
INFORMATION TO USERS 

This manuscript has been reproduced from the microfilm master. UMI 
films the text directly from the original or copy submitted. Thus, some 
thesis and dissertation copies are in typewriter face, while others may 
be from any type of computer printer. 

The quality of this reproduction is dependent upon the quality of the 
copy submitted. Broken or indistinct print, colored or poor quality 
illustrations and photographs, print bleedthrough, substandard margins, 
and improper alignment can adversely affect reproduction. 

In the unlikely event that the author did not send UMI a complete 
manuscript and there are missing pages, these will be noted. Also, if 
unauthorized copyright material had to be removed, a note will indicate 
the deletion. 

Oversize materials (e.g., maps, drawings, charts) are reproduced by 
sectioning the original, beginning at the upper left-hand corner and 
continuing from left to right in equal sections with small overlaps. Each 
original is also photographed in one exposure and is included in 
reduced form at the back of the book. 

Photographs included in the original manuscript have been reproduced 
xerographically in this copy. Higher quality 6" x 9" black and white 
photographic prints are available for any photographs or illustrations 
appearing in this copy for an additional charge. Contact UMI directly 
to order. 

UMI 
University Microfilms International 

A Bell & Howell Information Company 
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA 

313/761-4700 800/521-0600 





Order Number 9236403 

On initial-boundary value problems for the nonlinear 
Schrodinger equation and the Ginzburg-Landau equation 

Bu, Qiyue, Ph.D. 

University of Illinois at Urbana-Champaign, 1992 

UMI 
300 N. Zeeb Rd. 
Ann Arbor, MI 48106 





ON INITIAL-BOUNDARY VALUE PROBLEMS 
FOR THE NONLINEAR SCHRODINGER EQUATION 

AND THE GINZBURG-LANDAU EQUATION 

BY 

QIYUE BU 

B.S., Shanghai Jiaotong University, 1982 
M.S., Shanghai Jiaotong University, 1985 

M.S., Michigan State University, 1988 

THESIS 

Submitted in partial fulfilment of the requirements 
for the degree of Doctor of Philosophy in Mathematics 

in the Graduate College of the 
University of Illinois at Urbana-Champaign, 1992 

Urbana, Illinois 



UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN 

THE GRADUATE COLLEGE 

MARCH 1 9 9 2 

WE HEREBY RECOMMEND THAT THE THESIS BY 

QIYUE BU 

ON INITIAL-BOUNDARY VALUE PROBLEMS FOR THE NONLINEAR 
ENTITLED 

SCHRODINGER EQUATION AND THE GINZBURG-LANDAU EQUATION 

BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR 

DOCTOR OF PHILOSOPHY 
T H E DEGREE OF 

/brgLe^ < ^ e ^ 
C^^t^/^^U^^^ 

Director of Thesis Research 

Head of Department 

Comjmthee on Final Examination! 

111 

thee on .binal Jixaminati-

Chairperson 

fU^Mm/U-
^tsl^frtJL-

t Required for doctor's degree but not for master's. 



A B S T R A C T 

There are five chapters in this thesis. Well-posedness of the forced nonlinear 

Schrodinger equation (NLS) is shown in Chapter 1. The global solution to an 

initial-boundary value problem for the NLS is proved in Chapter 2. Global 

existence of the full-line problem for the Ginzburg-Landau equation (GL) is 

shown in Chapter 3. In Chapter 4, the following results concerning the half-line 

problem for the Ginzburg-Landau equation are established: 1) local existence-

uniqueness; 2) small amplitude solution; 3) criteria for global existence. In 

Chapter 5, the weak solution to an initial-boundary value problem for the GL 

equation is obtained via Galerkin's method. 
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Introduction. 

O V E R V I E W OF A P P R O A C H E S TO F O R C E D P R O B L E M S 

Many forced problems occur when an external force is applied to the time evolution 

of systems governed by nonlinear partial differential equations. For example, 

in ionospheric modification experiments, one directs a radio frequency wave at 

the ionosphere. At the reflection point of the wave, a sufficient level of electron 

plasma waves is excited to make nonlinear behavior important. This is described 

by the nonlinear Schrodinger equation (NLS) with a nonlinear boundary value 

being specified [32]. We consider so-called forced problems in terms of nonlinear 

boundary value problems. The forced ID nonlinear Schrodinger equation reads as 

follows: 

iut = uxx + fc|u|2u, 0 < x,t < oo 

u(x,0) = u0(x),u(0,t) = Q(t),u0(0) = Q(0) 

with k real and u —> 0 as x —> oo. 

Forced NLS has been investigated via numerical method (e.g. Kaup [32]). It 

was shown that a smooth Gaussian forcing of the NLS amplitude creates a number 

of solitons roughly proportional to the area of the forcing amplitude. On the other 

hand, it has also been studied via the inverse scattering transform (1ST) technique. 

(See Ablowitz, Carroll, Fokas in [10,12,14,15,16,17,23,24,26].) The main thrust 

is to determine the time evolution of spectral data so that the problem can be 

solved. By inverse scattering one obtains, depending on the choice of the scattering 

data, various complicated nonlinear singular intergro-differential equations for the 

time evolution of the scattering data uniquely defined in terms of the boundary 

condition. For the special case of a homogenous boundary condition, the scattering 

data are found in closed form [25]. Further, the framework and technique used 
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to deal with NLS also extend to general AKNS systems [14]. But 1ST approach 

does not provide classical solutions (e.g. in H2 space). Nor does it discuss global 

existence, an important concept in the theory of partial differential equations. 

There is a third approach to study the forced problems, i.e. the PDE method. 

For example, PDE solution of the forced Korteweg de-Vries equation (KdV) in a 

quarter plane was obtained by Bona and Winther in [8] and continuous dependency 

results were shown in [9] via analytic techniques. For the forced NLS when u(0, t) is 

given it was shown by Carroll and Bu in [18] that for un £ H2[0, oo), Q € C2[0, oo) 

there exists a unique global classical solution in C°(H2) D CX(L2). Finally, initial 

value problems for forced linear and nonlinear partial differential equations can 

be considered where the forcing is assumed to be rapid compared to the unforced 

dynamics. In this case, a multi- scale perturbation method could be used to derive 

solutions in the form of asymptotic expansions [48]. 

In this thesis, we first in Chapter 1 show the well-posedness result for the 

forced NLS. Then in Chapter 2, we prove the global existence theorem for the 

forced NLS with different boundary condition when ux(0, t)-hatu(0, t) is given (here 

a is real). In Chapter 3, we turn to the Cauchy problem for the ID Ginzburg-

Landau equation and show the global existence for u, K > 0. In Chapter 4, we 

study the forced Ginzburg-Landau equation. Local existence and small amplitude 

solution for v, K > 0, partial results on global existence when |/?| < y/3n or a/? > 0 

are obtained. Finally in Chapter 5, we show that there exists a weak solution to 

the forced Ginzburg-Landau equation with v, K > 0 posed on a finite domain. 
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Chapter 1. 

ON WELL-POSEDNESS OF THE FORCED 

NONLINEAR SCHRODINGER EQUATION (NLS) 

§1.1 INTRODUCTION. 

In this chapter, we study the well-posedness of the following initial-boundary value 

problem for the nonlinear Schodinger equation (NLS): 

(1.1.1) iut = uxx + k\u\2u 

u(x,0) = u0(x),u(0,t) = Q(t) 

with un(0) = Q(0) and k real. It was shown in [18] that for un G H2[0,oo),Q 6 

C2[0, oo) there exists a unique global classical solution of (1.1.1) in C°(H2) 0 

Cl(L2). Thus in §1.2 we give some growth estimates for ||u||2 and ||«'||2 which 

are critical to prove the well-posedness. In §1.3, for Un 6 if2[0, oo),Q E C2[0, oo) 

we show the well-posedness of the forced NLS by using semigroup techniques and 

estimates. 

We shall utilize the following notation throughout: 

(1.1.2) P(t)=ux(0,t) 

/•oo 

(1.1.3) IKI|2 = [/ \ux(x,t)\2dx]* 
Jo 

(1.1.4) \\u\U = [r\u(x,t)\Ux}* 
Jo 
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(1.1.5) ||u||m,p = [ /°° E \D>{*,t)\Pd*]> 
J° |a|<m 

(1.1.6) q = \\Q\\ci[o,T\ =, sup [|Q(*)| + |Q'(*)|] 
0<t<T 

Further, we shall consider (1.1.1) for 0 < t < T and q < R, ||uo||i,2 < R 

(R, T < oo, arbitrary) unless stated otherwise. 

§1.2 ESTIMATES FOR ||u||2 AND ||tz'||2. 

The following were established in [18]. 

(1.2.1) ||tz||2 = ||tio||i -2Im f P(r)Q^)dr 
Jo 

(1.2.2) M i - | | |u | | | = \\u'0\\
2 - ^\\u0\\i-2ReJo

tp(T)Q^)dr 

/•OO J»00 ft 

(1.2.3) / uu'dx= / u0u'0dx- / Q(r)Q'(T)dr 
Jo Jo Jo 

+i f\p{r)\2dr+^i J*\Q(T)\*dr 

(1.2.4) ||u||t<A||u'||2||u||3 
2 

(see [50] for (1.2.4)). By (1.2.1), (1.2.2) and (1.2.3) one has the following three 

estimates: 

(1.2.5) ||u||2 < K i l l + 2qy/t( I |P(r)|2dr)l < R2 + 2Ry/t( f \P{r)\2dr)h 
Jo Jo 



(1.2.6) llu'H2 < JM||«||* + IKII2 + MllttoH* + 2qVt(J* \P(T)\2dr)k> 

< ^h'hMl + IKIll + A^IKIhlluollS + 2RfK£ \P{r)?dr)i 

< A y IKIWMI2 + R2 + coR* + 2Ry/t(Jt \P(r)\2dT)* 

(1.2.7) J* \P(r)\2dr < M J* \Q(T)\UT + \ J* Q(r)Q^)dr| 

/•oo />oo 

+| / uu'dx\ + I / uoMo l̂ 
JO Jo 

<]MTtf* + T«8 + ||«||a|K||2 + i||«o||?ia 

< l^TR^ + TR2 + ||u||2||«'||8 + i||u0||! + ^IKHi 

<^TR' + TR2 + \\\U\\2 + \\\U%2 + \R2 

From (1.2.5) and (1.2.7) one has (q < R) 

\\u\\2 <R2 + 2Ryft{TR^ + TR2 + ||u||2||u'||2 + \R2)± 

<R2 + 2RV~t(]fr^R2 + VTR+ \\U\\I\\U'\\I + ^\R) 

<R2+ 2R3Td^- + 2TR2 + 2Ry/i\\u\\l\\u'\\l + V2R2VT 

<c + 2Ry/i\\u\\l\\u'\\l 

If c > 2i2v^||«|||||u'||J then ||u||| < 2c. Otherwise, ||u||!j < 4i2v |̂|tz||f ||u'||J. In 
any event, 

(1.2.8) HI2 < max{2c,4/2V7||u||| Hu'llh 



Now if 2c > 4i2v /i| |u|| | | |u / | | | then by (1.2.8) one has ||u||2 < V^£. Otherwise, 

N i l < 4J2^| |u | |J | | t i ' | | | again by (1.2.8). Thus ||u||2 < (4tRy/i\\u'\\$)l. In sum

mary, 

(1.2.9) ||u||2 < max{v^a,(4i2v^||u'| | |)t} = max{>/§a,(16JZ2t||ti'||2)i} 

Now put (1.2.5) in the RHS of (1.2.7) to obtain (t < T) 

J* \P{r)\2dr < l^TR* + TR2 + ±\\u'\\2 + \{R2 +2Ry/T(Jt \P(r)\2dr^) + ^R2 

This implies that (by completing the square) 

[(J* \P{r)\2dr)\ - l-Rs/T]2 < ™*T+TR^ + R2
 + hu> 

(1.2.10) ( I* \P(r)\2dT)? <2RVT+R2JT^ + R + ^ -

Now one can use (1.2.6) and (1.2.10) to get (noting q < R) 

(1.2.11) |K | | 2 <Ai | i |K | | 2 | | U | | ^ + i?2 + coi24 

+2Ry/T(2Ry/T + R2)JT^.+ R + M2-) 

< A^||u' | |2 | |u| |* + R2 + c0R
4+4R2T + y/2\k\TR3 + 2R2Vf+ y/2TR\\u% 

<A^|K||2|Hli + c~+i|K||2 

The last line is obtained via y/2TR\\u'\\2 < ^ - + ^ - and 
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c = R2+ coR* + 4R2T + y/2\k\TR3 + 2R2VT+ ^ -

Thus by (1.2.9), (1.2.11) becomes 

(1.2.12) IKIIi<A|fc|||u'||2||U||S + 2e 

< 2 c + max{A|fc|||u'||2(2c)f,A|Jfc|||u'||ll6JR
2<} 

If one sets 0 < t < 3 2 i | f l i then (1.2.12) becomes 

(1.2.13) llu'Hl < 2c + max{A|fc|||u'||2(2c)f . A l f t l l l K ' l l i i e i Z 2 ^ ^ } 

= 2c + max{A|fc|||u'||2(2c)t,i||u'||2} 

KA|ifc|||u'||2(2c)l > f ||u'||2 then 

IKH2 < 22 +A|*|||«'||2(2c)l < 2 2 + ^ 2 1 + ^ 

hence ||u'||i < 4c+A2P(2c)3. If A|Jfc|||u,||2(2c)f < | | |u ' | | | then \\u'\\% < 2c+| | |u ' | | l 

hence ||«'||2 < 4c. Then we get 

| |«' | |2<4c + A2ifc2(2c)3 

for 0 < t32XLiR2. Thus by taking the square root, 

(1.2.14) ||u'||2 < V4c + A2A;2(2c)3 = Ai 

From (1.2.9), noting 0 < t < 32\\k\R2i o n e n a s 

(1.2.15) \\u\\2<max{V2l,(16R2t\\u%)*}<V2l+(16R2t\\u'\\2)* 



S^+Csfe^)* - * 
Now by (1.2.14) and (1.2.15) 

(1.2.16) | | u | | i , 2 <A 1 +t f 1 =Ai 

Without loss of generality one can assume that R < Ai in (1.2.16) otherwise one 

simply let Ai + R be replaced by Ai. 

