1:4
 H1 = (-1/2)*(real(xi_0(i)).^2+imag(xi_0(i)).^2);
 H2 = (1-lambda)*log(sqrt((real(xi_0(i))+lambda).^2+imag(xi_0(i)).^2));
 H3 = lambda*log(sqrt((real(xi_0(i))+lambda-1).^2+imag(xi_0(i)).^2));
 H(i) = H1+H2+H3;
 end

% ---
% Produce the initial periodic orbits for each particle. Since the Matlab
% conditional statements do not handle the imaginary part of complex
% numbers, we have to create a new array called "Z2" to facilitate period
% determination. Also, to avoid ambiguity in determining the period,
% because of negative values in Z2 (or Z1 for that matter), 1.0 was added

158

% all values.
% ---

 [t1,xi_1] = ode78(@three_vortex, t0, tf, xi_0(1), tol);
 [t2,xi_2] = ode78(@three_vortex, t0, tf, xi_0(2), tol);
 [t3,xi_3] = ode78(@three_vortex, t0, tf, xi_0(3), tol);
 [t4,xi_4] = ode78(@three_vortex, t0, tf, xi_0(4), tol);

% ---
% Determine the orbit periods for each particle. Additionally,
% find "time to stage" (i.e. the time it takes for the particle to
% travel from it's initial position to the "top dead center" of its
% initial periodic orbit). Also, identify the orbit "min"s and
% "max"s (e.g. maximum real component of the complex number). Finally,
% calculate the orbit energy-levels for each orbit data point.
% ---

% ---
% P1 Orbit Period
% ---

 t1_new = t0 : 0.01 : tf;
 xi_1_new = interp1(t1,xi_1,t1_new,'spline');
 Z1_1 = real(xi_1_new)+1.0;
 Z2_1 = imag(xi_1_new)+1.0;
 for i = 4:250
 if ((Z1_1(i) >= Z1_1(1)*0.99) && (Z1_1(i) <= Z1_1(1)*1.01) && ...
 (Z2_1(i) >= Z2_1(1)*0.99) && (Z2_1(i) <= Z2_1(1)*1.01)),
 P1_period = t1_new(i);
 disp('The initial orbit period for Particle No. 1 is: '),
 disp(t1_new(i)),
 disp(i),
 break
 end
 end

% ---
% P1 Staging Time
% ---

 for j = 1 : i
 Z3_1(j) = Z2_1(j);
 end
 for j = 1 : i
 if (Z3_1(j) == max(Z3_1)),
 P1_stage_t = t1_new(j);
 disp('The P1 staging time is:'),
 disp(P1_stage_t),
 break
 end
 end

% ---
% P1 Orbit "Min"s and "Max"s
% ---

 for j = 1 : i,
 xi_1_new_real(j) = real(xi_1_new(j));
 xi_1_new_imag(j) = imag(xi_1_new(j));
 end

159

 for j = 1 : i,
 xi_1_new_real_max = max(xi_1_new_real);
 xi_1_new_real_min = min(xi_1_new_real);
 xi_1_new_imag_max = max(xi_1_new_imag);
 xi_1_new_imag_min = min(xi_1_new_imag);
 end

% ---
% Calculate P1 Orbit Energy-Levels (i.e. Hamiltonians)
% ---

 for j = 1 : numel(t1_new)
 H1 = (-1/2)*(real(xi_1_new(j)).^2+imag(xi_1_new(j)).^2);
 H2 = (1-lambda)*log(sqrt((real(xi_1_new(j))+lambda).^2 ...
 +imag(xi_1_new(j)).^2));
 H3 = lambda*log(sqrt((real(xi_1_new(j))+lambda-1).^2 ...
 +imag(xi_1_new(j)).^2));
 xi_1_new_H(j) = H1+H2+H3;
 end

% ---
% P2 Orbit Period
% ---

 t2_new = t0 : 0.01 : tf;
 xi_2_new = interp1(t2,xi_2,t2_new,'spline');
 Z1_2 = real(xi_2_new)+1.0;
 Z2_2 = imag(xi_2_new)+1.0;
 for i = 4:250
 if ((Z1_2(i) >= Z1_2(1)*0.99) && (Z1_2(i) <= Z1_2(1)*1.01) && ...
 (Z2_2(i) >= Z2_2(1)*0.99) && (Z2_2(i) <= Z2_2(1)*1.01)),
 P2_period = t2_new(i);
 disp('The initial orbit period for Particle No. 2 is: '),
 disp(t2_new(i)),
 disp(i),
 break
 end
 end

% ---
% P2 Staging Time
% ---

 for j = 1 : i
 Z3_2(j) = Z2_2(j);
 end
 for j = 1 : i
 if (Z3_2(j) == max(Z3_2)),
 P2_stage_t = t2_new(j);
 disp('The P2 staging time is:'),
 disp(P2_stage_t),
% break
 end
 end

% ---
% P2 Orbit "Min"s and "Max"s
% ---

 for j = 1 : i,
 xi_2_new_real(j) = real(xi_2_new(j));

160

 xi_2_new_imag(j) = imag(xi_2_new(j));
 end

 for j = 1 : i,
 xi_2_new_real_max = max(xi_2_new_real);
 xi_2_new_real_min = min(xi_2_new_real);
 xi_2_new_imag_max = max(xi_2_new_imag);
 xi_2_new_imag_min = min(xi_2_new_imag);
 end

% ---
% Calculate P2 Orbit Energy-Levels (i.e. Hamiltonians)
% ---

 for j = 1 : numel(t2_new)
 H1 = (-1/2)*(real(xi_2_new(j)).^2+imag(xi_2_new(j)).^2);
 H2 = (1-lambda)*log(sqrt((real(xi_2_new(j))+lambda).^2 ...
 +imag(xi_2_new(j)).^2));
 H3 = lambda*log(sqrt((real(xi_2_new(j))+lambda-1).^2 ...
 +imag(xi_2_new(j)).^2));
 xi_2_new_H(j) = H1+H2+H3;
 end

% ---
% P3 Orbit Period
% ---

 t3_new = t0 : 0.01 : tf;
 xi_3_new = interp1(t3,xi_3,t3_new,'spline');
 Z1_3 = real(xi_3_new)+1.0;
 Z2_3 = imag(xi_3_new)+1.0;
 for i = 4:250
 if ((Z1_3(i) >= Z1_3(1)*0.99) && (Z1_3(i) <= Z1_3(1)*1.01) && ...
 (Z2_3(i) >= Z2_3(1)*0.99) && (Z2_3(i) <= Z2_3(1)*1.01)),
 P3_period = t3_new(i);
 disp('The initial orbit period for Particle No. 3 is: '),
 disp(t3_new(i)),
 disp(i),
 break
 end
 end

% ---
% P3 Staging Time
% ---

% for j = 1 : i
% Z3_3(j) = Z2_3(j);
% end
% for j = 1 : i
% if (Z3_3(j) == max(Z3_3)),
% P3_stage_t = t3_new(j);
% disp('The P3 staging time is:'),
% disp(P3_stage_t),
% break
% end
% end

 for j = 1 : i
 Z3_3(j) = Z2_3(j);
 end

161

 for j = 1 : i
 if (Z3_3(j) == max(Z3_3)),
 P3_stage_t = t3_new(j);
 disp('The P3 staging time is: '),
 disp(P3_stage_t),
 break
 end
 end

% ---
% P3 Orbit "Min"s and "Max"s
% ---

 for j = 1 : i,
 xi_3_new_real(j) = real(xi_3_new(j));
 xi_3_new_imag(j) = imag(xi_3_new(j));
 end

 for j = 1 : i,
 xi_3_new_real_max = max(xi_3_new_real);
 xi_3_new_real_min = min(xi_3_new_real);
 xi_3_new_imag_max = max(xi_3_new_imag);
 xi_3_new_imag_min = min(xi_3_new_imag);
 end

% ---
% Calculate P3 Orbit Energy-Levels (i.e. Hamiltonians)
% ---

 for j = 1 : numel(t3_new)
 H1 = (-1/2)*(real(xi_3_new(j)).^2+imag(xi_3_new(j)).^2);
 H2 = (1-lambda)*log(sqrt((real(xi_3_new(j))+lambda).^2 ...
 +imag(xi_3_new(j)).^2));
 H3 = lambda*log(sqrt((real(xi_3_new(j))+lambda-1).^2 ...
 +imag(xi_3_new(j)).^2));
 xi_3_new_H(j) = H1+H2+H3;
 end

% ---
% P4 Orbit Period
% ---

 t4_new = t0 : 0.01 : tf;
 xi_4_new = interp1(t4,xi_4,t4_new,'spline');
 Z1_4 = real(xi_4_new)+1.0;
 Z2_4 = imag(xi_4_new)+1.0;
 for i = 4:250
 if ((Z1_4(i) >= Z1_4(1)*0.99) && (Z1_4(i) <= Z1_4(1)*1.01) && ...
 (Z2_4(i) >= Z2_4(1)*0.99) && (Z2_4(i) <= Z2_4(1)*1.01)),
 P4_period = t4_new(i);
 disp('The initial orbit period for Particle No. 4 is: '),
 disp(t4_new(i)),
 disp(i),
 break
 end
 end

% ---
% P4 Staging Time
% ---

162

 for j = 1 : i
 Z3_4(j) = Z2_4(j);
 end

 for j = 1 : i
 if (Z3_4(j) == max(Z3_4)),
 P4_stage_t = t4_new(j);
 disp('The P4 staging time is: '),
 disp(P4_stage_t),
 break
 end
 end

% ---
% P4 Orbit "Min"s and "Max"s
% ---

 for j = 1 : i,
 xi_4_new_real(j) = real(xi_4_new(j));
 xi_4_new_imag(j) = imag(xi_4_new(j));
 end

 for j = 1 : i,
 xi_4_new_real_max = max(xi_4_new_real);
 xi_4_new_real_min = min(xi_4_new_real);
 xi_4_new_imag_max = max(xi_4_new_imag);
 xi_4_new_imag_min = min(xi_4_new_imag);
 end

% ---
% Calculate P4 Orbit Energy-Levels (i.e. Hamiltonians)
% ---

 for j = 1 : numel(t4_new)
 H1 = (-1/2)*(real(xi_4_new(j)).^2+imag(xi_4_new(j)).^2);
 H2 = (1-lambda)*log(sqrt((real(xi_4_new(j))+lambda).^2 ...
 +imag(xi_4_new(j)).^2));
 H3 = lambda*log(sqrt((real(xi_4_new(j))+lambda-1).^2 ...
 +imag(xi_4_new(j)).^2));
 xi_4_new_H(j) = H1+H2+H3;
 end

% ---
% Determine the characteristic distance for the periodic orbit
% associated with the desired energy-level (i.e. Hamiltonian).
% Rather than using Matlab to solve a rather complicated
% underdetermined linear system, a 5th-order polynominal curve
% fit of the data produced the necessary mathematical
% relationship. The "R squared" value for the expression below
% is 0.996.
% ---

 d_Desired_1 = 0.659*H_Desired^5 + 5.4193*H_Desired^4 +17.392*H_Desired^3;
 d_Desired_2 = 27.307*H_Desired^2 + 21.183*H_Desired + 6.6785;
 d_Desired = d_Desired_1 + d_Desired_2;

% ---
% Produce the periodic orbit associated with the desired energy-
% level (i.e. Hamiltonian).
% ---

163

 xi_0(5) = (0.50-d_Desired) + 0.0i;
 [tDesired,xi_Desired] = ode78(@three_vortex, t0, tf, xi_0(5), tol);