Now let 0 = to < ti < t2 < • • • < ijv = T such that \U+i — <,| < 32\\k\R2• 

For to < t < ti one has ||«||i,2 < Ai. For t\ <t<t2 one can repeat the above 

process to get ||u||i,2 ^ A2 and again without loss of generality we can assume 

that R < Ai < A2. Thus by induction one concludes (after N = [32Aj^|fl2] + 1 

times) 

PROPOSITION 1.2.1. For 0 < t < T one has the following estimate \\u\\i>2 < 

\N(R) for ||uo||i>2 < R, HOHcMo.n < R-

COROLLARY 1.2.2. By estimates in [50] one obtains ||u||oo < Ajju'lll ||w||| < AAJV 

§1.3 WELL-POSEDNESS RESULTS. 

Throughout this section we shall assume u,v solve (1.1.1) with data (Q,uo) and 

(Qi,«o) both lies in C2[0,T] x if2[0,00) = X. According to global existence-

uniqueness theorem [18], the map 

/ : X -* Y = C\L2, [0,T]) n C\H2, [0,T]) 

via(Q,«0) i-> M is well-defined. To prove well-posedness, we shall fix z = (Q,u0) 6 

X and z1 = (Qi,v0) E X. Let \\z\\x = max{||Q||c2[o,T], ||«o||2,2} < R and 
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||^i | |x < R' The following notation is introduced: 

w = Au = v — u, Az = z\ — z — (AQ, WQ) = (Qi — Q, vo — «o) 

Since v = w + u satisfies (1.1), one has 

i(wt + ut) = wxx + uxx + k\w + u\2(w + u) 

= wxx + uxx + k(w + u)2(u) + u) 

= wxx + uxx + fc(|u;|2io + 2u\w\2 + u2w + 2|U|2UJ + uw2 + \u\2u) 

But u solves (1.1.1) thus the above equality can be simplified and w satisfies the 

following variable-coefficient, initial-value, boundary-value problem: 

(1.3.1) iwt = wxx + k\w\2w + 2fcu|iu|2 + ku2w + 2k\u\2w + kuw2 

w(0,t) = AQ,wo = vo— MO-

LEMMA 1.3.1. There exists m > 0 such that s u p 0 < t < r \\v — u||2 < m\\zi — z\\J( 

where X0 = C[0, T] x L2[0, oo). 

PROOF: We shall write AP = PX-P = vx(0,t) - ux(0,t). From (1.3.1) one has 

(1.3.2) i9t|i«|2 = iwtiv + iwwt 

= [wxx + k\w\2w + 2k\w\2u + ku2w + 2fcu;|u|2 + kw2u]w 

-w[wxx + A;|«;|2u; + 2&|u;|2tZ + ku2w + 2kw\u\2 + kw2u] 

= wxxw — wwzx -}- 2A;|u;|2(u}u — uw) 

+k(u2w2 — u2w2) + k\w\2(uw — uw) 
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= 2ilm(wxxw + 2k\w\2wu + ku2w2 + fc|u>|2uiu) 

Thus 

(1.3.3) r\w\2dx = \\wo\\2
2 

Jo 

+2Im I [J (wxxw+ 2k\w\2wu +ku2w2+k\w\2uw)dx]dT 
Jo Jo 
ft ft />oo 

= ||u>o||i-2/m / APAQdT + 2Im / (2k\w\2wu + ku2w2 + k\w\2uw)dxdr 
Jo Jo Jo 

< K i l l + 2( / ' \AQ(r)\2dr)H f \AP(r)\2dr)\ 
Jo Jo 

+2\k\ [ /°°(3|u»|3|u| + |u|2|u;|2)da:(fr 
Jo Jo 

By Corollary 1.2.2, for 0 < t < T, 0 < x < oo one has 

(1.3.4) sup \w(x,t)\ < sup(\u(x,t)\ + \v(x,t)\) < 2XXN 

From (1.2.10) and Proposition 1.2.1, 

(1.3.5) ( f \AP{r)\2dr^ < [ A2|Px(r) |2 + 2|P(r)|2)<Zr]t 
Jo Jo 

< y/2{ f |Pi(r)|2rfr)l + v^( /* \P(T)\2dr)$ 
Jo Jo 

< V2(2RVT+ \[T^R2 +R+ M2-) 

+y/2(2RVT + )p^R2 + R + M 

< 4V2TR + 2y/f\k\R2 + 2\/2R + 2XN = c0 

I 2 ) 

Putting (1.3.4),(1.3.5) in (1.3.3) and noting sup|u(a:,i)| < AAJV one has 
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(1.3.6) I™ \w\2dx < \\w0\\
2 + 2VTCQ\\AQ\\C[O,TI 

Jo 

+2\k\ f ( [3(2XXN(R))\w\2XXN(R) + (XXN(R))2\w\2}dxdr 
Jo Jo 

<||u;o| | l+cP(3| |c[o,T]+c/ / \w\2dxdr 
Jo Jo 

By Gronwall lemma, 

/•OO 

(1.3.7) / \w\2dx < (\\wo\\2 + c\\AQ\\c[o>T])e
5t < {\\wo\\2+c\\AQ\\c[o,T\)eZT 

Jo 

Therefore 

(1.3.8) sup ( r \w\2dx)1* < J{\\wo\\2+c\\AQ\\c[o,T\)etT 
0<t<T Jo V 

< m0(||u;o||2 + c||/dQ||*[0i31) = m0(||ioo|||||«»o||J + c\\AQ\\*CM) 

< m0(>/ll«o||2 + | |t;o||2|K||| + cll^QHJ[0|71) 

< mo(V2R\\wo\\l + c\\AQ\\l[0Tl) < max{m|K| |2^m||40| |* [ O | ; r |} • 

= m\\Az\\lCo = m\\zi-z\\lCo 

Our lemma is proved. Q.E.D. 

LEMMA 1.3.2. There exists c > 0 such that ||v — u||y2 < c\\zi — z\\^ where 

Y2 = Cl(L2,[0,T]). 

PROOF: The norm of u on Y2 is sup0< t<r(||ttf ||2 + IMh)- Since s u p 0 < t < r ||u||2)2 

< oo, it is clear that the RHS of (1.3.1) satisfies the local-Lipschitz condition on 

w in H2. Hence one can adopt the proof of Theorem 4.1 in [18] to show that 

w = v — u is the unique global classical solution satisfying (1.3.1). 
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We use change of variables via w = W+AQ(t)e x to rewrite (1.3.1) as follows 

(1.3.9) Wt = -iWxx - ik\W\2W + Go + Gt + G2 

(1.3.10) Go = -AQ'e~x - iAQe~x - 2ki\AQ\2e~2xu - 2ki\u\2AQe~x 

-ikuA2Qe~2x - kiu2AQe~x - ki\AQ\2 AQe~3x 

(1.3.11) Gi = -4kie~xReWAQ - 2ki\u\2W - 2kiuAQe~xW 

-kiu2W - kiA2Qe~2xW - 2ki\AQ\2e~2xW 

(1.3.12) G2 = -2kiu\W\2 - kiuW2 - 2kiAQe~x\W\2 - kiAQe~xW2 

with W(x,0) = w0(x) - AQ(0)e~x = W0(x), Wo(0) = w0(0) - AQ(Q) = 0. Thus 

Gi=aW + fiW, G2 = 7|W\2 + SW2 and G0 is independent of W. For 0 < t < T 

it is clear that Go, a,/?,7,6 all belong to G1(L2[0,00)). Generally G\,G2 E D(A) 

but Go $ D(A). But since Q E C2, G'0(t) is continuous. By [53], one has J* N(t -

s)G0(s)ds E D(A) where A = -D2
X with D(A) = {W, Wxx E L2[0,00); W(0) = 0} 

and N(t) = exp{At] being a strongly continuous contraction semigroup in L2. 

One then converts (1.3.9) to an intergral equation 

(1.3.13) W{t) = N(t)W0 + f N(t- s)G0ds + I {Gx+G2- ik\W\2W)ds 
Jo Jo 

= N(t)W0 + f N(t- s)G(s)ds = N(t)W0 + f N(s)G(t - s)ds 
Jo Jo 

here ||W||oo and ||w||oo are bounded because by Propositions 1.2.1 and 1.2.2 one 

has 
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IHka < ||«||i,a + ||v||1>2 < 2A„(12) 

IHIoo<||u||oo + |H|«x,<2AAiV(JJ) 

hence ||W||i,2 and || W||oo are bounded. Similar to (2.6) in [18] one obtains 

(1.3.14) ||*|W|aW||2l2 < CBHWIlLllWlh.a < g||W||2l2 

Note 

\\AQ\\c2[o,T] < IIQi||c»[o,T| + IIQUc>[o,n < 2R 

Since Wo E D(A), one has (N(t)W0)t = N{t)AW0. By (1.3.13) 

(1.3.15) Wt(t) = (N(t)W0)t + N(t)G(0) + f N(t)G'(t - s)ds 
Jo 

= N(t)(-iD2
xW0) + N(t)G(0) + f N(t-s)G'(s)ds 

Jo 

Here 

(1.3.16) G(0) = G0(0) + Gi(0) + G2(0) - ik\W0\
2W0 

By (1.3.10), (1.3.11) and (1.3.12) 

(1.3.17) l|Go(0)||2<c1||zdQ||Ci[olT| 

(1-3.18) \\Gi(0)h<C2\\W0\\2 

(1.3.19) ||G2(0)||2<c3||Wo||2 
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Since N(t) is a contraction semigroup on L2 one has 

(1.3.20) \\N(t){-iD2
xWo)\\2 < C4||Wo||2,2 

Put (1.3.17), (1.3.18), (1.3.19) and (1.3.20) in (1.3.16): 

(1.3.21) ||G(0)||2 < codl^QHcito.rj + ||W0||a,2) 

Again from (1.3.9), (1.3.10), (1.3.11) and (1.3.12) 

(1.3.22) G'(t) = G'0(t) + G[(t) + G'2(t) - ik(2\W\2Wt + W2Wt) 

(1-3.23) ||G0(<)||2<c5 | |^Q||C2[o)T] 

(1-3.24) l|Gl(*)ll2<c.(||W||2 + ||Wi||2) 

(1-3.25) ll^(*)ll2<or(||W||2 + ||Wi||2) 

Put (1.3.23), (1.3.24) and (1.3.25) in (1.3.22) (note ||W||oo is bounded): 

(1.3.26) ||G'(i)||2 < cs(\\AQ\\ci[o,n + ||W||2 + ||W«||2) 

Now put (1.3.20), (1.3.21) and (1.3.26) in (1.3.15) (using the fact JV(*) is a. con

traction semigroup): 

(1.3.27) | |W||2 < \\N(t)(-iD2
xW0)\\2 + \\G(0)\\2 + f \\N(t - s)G'(S)\\2ds 

Jo 
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< C4||Wo||2,2 + co(\\AQ\\Ci[o,n + ||Wb||2,2) 

+ / c8(||Z\Q||c>[0>r| + \\W\\2 + \\Wt\\2)ds 
Jo 

By Gronwall lemma, 

(1.3.28) \\Wt\\2 < (c4||Wo||2,2 + co(||/dQ||0i[0|T| + ||Wbl|2,2) 

+cs(T\\AQ\\CHQ>n + / \\W\\2ds)exp{c8T} 
Jo 

< c'(\\AQ\\cHo,Ti + \\WQ\\2,2) + c ( \\W\\2ds 
Jo 

Since w = W + AQ(t)e~x ,wt = Wt + AQ'(t)e~x, one has 

(1-3.29) |K | | 2 < ||Wi||2 + PQUcqo.n 

< c\\\AQ\\c^o,T\ + lho||2)2 + c0 | |^g||c l [0 )T]) 

+c( f (\\w\\2 + \\AQ\\cl[o,T\)ds) + WAQWCHOW 
Jo 

< C{\\AQ\\C2[O,T\ + !KI|2,2) + c I \\w\\2ds 
Jo 

Now we can use Lemma 1.3.1. 

(1.3.30) ||v - u\\Y2 = sup (\\wt\\2 + IMI2) 
o < t < r 

f* 1 1 
< sup (c(||Z\g||C2[0)r| + |K| |2 ,2) + c mWAzW^ds + mWAzWZ) 

0<t<T Jo 

< c(\\AQ\\ci[o>T] + \\w0\\2,2) + cTmllzk'Uj^ + m\\Az\\-Xi < c\\Az\\^ 

and Lemma 1.3.2 is proved. Q.E.D. 
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THEOREM 1.3.3. The map / : X -*Y is continuous (thus (1.1.1) is well-posed). 

PROOF: By Lemma 1.3.2, it suffices to show that there exists M > 0 such that 

||v - u||y, < M\\zi - z\\x where Y3 = C°(H2, [0,T]). From (1.3.1) 

(1.3.31) ||u;M||2 < \\wt\\2 + \k\(\\w3\\2 + 2\\uw2\\2 + \\u2w\\2 + 2\\u2w\\2 + \\uw2\\) 

< N k + |fc|(lh3||2 + 3||u2«;||2 + 3||u>2u||2) 

Put (1.3.8) and (1.3.29) in (1.3.30): 

K . | | 2 < BWAzWi, + |fc|(|H|LlH|2 + 3||«||2ol|w||a + 3|k||oo||«||oo|h||2) 

< c\\Az\\\2 + |fc|((2c)2||U;||2 + 3c2 |M|2 + 3(2c)c||u;||2) 

= c\\Az\\2
X2 + m ' H | a < c\\Az\\2

x^m'm\\Az\\XQ < c\\Az\\X2 

By (1.3.8) and (1.3.31), 

(1-3.32) ||u - u||y8 = sup (||u>M||2 + ||w||2) 
0<t<T 

<c\\Az\\X2+m\\Az\\Xo<M\\Az\\X2 

Hence (1.3.32) combined with Lemma 1.3.2 shows that f : X —> Y = Y2 f\Y3 is 

continuous at z. The proof of well-posedness of (1.1.1) is completed. Q.E.D. 