% ---
% Find period of the new, desired orbit
% ---

 t_Desired_new = t0 : 0.01 : tf;
 xi_Desired_new = interp1(tDesired,xi_Desired,t_Desired_new,'spline');
 Z1 = real(xi_Desired_new)+1.0;
 Z2 = imag(xi_Desired_new)+1.0;
 for i = 4:200
 if ((Z1(i) >= Z1(1)*0.99) && (Z1(i) <= Z1(1)*1.01) && ...
 (Z2(i) >= Z2(1)*0.99) && (Z2(i) <= Z2(1)*1.01)),
 desired_period = t_Desired_new(i);
 disp('The period of the desired orbit is: '),
 disp(t_Desired_new(i)),
 disp(i),
 break
 end
 end

% ---
% Desired Orbit "Min"s and "Max"s
% ---

 for j = 1 : i,
 xi_Desired_new_real(j) = real(xi_Desired_new(j));
 xi_Desired_new_imag(j) = imag(xi_Desired_new(j));
 end

 for j = 1 : i,
 xi_Desired_new_real_max = max(xi_Desired_new_real);
 xi_Desired_new_real_min = min(xi_Desired_new_real);
 xi_Desired_new_imag_max = max(xi_Desired_new_imag);
 xi_Desired_new_imag_min = min(xi_Desired_new_imag);
 end

% ---
% Calculate Desired Orbit Energy-Levels (i.e. Hamiltonians)
% ---

 for j = 1 : numel(t_Desired_new)
 xi_Desired_new_H(j) = H_Desired;
 end

% ---
% Determine "time on transfer trajectory" for each particle. For
% now, we're going to set these values. Later, we'll call another
% script or function file or have a mathematical relationship
% included in this program (current in work).
% ---

% ---
% Default values
% ---

 P1_trans_t = 0.40;
 P2_trans_t = 0.34;
 P3_trans_t = 0.26;

164

 P4_trans_t = 0.20;

% ---
% Create transfer trajectory and calculate "time on transfer
% trajectory" for each of the four particle initial period orbits.
% ---

 imag_string = 'i';
 imag_str = sscanf(imag_string,'%c');

% ---
% P1 Transfer Trajectory
% ---

 for j = 1 : 40
 kappa = 0.05*j;
 [tt_time_1, xi_1_tt] = ode78(@controller,0,0.5,...
 0.5+str2num(imag_str)*xi_1_new_imag_max,tol);
 t_new = 0.0 : 0.005 : 0.5;
 xi_1_tt_possible = interp1(tt_time_1,xi_1_tt,t_new,'spline');
 if (min(imag(xi_1_tt_possible)) <= xi_Desired_new_imag_min*0.98) &&
...
 (min(imag(xi_1_tt_possible)) >= xi_Desired_new_imag_min*1.02),
 disp('STOP - The tt 1 has been found'),
 break
 end
 end

 for k = 1 : 100
 if (real(xi_1_tt_possible(k)) <= 0.5),
 xi_1_tt_final(k) = xi_1_tt_possible(k);
 end
 end

 P1_trans_t = numel(xi_1_tt_final)*0.01;

% ---
% P1 Transfer Trajectory Energy-Levels
% ---

 for j = 1 : numel(xi_1_tt_final)
 H1 = (-1/2)*(real(xi_1_tt_final(j)).^2+imag(xi_1_tt_final(j)).^2);
 H2 = (1-lambda)*log(sqrt((real(xi_1_tt_final(j))+lambda).^2 ...
 +imag(xi_1_tt_final(j)).^2));
 H3 = lambda*log(sqrt((real(xi_1_tt_final(j))+lambda-1).^2 ...
 +imag(xi_1_tt_final(j)).^2));
 xi_1_tt_final_H(j) = H1+H2+H3;
 end

% ---
% P2 Transfer Trajectory
% ---

 for j = 1 : 40
 kappa = 0.05*j;
 [tt_time_2, xi_2_tt] = ode78(@controller,0,0.5,...
 0.5+str2num(imag_str)*xi_2_new_imag_max,tol);
 t_new = 0.0 : 0.005 : 0.5;
 xi_2_tt_possible = interp1(tt_time_2,xi_2_tt,t_new,'spline');
 if (min(imag(xi_2_tt_possible)) <= xi_Desired_new_imag_min*0.98) &&
...

165

 (min(imag(xi_2_tt_possible)) >= xi_Desired_new_imag_min*1.02),
 disp('STOP - The tt 2 has been found'),
 break
 end
 end

 for k = 1 : 100
 if (real(xi_2_tt_possible(k)) <= 0.5),
 xi_2_tt_final(k) = xi_2_tt_possible(k);
 end
 end

 P2_trans_t = numel(xi_2_tt_final)*0.01;

% ---
% P2 Transfer Trajectory Energy-Levels
% ---

 for j = 1 : numel(xi_2_tt_final)
 H1 = (-1/2)*(real(xi_2_tt_final(j)).^2+imag(xi_2_tt_final(j)).^2);
 H2 = (1-lambda)*log(sqrt((real(xi_2_tt_final(j))+lambda).^2 ...
 +imag(xi_2_tt_final(j)).^2));
 H3 = lambda*log(sqrt((real(xi_2_tt_final(j))+lambda-1).^2 ...
 +imag(xi_2_tt_final(j)).^2));
 xi_2_tt_final_H(j) = H1+H2+H3;
 end

% ---
% P3 Transfer Trajectory
% ---

 for j = 1 : 40
 kappa = 0.05*j;

 [tt_time_3, xi_3_tt] = ode78(@controller,0,0.5,...
 0.5+str2num(imag_str)*xi_3_new_imag_max,tol);
 t_new = 0.0 : 0.005 : 0.5;
 xi_3_tt_possible = interp1(tt_time_3,xi_3_tt,t_new,'spline');
 if (min(imag(xi_3_tt_possible)) <= xi_Desired_new_imag_min*0.97) &&
...
 (min(imag(xi_3_tt_possible)) >= xi_Desired_new_imag_min*1.04),
 disp('STOP - The tt 3 has been found'),
 break
 end
 end

 for k = 1 : 100
 if (real(xi_3_tt_possible(k)) <= 0.5),
 xi_3_tt_final(k) = xi_3_tt_possible(k);
 end
 end

 P3_trans_t = numel(xi_3_tt_final)*0.01;

% ---
% P3 Transfer Trajectory Energy-Levels
% ---

 for j = 1 : numel(xi_3_tt_final)
 H1 = (-1/2)*(real(xi_3_tt_final(j)).^2+imag(xi_3_tt_final(j)).^2);
 H2 = (1-lambda)*log(sqrt((real(xi_3_tt_final(j))+lambda).^2 ...

166

 +imag(xi_3_tt_final(j)).^2));
 H3 = lambda*log(sqrt((real(xi_3_tt_final(j))+lambda-1).^2 ...
 +imag(xi_3_tt_final(j)).^2));
 xi_3_tt_final_H(j) = H1+H2+H3;
 end

% ---
% P4 Transfer Trajectory
% ---

 for j = 1 : 40
 kappa = 0.05*j;
 [tt_time_4,xi_4_tt] = ode78(@controller,0,0.5, ...
 0.5+str2num(imag_str)*xi_4_new_imag_max,tol);
 t_new = 0.0 : 0.005 : 0.5;
 xi_4_tt_possible = interp1(tt_time_4, xi_4_tt, t_new,'spline');
 if (min(imag(xi_4_tt_possible)) <= xi_Desired_new_imag_min*0.97) &&
...
 (min(imag(xi_4_tt_possible)) >= xi_Desired_new_imag_min*1.03),
 disp('STOP - The tt 4 has been found'),
 break
 end
 end

 for k = 1 : 100
 if (real(xi_4_tt_possible(k)) <= 0.5),
 xi_4_tt_final(k) = xi_4_tt_possible(k);
 end
 end

 P4_trans_t = numel(xi_4_tt_final)*0.01;

 disp('hello');

% ---
% P4 Transfer Trajectory Energy-Levels
% ---

 for j = 1 : numel(xi_4_tt_final)
 H1 = (-1/2)*(real(xi_4_tt_final(j)).^2+imag(xi_4_tt_final(j)).^2);
 H2 = (1-lambda)*log(sqrt((real(xi_4_tt_final(j))+lambda).^2 ...
 +imag(xi_4_tt_final(j)).^2));
 H3 = lambda*log(sqrt((real(xi_4_tt_final(j))+lambda-1).^2 ...
 +imag(xi_4_tt_final(j)).^2));
 xi_4_tt_final_H(j) = H1+H2+H3;
 end

% --
% PHASE-LOCKING AND FORMATION ESTABLISHMENT SECTION
% --

% Define formation entry tolerance (e.g. +/- 0.01 units of time)

 entry_tol = 0.01;

 if (entry_tol_ques == 0),
 entry_tol = entry_tol_user;
 end

% ---
% P1 Entry into the Formation

167

% ---

 P1_total_t = P1_stage_t + P1_trans_t;

 revs1 = int8(P1_total_t/desired_period);

% ---
% P2 Entry into the Formation
% ---

 P2_entry_t = P1_total_t + 0.25*desired_period;

 P2_total_t_maybe = P2_stage_t + P2_trans_t;

% if (P2_total_t_maybe <= P2_entry_t),
 while (P2_total_t_maybe <= P2_entry_t),
 P2_total_t_maybe = P2_total_t_maybe + P2_period;
 end

 timer(1) = desired_period;
 TIMER(1) = P2_period;

 for n = 2 : 150
 timer(n) = timer(n-1) + desired_period;
 end
 for N = 2 : 50
 TIMER(N) = TIMER(N-1) + P2_period;
 end

 for n = 1 : 150
 for N = 1 : 50
 if ((TIMER(N) >= timer(n)-entry_tol) && ...
 (TIMER(N) <= timer(n)+entry_tol)),
 disp('Found it!'),
 disp(['Time since P1 entered formation: ' timer(n)]),
 disp(timer(n)),
 disp(TIMER(N)),
 revs2 = timer(n)/desired_period;
 disp('Number of full inner orbit revolutions is :'),
 disp(revs2),
 REVS2 = TIMER(N)/P2_period;
 disp('Number of full P2 orbit revolutions is :'),
 disp(REVS2),
 break
 end
 if ((TIMER(N) >= timer(n)-entry_tol) && ...
 (TIMER(N) <= timer(n)+entry_tol)),
 break,
 end,
 end
 if ((TIMER(N) >= timer(n)-entry_tol) && ...
 (TIMER(N) <= timer(n)+entry_tol)),
 break,
 end
 end

 P2_total_t = P2_total_t_maybe + timer(n);

 disp('P2_total_t ='),
 disp(P2_total_t),

168

% ---
% P3 Entry into the Formation
% ---

 P3_total_t_maybe = P3_stage_t + P3_trans_t;

 P3_entry_t = P2_total_t + 0.25*desired_period;

 while (P3_total_t_maybe <= P3_entry_t),
 P3_total_t_maybe = P3_total_t_maybe + P3_period;
 end

 timer(1) = desired_period;
 TIMER(1) = P3_period;

 for n = 2 : 150
 timer(n) = timer(n-1) + desired_period;
 end
 for N = 2 : 50
 TIMER(N) = TIMER(N-1) + P3_period;
 end

 for n = 1 : 150
 for N = 1 : 50
 if ((TIMER(N) >= timer(n)-entry_tol) && ...
 (TIMER(N) <= timer(n)+entry_tol)),
 disp('Found it!'),
 disp('Time since P2 particle entered formation: '),
 disp(timer(n)),
 disp(TIMER(N)),
 revs3 = timer(n)/desired_period;
 disp('Number of full inner orbit revolutions is :'),
 disp(revs3),
 REVS3 = TIMER(N)/P3_period;
 disp('Number of full P3 orbit revolutions is :'),
 disp(REVS3),
 break
 end
 if ((TIMER(N) >= timer(n)-entry_tol) && ...
 (TIMER(N) <= timer(n)+entry_tol)),
 break,
 end,
 end
 if ((TIMER(N) >= timer(n)-entry_tol) && ...
 (TIMER(N) <= timer(n)+entry_tol)),
 break,
 end
 end

 P3_total_t = P3_total_t_maybe + timer(n);

 disp('P3_total_t ='),
 disp(P3_total_t),

% ---
% P4 Entry into the Formation
% ---

 P4_total_t_maybe = P4_stage_t + P4_trans_t;

 P4_entry_t = P3_total_t + 0.25*desired_period;

169

 while (P4_total_t_maybe <= P4_entry_t),
 P4_total_t_maybe = P4_total_t_maybe + P4_period;
 end

 timer(1) = desired_period;
 TIMER(1) = P4_period;

 for n = 2 : 150
 timer(n) = timer(n-1) + desired_period;
 end
 for N = 2 : 50
 TIMER(N) = TIMER(N-1) + P4_period;
 end

 for n = 1 : 150
 for N = 1 : 50
 if ((TIMER(N) >= timer(n)-entry_tol) && ...
 (TIMER(N) <= timer(n)+entry_tol)),
 disp('Found it!'),
 disp('Time since P3 entered formation: '),
 disp(timer(n)),
 disp(TIMER(N)),
 revs4 = timer(n)/desired_period;
 disp('Number of full inner orbit revolutions is :'),
 disp(revs4),
 REVS4 = TIMER(N)/P4_period;
 disp('Number of full P4 orbit revolutions is :'),
 disp(REVS4),
 break
 end
 if ((TIMER(N) >= timer(n)-entry_tol) && ...
 (TIMER(N) <= timer(n)+entry_tol)),
 break,
 end,
 end
 if ((TIMER(N) >= timer(n)-entry_tol) && ...
 (TIMER(N) <= timer(n)+entry_tol)),
 break,
 end
 end

 P4_total_t = P4_total_t_maybe + timer(n);

% ===
% THE FORMATION RESULTS
% ===

 revs_all = revs1 + revs2 + revs3 + revs4;

 for n = 1 : 100*desired_period+1
 ring(n) = xi_Desired_new(n);
 end

% Always late

 P1_position_A = xi_Desired_new(int8(1));
 P2_position_A =
xi_Desired_new(int8(1+100*desired_period*3/4+100*entry_tol));
 P3_position_A =
xi_Desired_new(int8(1+100*desired_period*1/2+100*entry_tol));

170

 P4_position_A =
xi_Desired_new(int8(1+100*desired_period*1/4+100*entry_tol));

% Always early

 P1_position_B = xi_Desired_new(int8(1));
 P2_position_B = xi_Desired_new(int8(1+100*desired_period*3/4-
100*entry_tol));
 P3_position_B = xi_Desired_new(int8(1+100*desired_period*1/2-
100*entry_tol));
 P4_position_B = xi_Desired_new(int8(1+100*desired_period*1/4-
100*entry_tol));

% ===
% Output Section
% ===

 disp(sprintf('Desired Orbit Energy = %1.4f', H_Desired));
 disp(sprintf('Desired Orbit Period = %1.2f',desired_period));
 disp(' ');
 disp('Initial Orbit Energy:');
 disp(sprintf('P1 = %1.4f; P2 = %1.4f; P3 = %1.4f; P4 = %1.4f', ...
 H(1),H(2),H(3),H(4)));
 disp(' ');
 disp('Initial Orbit Periods:');
 disp(sprintf('P1 = %1.2f; P2 = %1.2f; P3 = %1.2f; P4 = %1.2f', ...

 P1_period,P2_period,P3_period,P4_period));
 disp(' ');
 disp('Staging Time:');
 disp(sprintf('P1 = %1.2f; P2 = %1.2f; P3 = %1.2f; P4 = %1.2f', ...
 P1_stage_t,P2_stage_t,P3_stage_t,P4_stage_t));
 disp(' ');
 disp('Transfer Trajectory Time:');
 disp(sprintf('P1 = %1.2f; P2 = %1.2f; P3 = %1.2f; P4 = %1.2f', ...
 P1_trans_t,P2_trans_t,P3_trans_t,P4_trans_t));
 disp(' ');
 disp('Number of full revs for P1 formation entry:');
 disp(sprintf('P1 orbit = %d',0));
 disp(sprintf('Desired orbit = %1.0f',revs1));
 disp(' ');
 disp('Number of full revs for P2 formation entry:');
 disp(sprintf('P2 orbit = %1.0f',REVS2));
 disp(sprintf('Desired orbit = %1.0f',revs2));
 disp(' ');
 disp('Number of full revs for P3 formation entry:');
 disp(sprintf('P3 orbit = %1.0f',REVS3));
 disp(sprintf('Desired orbit = %1.0f',revs3));
 disp(' ');
 disp('Number of full revs for P4 formation entry:');
 disp(sprintf('P4 orbit = %1.0f',REVS4));
 disp(sprintf('Desired orbit = %1.0f',revs4));
 disp(' ');
 disp('Total Time Required to Enter Formation:');
 disp(sprintf('P1 = %1.2f; P2 = %1.2f; P3 = %1.2f; P4 = %1.2f', ...
 P1_total_t,P2_total_t,P3_total_t,P4_total_t));
 disp(' ');

% ===
% Plot Section
% ===

171

 if (plots == 1),

% Plot initial energy-levels (i.e. Hamiltonians) for each particle

 figure, plot(H,'o','MarkerSize',5,'MarkerFaceColor','k');
 title('Initial Particle Energy-Levels (i.e. Hamiltonians)'),
 xlabel('Particle No.'),
 ylabel('Value of Hamiltonian, H'),
 xlim([0 6]),
 ylim([-1.2 -0.7]), % Use for default value of new H
% ylim([-2.5 -0.7]),
 text(1.1,H(1),['Particle No. 1, H = ',num2str(H(1))]),
 text(2.1,H(2),['Particle No. 2, H = ',num2str(H(2))]),
 text(3.1,H(3),['Particle No. 3, H = ',num2str(H(3))]),
 text(4.1,H(4),['Particle No. 4, H = ',num2str(H(4))]),
 line(X,Y),
 text(2.5,H_Desired+0.01,['Desired H: ',num2str(H_Desired)]),
 grid on

% Plot the four initial and the single desired periodic orbits in the
% rotating, Cartesian coordinate frame

 figure, plot(real(xi_1),imag(xi_1),'g',real(xi_2),imag(xi_2),'g',...
 real(xi_3),imag(xi_3),'g',real(xi_4),imag(xi_4),'g',...
 real(xi_Desired),imag(xi_Desired),'b',...
 real(xi_0(1)),imag(xi_0(1)),'-ko',...
 real(xi_0(2)),imag(xi_0(2)),'-ko',...
 real(xi_0(3)),imag(xi_0(3)),'-ko',...
 real(xi_0(4)),imag(xi_0(4)),'-ko','MarkerFaceColor','k'),
 title('Initial Conditions and the Desired Periodic Orbit'),
 xlabel('Real Axis'),
 ylabel('Imaginary Axis'),
 xlim([0 1]),
 ylim([-0.5 0.5]),
 grid on,
 text(0.03+real(xi_0(1)),imag(xi_0(1)),['P1 =
',num2str(xi_0(1))]),
 text(0.03+real(xi_0(2)),imag(xi_0(2)),['P2 =
',num2str(xi_0(2))]),
 text(0.03+real(xi_0(3)),imag(xi_0(3)),['P3 =
',num2str(xi_0(3))]),
 text(0.03+real(xi_0(4)),imag(xi_0(4)),['P4 =
',num2str(xi_0(4))]),
 text(0.03,0.47,'Orbit Periods:'),
 text(0.03,0.44,['P1 = ',num2str(P1_period)]),
 text(0.03,0.41,['P2 = ',num2str(P2_period)]),
 text(0.03,0.38,['P3 = ',num2str(P3_period)]),
 text(0.03,0.35,['P4 = ',num2str(P4_period)]),
 text(0.03,0.32,['Desired orbit = ',num2str(desired_period)]),
 text(0.03,-0.30,'Energy-Levels:'),
 text(0.03,-0.33,['P1 = ',num2str(H(1))]),
 text(0.03,-0.36,['P2 = ',num2str(H(2))]),
 text(0.03,-0.39,['P3 = ',num2str(H(3))]),
 text(0.03,-0.42,['P4 = ',num2str(H(4))]),
 text(0.03,-0.45,['Desired orbit = ',num2str(H_Desired)]),

% Plot staging and transfer trajectory times for each particle

 figure, plot(1,P1_stage_t,'-ko',2,P2_stage_t,'-ko',...
 3,P3_stage_t,'-ko',4,P4_stage_t,'-ko',...
 1,P1_stage_t+P1_trans_t,'-ko',...

172

 2,P2_stage_t+P2_trans_t,'-ko',...
 3,P3_stage_t+P3_trans_t,'-ko',...
 4,P4_stage_t+P4_trans_t,'-ko',...
 'MarkerFaceColor','k'),
 title('Staging and Transfer Trajectory Times for Each Particle'),
 xlabel('Particle No.'),
 ylabel('Total Time, t'),
 xlim([0 5]),
 grid on,
 text(1.2,P1_stage_t,['P1 staging time = ',num2str(P1_stage_t)]),
 text(1.2,P1_stage_t+P1_trans_t,...
 ['P1 transfer traj time = ',num2str(P1_trans_t)]),
 text(2.2,P2_stage_t,['P2 staging time = ',num2str(P2_stage_t)]),
 text(2.2,P2_stage_t+P2_trans_t,...
 ['P2 transfer traj time = ',num2str(P2_trans_t)]),
 text(3.2,P3_stage_t,['P3 staging time = ',num2str(P3_stage_t)]),
 text(3.2,P3_stage_t+P3_trans_t,...
 ['P3 transfer traj time = ',num2str(P3_trans_t)]),
 text(4.2,P4_stage_t,['P4 staging time = ',num2str(P4_stage_t)]),
 text(4.2,P4_stage_t+P4_trans_t,...
 ['P4 transfer traj time = ',num2str(P4_trans_t)]),

% Plot formation entry times for each of the four particles

 figure, plot(P1_total_t,1,'-ko',P2_total_t,2,'-ko',...
 P3_total_t,3,'-ko',P4_total_t,4,'-ko',...
 'MarkerFaceColor','k'),
 title('Formation Entry Times for Each of the Four Particles'),
 xlabel('Time, t'),
 ylabel('Particle No.'),
 xlim([0 P4_total_t+2.0]),
 ylim([0 5]),
 grid on,
 text(0.5,4.8,['Formation Tolerance = +/-',num2str(entry_tol)]),
 text(0.5,4.6,'A = Number of full desired orbit revolutions'),
 text(0.5,4.4,'B = Number of full initial orbit revolutions'),
 text(0.5,4.2,['Sum(A) = ',num2str(revs_all)]),
 text(0.5+P1_total_t,1,['P1 = ',num2str(P1_total_t)]),
 text(0.5+P1_total_t,1-0.2,['A = ',num2str(revs1)]),
 text(0.5+P1_total_t,1-0.4,['B = ',num2str(0)]),
 text(0.5+P2_total_t,2,['P2 = ',num2str(P2_total_t)]),
 text(0.5+P2_total_t,2-0.2,['A = ',num2str(revs2)]),
 text(0.5+P2_total_t,2-0.4,['B = ',num2str(REVS2)]),
 text(0.5+P3_total_t,3,['P3 = ',num2str(P3_total_t)]),
 text(0.5+P3_total_t,3-0.2,['A = ',num2str(revs3)]),
 text(0.5+P3_total_t,3-0.4,['B = ',num2str(REVS3)]),
 text(0.5+P4_total_t,4,['P4 = ',num2str(P4_total_t)]),
 text(0.5+P4_total_t,4-0.2,['A = ',num2str(revs4)]),
 text(0.5+P4_total_t,4-0.4,['B = ',num2str(REVS4)]),

% Plot resultant particle formation

 figure, plot(real(ring),imag(ring),'b',...
 real(ring(1)),imag(ring(1)),'-ko',...
 real(ring(1+int8(100*desired_period/4))), ...
 imag(ring(1+int8(100*desired_period/4))),'-ko',...
 real(ring(1+int8(100*desired_period/2))), ...
 imag(ring(1+int8(100*desired_period/2))),'-ko',...
 real(ring(1+int8(100*desired_period*3/4))), ...
 imag(ring(1+int8(100*desired_period*3/4))),'-ko', ...
 real(P4_position_A),imag(P4_position_A),'d', ...