REMARK 1.3.4. One can extend our results such that for the following problem 

(1.3.33) tu t = uxx + k\u\"u 

u(x,0) = u0(x),u(Q,t) = Q(t),uo(0) = Q(0) 
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with k < 0, uo E H2,Q E C2,0 < a < oo, there exists a unique global solution 

u E C1^2) fl C°(H2). Further, one can show that the above problem is well-

posed. For k > 0, we are not able to obtain the similar results for cr > 2. This is 

because the term ||u||2£ will appear in (1.2.2) and cannot be ignored when k > 0. 

Thus the powers for ||«||2, ||«'||2 hi (1.2.4) will increase and (1.2.8), (1.2.9) and 

Proposition 1.2.1 do not hold. 

Over the past three decades there have been many studies on evolution equa

tions which for certain initial data possess solutions that do not exist for all time. 

(See [5],[52],[56] for general information and reference on nonexistence theorems 

proved by blow-up methods). The global existence and uniqueness result (cf. The

orem 4.1 [18]) indicates that under the assumption UQ E -ff2[0, oo), Q E C2[0, oo), 

||u'||2 is bounded on any finite interval [0,T]. Nevertheless, one can study the 

situation where Q E G2[0, T) for some T > 0 and try to find a condition on Q 

such that ||ti'||2 (here u is the solution of the forced NLS (1.1.1)) blows up at finite 

time T. It can be shown that \Q(t)\ —> oo will cause blow-up in most cases. In 

most situations, u will also blow up when ||u'||2 blows up. 

REMARK 1.3.5. Jf J* \Q'(T)\2dr < M then \Q(t)\ < |Q(0)| + (T/0* |Q'(r) |2«ir)^ 

< |Q(0)|+y/TM and Jl\Q{T)\2dr < T( |Q(0) |+\ZTM) 2 thus Lemmas (3.2)(3.5) of 

[18] still hold and consequently Theorem (3.6) of [18] claim that \\u'\\2 is bounded 

on [0, T). (Li fact, ||tt||2,2 is bounded on [0, T).) No blow-up will occur in this case. 

One interesting question is what is going to happen if Q E C2[0,T), \Q(t)\ < M 
rp 

on [0,T) but J*0 |Q'(r)|e?r = oo. A perfect example is Q(t) = s i n ^ j . 
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Chapter 2. 

AN INITIAL-BOUNDARY VALUE PROBLEM 

FOR THE NONLINEAR SCHRODINGER EQUATION 

§2.1 PHYSICAL IMPLICATIONS. 

Many physically important nonlinear evolution equations in 1+1 (i.e. in one 

spatial and one temporal dimensions) have been found to possess exact solutions 

by the method of inverse scattering transform (1ST). The initial value problems 

on the infinite interval —oo < x < oo for decaying [2], periodic [59] and self-

similar potentials [31] have been studied, to name a few. However, there are many 

open questions on extending the 1ST to solve initial-boundary value problems, 

sometimes called forced integrable systems [14,19,23,25,32]. Many efforts have 

been made since to solve such problems. For example, the existence, uniqueness 

and well- posedness of solution to the Korteweg-de Vries equation for 0 < x, t < oo 

where u(x,0) and u(0,t) are given has been proven in [8,9]. Also the following 

forced nonlinear Schrodinger equation (NLS) has been considered: 

(2.1.1) iut = uxx + fc|«|2u 

u(x,0) = u0(x),u(0,t) = Q(t),u0(0) = Q(0) 

with k real. The main approach is to determine the time evolution of spectral data 

so that the problem can be solved by inverse scattering and the framework and 

technique extend to general AKNS systems in many cases (cf. [10,11,12,15,19,24]). 

As we have stated in Chapter 1, there exists a unique global classical solution for 

(2.1.1) and it is well-posed. There is, however, another type of half-line problem 

for the NLS: 

(2.1.2) iut = uxx + k\u\2u 
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u(x,0) = u0(x),ux(0,t) + au(0,t) = R(t) 

where a is real. Solving such a problem has important physical implications, (cf. 

[23]) For example, (2.1.2) arises in the propagation of optical solitons [33]. Also, 

NLS with an additional term ux on the right-hand side and a —> oo models water 

waves [40]. It has been shown that for (2.1.2), the solution u(x,t) can be obtained 

by solving a linear integral equation uniquely defined in terms of appropriate 

scattering data satisfying a single nonlinear integrodifferential equation uniquely 

defined in terms of the boundary condition (cf. Fokas, e.g.[4,23,25,26]). 

In this chapter, we obtain the global solution to (2.1.2) by using PDE method 

similar to [18]. In §2.2 we prove that there exists a unique classical local solution 

of (2.1.2). In §2.3 we establish a uniform bound on |«(a;,i)| for any fixed interval 

t E [0, T] to prove that the unique local solution obtained is in fact a global one. 

In addition to (1.1.2),(1.1.3),(1.1.4) and (1.1.5), we write 

(2.1.3) Q(t) = u(0, t), P(t) = ux(0, t), R(t) = P(t) + aQ(t) 

(2.1.4) R0 = sup (\R(t)\ + \R'(t)\) 
0<t<T 

Further, we shall use the following Gagliardo-Nirenberg estimates (cf. [50] 

for details): 

(2.1.5) H^ttll, < c||2>»tt||;||tt||;-

where A = £ + a(£ - &•) + 1=^- and i < a < 1. The constant c depends on 

j , m, n,p, q, and the region x E [0, oo), but we only need n = 1 here. 
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§2.2 LOCAL E X I S T E N C E - U N I Q U E N E S S . 

We shall study the half-line NLS (2.1.2) for real k,a with assumptions that 

Uo(x),R(t) have appropriate smoothness and satisfy the necessary compatibility 

conditions to ensure the existence of solution at x = t = 0. 

LEMMA 2 .2 .1 . Let A = -iD2+ia, D(A) = {v:vE L2,vxx E L2,v'(0) + av(0) = 

0}. Then the operator A is the infinitesimal generator of a continuous semigroup 

of contractors N(t) = exp At for t > 0. Here a is an appropriate positive constant 

depending on &. 

PROOF: The 'damping' term iav we added here is crucial to our proof in case 

a > 0. Let X = {v : v E X2[0,oo),ux r E X2[0,oo)}. Then X is a Banach 

space with a norm equivalent to H2[0,oo)-norm. Let H = X2[0,oo),V = {v E 

JT1[0,oo) : v'(0) + av(0) = 0} then D(A) and V are dense in H. Note ||u||o,oo < 

c||u||2,2, ||«'||o,oo < c'||u||2,2 by (2.1.5). To prove A is a closed operator, let vn E 

D(A),Avn —* y, vn —> z in H. Then clearly {vn} is a Cauchy sequence in X. 

Completeness of X implies that {vn} converges in X and Az = y. Finally, 

(2.2.1) |z'(0) + az(0)\ < \v'(0) + av(0)\ + \z'(Q) - v'(0)\ + \a\\z(0) - v(0)\ 

<c'\\z-v\\x + c\a\\\z-v\\x->0 

This shows that z E D(A). Thus A is closed. To show that the resolvent set 

of A contains R+, let v E V . Consider 

(2.2.2) ((A - A)v, v)= (Xv - iav + ivxx)vdx 
Jo 

/•OO fOO 

= (A — ia) J |u|2e?a: + i I vxxvdx 
Jo Jo 

I oo r°° 
= (A - ia)||u||i + iv'v | Q - i \v'\2dx 
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= (A - ia)\\v\\2 - iv'(0)v(0) - z|K||2 = (A - ia)\\v\\2 + za|r,(0)|2 - i\\v'\\2 

Take the imaginary part of (2.2.2), 

(2.2.3) |((A - A)v,v)\ > \a\\v\\2 - a|t,(0)|2 + | |v ' | |» | 

By (2.1.5), there exists c > 0 such that |u(0)| < IHloo < c | |w' | | | | |» | | | . Then the 

above inequality (2.2.3) becomes 

\((X-A)v,v)\>a\\v\\2-ac2\\v'\\2\\v\\2 + \\v'\\2 

> a||V||i - i a V l M H - i||r;' | |2 + ||V'||§ = (a - \o?c%\vf2 + ±\\v'\\2 

2 4 

If one sets a > £Lj- then 

(2.2.4) |((A - A)v,v)\ > c0(\\v\\2 + \\v'\\2) = co\\v\\2
v 

By Theorem 2.3.3 of [11], (2.2.4) implies that for A > 0, the operator A — A maps 

D(A) 1-1 onto H. 

Now let v E D(A). For A > 0, by taking the real part of (2.2.2), one has the 

following inequality A||u||2 < ||(A - A)u||2 thus ||(A - A)"1!! < {. By Hille-Yosida 

Theorem (§1.3.1 [53]), the unbounded and linear operator A is the infinitesimal 

generator of a continuous semigroup of a contractions N(t) = exp At for t > 0. 

Q.E.D. 

In order to apply Lemma 2.2.1, we need to use the standard linear technique 

of change of variables. For a real, u E H2[0, oo), R(t) E C2[Q, oo), set up 

(2.2.5) v = u- S(t)e~bx,b = \a\ + 1 > 0, S(t) = ^ S I 
a — b 

One has v E H2[0,oo) and vx = ux + bS(t)e-hx. Thus 
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(2.2.6) vx(0, t) + av(0, t) = ux(0, t) + bS(t) + a(u(0, t) - S(t)) 

= P(t) + bS(t) + aQ(t) - aS(t) = R(t) + (b- a)S(t) = 0 

and (1.1.2) becomes 

(2.2.7) vt = -ivxx + iav - ik\v\2v + G0+G1+G2 

with vx(0,t) + av(0,t) = 0,vE #2[0,oo) and 

(2.2.8) G0(a:,i) = -i(k\S(t)\2S(t)e-
3bx - S\t)e-

bx) 

(2.2.9) Gi(x,t,v) = -ik(S2(t)e~2bxv + 2\S(t)\2e-2bxv) - iav 

(2.2.10) G2(x,t,v) = -ik(S(t)e-bxv2 + 2S(t)e-
bx\v\2) 

and v E D(A). Here one notes that N(t)vo, G\, G2 E D(A) and generally Go ^ 

D(A). Since S(t) E C2[0,oo),6 > 0, G0 = Go(e- I ,5 ,5 ' ) , G0(<) is continuous. 

Thus by [53] one has /0* N(t - s)G0(s)ds E D(A). By Lemma 2.2.1, one can 

converts (2.2.7) to an integral equation: 

(2.2.11) v = N(t)v0 + f N(t- s)G0(s)ds + f N(t - s)(G0 + Gx - ik\v\2v)ds 
Jo Jo 

By similar analysis as in [18], H(x,t,v) = Go + G\ + G2 + G3 is locally Lipschitz 

in v under the norm of D(A) uniformly on [0,T] where G$(x,t,v) = — ik\v\2v. 

Also for each v E D(A), H is continuous from [0, T] into D(A). Thus one can use 

Theorem 6.1.7 in [53] to obtain the following local existence-uniqueness theorem. 
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THEOREM 2.2.2 (LOCAL EXISTENCE-UNIQUENESS). ForR(t) E C2,u0(x) E H2, 

there exists a unique classical solution v for equation (2.2.5) (hence u for equa

tion (2.1.2)) such that v,u E C\[Q,TM),D(A)) n L2([0,TM),D(A)) with either 

lim||u||D(yi) = t» a s t - > TM orTM = oo. 

Next we shall prove that the local solution obtained here is indeed a global 

one. 

§2.3 GLOBAL EXISTENCE. 

The main objective in this section is to establish global existence for (2.1.2). Let 

u be a solution to the NLS. The following identities were established in [18] (recall 

that Q(t) = u(0,t),P(t) = ux(0,t),R(t) = P(t) + aQ(t)): 

(2.3.1) ||u||2 = ||uo||i - 2 1 m f P{r)Q^)dr 
Jo 

(2.3.2) IKH2 - i | |«| |* = ||«o||i - |||tto||J - 2Re£P(r)WF)dT 

/•OO TOO ft 

(2.3.3) / uu'dx = I uou'0dx - I Q{r)Q'{T)dT 
Jo Jo Jo 

+if\p(r)\2dr + i\j\Q{r)\Ur 

The boundary condition here is different from that in [18] but still we could use 

the above estimates and replace P(t) by R(t) — aQ(t). 