173

 real(P4_position_B),imag(P4_position_B),'d', ...
 real(P3_position_A),imag(P3_position_A),'d', ...
 real(P3_position_B),imag(P3_position_B),'d', ...
 real(P2_position_A),imag(P2_position_A),'d', ...
 real(P2_position_B),imag(P2_position_B),'d', ...
 real(P1_position_A),imag(P1_position_A),'d', ...
 real(P1_position_B),imag(P1_position_B),'d', ...
 'MarkerFaceColor','k'),
 title('Resultant Particle Formation at New Energy-Level'),
 xlabel('Real Axis'),
 ylabel('Imaginary Axis'),
 xlim([0 1]),
 ylim([-0.5 0.5]),
 grid on,
 text(max(real(xi_Desired))+0.03,0,'P3'),
 text(0.53,max(imag(xi_Desired)),'P2'),
 text(min(real(xi_Desired))+0.03,0,'P1'),
 text(0.53,min(imag(xi_Desired)),'P4'),
 text(0.05,0.45,'THIS PLOT STILL NEEDS WORK.')

% Plot resultant particle formation

 figure,plot3(real(xi_1_new),imag(xi_1_new),xi_1_new_H,'g', ...
 real(xi_2_new),imag(xi_2_new),xi_2_new_H,'g', ...
 real(xi_3_new),imag(xi_3_new),xi_3_new_H,'g', ...
 real(xi_4_new),imag(xi_4_new),xi_4_new_H,'g', ...

real(xi_Desired_new),imag(xi_Desired_new),xi_Desired_new_H,'b', ...
 real(xi_0(1)),imag(xi_0(1)),H(1),'-ko', ...
 real(xi_0(2)),imag(xi_0(2)),H(2),'-ko', ...
 real(xi_0(3)),imag(xi_0(3)),H(3),'-ko', ...
 real(xi_0(4)),imag(xi_0(4)),H(4),'-ko', ...
 real(xi_1_tt_final),imag(xi_1_tt_final),xi_1_tt_final_H,'r',
...
 real(xi_2_tt_final),imag(xi_2_tt_final),xi_2_tt_final_H,'r',
...
 real(xi_3_tt_final),imag(xi_3_tt_final),xi_3_tt_final_H,'r',
...
 real(xi_4_tt_final),imag(xi_4_tt_final),xi_4_tt_final_H,'r',
...
 real(ring(1)),imag(ring(1)),xi_Desired_new_H,'-ko',...
 real(ring(1+int8(100*desired_period/4))), ...
 imag(ring(1+int8(100*desired_period/4))), ...
 xi_Desired_new_H,'-ko',...
 real(ring(1+int8(100*desired_period/2))), ...
 imag(ring(1+int8(100*desired_period/2))), ...
 xi_Desired_new_H,'-ko',...
 real(ring(1+int8(100*desired_period*3/4))), ...
 imag(ring(1+int8(100*desired_period*3/4))), ...
 xi_Desired_new_H,'-ko', ...
 'MarkerFaceColor','k'),
 title('Orbit, Trajectory, and Energy Plot'),
 xlabel('Real Axis'),
 ylabel('Imaginary Axis'),
 zlabel('Energy-Level'),
 xlim([0 1]),
 ylim([-0.5 0.5]),
 zlim([-1.2 -0.5]),
 grid on,

174

 end % This the "end" for the "if statement" re:plots

% ===
% Animation Section
% ===

 if (animations == 1),

 figure, plot(real(xi_1),imag(xi_1),'g',real(xi_2),imag(xi_2),'g',...
 real(xi_3),imag(xi_3),'g',real(xi_4),imag(xi_4),'g',...
 real(xi_Desired),imag(xi_Desired),'b',...
 real(xi_0(1)),imag(xi_0(1)),'-ko',...
 real(xi_0(2)),imag(xi_0(2)),'-ko',...
 real(xi_0(3)),imag(xi_0(3)),'-ko',...
 real(xi_0(4)),imag(xi_0(4)),'-
ko','MarkerFaceColor','k'),
 title('Uncontrolled Particle Motion'),
 xlabel('Real Axis'),
 ylabel('Imaginary Axis'),
 xlim([0 1]),
 ylim([-0.5 0.5]),
 grid on,
 text(0.03+real(xi_0(1)),imag(xi_0(1)),'P1'),
 text(0.03+real(xi_0(2)),imag(xi_0(2)),'P2'),
 text(0.03+real(xi_0(3)),imag(xi_0(3)),'P3'),
 text(0.03+real(xi_0(4)),imag(xi_0(4)),'P4'),
 text(0.03,0.47,'Orbit Periods:'),
 text(0.03,0.44,['P1 = ',num2str(P1_period)]),
 text(0.03,0.41,['P2 = ',num2str(P2_period)]),
 text(0.03,0.38,['P3 = ',num2str(P3_period)]),
 text(0.03,0.35,['P4 = ',num2str(P4_period)]),
 text(0.03,0.32,['Desired orbit = ',num2str(desired_period)]),
 text(0.03,-0.30,'Energy-Levels:'),
 text(0.03,-0.33,['P1 = ',num2str(H(1))]),
 text(0.03,-0.36,['P2 = ',num2str(H(2))]),
 text(0.03,-0.39,['P3 = ',num2str(H(3))]),
 text(0.03,-0.42,['P4 = ',num2str(H(4))]),
 text(0.03,-0.45,['Desired orbit = ',num2str(H_Desired)]),
 hold on
 for z = 1 : 52
% for z = 1 : 2
 plot(real(xi_1_new(z)),imag(xi_1_new(z)),'o',...
 real(xi_2_new(z)),imag(xi_2_new(z)),'o',...
 real(xi_3_new(z)),imag(xi_3_new(z)),'o',...
 real(xi_4_new(z)),imag(xi_4_new(z)),'o',...
 'EraseMode','none','MarkerSize',5),
 hold on
 F(z) = getframe;
 end

 figure, plot(real(xi_3),imag(xi_3),'g',...
 real(xi_3_tt_final),imag(xi_3_tt_final),'r',...
 real(xi_Desired),imag(xi_Desired),'b',...
 real(xi_0(3)),imag(xi_0(3)),'-ko',...
 'MarkerFaceColor','k'),
 title('Controlled Particle Motion - Particle No. 3'),
 xlabel('Real Axis'),
 ylabel('Imaginary Axis'),
 xlim([0 1]),
 ylim([-0.5 0.5]),
 grid on,

175

 text(0.03+real(xi_0(3)),imag(xi_0(3)),'P3'),
 text(0.03,0.47,'Orbit Periods:'),
 text(0.03,0.44,['P1 = ',num2str(P1_period)]),
 text(0.03,0.41,['P2 = ',num2str(P2_period)]),
 text(0.03,0.38,['P3 = ',num2str(P3_period)]),
 text(0.03,0.35,['P4 = ',num2str(P4_period)]),
 text(0.03,0.32,['Desired orbit = ',num2str(desired_period)]),
 text(0.03,-0.30,'Energy-Levels:'),
 text(0.03,-0.33,['P1 = ',num2str(H(1))]),
 text(0.03,-0.36,['P2 = ',num2str(H(2))]),
 text(0.03,-0.39,['P3 = ',num2str(H(3))]),
 text(0.03,-0.42,['P4 = ',num2str(H(4))]),
 text(0.03,-0.45,['Desired orbit = ',num2str(H_Desired)]),
 hold on
 for z = 1 : 100*P3_stage_t
 plot(real(xi_3_new(z)),imag(xi_3_new(z)),'o',...
 'EraseMode','none','MarkerSize',5),
 hold on
 G(z) = getframe;
 end
 for z = 1+(100*P3_stage_t) : (100*P3_stage_t)+(P3_trans_t*100)
 plot(real(xi_3_tt_final(z-100*P3_stage_t)),...
 imag(xi_3_tt_final(z-100*P3_stage_t)),'o',...
 'EraseMode','none','MarkerSize',5),
 hold on
 G(z) = getframe;
 end

 zbest = (100*P3_stage_t)+(P3_trans_t*100);

 for z = 1+zbest : zbest+int8(desired_period*100*3/4)
 plot(real(xi_Desired_new(z-zbest+int8(desired_period*100/4))),...
 imag(xi_Desired_new(z-
zbest+int8(desired_period*100/4))),'o',...
 'EraseMode','none','MarkerSize',5),
 hold on
 G(z) = getframe;
 end

 end % This is the "end" for the "if statement" re:animations

% ============================== end ================================

ode78.m

function [tout, yout] = ode78(F, t0, tfinal, y0, tol, trace)
% The Fehlberg coefficients:
% From Matlab website, 1996

alpha = [2./27. 1/9 1/6 5/12 .5 5/6 1/6 2/3 1/3 1 0 1]';
beta = [[2/27 0 0 0 0 0 0 0 0 0 0 0 0]
[1/36 1/12 0 0 0 0 0 0 0 0 0 0 0]
[1/24 0 1/8 0 0 0 0 0 0 0 0 0 0]
[5/12 0 -25/16 25/16 0 0 0 0 0 0 0 0 0]
[.05 0 0 .25 .2 0 0 0 0 0 0 0 0]

176

[-25/108 0 0 125/108 -65/27 125/54 0 0 0 0 0 0 0]
[31/300 0 0 0 61/225 -2/9 13/900 0 0 0 0 0 0]
[2 0 0 -53/6 704/45 -107/9 67/90 3 0 0 0 0 0]
[-91/108 0 0 23/108 -976/135 311/54 -19/60 17/6 -1/12 0 0 0 0
]
[2383/4100 0 0 -341/164 4496/1025 -301/82 2133/4100 45/82 45/164 18/41 0 0
0]
[3/205 0 0 0 0 -6/41 -3/205 -3/41 3/41 6/41 0 0 0]
[-1777/4100 0 0 -341/164 4496/1025 -289/82 2193/4100 ...
51/82 33/164 12/41 0 1 0]...
]';
 chi = [0 0 0 0 0 34/105 9/35 9/35 9/280 9/280 0 41/840 41/840]';
 psi = [1 0 0 0 0 0 0 0 0 0 1 -1 -1]';
pow = 1/8;
if nargin < 6, trace = 0; end
if nargin < 5, tol = 1.e-6; end

% Initialization
t = t0;
hmax = (tfinal - t)/2.5;
hmin = (tfinal - t)/800000000; % tweek THIS
h = (tfinal - t)/100;
y = y0(:);
f = y*zeros(1,13);
tout = t;
yout = y.';
tau = tol * max(norm(y, 'inf'), 1);

if trace
% clc, t, h, y
 clc, t, y
end
% The main loop
 while (t < tfinal) & (h >= hmin)
 if t + h > tfinal, h = tfinal - t; end

 % Compute the slopes
 f(:,1) = feval(F,t,y);
 for j = 1: 12
 f(:,j+1) = feval(F, t+alpha(j)*h, y+h*f*beta(:,j));
 end

 % Truncation error term
 gamma1 = h*41/840*f*psi;

 % Estimate the error and the acceptable error
 delta = norm(gamma1,'inf');
 tau = tol*max(norm(y,'inf'),1.0);