PROPOSITION 2.3.1. For any T > 0, assume R(t) E C1,^ E H1 and the initial-

boundary data satisfy necessary compatibility conditions at x = t = 0. Then \\u\\2 

and \\u'\\2 are bounded on [0,T]. 
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PROOF: Since R(t) E G1, there exists Ro > 0 such that for t E [0,T], \R(t)\ + 

\R'(t)\ < Ro. Now «0 G JT^OjOo), by (2.1.5), there exists A > 0 such that 

||«o||t < A||Md||2||«o||2. Take the real part of (2.3.3) and use the Cauchy-Schwartz 

inequality, 

/•OO TOO ft 

(2.3.4) Re / uu'dx = Re I uou'0dx -Re Q(T)Q'(T)dr 
Jo Jo Jo 

= ReJ°°uou'odx - \{\Q{t)\2 - \Q(0)\2) 

Thus 

/•OO fOO 

(2.3.5) |Q(i)|2 = |Q(0)|2 + Re / u0u'odx -Re uu'dx 
Jo Jo 

= \u0(0)\2 + |K||2 | |u0 | |2 - J2e I" uu'dx < c0 + \\u\\2\\u'\\2 
Jo 

From (2.3.1), (2.3.5) 

(2.3.6) IMI2 = ||«o||i - 2Jm / (P(r) - aQ(r))Q(r)dT 
Jo 

= \\uo\\\-2Im I R(r)Q(T)dT 
Jo 

< \\u0\\
2 + 2( f \R(r)\2dr)H f \Q(T)\2dr)$ 

Jo Jo 

< ||«o||i + 2( / ' \R(r)\2dr)H [\co + H|2 | |u ' | |2)dr)* 
Jo Jo 

< \\uo\\2
2 + 2( / ' \R(T)\2dT)Hc0T)l> + 2( / ' \R(r)\2dr)H f | |u | |2 | |u 'Mr)* 

Jo Jo Jo 

< ||uo||i + 2v^Po(c0T)§ + 2\/iR0( f ||u||2 | |u'||2dr)i 
Jo 

= c + 2VtR0([ \\u\\2\\u'\\2dr)^ 
Jo 

24 



From (2.3.2), (2.3.5) 

(2.3.7) IKH2 = £||«||* + ||«0||
2 - i||«o||« - 2Re J* P(r)Q^)dr 

k - ff 

= JlMIt + c ~ 2ReP(t)Q(t) + 2i*eP(0)Q(0) + 2Re / P'(r)Q(r)dT 
* Jo 

= §Nlt + c ~ 2Re(R(t) - aQ(t))Q(t) + 2Re(R(0) - oQ(0))Q(0) 

+2fle / (fl'(r) - aQ'(r))Q(r)dr 
./o 

= £lMl4 + c ~ 2ReR(t)Q(t) + 2a\Q(t)\2 + 2Re(R(0) - au0(0))uo(0) 

+2Re / #(T)Q0-)dr - 2a.Re / Q(r)Qi(r)dT 
Jo Jo 

= llMIt + c - 2ReR(t)Q(t) + 2a\Q(t)\2 + 2ReR(0)u0(0) - 2a|u0(0)|2 

+2Pe / R'(r)Q(r)dT - a\Q(t)\2 + a\Q(0)\2 

Jo 

= 5IMI4 + c - 2ReR(t)Q{t) + a\Q(t)\2 + 2ReR(0)u0(0) 

-a|u0(0)|2+2i2e / R'(r)Q(T)dr 
7o 

< YIIUH*
 + c ' + H I W I 2 + 2Ro\Q(t)\ + 2/^o|Q(r)|rfr 

< y Hit + c' + \a\\Q(t)\2 +R2 + \Q(t)\2 + J\R2 + \Q(r)\2)dr 

< y H t + c' + (M + 1)|Q(*)|2 + R2
0 + R2

0T + £ \Q{r)\2dr 

By (2.1.5) there exists A > 0 such that ||u||| < A||u'||2||u|||. Thus (2.3.7) becomes 

(using (2.3.5), 0 < t < T) 
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(2.3.8) llu'Hi < ^A||u'| |2 | |u| |5 + c' + (|a| + l)(c0 + ||u||2||u'||2) 

+J22(1 + T) + A c 0 + ||«||2||«'||2)dr 
Jo 

< c+ ^A||«'| |2 | |u| |5 + (|a| + l)||u||3||u'||2 + J* ||«||2||u'||adr 

By (2.3.6) one has 

(2.3.9) IMI2 <c + 2VtRo( I \\u\\2\\u'\\2dr)^ 
Jo 

<max{2c,4ViRo([ H|2 | |U' | |2<*T)4} 
Jo 

Let 

(2.3.10) / ( « ) = sup \\u\\2,g(t) = sup ||u'||2 
0<T<t 0<T<t 

Then (2.3.9) implies 

(2.3.11) f2(t)= sup | |u | |2< sup max{2c + 2y/?R0([ ||u||2||«'||2dr)*} 
0<r<t 0<r<t Jo 

<max{2c,4y/iRo([ \\u\\2\\u'\\2dT)*} 
Jo 

<max{2c,4*iJo(/(*M<)) i} 

If 2c > 4tRo(f(t)g(t))* then (2.3.11) implies 

(2.3.12) /3(i) = (/2 ( t))f <(2c)§ 

Otherwise 

(2.3.13) f2(t)<4R0t(f(t)g(t))12 

26 



which implies that 

(2.3.14) f(t) < 16R2t2g(t) 

In any event, by combining (2.3.12) and (2.3.14) one obtains 

(2.3.15) f(t) < max{(c)t, 16i2o<25(*)} < (2c)' + 16R2
0t

2g(t) 

(2.3.12) and (2.3.14) also imply that 

(2.3.16) f2(t) <2c + (16R2t2g(t))% 

By (2.3.8) and (2.3.15) 

(2.3.17) g\t)< sup [c+i|iA||u'||2||U||« + (|a| + l)||u||2||u'||2+/r||U||2||«'||2rfr] 
0<T<t * Jo 

*, I*! 
2 

<c+4^(t)f3(t) + (\a\ + l)f(t)g(t)+ f f(r)g(r)d7 
Jo 

<c+i^A5(<)((2c)f + 1 6 ^ 2 ^ ) ) 
2 

1. .. . . 
+ 

= I + 3 

\{2{\a\ + l)2f2(t)) + I («^fl) + J* f(r)g(r)dr 

< c+ ^A(2c)f )2 + \g2(t) + l^XR2g2(t)l6t2 

+(|«| + l)2/2(<) + \g\t) + jf * f(r)g(r)dr 

\g2{t) + 8\k\XR2g2(t)t2 + (\a\ + l)2f2(t) + J* f(r)g(r)d7 

Hence 

(2.3.18) g\t) < c + 32\k\XR2t2g2(t) + 4(|a| + l)2/2(i) + 4 [ g(r)f(r)d7 
Jo 
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Let 0 = t0 < h < t2 < tn - T such that 

(2.3.19) U+i - *,- < -===, i = 0,1,2,..., n - 1 
y/64\k\XRj 

Consider 0 < t < tx. Then (2.3.18) becomes (using (2.3.16)) 

92(t) < c+ \g2(t) + 4(\a\ + \)2f2(t) + 4J\(r)f(r)dT 

< c + \9\t) + 4(\a\ + l)2(2c + (16R2t2g(t))% + 4 J*g(r)f(r)dr 

<c' + \g2(t) + c0(g(t))l +4J\(T)f(r)dT 

If g(t) > 1 then (g(t))i < g(t). If g(t) < 1 then (g(t))§ < 1. In any event, 

(g(t))*<g(t) + i~ Thus 

(2.3.20) g2(t) <c' + \g2(t) + cQ(g(t) + 1) + 4 J* g(r)f(r)dr 

<~c' + co + \g2(t) + \(2c2) + \{\9
2{t)) + 4J\(r)f(T)dT 

Therefore 

(2.3.21) g2(t) < 4(c' + c0 + ^c2) + 16 / g(r)f(r)dT = c + 16 / g(r)f(r)dr 

By (2.3.9) 

(2.3.22) f2(t) < sup (c + 2yftRo( f ||u||2||u'||2<Zr)5 
0<T<t Jo 

<C + 2VTR0([ \\u\\2\\u'\\2dT)$ <c + 2y/TRo([ f(T)g(r)dr)1* 
Jo Jo 

<c + TR2+ I f(T)g(r)dr 
Jo 

Add (2.3.21), (2.3.22) together 
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(2.3.23) | |u| |2
)2< sup | K , r ) | | 2 + sup \\ux(,r)\\2 < f2(t) + g2(t) 

0<T<t 0<T<t 

<c + TR2 + f f(r)g(r)dT + c + 16 / g(r)f(r)dT 
Jo Jo 

<C+llj\f2(T) + g2(T))dT 

By Gronwall lemma, 

(2.3.24) ||u||2)2 < f(t) + g2(t) < c'e8-5t < c'e8-5T < M 

for 0 < t < t\ < T. One could repeat the above process for tx < t < t2 to conclude 

that ||u||2 2 is bounded on [<i,<2]. By induction, ||u||2 2 is bounded on [<t-,<i+i] for 

i = 1,2, ,n - 1, i.e. ||u||| < M0, ||u'||l < M0 on [0,T]. Thus HuUoo is bounded 

on [0, T] via (2.1.5) by setting j — 0,p = oo, r = 2, m = 2, q = 2, a = | : 

(2.3.25) ||u||oo < A||tt||l||u'||l < XVM0 

and our proof is now complete. Q.E.D. 

THEOREM 2.3.2 (GLOBAL EXISTENCE). Under the assumptions of Theorem 

2.2.2, the local solution u of NLS (2.1.2) is a global solution, i.e. TM = oo. 

PROOF:' By Theorem 2.2.2, it suffices to show that for any T > 0, ||u||2|2 is 

bounded on [0, T]. Since v = u — S(t)e~bx, ||«||i,2 < \/M, one has also ||u||p < c 

and ||u'||2 < c for p > 2 by (2.1.5). From (2.2.9) and the definition of H(x,t,v) = 

Go+Gx + G2 + G3 one has 

(2.3.26) vt(t) = (N(t)v0)t + N(t)H(x,0,v0) + f N(t)Ha(x,t - s,v)ds 
Jo 
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= N(t)Av0 + N(t)H(x,0,v0) + f N(t -s)Ha(x,s,v)ds 
Jo 

Since N(t) is a contraction semigroup on L2, 

(2.3.27) ||»*0Oll2 < H-Avo|fa + ||IT(a>,0,t>o)||2 + / \\Ha(x,s,v)ds\\2ds 
Jo 

< co + f \\G'o(s) + G[(s) + G'2(s) + G'3(s)\\2ds 
Jo 

Since S(t) E C2[0,oo), (2.2.6) impUes (for t E [0,T]) that 

(2.3.28) \\G'o(t)\\2<c1 

By (2.2.7), G[(t) = h(S,S',e~bx,v,vt). Since ||u||2 is bounded and S E C2, one 

has 

(2.3.29) ||G;(*)l|2<C2 + c3||7;f(i)||2 

By the same reason, one readily obtains 

(2.3.30) ||G'n(<)ll2<c4 + c5||r;*(i)||2 

for n = 2,3. Thus (2.3.27) becomes 

(2.3.31) \\vt(t)\\2 <c'+ I (c + c\\va(s)\\2)ds <c' + cT + c f \\va(s)\\2ds 
Jo Jo 

on [0,T]. By Gronwall lemma one concludes ||ut(<)||2 < c. Now by (2.2.5) one has 

(2.3.32) I K 4 2 < \\vt(t)\\2 + \\iav + G0 + Gx+G2 + G3\\2 < c 
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because ||u||p is bounded. Thus ||u||2>2 is bounded on [0,T] for any T. Hence v 

is the global solution to (2.2.5) and u is the global solution to (2.1.2) via v = 

u - S(t)e~bx. Q.E.D. 

The PDE method to show the global existence of (2.1.2) is an approach 

different from the 1ST method in [23]. Along with [18], we try to provide some 

answers to the questions raised in [32]. We expect well-posedness of (2.1.2) will 

hold. 
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Chapter 3 . 

T H E FULL-LINE P R O B L E M F O R 

T H E G I N Z B U R G - L A N D A U E Q U A T I O N (GL) 

§3.1 O N T H E G I N Z B U R G - L A N D A U E Q U A T I O N . 

The Ginzburg-Landau equation (GL) 

(3.1.1) ut = (v + ia)uxx — (K + i/3)\u\2u + ^u 

is a modulation equation describing the nonlinear development of unstable waves 

in many physical systems (such as hydrodynamics) or chemical systems in which 

some kind of turbulence appears, (cf. [7,20,21,30,34,35,39,43-47,58]). It was origi

nally derived by A. Newell in [42] and used to study parallel flow stability problem 

[29,55]. By studying the long-time behavior of solutions to the GL equation it was 

shown that a finite-dimensional attractor captures all the solutions (cf. [27]). The 

GL equation on periodic domain was studied to investigate possible soft and hard 

turbulence (cf.[6]) where a series of interesting estimates were given. The Cauchy 

problem for the GL equation with bounded domain and zero boundary condi

tion or zero normal derivative boundary condition is well-posed by using classical 

techniques of nonlinear parabolic equations (cf.[38]). On the other hand, the 

initial-boundary value problem for nonlinear Schodinger equation (which in some 

sense, is a special Ginzburg-Landau equation) was examined in [18] and Chapter 

1 where global existence-uniqueness and well-posedness were established. Though 

the NLS looks like a special GL equation, they are quite different. Because of 

the appearance of the dissipative term, the Ginzburg-Landau equation does not 

possess Hamiltonian structure and conserved quantities. Hence it is no longer an 
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intergrable system like NLS. In fact, our results on the GL equation in this chap

ter and next chapter do not cover NLS. We shall, first of all, study the Cauchy 

problem for the following GL equation (so-called full-line problem): 

(3.1.2) ut — (v + ia)uxx -(K + i/3)\u\2u + 7«, v > 0, « > 0 

—00 < x < o o , 0 < < < o o 

with u(x, 0) = uo(x) E H2(—oo, 00). In §3.2 we shall extend global existence theo

rem of the Cauchy problem for the GL equation in bounded domain to unbounded 

domain. The following notations are used throughout this chapter: 

(3.1.3) ||«'||2 = [/0°|us(x,*)|2da !]4 
. / — 0 0 

/

oo 
\u(x,t)\"dx]7 

-00 

/

oo 

J2 \Dlu(x,t)\*dx\* 

§3.2 GLOBAL SOLUTIONS. 

We shall study the following initial-value problem for the GL equation: 

(3.2.1) ut = (v + ia)uxx — (K + i/3)\u\2u + 7U 

with v > 0, K > 0, u(x, 0) = Uo(x) E H2(Sl). For results in case Q, is a finite domain 

with zero boundary condition see [27]. Now we shall assume ft = (—00,00). First 

let us check A = (v + io:)Dx is a semi-group generator with D(A) — F = {u :u E 

L2,uxx E L2}. For u E D(A),f E L2, one has 

33 



/

oo 
(Xu -(v + ia)uxx)udx 

-oo 

_ I oo f°° 
= X\\u\\2 — (u + ia)uxu I +(v + ia)l uxuxdx 

I -oo J-oo 

= A||u||2 + (i/ + ia)||u'||3 

Let us check A — A is 1-1 and onto for A > 0. From (3.2.2) one has 

(*) |((A - A)u,u)\ > X\\u\\2 + u\\u'\\2 > min{X,u}\\u\\2
H1 

By Theorem 2.3.3 of [11], (*) implies that for A > 0, A - A maps D(A) 1-1 onto 

L2 and the resolvent set of A contains R+. (See also Theorem 1.9.2 of [12].) Now 

take the real part of (3.2.2) 

(3.2.3) J2e((A - A)u,u) = X\\u\\2 + u\\u'\\2 > X\\u\\2 

Thus ||(A — A) -11| < j . By Hille-Yosida, A generates a strongly continuous 

contraction semigroup (cf.[53]) N(t) = exp{A<} and one can write 

(3.2.4) u(t) = N(t)u0 + I N(t- S)(-(K + i/3)\u\2u + -yu)ds 
Jo 

For H(u) = — (K + i/3)\u\2u + 7« and u,v E F, one has (similar to (2.7) in [18]) 

||JJ(u) - JT(i;)||2l2 < c(||«||2)2 + |M|2|8)||u - V||2|2 + |T| | |U - «||2,2 

Thus local Lipschitz condition on H is satisfied. Thus the basic theorems in §§6.1 

and §§8.1 of [53] can be adopted here. One has 
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THEOREM 3.2.1. Given u0(x) E H2(-OO,OO), (3.2.1) with initial data u(x,0) — 

uo(x) G H2(—00,00) has a unique classical solution u E CX(L2(—00,00)) D 

C°(H2(—00,00)) on [0, TM) with either TM = 00 or limt_+T- ||U||.F = 00. 