 % Update the solution only if the error is acceptable
 if delta <= tau
 t = t + h;
 y = y + h*f*chi;
 tout = [tout; t];
 yout = [yout; y.'];
 end
 if trace
% home, t, h, y
 home, t, y
 end

177

 % Update the step size
 if delta ~= 0.0
 h = min(hmax, 0.8*h*(tau/delta)^pow);
 end
 end;

 if (t < tfinal)
 disp('SINGULARITY LIKELY.')
 t
 end

three_body_script_v5_1.m

% ===
% = =
% = script: three_body_script_v5.1 =
% = =
% = MathWorks Matlab Script for Circular, Restricted Three-Body =
% = Problem (CR3BP) =
% = =
% = Multiple (Formation Flying) Spacecraft =
% = Matlab Movie and AVI (Audio Visual Interleaved) Functions =
% = Utilized for Viewing Spacecraft Formation Over Time =
% = =
% = Written by Ralph R. Basilio, Ph.D. Student =
% = Version: 5.1 =
% = Date: 06 March 2005 (Original: 23 July 2004) =
% = =
% = AME 790 Research - Advisor: Professor Paul K. Newton =
% = Aerospace and Mechanical Engineering Department =
% = Viterbi School of Engineering =
% = University of Southern California =
% = =
% = This script uses a seventh & eighth-order Runge-Kutta-Fehlberg =
% = integration method to produce an accurate solution. =
% = =
% ===

% Set initial time and final time
 tspan = [0 6.3];

 t0 = 0;
 tf = 21.070352;

 tol = 1.0e-9;

% Define spacecraft 1 initial conditions (i.e. column vector g0)
% y1_0(1): Position vector, X coordinate
% y1_0(2): Position vector, Y coordinate
% y1_0(3): Position vector, Z coordinate
% y1_0(4): Velocity vector, X direction
% y1_0(5): Velocity vector, Y direction
% y1_0(6): Velocity vector, Z direction
 y1_0 = [0.61523162 0.86349029 0.0 0.08274045 -0.06439854 0.0]';

% Define spacecraft 2 initial conditions (i.e. column vector g0)
% y2_0(1): Position vector, X coordinate
% y2_0(2): Position vector, Y coordinate
% y2_0(3): Position vector, Z coordinate

178

% y2_0(4): Velocity vector, X direction
% y2_0(5): Velocity vector, Y direction
% y2_0(6): Velocity vector, Z direction
 y2_0 = [0.55585566 -0.8004144 0.0 0.02769284 0.01245845 0.0]';

% Define spacecraft 3 initial conditions (i.e. column vector g0)
% y3_0(1): Position vector, X coordinate
% y3_0(2): Position vector, Y coordinate
% y3_0(3): Position vector, Z coordinate
% y3_0(4): Velocity vector, X direction
% y3_0(5): Velocity vector, Y direction
% y3_0(6): Velocity vector, Z direction
 y3_0 = [0.0 0.0 0.0 0.0 0.0 0.0]';

% Define Options
% options = odeset('RelTol', 1e-5, 'AbsTol', 1e-4,'OutputFcn',@odephas2);

% Invoke Matlab integrator (i.e. ode45)
 [t,y1] = ode78(@three_body_v4_1, t0, tf, y1_0, tol);
 [t,y2] = ode78(@three_body_v4_2, t0, tf, y2_0, tol);
 [t,y3] = ode78(@three_body_v4_3, t0, tf, y3_0, tol);

% Plot spacecraft 1 position vector components (remove comment symbol, "%")
% figure; plot(y1(:,1),y1(:,2));
% title('Restricted Three-Body Problem - Spacecraft 1');
% ylabel('y(t)');
% xlabel('x(t)');

% Plot spacecraft 2 position vector components (remove comment symbol, "%")
% figure; plot(y2(:,1),y2(:,2));
% title('Restricted Three-Body Problem - Spacecraft 2');
% ylabel('y(t)');
% xlabel('x(t)');

% Plot spacecraft 3 position vector components (remove comment symbol, "%")
% figure; plot(y3(:,1),y3(:,2));
% title('Restricted Three-Body Problem - Spacecraft 3');
% ylabel('y(t)');
% xlabel('x(t)');

% Plot formation - 2D View
% figure,
plot(y1(:,1),y1(:,2),'r',y2(:,1),y2(:,2),'b',y3(:,1),y3(:,2),'g');
% grid on;
% title('Restricted Three-Body Problem - 2D View of Formation');
% xlabel('x(t)');
% ylabel('y(t)');
% zlabel('z(t)');

% Determine position vector magnitude, velocity vector magnitude (speed),
% and angular rate

L4x = 0.48785;
L4y = 0.8660;
L5x = 0.48785;
L5y = -0.8660;

pos_mag_1 = sqrt((y1(:,1)-L4x).^2+(y1(:,2)-L4y).^2);
pos_mag_2 = sqrt((y2(:,1)-L5x).^2+(y2(:,2)-L5y).^2);
vel_mag_1 = sqrt(y1(:,4).^2+y1(:,5).^2);

179

vel_mag_2 = sqrt(y2(:,4).^2+y2(:,5).^2);
omega_1 = vel_mag_1(:,1).*(2*pi*pos_mag_1(:,1)).^(-1);
omega_2 = vel_mag_2(:,1).*(2*pi*pos_mag_2(:,1)).^(-1);

% Plot formation - 2D view
 figure, plot(y1(:,1),y1(:,2),'-r+',...
 y2(:,1),y2(:,2),'-gx',...
 -0.012150,0,'-bo',...
 1-0.012150,0,'-bo',...
 0.48785,0.8660,'-ko',...
 0.48785,-0.8660','-ko',...
 'MarkerFaceColor','b'),
 grid on,
 title('CR3BP - Two-Dimensional View of Spacecraft Formation'),
 legend('Spacecraft 1','Spacecraft 2',2),
 text(0.012150,-0.1,'Earth'), text(1-0.012150,-0.1,'Moon'),
 text(0.48785,0.7,'L4'), text(0.48785,-0.7,'L5'),
 axis square, xlim([-1.1 1.1]), ylim([-1.1 1.1]),
 xlabel('x(t)'), ylabel('y(t)');

% Plot position magnitude

 figure, plot(pos_mag_1,'-r+'), grid on,
 title('Spacecraft 1 - Distance from L4'),
 xlim([0 45]),ylim([0 0.35]),
 xlabel('Data Point No.'), ylabel('Normalized Distance');

 figure, plot(pos_mag_2,'-gx'), grid on,
 title('Spacecraft 2 - Distance from L5'),
 xlim([0 45]),ylim([0 0.35]),
 xlabel('Data Point No.'), ylabel('Normalized Distance');

% Plot angular rate versus distance

 figure, plot(omega_1,pos_mag_1,'-r+'), grid on,
 title('Spacecraft 1 - Angular Rate vs Distance from L4'),
 xlim([0 0.25]),ylim([0 0.35]),
 xlabel('Angular Rate'),ylabel('Distance from L4');

 figure, plot(omega_2,pos_mag_2,'-gx'), grid on,
 title('Spacecraft 2 - Angular Rate vs Distance from L5'),
 xlim([0 0.25]),ylim([0 0.35]),
 xlabel('Angular Rate'),ylabel('Distance from L5');

% Plot formation - 3D View
 figure, plot3(y1(:,1),y1(:,2),y1(:,3),'-r+',...
 y2(:,1),y2(:,2),y2(:,3),'-bx',...
 y3(:,1),y3(:,2),y3(:,3),'-g*'),
% 'MarkerEdgeColor','r',...
% 'MarkerFaceColor',[1 0 0],...
% 'MarkerSize',2,...
% y2(:,1),y2(:,2),y2(:,3),'b', y3(:,1),y3(:,2),y3(:,3),'g');
 grid on,
 title('Restricted Three-Body Problem - 3D View of Formation'),
 legend('spacecraft 1 (c)','spacecraft 2 (l)','spacecraft 3 (r)'),
 xlabel('x(t)'), ylabel('y(t)'), zlabel('z(t)');

 figure, plot3(y1(:,1),y1(:,2),y1(:,3))
 for i=1:21

180

 plot3(y1(i*6,1),y1(i*6,2),y1(i*6,3),'r+',...
 y2(i*6,1),y2(i*6,2),y2(i*6,3),'bx',...
 y3(i*6,1),y3(i*6,2),y3(i*6,3),'g*'),
 grid on,
 axis([-1.5 1.5 -1 1 -0.2 0.2]),
 title('Restricted Three-Body Problem'),
 legend('spacecraft 1 (c)','spacecraft 2 (l)','spacecraft 3 (r)'),
 xlabel('x(t)'), ylabel('y(t)'), zlabel('z(t)');

 % Identify pip (point in plane)
 pip(i*6,1) = (1/3)*(y1(i*6,1)+y2(i*6,1)+y3(i*6,1));
 pip(i*6,2) = (1/3)*(y1(i*6,2)+y2(i*6,2)+y3(i*6,2));
 pip(i*6,3) = (1/3)*(y1(i*6,3)+y2(i*6,3)+y3(i*6,3));

 % Define Vector A (from pip to spacecraft 2)
 A(i*6,1) = pip(i*6,1)-y2(i*6,1);
 A(i*6,2) = pip(i*6,2)-y2(i*6,2);
 A(i*6,3) = pip(i*6,3)-y2(i*6,3);

 % Define Vector B (from pip to spacecraft 3)
 B(i*6,1) = pip(i*6,1)-y3(i*6,1);
 B(i*6,2) = pip(i*6,2)-y3(i*6,2);
 B(i*6,3) = pip(i*6,3)-y3(i*6,3);

 % Define Vector C (vector normal to spacecraft formation plane)
 C(i*6,1) = A(i*6,2)*B(i*6,3)-A(i*6,3)*B(i*6,2);
 C(i*6,2) =-A(i*6,1)*B(i*6,3)-A(i*6,3)*B(i*6,1);
 C(i*6,3) = A(i*6,1)*B(i*6,2)-A(i*6,2)*B(i*6,1);

 C_length = sqrt(C(i*6,1).^2+C(i*6,2).^2+C(i*6,3).^2);

 C_unit(i*6,1) = C(i*6,1)/C_length;
 C_unit(i*6,2) = C(i*6,2)/C_length;
 C_unit(i*6,3) = C(i*6,3)/C_length;

 obs(i*6,1) = 10*C_unit(i*6,1);
 obs(i*6,2) = 10*C_unit(i*6,2);
 obs(i*6,3) = 10*C_unit(i*6,3);

% view([0 -10 0]) % View XZ plane
% view([-10 0 0]) % View YZ plane
% view([0 0 -10]) % View XY plane
% view([-10 -10 10]) % Three-dimensional view
 view([obs(i*6,1) obs(i*6,2) obs(i*6,3)]) % Moving observer

% view_x = 0.0; % DO= 0.0, XZ= 0.0, YZ=-3.0, XY= 0.0
% view_y =-3.0; % DO=-3.0, XZ=-3.0, YZ= 0.0, XY= 0.0
% view_z = 0.0; % DO= 1.0, XZ= 0.0, YZ= 0.0, XY= 3.0
% campos = ([cpx, cpy, cpz])
% view = ([view_x,view_y,view_z])
% ctx = 0.0;
% cty = 0.0;
% ctz = 0.0;
% camtarget = ([ctx, cty, ctz])
% camlookat(y1);
 F(i) = getframe(gcf);
% figure, plot3(y1(i*6,1),y1(i*6,2),y1(i*6,3),'-r+'),
% plot3(y1(i*6,1),y1(i*6,2),y1(i*6,3),'-r+'),
% grid on,
% axis([-1.5 1.5 -1.5 1.5 -1.5 1.5]),
% legend('spacecraft 1 (c)','spacecraft 2 (l)','spacecraft 3 (r)'),

181

% xlabel('x(t)'), ylabel('y(t)'), zlabel('z(t)')
% drawnow
% h=gcf
 end

movie(F,1)

three_body_v4_1.m

% ==
% = =
% = function: three_body_v4_1 =
% = =
% = MathWorks Matlab Function for the Circular, Restricted =
% = Three-Body Problem (CR3BP) =
% = =
% = Written by Ralph R. Basilio, Ph.D. Student =
% = Version: 4.0 =
% = Date: 06 May 2004 =
% = =
% = AME 790 Research - Advisor: Professor Paul K. Newton =
% = Aerospace and Mechanical Engineering Department =
% = Viterbi School of Engineering =
% = University of Southern California =
% = =
% ==
%
% --
% Create a function containing the governing equations of motion
% for mass 3 (the third body of infinitesimally small mass):
%
% x_dot_dot = 2*y_dot+x-(1-mu)*(x+mu)/r1^3-mu*(x-(1-mu))/r2^3
% y_dot_dot = -2*x_dot+y-(1-mu)*y/r1^3-mu*y/r2^3
% z_dot_dot = -(1-mu)*z/r1^3-mu*z/r2^3
% --
% The second order equations above can be re-written as a system
% of first order differential equations (state vector):
% y_dot_sub1_1=y(4)
% y_dot_sub1_2=y(5)
% y_dot_sub1_3=y(6)
% y_dot_sub2_1=2*y(5)+y(1)-(1-mu)*(y(1)+mu)/r1^3-mu*(y(1)-(1-mu))/r2^3
% y_dot_sub2_2=-2*y(4)+y(2)-(1-mu)*y(2)/r1^3-mu*y(2)/r2^3
% y_dot_sub2_3=-(1-mu)*y(3)/r1^3-mu*y(3)/r2^3
% --

% Define functions
 function y1_dot = three_body_v4_1(t,y1)

% Mass of first object, mass1 = earth (kg)
% Mass of second object, mass2 = moon (kg)

% Define mu, normalized mass of second object
% mu = mass_2/(mass_1+mass_2)
 mu = 7.1688e22/(5.974e24+7.1688e22);

% Determine magnitude of position vector from mass 1, r1
 r1 = sqrt ((y1(1) + mu)^2 + y1(2)^2);

% Determine magnitude of position vector from mass 2, r2

182

 r2 = sqrt ((y1(1) - (1-mu))^2 + y1(2)^2);

 y1_dot = [y1(4)
 y1(5)
 y1(6)
 2*y1(5) + y1(1) - (1-mu)*(y1(1)+mu)/r1^3 - mu*(y1(1)-(1-mu))/r2^3
 -2*y1(4) + y1(2) - (1-mu)* y1(2)/r1^3 - mu*y1(2) /r2^3
 - (1-mu)* y1(3)/r1^3 - mu*y1(3) /r2^3];

three_vortex.m

% ==
% = =
% = function: three_vortex =
% = =
% = MathWorks Matlab Function for the Restricted Three-Vortex =
% = Problem =
% = =
% = Written by Ralph R. Basilio, Ph.D. Candidate =
% = Version: 1.0 =
% = Date: 06 July 2005 =
% = =
% = AME 790 Research - Advisor: Professor Paul K. Newton =
% = Aerospace and Mechanical Engineering Department =
% = Viterbi School of Engineering =
% = University of Southern California =
% = =
% ==

% ==
% Define function
% ==

 function xi_dot = three_vortex(t,xi)

% ==
% Define global parameters
% ==

 global cap_gamma_1 cap_gamma_2 D xi1 xi2

% Determine the orbit frequency of both primary vortices

 omega = (cap_gamma_1 + cap_gamma_2)/(2*pi*D^2);

% ==
% Equations section
% ==

% A = 2.37*-i*omega*xi;
 A = 1.0*-i*omega*xi;
 B = (i*cap_gamma_1)/(2*pi)*(xi-xi1)/abs(xi-xi1).^2;
 C = (i*cap_gamma_2)/(2*pi)*(xi-xi2)/abs(xi-xi2).^2;

% Standard equation of motion
 xi_dot = A + B + C;

% Equation of motion with an anti-damping term

183

% With time dependency
% xi_dot = A + B + C + 3.000*t;

% Without time dependency
% xi_dot = A + B + C + 0.29;

% With periodic/sinusoidal dependency
% xi_dot = A + B + C + 001.1*sin((t/0.85)*(1.00*pi));

% =========================== end ==============================

two_body_init_v5.m

% ==
% = =
% = two_body_init_v5.m =
% = =
% = MathWorks Matlab Script for Two-Body Orbit Propagation =
% = =
% = Written by Ralph R. Basilio, Ph.D. Student =
% = Version: 5.0 =
% = Date: 02 July 2004 =
% = =
% = AME 790 Research - Advisor: Professor Paul K. Newton =
% = Aerospace and Mechanical Engineering Department =
% = Viterbi School of Engineering =
% = University of Southern California =
% = =
% = This script calls a fourth and fifth-order Runge-Kutta-Fehlberg =
% = integration function to produce an accurate solution. =
% = =
% ==
%
% Initial Conditions:
%
% Define gravitational constant (km^3/kg-sec^2) and masses (kg)
%
 global m1 m2 G d
 G = 6.6720e-20;
 m1 = 5.974e24 ; % Mass of the Earth
% m1 = 7.1688e22; % Mass of the Moon;
% m2 = 5.974e24 ; % Mass of the Earth
 m2 = 7.1688e22; % Mass of the Moon
% m2 = 1000.0 ; % Mass of a small spacecraft
 d = 384467.0 ; % Separation distance between masses (km)
%
% x0(1) through x0(3): mass 1, init pos (x,y,z) - km
% x0(4) through x0(6): mass 2, init pos (x,y,z) - km
% x0(7) through x0(9): mass 1, init vel (x,y,z) - km/sec
% x0(10) through x0(12): mass 2, init vel (x,y,z) - km/sec
%
% Note: To prevent center-of-mass migration, set the initial velocity
% of the other body in a direction opposite and magnitude inversely
% proportional to the mass ratio.
%
% Note: Center-of-mass defined to be coordinate frame origin
%
% x0(1) = -d/((m1/m2)+1);

184

 x0(1) = -d/(m1/m2);
 x0(2) = 0.0;
 x0(3) = 0.0;
 x0(4) = d+x0(1);
 x0(5) = 0.0;
 x0(6) = 0.0;
 x0(7) = 0.0;
 x0(8) = -0.9468/(m1/m2);
 x0(9) = 0.0;
 x0(10) = 0.0;
 x0(11) = 0.9468;
 x0(12) = 0.0;

% x0=[0 0 0 384467 0 0 0.0 -0.9468/83.33 0.0 0.0 0.9468 0.0]';
% x0=[-1 0 0 1 0 0 0.0 -1.0 0.0 0.0 2.0 0.0]';
% x0=[0 0 0 384467 0 0 0.0 -0.9468 0.0 0.0 0.9468 0.0]';
%
% ==
%
% Define time span in sec:
%
 start = 0;
 increment = 10000;
 stop = 25920000;
 tspan = [start : increment : stop];
%
% ==
%
% Set options:
%
% options = odeset('RelTol', 1e-5, 'AbsTol', 1e-4, 'OutputFcn',
@odephas2,...
% 'OutputSel', [4 5]);
 options = odeset('RelTol', 1e-5, 'AbsTol', 1e-8);
%
% ==
%
% Call ODE (Ordinary Differential Equation) solver:
%
 [t,x] = ode45('two_body_func', tspan, x0, options);
%
% ==
%
% Calculate the magnitude of the center-of-mass velocity (speed)
%
 cm_vel(:,1) = (x(:,7)*m1 + x(:,10)*m2) / (m1+m2);
 cm_vel(:,2) = (x(:,8)*m1 + x(:,11)*m2) / (m1+m2);
 cm_vel(:,3) = (x(:,9)*m1 + x(:,12)*m2) / (m1+m2);
% cm_vel_mag = norm (cm_vel);
 cm_vel_mag = sqrt(cm_vel(:,1).^2+cm_vel(:,2).^2+cm_vel(:,3).^2);
%
% ==
%
% Determine total energy, E (kg-km^2/sec^2)
%
% r1 = x(:,1)-x(:,4);
% r2 = x(:,2)-x(:,5);
% r3 = x(:,3)-x(:,6);
% r_mag = (r1.^2+r2.^2+r3.^2).^0.5;
% v1 = x(:,7)-x(:,10);
% v2 = x(:,8)-x(:,11);

185

% v3 = x(:,9)-x(:,12);
% v_mag = (v1.^2+v2.^2+v3.^2).^0.5;
% KE = (1/2)*m2*v_mag.^2;
% PE = -G*m1*m2*r_mag.^-1;
% E = KE+PE;

% Energy of mass 1 (per unit/total mass) about the barycenter
 r1(:,1) = x(:,1);
 r1(:,2) = x(:,2);
 r1(:,3) = x(:,3);
 r1_mag = sqrt(r1(:,1).^2+r1(:,2).^2+r1(:,3).^2);
 v1(:,1) = x(:,7);
 v1(:,2) = x(:,8);
 v1(:,3) = x(:,9);
 v1_mag = sqrt(v1(:,1).^2+v1(:,2).^2+v1(:,3).^2);
 KE1 = (1/2)*v1_mag.^2;
 PE1 = G*m2*r1_mag.^-1;
 E1 = (KE1-PE1);

% Energy of mass 2 (per unit/total mass) about the barycenter
 r2(:,1) = x(:,4);
 r2(:,2) = x(:,5);
 r2(:,3) = x(:,6);
 r2_mag = sqrt(r2(:,1).^2+r2(:,2).^2+r2(:,3).^2);
 v2(:,1) = x(:,10);
 v2(:,2) = x(:,11);
 v2(:,3) = x(:,12);
 v2_mag = sqrt(v2(:,1).^2+v2(:,2).^2+v2(:,3).^2);
 KE2 = (1/2)*v2_mag.^2;
 PE2 = G*m1*r2_mag.^-1;
 E2 = (KE2-PE2);

% Total Energy
 E = E2-E1;

% Energy about mass 1 and about mass 2
 dist = sqrt((x(:,1)-x(:,4)).^2+(x(:,2)-x(:,5)).^2+(x(:,3)-x(:,6)).^2);
 speed = sqrt((x(:,7)-x(:,10)).^2+(x(:,8)-x(:,11)).^2+(x(:,9)-
x(:,12)).^2);
% E_m1 = speed^2/2-G/dist;
% E_m2 = speed^2/2-G/dist;
%

%
% ==
%
% Generate plots [remove comment symbol(s), %, as appropriate]
%
% Plot mass 1 position vector components
% figure; plot(t,x(:,1),'r',t,x(:,2),'g',t,x(:,3),'b')
% title('Mass 1 Position Vector Components Versus Time')
% ylabel('Position (km)'), xlabel('Time (sec)'), legend('x','y','z');
%
% Plot mass 1 velocity vector components
% figure; plot(t,x(:,7),'r',t,x(:,8),'g',t,x(:,9),'b')
% title('Mass 1 Velocity Vector Components Versus Time')
% ylabel('Velocity (km/sec)'), xlabel('Time (sec)'), legend('x','y','z');
%
% Plot mass 2 position vector components