To prove the global existence, we need some estimates on ||«||2, ||u'||2. First 

note 

/

OO fOO 

\u\2dx= / (utu + uut)dx 
-OO J—OO 

/

oo 
((v + iot)uxxu - (K + i/3)|u|4 + y\u\2)dx 

-00 

/

oo 
((u - ia)uxxu -(K- i(i)\u\* + 7|u|2)rfa; 

-00 

1 00 I 00 

+ (v — ia)uxu J — 2K||U| 
—00 I —00 + 2 7 | | u | | 2 - ( I , + i a ) | | U ' | | 2 - ( I , - i a ) | K | | 2 

= -2/c||U||4 + 27| |«| |2
2-2HK||2 

Thus (3.2.5) implies that dt||u||i < 2^\\u\\l and ||u||jj < \\uo\\2
2 + 2 7 / J \\u\\ldr. By 

Gronwall lemma, 

(3.2.6) | | u | | 2 < | | u 0 | | i e 2 l ^ < M 

for 0 < t < T. Now one uses integration by parts to get 

/

OO fOO fOO 

\u'\2dx = / (uxtux + uxuxt)dx — I (utuxx + uxxut)dx 
-00 J—00 J—OO 

/

oo 
((v + ia)\uxx\

2 - (K + i/3)\u\2uuxx + <yuuxx)dx 
-00 

/

oo 
((v — za)|uxz |2 - (K — i/3)\u\2uuxx + "fuuxx)dx 

-00 
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/

OO i»00 

\u\2uuxxdx — 2/3Im I \u\2uuxxdx 
-oo J—oo 

I oo f°° _ I oo r°° 

+ 7 1 \ux\
2dx— juuxl + 7 / |«i|2c?a: 

/

OO fOO 

uuxxdx - 2/3Im / \u\2uuxxdx 
-OO J—oo 

Let m = 2K + 2|/?|,£ = ^ . Then (3.2.7) becomes 

/

oo 
M8|uxx|da 

-oo 

< -2v\\uxx\\
2 + 27||u'||2 + m j f J f c £ + ^S)dx 

m 
2 

< -2u\\uxx\\
2 + 2i\\u'\\2 + ^-||„||« + „||«„|| 

= -u\\uxx\\
2 + 21\\u'\\2+r^-\\u\\% 

Thus 

(3.2.9) ||«'||2 < IKH2 - v £ \\uxx\\
2dr + 27 j f ||u'||2cfr + ^ j f ||«||2<2r 

By Gagliardo-Nirenberg estimates (cf. [50]), there exists A > 0 such that 

(3.2.10) HIS < A||u'||2||«||4 

for all u. Use (3.2.6) to obtain 

(3.2.11) ll«ll66<A|K||2||u||4<A||u'||2M2 

Put (3.2.11) into (3.2.9) one has 

(3.2.12) |K||2 < | |«0 | | i -^ t | |«xx| |2rfr + 2|7 |^ | |u ' | |2dr + ^^A | | « ' | | 2 M 2 r f r 
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< Ki l l + j f (2|7| + ^AM2)| |u' | |2dr = K i l l + c0 j f ||tz'||2dr 

By Gronwall lemma, for 0 < t < T there exists C0 > 0 such that 

(3.2.13) .||u'||2 < HWU"0* < ||«ollleCoT < C0 

Thus by estimates in [50], one uses (2.2.6) and (2.2.13) to get 

i . i 
(3.2.14) Moo < AoHIJIKHJ < Xo(MCo)* = C 

Since N is also a contraction operator in P = D(A), by (3.2.4) one has 

(3.2.15) \\u(t)\\F < | |JV(*)U0 | |F+ / \\N(t-s)(-(K + i/3)\u\2u + 7u)\\Fds 
Jo 

< I K | | F + Ac||u3 | |J, + c'||u||i,)dS 
JO 

Since P-norm is equivalent to #2-norm, one has (using (3.2.14)) 

(3.2.16) IK*)lk2 < e||«||F < e||«o||F + / (C||U3||F + <?\\u\\F)da 

Jo 

<c + m' [ (c\\u%,2 + c'||u||2)2)cte <c + m' f (c||u|[^||U||2)2 + c'||u||2)2)cfc 
JO JO 

<c + m' /(cC2 | |u||2)2 + c' | |u| |2)2)^<c + m / ||u||2|2<k 
JO JO 

By Gronwall lemma again one concludes that for 0 < t < T 

(3.2.17) ||u||2|2 < &** < ce™T < oo 

Thus for any T > 0, ||u||2)2 < oo for 0 < t < T. Therefore the solution u of (3.2.1) 

is global solution and we have completed the proof of the following result: 
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THEOREM 3.2.2. For the full-line Ginzburg-Landau problem (3.2.1), there exists 

a unique global classical solution, i.e. TM = oo in Theorem 3.2.1. 

COROLLARY 3.2.3. Assume 7 < 0, then ||u||| < ||uo||2 for all t. Further, if 

7 < - ^ A | | u 0 | | f wherem = 2K+2| /9 | then \\u'\\l < ||u0||2 thus\u(x,t)\ is uniformly 

bounded on the whole quarter plane 0 < t f < o o , 0 < z < o o . 

PROOF: From (3.2.5) one has dt\\u\\\ < 2-y||w||i < 0 thus ||u||2 < ||u0||2. If one 

sets 6 = — then (3.2.8) can be improved as 

(3.2.18) dt\\u'\\2 < -2u\\uxx\\
2 + 2 7 |K | | ! + m J°°(^ + ^S)dx 

< -2v\\uxx\\
2 + 27||u'||2 + 2L||u||Jj + 2v\\uxx\\

2 

81/ 

= 27ll«'lll + ^ H I S < 27||«'||2 + ^A| |U ' | |2 | |U | |4 

via (3.2.10). Now use ||u||| < ||t/o||2 to obtain 

(3.2.19) ftllu'llg < 27||u'||2 + ^ A | | K ' | | 2 | | U O | | ! < 0 

Thus (3.2.19) implies ||«'||2 is bounded and by (3.2.14) one concludes ||u||oo is 

bounded for all 0 < x,t < 00. Q.E.D. 

REMARK 3.2.4. By Corollary (3.2.3) one notes in case 7 < 0 there is a small 

initial norm condition \\uo\\2 < 2 (^^)< that promises uniform boundedness of 

IM|2, ||u'||2 and ||u||oo- As we stated before, the initial-value problem for the 

Ginzburg-Landau equation with finite domain and zero boundary condition was 

solved in [27] but with approach other than semi-group technique here and the 

results are slightly different. 
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Chapter 4. 

THE HALF-LINE PROBLEM FOR 

THE GINZBURG-LANDAU EQUATION 

In this chapter, we shall investigate the solvability of the initial-boundary value 

problem (so-called half-line problem) for the Ginzburg-Landau equation (0 < 

x < oo,0 < t < oo) with initial and boundary data uo(0) = Q(0),uo E 

H2[0,oo),Q(t) E C2[0,oo). We shall in §4.1 prove a local existence-uniqueness 

theorem for the classical solution. In §4.2 we discuss the small amplitude solution 

to the half-line problem and give a criteria in terms of small initial-boundary data 

that one obtains a small amplitide solution (thus blow-up will not occur) on [0, T]. 

In §4.3 and §4.4 we prove that for \/3\ < \/3« or a/3 > 0, this local solution is also 

a global one. 

§4.1 LOCAL EXISTENCE THEOREM. 

For the following Ginzburg-Landau equation 

(4.1.1) ut — (v + ia)uxx — (K + i/3)\u\2u + 7« 

we assume that v, K > 0, a ^ 0 and all the other parameters /?, K are real. As in 

NLS case (cf. [18]), we shall first use the standard technique of change of variables 

via u = v + Q(t)e~x. Thus this substitution in (4.1.1) yields 

(4.1.2) vt = (u + ia)vxx -(K + i/3)\v\2v + G0+GX + G2 

v(Q, t) = 0, v(x,0) = u0(x) - Q(0)e~x = v0(x) E H2[0, oo), 
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Here 

(4.1.3) Go = (7 + v + ia)Qe~x - Q'e~x -(K + i/3)\Q\2Qe~3x 

(4.1.4) Gx = - ( « + i/3)(Q2e-2xv + 2\Q\2e~2xv) 

(4.1.5) G2 = - ( « + i/3)(2Qe~x \v\2 + Qe~xv2) 

For any T > 0, t E [0,T], clearly G0 = Go(Q,Q',e~x) is uniformly bounded and 

Lipschitz in t with values in H2; ||C?i||2)2 < c||u||2]2 (and evidently G\ satisfies 

local Lipschitz condition). Again by | | (T2| | 2 ) 2 < cUvHooUul^^ one readily concludes 

that G2 satisfies local Lipschitz condition also. Now we work with a semigroup 

generator A = (v + ia)D2
x with D(A) = {/ E H2[0,oo);f(0) = 0}. One notices 

D(A) is a dense subspace of W = {u E L2,uxx E L2} with a norm equivalent 

to H2 norm. To check A is a semigroup generator, one looks at the resolvant 

R\ = (X - A)'1 so consider (A - A)v = f with v(0) = 0, / E L2. Note that 

fOO 

(4.1.6) ((X-A)v,v)= (Xv-(u + ia)vxx)vdx = X\\v\\l + (u + ia)\\v'\\ 
Jo 

From (4.1.6) one has |((A - A)v,v)\ > minlA,!/}!^!!2^ and by Theorem 2.3.3 of 

[18], the operator A — A maps D(A) 1-1 onto L2 for A > 0. The resolvent set of A 

contains R+. Now take the real part and using Cauchy-Schwartz inequality one 

has 

(4.1.7) i*e((A - A)v, v) = A||V||2 + u\\v'\\2 > X\\v\\2 

(4.1.8) \\(X-A)-i\\<\ 
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By Hille-Yosida Theorem the operator A generates a strongly continuous contrac

tion semigroup N(t) = exp At (cf. [53]). One has generally G\,G2 E D(A) but 

Go $ -D(A). However, since we assume that Q E C2, it is clear that G'0(t) is 

continuous from (4.1.3). By [53] one has /0* N(t - s)GQ(s)ds E D(A). Thus we 

can then converts (4.1.1) to an intergral equation: 

(4.1.9) v(t) = N(t)vQ + f N(t- s)Go(s)ds 
Jo 

+ f N(t- s)(GM + G2(s) -(K + i/3)\v\2v)ds 
Jo 

By same arguments in [18], one has 

T H E O R E M 4 .1 .1 . Given V,K > 0 ,a ^ 0,u0 E H2[0,co),Q E G 2 [ 0 , O O ) , Q ( 0 ) = 

Uo(0), the equation (4.1.2) for v (hence (4.1.1) for u) has a unique classical solution 

v (and u) in G X ( [ 0 , T M ) , £ 2 [ 0 , O O ) ) D C°( [0 ,TM), .?? 2 [0 ,OO)) with either TM = oo 

or limt_Tjvf |M|2,2 = oo. 

§4.2 SMALL A M P L I T U D E S O L U T I O N . 

Unlike NLS, the global existence of solution to the half-line problem for the GL 

equation (4.1.1) generally is unknown. However one could study the small am

plitude solution on any fixed interval [0, T]. These solutions are close to zero at 

each point in the whole space (with t < T). Such solutions arise in many physical 

peoblems when one perturbs around the zero state then one is intersted in the 

small-amplitude solutions of the perturbation equation (cf. [57]). We shall use 

the classical method to determine the criteria of small initial-boundary condition 

that promises the existence of small amplitude solution of the GL equation on 

any finite interval. Though the solution obtained is not global, it does eliminate 

a possible blow-up on [0,T]. 
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In this section we shall assume the initial data and boundary data are suf

ficiently small on fixed [0,T] with certain norm. We try to prove that ||u||2 and 

||u'||2 are small on [0, T] thus to obtain a small amplitude solution and to prevent 

a blow-up. Let e > 0 be small and 

(4.2.1) IIQUffqo.T] = ( fT(\Q\2 + \Q'\2)dr)^ < 6, ||uo||i,2 < e 
JO 

We need to prove following estimates similar to (3.1) of [18]. 