186

% figure; plot(t,x(:,4),'r',t,x(:,5),'g',t,x(:,6),'b')
% title('Mass 2 Position Vector Components Versus Time')
% ylabel('Position (km)'), xlabel('Time (sec)'), legend('x','y','z');
%
% Plot mass 2 velocity vector components
% figure; plot(t,x(:,10),'r',t,x(:,11),'g',t,x(:,12),'b')
% title('Mass 2 Velocity Vector Components Versus Time')
% ylabel('Velocity (km/sec)'), xlabel('Time (sec)'), legend('x','y','z');
%
% Two-dimension orbit plot (mass 1)
% figure, plot(x(:,1),x(:,2),'b'), title('Two-Dimension Orbit Plot (Mass
1)')
% ylabel('y'), xlabel('x'), axis equal;
%
% Two-dimension orbit plot (mass 2)
% figure, plot(x(:,4),x(:,5),'r'), title('Two-Dimension Orbit Plot (Mass
2)')
% ylabel('y'), xlabel('x'), axis equal;
%
% Two-dimension orbit plot (mass 1 and mass 2)
 figure, plot(x(:,1),x(:,2),'b',x(:,4),x(:,5),'r'),
 title('Two-Dimension Orbit Plot (Mass 1 and Mass 2)')
 ylabel('y'), xlabel('x'), legend('Mass 1','Mass 2'), axis equal;
%
% Three-dimension orbit plot (mass 1 and mass 2)
% figure, plot3(x(:,1),x(:,2),x(:,3),'b',x(:,4),x(:,5),x(:,6),'r'), grid on
% title('Three-Dimension Orbit Plot (Mass 1 and Mass 2)')
% ylabel('y'), xlabel('x'), zlabel('z')
% legend('Mass 1','Mass 2'), axis equal;
%
% Plot center-of-mass velocity
 figure, plot(t,cm_vel_mag)
 title('Center-Of-Mass Velocity (Speed) Versus Time')
 ylabel('Velocity (km/sec)'), xlabel('Time (sec)');
%
% Plot energy
% figure, plot(t,E1,'r',t,E2,'b',t,E,'g')
% figure, plot(t,E1,'r',t,E2,'b')
 figure, plot(t,E1,'r',t,E2,'b',t,E,'g')
 title('Mechanical Energy of the Two-Body System')
 ylabel('Energy (km^2/sec^2)'), xlabel('Time (sec)')
 legend('E1','E2','E');

two_body_func.m

% two_body_func.m

function x_dot = two_body_func(t,x)
global m1 m2 G
r1 = x(1:3);
r2 = x(4:6);
v1 = x(7:9);
v2 = x(10:12);
r = norm(x(1:3)-x(4:6));

x_dot = [x(7) ;
 x(8) ;
 x(9) ;
 x(10) ;

187

 x(11) ;
 x(12) ;
 (G*m2/r^3)*(x(4)-x(1)) ;
 (G*m2/r^3)*(x(5)-x(2)) ;
 (G*m2/r^3)*(x(6)-x(3)) ;
 (G*m1/r^3)*(x(1)-x(4)) ;
 (G*m1/r^3)*(x(2)-x(5)) ;
 (G*m1/r^3)*(x(3)-x(6))];

188

Appendix C: AUTO 2000 Program Files

Contents

File Name Description Page No.

c.3d Parameter definitions and values 189

3d.c Equations 189

compute_lagrange_points_0.5.auto Script for computing Lagrange Points 191

compute_periodic_orbits.xauto Script for solving two-point BVP 192

The files and scripts used for simulating the Earth-moon system are provided in this appendix.

Important note: These files and scripts were originally generated by Randy Paffenroth, formerly Staff

Scientist, Applied and Computational Mathematics Department, California Institute of Technology

and were used/modified for this particular project.

189

c.3d

6 0 0 0 NDIM,IPS,IRS,ILP

4 1 10 15 16 NICP,(ICP(I),I=1,NICP)

50 4 3 2 1 0 0 0 NTST,NCOL,IAD,ISP,ISW,IPLT,NBC,NINT

2000 -1. 1e10 0 1e10 NMX,RL0,RL1,A0,A1

2000 0 2 8 5 3 0 NPR,MXBF,IID,ITMX,ITNW,NWTN,JAC

1e-9 1e-9 1e-4 EPSL,EPSU,EPSS

1e-3 1e-4 1e-2 1 DS,DSMIN,DSMAX,IADS

1 NTHL,((I,THL(I)),I=1,NTHL)

10 0

0 NTHU,((I,THU(I)),I=1,NTHU)

0 NUZR,((I,UZR(I)),I=1,NUZR)

3d.c

/* -- */

/* -- */

/* nb : The restricted 3-body problem */

/* -- */

/* -- */

#include "auto_f2c.h"

/* -- */

/* -- */

int func (integer ndim, const double *u, const integer *icp,

 const double *par, integer ijac, double *f, double *dfdu, double *dfdp)

{

 double mu,p;

 double x, y, z;

 double xp, yp, zp;

 double rone, rone2, rone3;

 double rtwo, rtwo2, rtwo3;

 double Cx, Cy, Cz, Cxp, Cyp, Czp;

 x = u[0];

 y = u[1];

 z = u[2];

 xp = u[3];

 yp = u[4];

 zp = u[5];

 mu = par[1];

 p = par[2];

 rone = sqrt((x+mu)*(x+mu) + y*y + z*z);

 rone2 = rone*rone;

 rone3 = rone2*rone;

 rtwo = sqrt((x-1+mu)*(x-1+mu) + y*y + z*z);

 rtwo2 = rtwo*rtwo;

 rtwo3 = rtwo2*rtwo;

 Cx = x - (1-mu)*(x+mu)/rone3 - mu*(x-1+mu)/rtwo3;

 Cy = y - (1-mu)*y/rone3 - mu*y/rtwo3;

 Cz = - (1-mu)*z/rone3 - mu*z/rtwo3;

190

 Cxp = -2*xp;

 Cyp = -2*yp;

 Czp = -2*zp;

 f[0] = xp;

 f[1] = yp;

 f[2] = zp;

#ifdef NEGATIVE_U

 f[3] = 2*yp - x + (1-mu)*(x+mu)/rone3 + mu*(x-1+mu)/rtwo3;

 f[4] = -2*xp - y + (1-mu)*y/rone3 + mu*y/rtwo3;

 f[5] = (1-mu)*z/rone3 + mu*z/rtwo3;

#else

 f[3] = 2*yp + x - (1-mu)*(x+mu)/rone3 - mu*(x-1+mu)/rtwo3;

 f[4] = -2*xp + y - (1-mu)*y/rone3 - mu*y/rtwo3;

 f[5] = - (1-mu)*z/rone3 - mu*z/rtwo3;

#endif

#ifdef ALL_UNFOLDING

 f[0] += p*Cx;

 f[1] += p*Cy;

 f[2] += p*Cz;

 f[3] += p*Cxp;

 f[4] += p*Cyp;

 f[5] += p*Czp;

#else

 f[3] += p*Cxp;

 f[4] += p*Cyp;

 f[5] += p*Czp;

#endif

 return 0;

}

/* -- */

/* -- */

int stpnt (integer ndim, double t, double *u, double *par)

{

 double mu;

 mu =0.0;

 par[1] = mu;

 par[2] = 0.;

 u[0] = 0.14107;

 u[1] = 0.99;

 u[2] = 0.0;

 u[3] = 0.0;

 u[4] = 0.0;

 u[5] = 0.0;

 return 0;

}

/* -- */

/* -- */

int pvls (integer ndim, const double *u, double *par)

{

 integer tmp;

 extern double getp();

 double x, y, z;

191

 double xp, yp, zp;

 double mu;

 double rone, rtwo;

 mu = par[1];

 x = getp("BV0", 1, u);

 y = getp("BV0", 2, u);

 z = getp("BV0", 3, u);

 xp = getp("BV0", 4, u);

 yp = getp("BV0", 5, u);

 zp = getp("BV0", 6, u);

 rone = sqrt((x+mu)*(x+mu) + y*y + z*z);

 rtwo = sqrt((x-1+mu)*(x-1+mu) + y*y + z*z);

 par[15]=x*x+y*y+2*(1-mu)/rone+2*mu/rtwo-xp*xp-yp*yp-zp*zp;

 par[16]=y;

 return 0;

}

/* -- */

/* -- */

int bcnd () { return 0; }

/* -- */

/* -- */

int icnd () { return 0; }

/* -- */

/* -- */

int fopt() { return 0; }

/* -- */

/* -- */

compute_lagrange_points_0.5.auto

This script computes the initial circle of solutions for mu=0

as well as the bifurcating branches which give us the

Lagrange points.

Load 3d.c and c.3d into the AUTO CLUI

load('3d')

Add a stopping condition so we only compute the loop once

We tell AUTO to stop when parameter 16 is 0.991, parameter 1 is -0.1,

or parameter 1 is 1.1. If parameter1 is 0.5 we just report

a point.

cc('UZR',[[-16,0.991],

 [-1,-0.1],

 [1,0.5],

 [-1,1.1]])

We also want to compute branches for the first 3 bifurcation

points.

cc('MXBF',-3)

IPS=0 tells AUTO to compute a family of equilibria.

192

cc('IPS',0)

Compute the circle.

run()

Extract the 5 Lagrange points for each of the branches

which we will use in later calculations.

This command parses the solution file fort.8 and returns

a Python object which contains all of the data in the

file in an easy to use format.

data=sl()

i=0

For every solution in the fort.8 file...

for x in data:

 # If the solution is a user defined point...

 if x["Type name"] == "UZ":

 # We look at the value of one of the components

 # to determine which Lagrange point it is.

 # The solution is a Python dictionary. One of the

 # elements of the dictionary is an array called "data"

 # which contains the values of the solution. For example,

 # x["data"][0]["t"] is the 't' value of the first point

 # of the solution. x["data"][0]["u"] is an array of which

 # contains the value of the solution at t=0.

 if x["data"][0]["u"][1] > 0.01:

 # When we determine which Lagrange point we have we save it.

 x.writeFilename("s.l4")

 elif x["data"][0]["u"][1] < -0.01:

 x.writeFilename("s.l5")

 elif x["data"][0]["u"][0] > 0.01:

 x.writeFilename("s.l2")

 elif x["data"][0]["u"][0] < -0.01:

 x.writeFilename("s.l3")

 else:

 x.writeFilename("s.l1")

compute_periodic_family.xauto

This is an example of an 'expert' AUTO CLUI script.

This scripts takes the Lagrange points computed

by the compute_lagrange_points_0.5.auto and

computes the periodic orbits emanating from them.

In expert scripts we need to explicitly import the

AUTOclui library

from AUTOclui import *

There isn't a AUTO CLUI command for diagnostic

file parsing yet, but in a script such as

this we can just as easily import the parsing

class directly.

import parseD

We also import a few general Python utility

193

libraries.

import sys

import string

import math

We have divided the functionality if this

script into two functions, so that the

same ideas may be more easily used in

other contexts.

def compute_periodic_family(starting_point,mu,compute_bifur_flag="no",npr=20):

 # We load the 3d.c, the starting point file, and

 # c.3d into the AUTO CLUI

 load(c='3d',s=starting_point,e='3d')

 # And we parse the starting solution. This

 # is mainly to determine what label the

 # file contains.

 starting_solution=sl(starting_point)

 # We setup the calculation by setting the

 # starting solution to be the appropriate label.

 cc('IRS',starting_solution[0]["Label"])

 # And setting the problem type. In this case

 # we want to compute a family of equilibria.

 cc('IPS',1)

 # Our initial calculation it to go from 0.5

 # to the desired mu value, so we put in a

 # stopping condition for the mu value we want.

 cc('UZR',[[-1,mu]])

 # Since we are starting at mu=0.5 we want to

 # go down if the desired value is less, and

 # go up if the desired value is more.

 if mu < 0.5:

 cc('DS',-pr('DS'))

 run()

 # We save this solution

 sv('hopf_bifurcation')

 # And get a parsed version as well.

 hopf_bifurcation = sl('hopf_bifurcation')

 # This will eventually become an AUTO2000 internal

 # NOTE: the interface to the parseD object is

 # under development and may change significantly

 # in the final version

 parseD_object=parseD.parseD('fort.9')

 # We print out the eigenvalues of the Jacobian.

 print parseD_object[-1]["Eigenvalues"]

 # In this loop we look for all eigenvalues

 # with "zero" (i.e. sufficiently small) real part.

 # We begin by defining an array in which the periods

 # of the Hopf bifurcations will be stored.

 periods = []

 # The parseD_object is basically a Python list,

 # so we use standard Python syntax to iterate

 # over it.

194

 for eigenvalue in parseD_object[-1]["Eigenvalues"]:

 if math.fabs(eigenvalue[0]) < 1e-8:

 # If the real part in sufficiently small

 # we get the imaginary part

 imag = math.fabs(eigenvalue[1])

 print "imaginary part: ",imag

 print "period : ",2*math.pi/imag

 # and compute the period. If is is not in our

 # list of periods (i.e. it is not a complex conjugate

 # to one we have already computed) we add it.

 if 2*math.pi/imag not in periods:

 periods.append(2*math.pi/imag)

 # Now we have an array which contains the initial periods of all of the

 # periodic orbits emanating from the Hopf bifurcation.

 # We iterate over them and calculate each family.

 for period in periods:

 # Since we have a parsed version of the initial solution

 # it is easy to modify it to include the period

 # we want. In AUTO, the 11th parameter is always

 # the period.

 hopf_bifurcation[-1]["p"][10] = period

 # Now, when this point was computed we had Hopf

 # bifurcation detection turned off (since all

 # points were Hopf bifurcations). So, we manually

 # mark the point as a Hopf bifurcation.

 hopf_bifurcation[-1]["Type number"] = 3

 hopf_bifurcation[-1]["Type name"] = "HB"

 # We load in the above modified solution and the constants file.

 # NOTE: There are several ways to set the solution file.

 # It can be a filename, an open file descriptor, or a

 # Python object of the parseS class.

 load(c='3d',s=hopf_bifurcation)

 # We set the problem type, in this case we want to

 # compute a family of periodic orbits.

 cc('IPS',2)

 # We turn off torus bifurcation detection, since there are

 # lots of torus bifurcations.

 cc('ISP',3)

 # We want additional solutions to be saved, so we set NPR to

 # a smaller value.

 cc('NPR',npr)

 # We want the period, the y value at t=0, and the Jacobi constant to

 # be printed out, we we add the appropriate parameters,

 cc('ICP',[2,10,15,16])

 # We the IRS to be the label of the desired starting point.

 cc('IRS',hopf_bifurcation[-1]["Label"])

 # And we run the calculation.

 run()

 # Finally, we save the solution.

 sv('%s_mu_%f_period_%f'%(starting_point,mu,period))

 # Now, if there were any bifurcation points detected we want

 # to compute the branches emanating from them as well.

 # Since this is a very common task, we have put that functionality

 # into a subroutine.

195

 if compute_bifur_flag == "yes":

 compute_bifur('3d','%s_mu_%f_period_%f'%(starting_point,mu,period),npr)

This subroutine takes a problem name and a solution file, and for

every bifurcation point in the solution file it attempts to

compute a bifurcating branch.

def compute_bifur(problem,solution_file,npr=20):

 # Load the problem file and constants file

 ld(problem)

 # and the solution file.

 ld(s=solution_file)

 # Set the problem type

 cc('IPS',2)

 # Turn off torus bifurcation detection

 cc('ISP',3)

 # Increase the amount of data output

 cc('NPR',npr)

 # We want the period, the y value at t=0, and the Jacobi constant to

 # be printed out, we we add the appropriate parameters,

 cc('ICP',[2,10,15,16])

 # We parse the solution file to get the labels of the

 # solutions.

 data = sl(solution_file)

 # The solution object is basically a Python list,

 # so we use standard Python syntax to iterate

 # over it.

 for solution in data:

 # For every solution we test to see if it is a bifurcation point

 if solution["Type name"] == "BP":

 # And if it is we use it as a starting point for a new calculation

 ch("IRS", solution["Label"])

 # This is the syntax for telling AUTO to switch branches at the bifurcation

 ch("ISW", -1)

 # Compute forward

 run()

 # Save the branch

 sv(solution_file+"_+_"+`solution["Label"]`)

 # Compute backward by making the initial step-size negative

 ch("DS",-pr("DS"))

 run()

 # Save the branch

 sv(solution_file+"_-_"+`solution["Label"]`)

This is the Python syntax for making a script runable

if __name__ == '__main__':

 # We want to have the option of computing the bifurcating

 # branches or not, so we use the Python getopt

 # routines to process command line options.

 import getopt

 # This line process the command line options and

 # looks for a -b option

 opts_list,args=getopt.getopt(sys.argv[1:],"bn:")

 # We take the list of options generated by

 # getopt command and turn it into a dictionary.

 # This is not strictly necessary, but it makes

196

 # it easier to use.

 opts={}

 for x in opts_list:

 opts[x[0]]=x[1]

 # If you use the -b option then we want to compute the bifurcating

 # branches.

 if opts.has_key("-b"):

 compute_bifur_flag="yes"

 else:

 compute_bifur_flag="no"

 npr = 20

 if opts.has_key("-n"):

 npr = string.atoi(opts["-n"])

 # The first argument is the name of the file in

 # which you find the starting point

 starting_point = args[0]

 # The second argument is the desired mu value.

 mu = string.atof(args[1])

 compute_periodic_family(starting_point,mu,compute_bifur_flag,npr)

197

Appendix D: Catalogue of Periodic Orbits Around the Earth-Moon L4 Point

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

Appendix E: Floquet Theory and the Monodromy Matrix

Although slightly more complex, the stability of periodic orbits can be found in a manner

similar to that used for equilibrium points where constant coefficient linear systems and the

eigenvalues of the Jacobian matrix are used to deduce information on stability. The method described

here is called Floquet theory in honor of Gaston Floquet, a famous nineteenth and twentieth century

French mathematician. Consider the following equation

˙ x = A(t)x E.1

where < t < + and A(t) is a continuous T periodic n n matrix. If (t) is a fundamental

matrix then (t +T) is also a fundamental matrix defined as

(t +T) = (t)C E.2

where C =
1(0) (t) . Therefore, equation E.2 can also be written as

(t +T) = (t) 1(0) (t) E.3

Furthermore, equation E.3 can be written as the product of two matrices,

(T) = P(t)eBt E.4

Here P(t) is T periodic and B is an n n matrix. The proof that (t +T) = (t) is provided by

Verhulst [E2] and is given below

Proof

Set = t +T . Then

˙ x = A(t)x = A(T)x = A()x E.5

213

() along with (t) and (t +T) are all fundamental matrices that are linearly dependent.

Therefore, there exists a nonsingular matrix C such that

(t +T) = (t)C E.6

This is just equation E.2. There is also a constant matrix B such that C = eBT . Now from equation

E.4,

(t)e Bt
= P(t) E.7

Then

P(t +T) = (t +T)e B(t+T)

P(t +T) = (t)Ce B(t+T)

P(t +T) = (t)e Bt

P(t +T) = P(t)

The non-singular matrix, C , is sometimes referred to as the monodromy matrix of equation E.1. The

monodromy matrix is simply the linearization of the period T mapping evaluated at the fixed point.

The eigenvalues, , of the matrix, C , are called the characteristic multipliers or sometimes the

Floquet multipliers. Sanchez [E1] states that the eigenvalues are regarded as characteristic multipliers

since they are independent of the choice of the fundamental matrix. Suppose (t) is another

fundamental matrix. Then

(t) = (t)A E.8

where A is a constant matrix. Given equation E.2, the following is a result

(t +T) = (t +T)A = (t)CA = (t)A 1CA E.9

214

He states that from linear algebra, the characteristic roots, i.e. eigenvalues, of C and A 1CA are

identical. Because the system of differential equations is energy conserving, the period T mapping is

preserving. Therefore, the determinant of the matrix, C , is unimodular, i.e. equal to 1, and the

product of the eigenvalues must also be equal to 1. In a three-dimensional physical space, there are a

total of six eigenvalues. Two are equal to 1, two are complex numbers with both real and imaginary

components, and two others (also complex numbers) are reciprocals of one another. If the Floquet

multipliers, i.e, the modulus of each complex number, are all less than or equal to unity the system is

said to be stable. If the Floquet multipliers, i.e, the modulus of each complex number, are each

greater than unity the system is said to be unstable. If one of the Floquet multipliers, i.e, the modulus

of the complex number, is less than unity, but the other (or others) are greater than unity the system

possesses a saddle node, but still unstable. Important note: Since the stability of a periodic orbit is

that same along the entire trajectory, the eigenvalues of all monodromy matrices are also the same.

Example E.1.

Determine the stability of a system of ordinary differential equations with the following eigenvalues:

Multiplier 0: 1.0000000+0.000000i

Multiplier 1: -0.6874934-0.726191i

Multiplier 2: -0.6874934+0.726191i

Multiplier 3: 0.7072087-0.707005i

Multiplier 4: 0.7072087+0.707005i

Multiplier 5: 1.0000000+0.000000i

Solution: Multiplier 0 and 5 are the two eigenvalues equal to 1. Multipliers

1 and 2 are two complex numbers with both real and imaginary

components. The product of the two numbers is equal to 1, i.e.

for a + bi and c + di , the product is (ac bd) + (ad + bc)i .

Multipliers 3 and 4 are reciprocals of one another, i.e. for a

complex number, a + bi , the reciprocal is
a

(a2 + b2)

b

(a2 + b2)
i .

Since none of the multipliers has a modulus greater than unity, the

system is stable.

215

Example E.2.

Determine the stability of a system of ordinary differential equations with the following eigenvalues:

Multiplier 0: 1.0000000+0.000000i

Multiplier 1: 0.2062284-0.978504i

Multiplier 2: 0.2062284-0.978504i

Multiplier 3: 1.0000000+0.000000i

Multiplier 4: 1.0000134+0.000000i

Multiplier 5: 0.9998627+0.000000i

Solution: Multiplier 0 and 3 are the two eigenvalues equal to 1. Multipliers

1 and 2 are two complex numbers with both real and imaginary

components. The product of the two numbers is equal to 1, i.e.

for a + bi and c + di , the product is (ac bd) + (ad + bc)i .

Multipliers 4 and 5 are reciprocals of one another, i.e. for a

complex number, a + bi , the reciprocal is
a

(a2 + b2)

b

(a2 + b2)
i .

Since the modulus of Multiplier 4 is greater than unity, the system

is unstable.

The complex number, i , is called the characteristic exponent or sometimes the Floquet exponent if

the relationship below is true.

= e T
E.10

Finally the real components of the Floquet exponents, Re(i) , are called the Lyapunov exponents.

References:

[E1] Sanchez, David A., Ordinary Differential Equations and Stability Theory: An Introduction,

Dover Publications, Inc, New York, 1979.

[E2] Verhulst, Ferdinand, Nonlinear Differential Equations and Dynamical Systems, Second

Edition, Springer-Verlag, Berlin, Heidelberg, New York, 2000.

216

Appendix F: 2005 SIAM Dynamical Systems Conference Presentation Charts

The charts provided in this appendix were presented at the SIAM (Society for Industrial and Applied

Mathematics) Conference on Application of Dynamical Systems, 22-26 May 2005, Snowbird, Utah.

217

218

219

220

221

222

223

Appendix G: 2006 SIAM PDE Conference Presentation Charts

The charts provided in this appendix were presented at the SIAM (Society for Industrial and Applied

Mathematics) Conference on Analysis of Partial Differential Equations, 10-12 July 2006, Boston,

Massachusetts.

224

225

226

227

228

229

230

231

232

Appendix H: Dissertation Defense Presentation Charts

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

	UMI Number: 3210298
	All rights reserved.

	UMI Microform 3210298
	789 East Eisenhower Parkway
	P.O. Box 1346

	3287118.pdf
	Title Page
	Signature Page
	Epigraphy
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Acronyms
	Abstract
	Preface
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Glossary
	Bibliography
	Appendices
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Appendix F
	Appendix G
	Appendix H