LEMMA 4.2.1. ForQ E C1 one has 

0) H 2 = IMI2+ /<(-2ile( I, + ia)P(r)0(r)-2H|«'| | i-2/c| |u| |4 + 27||u||2)dr 
JO 

(ii) IKH2 = |K||2 + f\-2ReQ'(r)P(T) - 27ReQ(r)P(r))dT 
Jo 

ft fOO fOO 

+ / [-2i/||tixx||jj + 27||u'||| + 2/cPe / \u\2uuxxdx - 2/3Im / \u\2uuxxdx\dr 
Jo Jo Jo 

fOO roo ft 

(iii) / uu'dx = I uou'0dx — I Q(T)Q'(r)dr 
Jo Jo Jo 

-ia J' \P(r)\2dr + i\fif \Q{rtdr 

ft fOO fOO fOO 

+ I [i>2ilm I uxxuxdx — K2ilm I |u|2u«xdo; + 72zTm / uux]dr 
Jo Jo Jo Jo 

PROOF: First by (4.1.1) and intergrating by parts 

fOO 

(4.2.2) dt\\u\\l= (utu + utu)dx 
Jo 
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/||2 
2 

fOO 
= I [(v + ia)uxxu — (K + i/3)\u\* + i\u\2]dx 

Jo 
fOO 

+ J [u(v— ia)uxx— u(K — i/3)\u\2u + y\u\2]dx 
Jo 

I oo I oo 

— (1/ + ia)||«'||2 + (f — ia)uxu — (v — ia)||«'|| 

-(/c-i/3)||«||4-(/c + ^)|H|4 + 27||«||i 

= ~(u + ia)P(t)Q(t) -(u- ia)P(t)Q(t) - 2v\\u'\\\ - 2«||u||4 + 27||u||2 

= -2Re(u + ia)P(t)Q(t) - 2u\\u'\\2 - 2/c||u||4 + 27 | |U | |2 

Thus 

(4.2.3) ||u||2 = ||Uo||2+ A-2Pe( I/+m)P(r)Q(r)-2r/| |«' | |2-2/c||t t | |
4-f-27||«||2)dr 

JO 

This is (i). For (ii), one uses intergration by parts to find 

/•oo 

(4.2.4) dt\\u'\\l= (uxtux + uxuxi)dx 
Jo 

I oo r°° _ I oo r°° 

— I utuxxdx + uxut — I uxxutdx 
o Jo to Jo 

fOO 
= -Q'(t)P(t) - [(u + ia)\uxx\

2 -(K + ^)|ix|2uuxx + yuuxx]dx 
Jo 
f°° 

-P(t)Q'(t)- / [(u - ia)\uxx\
2 - (K - i/3)\u\2uuxx + •juuxx]dx 

Jo 

= -2ReP(t)Q'(t) - 2v\\uxx\\l + 2/cPe / \u\2uuxxdx - 2/3/m / \u\2uuxxdx 
Jo Jo 

+ 7ll"'ll2-7"«*| +7ll"'lli 
/•OO 

= -2ReP(t)Q'(t) - 2i/||uxx||^ + 2nRe / \u\2uuxxdx 
Jo 

fOO 

-2/3 I \u\2uuxxdx - 27ReP(t)Q(t) + 2j\\u'\\l 
Jo 
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Thus 

(4.2.5) ||u'||2 = K l l i - 2 f ReQ'(r)P(r)d 
Jo 

+ f (-27ReQ(r)P(r))dT 
Jo 

J
ft fOO fOO 

' [-2v\\uxx\\l + 2f\\u'\\2, + 2nRe / \u\2uuxxdx - 2/3Im / \u\2uuxxdx]di 
o Jo Jo and we proved (ii). Finally for (iii), 

/•OO fOO 

(4.2.6) dt I uuxdx = / (utux + uutx)dx 
Jo Jo 

f°° - I °° f°° 
= / UtUxdx + uut I — / uxutdx 

Jo I ° Jo 

- f°° 
= — Q(t)Q'(t) + I [(u + ia)uxxux -(K + i/3)\u\2uux + juux]dx 

Jo 
fOO 

- / [(v — ia)uxxux — (K — i/3)\u\2uux +juux]dx 
Jo 

fOO fOO 
= —QQ' + 2vilm I uxxuxdx + 2aiRe / uxxuxdx 

Jo Jo 
/•oo />oo />oo 

—2KiIm \u\2uuxdx — 2/3iRe I \u\2uuxdx + 2iilm I uuxdx 
Jo Jo Jo 

/•OO fOO 

= —QQ' + 2viImj uxxuxdx + ail dx\ux\
2dx 

Jo Jo 
/•OO fOO fOO 

—2K,iIm I \u\2uuxdx — /3i I \u\2dx\u\2dx + 27i/m / uuxdx 
Jo Jo Jo 

f°° = —QQ' + 2vilm j uxxuxdx — m |P | 2 

JO 
/•OO -j fOO 

—2KiIm I \u\2uuxdx + -/9i|Q|4 + 2jilm I uuxdx 
Jo 2 Jo 

Therefore 

/•OO fOO ft 

(4.2.7) / uu'dx = / u0u'0dx- / Q(r)Q'(r)d7 
Jo Jo Jo 
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+ 

-ia ^ |P(r)|2dr + i\fi f \Q(.r)\*dr 

ft fOO fOO fOO 

I [v2ilm I uxxuxdx — K2ilm I \u\2uuxdx + j2iIm I uux]d7 
Jo Jo Jo Jo 

The proof is completed. Q.E.D. 

Note Lemma 4.2.1 is very similar to Lemma 3.1 of [18], but with more com

plicated terms because of the presence of v and K terms in the GL equation. By 

(4.2.1) and the estimates in [50], there esists constants A > 0 , a > 0 , 6 > 0 such 

that 

(4.2.8) HI^<A| |u ' | | 2 H 4 

rrt /TI rrt rji 

(4.2.9) / \Q\idr<a(f \Q'\2dr)$( f \Q\2dr)^ + b(f \Q\2dr)? < ae4 + be 
Jo Jo Jo Jo 

We shall assume that 7 = 0 in this section for similicity (otherwise the estimates 

will become more complicated but does not affect the result). Let 0 < t < T. By 

(4.2.1), (4.2.3) and the Cauchy-Schwartz inequality, 

(4.2.10) IH1 < ||«o||i + 2(v + M)( / ' |P(r)|2<*r)*( / ' \Q(r)\2dr)\ 
Jo Jo 

- f(2v\\u%+2K\\u\t)dr 
Jo 

<e2 + 2(v + |a|)( / ' |P(r)|2dr)*e - 2v f \\u'\\2dr 
Jo Jo 

By (4.2.5), 

(4.2.11) \\u'\\2 < ||«0||i + 2(K + \fi\) f ||u||2||u„||2dr 
Jo 

-2v f \\uxx\\
2dr + 2( f \Q'(r)\2dr)H f |P(r)|2dr)* 

JO JO JO 
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< e2 + 2e( f |P(r)|2<*r)* - 2v f \\uxx\\
2dr + (K + \fi\) / ' ( M + S\\uxx\\

2)d7 
Jo Jo Jo ° 

2e(£ \P(T)\2dT)$ - v j f \\utx\\
2dr + ^ ± ^ j f ||u||'<Zr = e2 + : 

Here 8 = -^,. By (4.2.8), (4.2.11) becomes 

(4.2.12) IKII2 < e2 + 2e( f |P(r)|2dr)* 
JO 

-pj* \\uxx\\
2dr + ^ ± M A j f \\u'\\2\\u\\$dT 

Combine (4.2.10) and (4.2.12) 

(4.2.13) |M|2i2 = ||«||; + ||u'||2 < 262 + 2(u + \a\ + l)e( f \P(r)\2dr)± 
Jo 

-21/jf* ||ti'||£<2r + ^ T ^ A jf* ||u'||2||«||4rfr -uj* \\uxx\\
2dr 

< 2e2 + ec(J* \P(T)\2dr)$ + j\-2v\\u'\\\ + |||«||f)2 - v\\uxx\\
2]dr 

Here 

(4.2.14) c = 2(l + i/ + H),c = 2 ^ ! ^ A , t f = V 

By (4.2.7), 

(4.2.15) |a| / |P(r)|2rfr < | f°° u0u0dx\ + \ f°° uu'dx] + M / |Q(r)|4dr 
JO JO JO * JO 

+1 / Q(r)Q'(r)dr\ + 2v f ||uxxu,||i<fr+ 2/e / ||u3ux||idr 
JO JO J o 

Apply (4.2.8),(4.2.9) to (4.2.15) 
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(4.2.16) |or| j f |P(r)|2dr < ±\fi\ j f |Q(r)|4<fr + \\uo\\2\\u'0\\2 + ||u||2||u'||2 

+2v f ||u«.||2||u'||2aY + 2/c / ' ||u||S||u'||2aY + ( / ' |Q(r)|2dr)*( /* \Q'(r)\2dr)\ 
Jo Jo Jo Jo 

< \\/3\(ae* + be) + ±(\\u0\\
2 + \\u'0\\

2) + ±(||u||2 + ||n'||2) 

+2v I ||uxx||2||u'||2<fr + 2/c rVAHu'llallulllllu'lladT + e2 

JO JO 

^ll«lli12 + 2^2t||«xx||2||u,||2rfr + 2/cv/Ajrt||«||4i2dr <i |^ | (ae 4 + 6 e)+ie2 + 62 + 

Since e < l , one can, without loss of generality, assume that e < 1. Then (4.2.16) 

becomes 

(4.2.17) (j;iP(T)l
2dr)^[^ + be) + ^ + ^ 

+ R / HUxxMW\2dT + ^ p j f IK**-]* 

< [j||(a + 6)e + ̂  + MLi + c' jf ||tt„||2||tt'||2dr + co j f | |<2«IT]* 

< -cyq + MM + (c / /* || t tM | |2 |, t t»||adT)* + (co /* ||u||* adr)* 
V2|a| Jo Jo 

Here 

(4.2.18) c = R ( a + 6) + _ y = _ , C o = _ 

Put (4.2.17) in (4.2.13) (e < 1) 

(4.2.19) ||u||2)2 < 2e2 + ec{cyfe+ i ^ M + (cf / ' ||«„||2||u'||2dr)*} 
V2|a| Jo 
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+ec(c0 j f ||u||},2dr)* + j\-2u\\u'\\2 + \c\\u\\\t2 - v\\uxx\\2)dr 

*2e2+£c_ef + 1 2 { ^ + ^ + \ ® ¥ - + r j f 'i""ii2"u,ii2dr 

<Y« f + 5ll<2 + jjf'(K.ll3 + ll«'lli)A-

+1 J* hWU + f\-M»'\\l + |2|I«IIS,2 - Hl«x,||i)rfr 

< Y *f + ^Nli,2 + 1 j f ll«llt2A- + i s jf * ||«||;iadr 

Here 

^2 *2 f 

(4.2.20) M = 4 + 2cc + -£— + — + c2c0 

2\a\ v 
Rearrange (4.2.19) 

(4.2.21) ||u||2]2 < Me* + /'(||u||*i2 + c||u||«i2)dr 
JO 

Let M(t) = sup0<t,<t ||u||2i2 then (4.2.21) implies (noting 0 < t < T) 

ft' 

(4.2.22) M(t)<Me* + sup / (||u||4f2 + c||u||ff2)dr 
0<t'<tJo 

f(M2(r) 
Jo 

< Me* + I (M2(T) + cM3(r))dr < Me* + TM2(t) + cTM3(t) 
Jo 

We shall claim that if e < (^TM+STM2^^ — * *^en o u r s°luti°n « on [0, T] 
is a small amplitude solution with ||u||2 2 < 2Me*. Note M(t) is a continuous 

function with M(Q) < Me* by (4.2.22). If our claim does not hold then by 

continuity of M(t) one can find t E [0,T] such that M(t) = 2Me*. Thus by 

(4.2.22) 
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(4.2.23) 2Me* = M(t) < Me* + TM2(t) + cTM3(t) 

= Me* + T(2Me*)2 + cT(2Me*)3 

Thus (noting e < 1) 

(4.2.24) 1 < 2T(2Me*) + 2cT(2Me§)2 < 4TMe* + 8TM2c(e*)2 

< 4TMe* + 8TM2ce* = (4TM + 8TM2c)e* < 1 

which is a contradiction. Now by estimates in [50], there exists A > 0 such that 

(4.2.25) HI* , < X\\u'\\l\\u\\l < ±X(\\u'\\2 + \\u\\2) 

< Xy/M(t) < W2Me* < oo 

By similar estimates like (4.2), (4.3) of [18] and Gronwall lemma (see the proof 

of Theorem 4.1 in [18]), one has ||u||2i2 < c on [0,T]. Thus we have proved the 

following result 

THEOREM 4.2.2 (SMALL AMPLITUDE SOLUTION). If the initial-boundary data 

\\u0\\i,2 < e, ||<3||ffi[o,T] < e with 7 = 0,e < l,e < {±TM+sTMn)* where M > £ 

are given by (4.2.20) and (4.2.14), then the unique classical solution of the GL 

equation (4.1.1) u E C°(H2[0,oo)) n Cx(X2[0,oo)) exists for t E [0,T], Further, 

this solution has small amplitude ||«||i)2 < 2Met and ||u||oo < Av2Met on [0,T] 

where X is determined by (4.2.25). 

We shall note that small initial-boundary data on [0, T] will produce a small 

amplitude solution on [0, T] to eliminate a blow-up. But it remains a question if 

this solution is a global one. However, we shall show in the next section that for 

certain GL equation, global solution does exist. 
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§4.3 GLOBAL EXISTENCE THEOREM (I). 

We shall start to show the global existence of the half-line problem for the GL 

equation in case \/3\ < \/3K. TO accomplish this we shall prove that for any 

interval [0, T], the norm ||u||oo is bounded to conclude that ||u||2,2 is bounded. Let 

Qo = ||Q||ci[o,r| = suPo<t<T(|Q(<)| + \Q'(t)\) < oo. 

LEMMA 4.3.1. For |/?| < \/ZK,V,K > 0,a ^ 0,0 < t < T, there exists c,c > 0 

such that 

(0 IKII2 < [KHi + K f \P{r)?dr)* - 2v /*'||«„|5«h-]e8WT 

J o JO 

(ii) ll«H2<[|l«o||I + ^ / ' | P ( r ) | a d r ) * ] e a W T 

JO 

PROOF: First intergrate the following by parts: 

/•OO fOO 

(4.3.1) 2nRe I |u|2ut2xxdx - 2/3Im I |u |2uux xdx 
JO Jo 

I oo r°° 
= 2nRe\u\ uux — 2nRe J (2uuxu + u ux)uxdx 

' ° JO 

I oo f°° 

+ 2/3Im I (2uuxu + u2ux)uxdx 
0 JO 

/•OO 

= -2KRe\Q(t)\2Q(t)P(t) - 2nRe / (2|u|2 |«x |2 + u2tZ2)dx 
JO 

/•OO 

+2^Jm|Q(i)|2Q(<)P(<) + 2/3Im / (2|«|2|ux|2 + u2S2)da: 
JO 

= -2KRe\Q(t)\2Q(t)P(t) + 2/3Im\Q(t)\2Q(t)P(t) 

-2KRe f (2\u\2\ux\
2 + u2u2

x)dx + 2/3Im f u2u\dx 
Jo Jo 
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By setting up uux = a + bi,u2ul = a2 — b2 + 2abi one observes 

(4.3.2) B(t) = -2KRe[ (2\u\2\ux\
2+ u2u2

x)dx+ 2/3Im f u2u\dx 
Jo Jo 

fOO fOO 

= -2nRe / (2(a2 + b2) + (a2 - b2 + 2abi))dx + 2/3Im I (a2 - b2 + 2abi)dx 
Jo Jo 

= /°°(-2/c(3a2 + b2) + 2/32ab)dx = -2K /°°(3a2 - ^^- + b2)dx 
Jo Jo K 

Since |0| < v^/c, A = (=^)2 - 4 x 362 = *£(/32 - 3/c2) < 0, one concludes 

3a2 _ 2^6 + fi2 > o hence B(t) < 0 because K > 0. Then go back to (4.2.5) and 

apply (4.3.1), (4.3.2) (the upshot here is B(r) < 0 for r > 0): 

(4.3.3) IKH1 = KHi + / (-2RePQ' - 2yRePQ - 2u\\uxx\\
2 + 2T|K||2)dr 

JO 

ft fOO fOO 

+ I (2nRe I \u\2uuxxdx — 2/3Im I |u|2uuxxdx)dr 
JO JO JO 

= Ki l l + / (-2RePQ' - 2yRePQ - 2u\\uxx\\
2 + 27||u/||2)dr 

JO 

+ / (-2KRe\Q\2QP + 2/3Im\Q\2QP + B(r))dr 
Jo 

< |K||2 + 2 / |PQ'|dr + 2 / \yPQ\dr-2u f \\uxx\\
2dr 

Jo Jo Jo 

+2 7 f \\u'\\2dr + 2(K + \(3\) f \Q\3\P\dr 
Jo Jo 

< IKII3 + 2( / ' |P(r)|2dr)^( f |Q'(r)|2dr)i 
Jo Jo 

+2 |7 | ( / ' |P(r ) | adr)4( / ' |g( r ) | 2dr) t 
JO JO 

-2v f \\uxx\\
2dr + 27 f ||U'||2dr + 2(« + |/?|)( / ' \Q(r)\6dr)*( f |P(r)|2dr)* 

JO JO JO JO 
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< |K||2 + 2Q0Vf( /* |P(r)|2dr)^ + 2|7|QoV/T( f* |P(r)|2dr)* 
J o JO 

-2v (\\uxxf2dr + 21 I \\u'\\2dT + 2(K + \^\)Q3y/T(f \P(r)\2dr)* 
JO JO JO 

= IKII1 + K f \P{r)?dr)* - 2v f \\uxx\\
2dr + 27 /* ||u'||i<2r 

JO JO JO 

We shall treat c, Co, c, c, c', c as generic constants. By Gronwall lemma (0 < t < T) 

(4.3.4) IKH2 < [|K||2 + c( f \P(r)\2dr)* - 2v f |Kx |2dr]e2H r 

JO J o 

This is (i) of Lemma 4.3.1. For (ii), one goes to (4.2.3) 

(4.3.5) ||u||2 < Huolli + 2(v + \a\)( f |P(r)|2dr)*( f \Q(r)\2dr)* 
Jo Jo 

-2K I \\u\\\dr-2u I ||u'||2dr + 27 f \\u\\2dr 
JO JO JO 

< ||uo||i + 2(1/ + \a\)QoVT( f |P(r)|2dr)^ + 27 /* ||u||l<*r 
JO JO 

= IKHl + c( f \P(r)\2dr)\ + 27 / ' \\u\\2dr 
JO JO 

By Gronwall lemma, 

(4.3.6) ||u||2 < [||«o||i + c( f |P(r)|2dr)*]e2|7|T 

JO 

Thus Lemma 4.3.1 is proved. Q.E.D. 

LEMMA 4.3.2. ||u||i)2 and ||u||oo are bounded on [0,T], 

PROOF: Add (4.3.4), (4.3.6) together 

(4.3.7) ||u||2,2 < [||tt0||2,2 + (c + c)( / ' |P(r)|2dr)i - 2v f | |uXI | |
2dr]e2l^ 

JO JO 
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= m[||«0||?,2 + c( /* |P(r)|2dr)* - 2v f ||«xx||ldr] 
JO JO 

Rewrite (4.2.7) as follows (using (4.2.8)) 

(4.3.8) |a| j f |P(r)|2dr < IMWKIk + hh\\u'\\2 + | | f l j f |Q(r)|4dr 

+1 f QirW^drl + /*(2i/||u..||2||u'||a + 2/c||u3||2||u'||2 + 2|7|||u||2||u'||2)dr 
JO JO 

< ^ o | | 2 , 2 + | | |«| |a
|2 + \\P\QlT + Q2T + jfu(\\uxx\\2 + \\u'\\2)dr 

+2K fVX\\u'\\2\\u\\2\\u'\\2dr + \1\ A| |u| |a + ||n'||2)dr 
JO JO 

Thus 

(4.3.9) ( f \P(r)\2dr)* < [c0 + c\\u\\2
)2 + c f\\\uxx\\

2 + ||U||4>2 + N|2,2)dr]* 
JO JO 

< [co + a|MI5,2 + a j f (K.III + \HU + \h\\U + \ ) d r ^ 

< [CO + C\\U\\12 + cj* \\Uxx\\
2dT + C j f \\U\\l2dT + c\T]* 

< co + c'\\u\\1>2 + (c [ ||uxx||2dr)§ + (c /* ||u||4i2dr)^ 
JO JO 

Put (4.3.9) in (4.3.7) to get 

(4.3.10) ||u||2i2 < m(||Uo||2)2 - 2v f \\uxx\\
2dr) 

Jo 

+mc(co + c'||u||1)2 + (5 / | |««||ldr)i + (c /* ||u||* 2dr)i) 
JO J o 

< m||u0||
2

)2 + mcc0 - 2mv I ||uxx|||dr 
Jo 
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+\(mcc')2 + \\\u\\l2 + \ ^ $ £ + |(4mi/) jf* ||«„||3<ft- + m(c jf* ||u||4)2dr)* 

= rn' + \\\u\\l2+mc(c f\\u\\\f2dr)* 

Thus 

(4.3.11) ||u||2j2 < 2m' + 2mc(c f ||u||4 dr)* 
Jo 

By squaring both sides of (4.3.11) one has 

(4.3.12) ||u||4>2 - 4m'||u||2)2 + (2m')2 = (||u||2,2 - 2m')2 < 4m2c2c f \\u\\\t2dr 
Jo 

Therefore 

(4.3.13) ||u||4j2 < 4m'||u||2)2 + 4m2c2c / ' ||u||* a«*r 
JO 

< \{±rn')2 + \\\u\\\,2 + 4mac?c j f \\u\\i>2dr 

\\u\\it2<(4m')2+8m2c2cft\\u\\it2dr 
Jo 

And by Gronwall lemma, 

(4.3.14) ||u||4>2 < (4m')2e8m252cl < (4m')2e6mH2cT 

Also 

(4.3.15) Hulleo < A||u|| J Hu'lll < A||ii||1>2 < Ax/4m^e-
2s2cT 

Thus ||u||oo is bounded on [0,T]. Q.E.D. 

THEOREM 4.3.3 (GLOBAL EXISTENCE THEOREM (I)). Foru0(x) E H2,Q(t) E 

C2,u0(Q) = Q(Q),\(3\ < y/3K, there exists a unique global classical solution u E 

C°(H2[0, oo)) n C\L2[0, oo)) to (4.1.1). 
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PROOF: Let us go back to (4.1.9) for a moment. Set u>o = N(t)vo + /„ N(t — 

s)G0(s)ds E D(A). Then 

(4.3.16) v(t) = w0+ J N(t- s)(Gi(s) + G2(s) -(K + i/3)\v\2v)ds 
Jo 

Note N is a contraction semigroup in L2 hence also in D(A) in graph norm. 

Lemma 4.3.2 certainly implies that ||u||oo < co- Thus by estimates on G\, G2 and 

(4.3.16) one has 

(4.3.17) \\v\\D(A) < \\w0 + f N(t- s)(G1(s) + G2(s) -(K + i/3)\v\2v)ds\\D(A) 
Jo 

< I K | | D ( A ) + / \\N(t-s)(G1(s) + G2(s)-(K + i/3)\v\2v)\\DiA)ds 
Jo 

< C ! + / [c2||V||2l2+C3||t;||oo||v||2)2+C4||«||oo||f||2,2]dS 
JO 

<Cl+C5 / ||u||2,2ds 
JO 

Here we realize that D(A) norm is equivalent to H2 norm. By Gronwall lemma 

one concludes from (4.3.17) that ||u||2)2 and ||u||2)2 are bounded on [0,T] for any 

T > 0. Now we have completed the proof of global existence. Q.E.D. 

REMARK 4.3.4. The following rescaled Ginzburg-Landau equation 

(4.3.18) At = RA + (1 + iv)Axx - (1 + in)\A\2A 

has been studied extensively (for example, see [6,21,22]) where v = ea, \i = eb. It 

leads to a perturbation analysis on a complex Duffing equation. Since one assumes 

£ < 1 the condition \/3\ < i/3« is satisfied where f3 = eb, K = 1. iTence Theorem 

4.3.3 gives the global existence of the half-line problem (4.3.18). It should be noted 

that the criterion |/x| < y/3 had been established by several authors (cf.[6,22]), 
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but for different purposes. (It was shown that y/Z is the critical value of fj, for 

which there exists a v such that the homogeneous rotating wave is stable to a 

sideband before the trivial solution goes unstable to the second rotating wave as 

R is increased from 0.) 

We expect that well-posedness of (4.1.1) holds in case \/3\ < -\/3K via similar 

method used in Chapter 1. to prove the well-posedness of the half-line problem 

for NLS. 

§4.4 GLOBAL E X I S T E N C E T H E O R E M (II) . 

We shall prove the global existence for (4.1.1) if a/3 > 0, i.e. a and (3 have the 

same sign. The estimates are a little different from those used in §4.3 but basic 

idea remains the same, i.e. to show that | |u| |i )2 is bounded on any finite interval 

[0, T]. One application of our result will lead to global existence of following initial-

boundary value problem: ut = (e ± i)uxx — (e ± z)|u|2u which can be regarded as 

a perturbed NLS. Further, if u£ solves the half-line problem for the GL equation 

then ue —> u under certain norm when e —> 0 where u solves the half-line NLS 

with the same initial-boundary data. 

First some estimates. From (4.1.1) one has 

(4.4.1) utut = (v + ia)uxxut — (K + i/3)\u\2uut + "yu 

utut — (v + ia)uxxut — (K — i/3)\u\2uut + ^uut 

The difference is (after cancelling all i's) 

(4.4.2) 0 = 2Im(vuxx - K\U\2U + ju)ut + 2aReuxxut — 2/3Re\u\2uut 
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Integrate from 0 to oo 

/.oo 

(4.4.3) 0 = / 2Im(uuxx — K\U\2U + fu^tdx 
Jo 

fOO fOO 

+ J 2aReuxxutdx — / 2(3Re\u\2uutdx 
Jo Jo 

/•oo 

= / 2Im(vuxx — K\U\2U + iu)((u — ia)uxx — (K — i/3)\u\2u + ~/u)dx 
Jo 

I OO /.OO yOO 

— 2aRe uxutxdx —/3 I \u\ dt\u\2dx 
0 JO JO 

/•OO 

= / 2Im[(u2 — iau)\uxx\
2 — K(U — ia)\u\2uuxx + 7(1/ — ia)uuxx]dx 

Jo 
f°° 

+ I 2i"m[—v (K — i/3)\u\2uuxx + K(K — i/3)\u\6 — J(K — i^)|tt|4 + ^vuxxv\di 
Jo 

+ f 2Jm[-Ki/ |u|4 + 72 |«|2]dx - 2aReP(t)Q'(t) - adt\\u'\\2 - l/3dt\\u\\i 
Jo 2 

Rearranging (4.4.3) 

1 _ f°° 
(4.4.4) dt(a\\u'\\2 + -/3\\u\\i) = -2aRePQ' + J -2au\uxx\

2dx - 2K/3\\U\\6
6 

+2Im I [K(ia — u)\u\2uuxx + v(i/3 — K)\u\2uuxx]dx 
Jo 

/•oo 

+ 2 / m / [j(u — ia)uuxx + tyuuxxu]dx 
Jo 

Write 

(4.4.5) |« | 2«u x x = A + Bi, |u|2tZuxx = A — Bi 

then (4.4.4) becomes 

(4.4.6) dt(a\\u'\\2 + \{3h\\i) = ~2aRePQ' - 2ai / | |«x x | |2 - 2/c/3||u||6 
/•oo 

+2i"m / [K(ia - u)(A + Bi) + u(i(3 - K)(A - Bi)]dx 
Jo 
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IOO f°° 
+2Im[y(u — ia)uux + ^vuxu] I — 21m / [7(1/ — i a ) | u x | + 7i/|ux |2]dx 

I 0 Jo 

= -2aRePQ' - 2au\\u„\\l - 2K(3\\U\\6
6 

/•OO 

+ 2 J m / (AKia — KVA — BaK — KVBI + ui/3A — VKA + v/3B + vKBi)dx 
Jo 

-2Im[y(v - ia)QP + ^vPQ] + 27a | |u ' | | | 
/•OO 

= -2aRePQ' - 2ai/ | |ux x | | i - 2/e£||u||g + 2 (AaK + Av/3)dx 
Jo 

-2Imyu(QP + PQ) - 2Im(-ia-/QP) + 2^Qr||w'||| 

= -2aRePQ' - 2ai/ | |ux x | |2 - 2K/3\\U\\6
6 

fOO 

+2(KU + v/3) / Pe |u | 2 «« x x dx + 2ayReQP + 2ya\\u'\\2
i 

Jo 

Hence 

(4.4.7) dt(a\\u'\\2 + i / % | | 4 ) + 2ai/| |ti,. | |2 + 2K{I\\U\\1 

f°° 
= -2aRePQ' + 2a~fReQP + 27a| |« ' | | l + 2(na + u/3) / Pe|u|2tmXIda; 

JO 

= -2aRePQ' + 2a-yReQP + 27o| |u ' | | | 

I 00 f°° 
+2(na + v/3)[Re\u\2uux — Re I (2uuxu + u ux)uxdx] 

10 Jo 
= -2aRePQ' + 2a<yReQP + 2'ya||u'||i 

+2(/ca + u/3)(-Re\Q\2QP) - 2(/ca + u/3) f (2 |u |2 |ux |2 + Reu2u2
x)dx 

Jo 

Now consider 0 < t < T for ant T > 0. Let a/3 > 0. Without loss of generality 

assume in (4.4.7) that a > 0, (3 > 0. Note v > 0, K > 0 also. This implies that 

(*) -2(*ea + u/3) [^(2\u\2\ux\
2 + Reu2u2

x)dx < 0 
JO 

Thus (4.4.7) becomes (via (*)) 

(4.4.8) ftH|u'||a + \p\\u\\\) < -2ocv\\uxx\\
2 + 2a\PQ'\ 
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+ 2 a | 7 | | P 0 | + 2a|7|||« ,||l + 2(«a + W?)|Q|3|P| 

(4.4.9) a||u'||2 + i / % | | 4 < a |K | | 2 + |^| |«o| | l - 2a i / j f ||uxx | |2dr 

+ / [2a|PQ'| + 2a |7 | |P0 |+2(/ca + ^) |Q | 3 |P | ]dr + 2a|7| / ||u'||2dr 
JO JO 

(4.4.10) a||u'||2 < a||u0||2 + |^ | |u 0 | | t - 2ai/jf* ||uxx | |2dr 

+ / |P|[2aQ0 + 2a\y\Q0 + 2(/ca + u/3)Q3\]dr + 2a | 7 | / ||u'||2dr 
JO Jo 

Here Q0 = max0<t<r(|Q| + |Q'|). Thus from (4.4.10) 

(4.4.11) llu'H! < co - 2ua [ \\uxx\\
2dr + c f \P\dr + 2 | 7 | /* ||«'||2dr 

JO JO JO 

<c0-2ua [ \\uxx\\
2dT + cVf(f | P ( r ) | 2 d r ) ^ + 2 | 7 | / ||U '||2dr 

JO JO JO 

By Gronwall lemma, 

(4.4.12) ||u ' | |a < [co - 2ua f \\uxx\\
2dr + c( / ' |P(r) |2dr)*]e2HT 

JO JO 

Add (4.4.12) and (4.3.6) together, 

(4.4.13) ||u||2]2 < [co + ||uo||i - 2ua f \\uxx\\
2dr + (c + c)( f |P(r) |2dr)*]e2HT 

JO JO 

<[c0-2ua f \\uxx\\
2dT + c(f |P(r)|2dr)*]m 

JO Jo 

Put (4.3.9) in (4.4.13) to obtain 

(4.4.14) ||u||2j2 < m(c0 - 2ua f \\uxx\\
2dr) 

Jo 
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+mc(c0 + c'\\u\\1,2 + (c f \\uxx\\
2dr)*+(c f H | 1 ) 2 d r ) * ) 

JO JO 

= m0c0 + mcco — 2mua J | |ux x | |2dr 
JO 

+\{mcc')2 + \\\u\\l2 + \ ^ ± + \^mua)J^ \\uxx\\
2dr + mc(cjf ||u||4,2dr)* 

= rn' + \\\u\\2
>2 + mKc J\\u\\l2dr)* 

Thus 

(4.4.15) ||u||2)2 < 2m' + 2mc(c / | |u | |4
i 2dr)s 

Jo 

This is exactly (4.3.11). Therefore, (4.3.12),(4.3.13),(4.3.14), all hold. One con

cludes that for 0 < t < T 

(4.4.16) H 4
) 2 < m, ||u||oo < oo 

By the same argument to prove Theorem 4.3.3 one has 

T H E O R E M 4.4.1 ( G L O B A L EXISTENCE T H E O R E M ( I I )) . For u0 E H2,Q E 

C2,a(3 > 0, there exists a unique global classical solution to (4.1.1). 

COROLLARY 4.4.2. One could study half-line problem for the following GL equa

tion by setting up 7 = u = K = e, a = /3 = ± 1 in (4.1.1): 

(4.4.17) ut = (e± i)uxx - (e ± i)\u\2u + eu 

with initial-boundary data u(x,0) = uo(x) E H2[0,oo),u(0,t) = Q(t) E C2[0,00). 

This is a perturbed NLS. Global existence was established in [18] for NLS (e = 0). 

It turns out that half-line problem for this particular perturbed NLS has global 

solution by Theorem 4.4.1. We shall indicate that ifue(x,t) solves (4.4.17), u(x, t) 

solves the half-line NLS with the same initial-boundary data, then ue —> u(e —» 0) 

under certain norm. 
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REMARK 4.4 .3 . The sign of a/3 has some significant implications in NLS case 

(u = K = 7 = 0). It was shown that if a/3 > 0 there are no bound states 

(permanent waves) and the final state is just the similarity solution (cf.[l]). On the 

other hand, if a/3 < 0 the x independent solutions of NLS are unstable (analogous 

to the Benjamin-Feir criterion [41]). If K < 0, [41] indicated that the solution 

to (3.1.1) becomes unbounded in finite time. (This result is consistent with that 

found by Stuart and Stewartson (cf. [55]) who examined a Cauchy problem for 

the GL equation (3.1.1)). For the GL equation, the criterion UK + a/3 > 0 has 

physical implications (see [41] for details). Since U,K>0, our criterion a/3 > 0 

certainly implies UK + a/3 > 0. One has reason to believe that for certain initial-

boundary data, global-existence can not hold for the half-line problem (4.1.1) if 

K < 0, but an analytical proof may be very difficult because of the infinite domain. 

(There are not many blow-up results available: many successful attempts require 

a finite domain in order to estimate ||u||4, ||u||<; etc.) One should note that u > 0 is 

necessary to establish (4.1.6) for existence. Whether there is a blow-up for certain 

initial-boundary data in case a/3 < 0 and |/3| > \/ZK is still pending further 

investigation. 
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Chapter 5. 

W E A K S O L U T I O N T O A N I N I T I A L - B O U N D A R Y V A L U E 

P R O B L E M F O R T H E G I N Z B U R G - L A N D A U E Q U A T I O N 

§5.1 P R E L I M I N A R I E S . 

The Cauchy problem for the GL equation (3.1.1) with x E £1 = [0,L],u(x,0) E 

HQ(Q,) is well-posed as can be seen by using classical techniques of nonUnear 

parabolic equations (cf.[2,27,38]). In this chapter we shall study the GL equa

tion posed in the finite domain ft = [0, L] with the boundary data u(0,t) = 

Q(t),u(L,t) = 0 and initial data u(x,0) = uo(x). Under certain conditions on 

these data, we show that there is a unique weak solution. The solution u obtained 

here may not be a classical solution because UQ E H1 only. 

The concerned GL equation is posed on a bounded domain as follows (K, U > 

0, a, f3 real): 

(5.1.1) ut = (u + ia)uxx — (K + i/3)\u\2u + -yu 

x E ft = [0, L], t E [0, T], u(x,0) = u0(x),u(0, t) = Q(t), u(L, t) = 0 

Here Q(t),uo(x) are complex functions. We shall, throughout this section, assume 

that for t E [0,T], Q(t) E C2[0,oo),Q(t) ^ 0,uo(x) E H1^),^^) = 0,u0(0) = 

Q(0). 

First we use the following transformation (here w(x,t) is an appropriate 

smooth function satisfying w(0,t) = \,w(L,t) = 0, which will be determined 

later) 

(5.1.2) u(x,t) = v(x,t) + Q(t)w(x,t) 
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and this substitution in (5.1.1) yields 

(5.1.3) vt = (u + ia)vxx -(K + i/3)\v\2v + Gx+G2+f 

v(0,t) = v(L,t) = 0,u(a:,0) = u0(x) - Q(0)w(x,0) 

(5.1.4) / = -Qwt - Q'w + iQw + (u + ia)Qwxx -(K + i/3)\Qw\2Qw 

(5.1.5) Gi = cxv + c2v = -(K + i/3)(2\Qw\2Qv + w2Q2v) + -yv 

(5.1.6) G2 = c3v
2 + c4|u|2 = ~(K + i/3)(wQv2 + 2wQ\v\2) 

LEMMA 5.1.1. There exists w E C ^ O , ^ ^ 2 ^ ) ) n C°(0,T;.ff2(ft)), w(0,t) = 

l,w(L,t) = 0 such that / E L2(0,T;H0
l(Sl)),dtf E L2([0,T] x ft). 

PROOF: Consider the following initial-boundary value problem: 

(5.1.7) wt = (u + ia)wxx - ^ r ^ + (« + i/3)\Q\2 - 7) 

L — x 
w(0,t) = l,w(L,t) = 0,u;(:c,0) = — — 

Li 

If we use the transformation w(x,t) = W(x,t) + ^j^- then (5.1.7) is equivalent to 

(5.1.8) Wt = (u + ia)Wxx - ~ ^ { ^ + (« + i/3)\Q\2 - 7) = (* + ia)Wxx + g 

W(0, t) = W(L, t) = 0, W(x, 0) = 0 

Define A = (u + ia)D2
x,D(A) = JJ2(ft) n ^ ( f t ) then clearly D(A),H$(Sl) are 

dense in L2(Sl) and A is closed. For W E H^(Q,), 
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(5.1.9) |((A - A)W, W)\ > \X\\W\\2 + u\\W'\\2 + ia\\W'\\2\ > c o l l ^ 2 ^ 

Thus A - A maps D(A) 1-1 onto L2(ft). Also from (5.1.9) one has |((A -

A)W,W)\ > X\\W\\l thus ||A - A|| < i for A > 0. By Hille-Yosida Theo

rem, A generates a continuous contraction semigroup N(t) — exp At for t > 0. 

Since Q E C2,Q ^ 0, it is clear from (5.1.8) that g'(t) is continuous. Thus 

J0 N(t — s)g(s)ds E D(A) by [53] hence there is a unique local solution W to 

(5.1.8) with W E C1(0,TM;L2(Sl))r)C0(0,TM;D(A)): 

(5.1.10) W(t) = N(t)Wo - J* N(t - s)^^(^ + (K + i/3)\Q\2 - 7)ds 

It is not difficult to show that TM = T. By using the fact N(t) is a con

traction semigroup in L2(ft) one finds through (5.1.10) that \\W\\2 < oo on 

[0,T]. By standard estimate on Wt (cf.[53]) and the fact Q E C2 one finds 

that ||W*||2 < oo on [0,T]. Thus ||W^||D(>1) < oo through (5.1.1). Consequently 

w E C1(0,T;L2(ft)) D C°(0,T;.H'2(ft)) is the unique solution to (5.1.7). 

It remains to check that / E L2(0, T; H^Sl)), dtf E L2([0, T] x ft). One looks 

at (5.1.4) and notes that when w solves (5.1.7): 

(5.1.11) / = Q(-wt + (u + ia)wxx) -(K + i/3)\Qw\2Qw + <yQw - Q'w 

= Q^J^-iTf + (« + ^)l<3|2 - 7) - (« + i/3)\Qw\2Qw + 7Qw - Q'w 

Evidently /(0, t) = f(L,t) = 0. Also, w E H2(Sl) => \w\2w E H^Sl), thus / 6 

£2(0,T; tfoUft)). Since Q E C2 and w,wt E C°(0,T;Z2(ft)),d t/ E L2([0,T] x ft) 

is obvious. Q.E.D. 
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§5.2 EXISTENCE OF A WEAK SOLUTION. 

We shall utilize Galerkin's method (cf.[12, 38]) to solve (5.1.3). Let 

(5.2.1) wj E H^(Q,), -AWJ = XjWjJ = 1,2,... 

and vm = ^2™ gjm(t)wj be an approximate solution where {ffjmlJLi are deter

mined by the conditions 

(5.2.2) (dtvm,Wj) + (u + ia)(dxvm,dxWj) + (K + i(3)(\vm\2vm,Wj) 

= (G1+G2+f,wj) 

vm(0) = v0m E [wi,...,wm],v0m -*vQ =v(x,0) EHKtt) 

Multiply (5.2.2) by gjm(t) and add them for j = 1,2,..., m. Now one has 

(5.2.3) (dtvm, vm) + (u + ia)\\dxvm\\2 + (K + i/3)\\vm\\\ = (Gx + G2 + f,vm) 

From (5.1.5),(5.1.6) it is clear that |cj(a;,£)| < co,i = 1,2,3,4. Take real part of 

(5.2.3): 

(5.2.4) ^ I K I l l + v H^mll l + « | K | | 4 

<2c0 | |U m | |2 + 2c0 / K | 3 d z + | | / | | 2 |K | | 2 
Ja 

< 2c0\\vm\\2 + K\\vm\\i + ±c2\\vm\\2 + Il/H2 + I | |„m | | a = K||Um||4 + c'||Um||2 + Il/U2 

Since u > 0,(5.2.4) implies that 3«||um||^ < 2c'||um||2! + 2\\f\\l and by Gronwall 

lemma one has ||vm||2 < M on [0,T]. By (5.2.1), one could replace Wj by AWJ in 

(5.2.2) to get 
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(5.2.5) (dtvm, Avm) + (u + ia)(Avm,Avm) - (K + i/3)(\vm\2vm, Avm) 

= -(G1+G2+f,Avm) 

(5.2.6) \{fQ\Q{r)\2dT)*\\dxvm\\2+u\\Avm\\2 

< (« + l/*l)ll«m||2||At;m||2 + ||Gi + G2+ /||2||At;m||2 

< |||At;m | |l + (K+jfl)a||»>m||g + p A ^ H 2 + i-||G„ + Gx + f\\2
2 

Now use ||um||2 < M and the following Gagliardo-Nirenberg estimates (cf.[50]): 

(5.2.7) ||wm||6 < m||5«t;m|||||wm||| +m,||»m||2,||i;m||4 

1 3 

< mo||dxum||2
4||um||f +m||vm||2 

Then (5.2.6) becomes 

(5.2.8) dt\\dxvm\\2 < c||Vm|||i + c(||t,m||2 + |K | | 2 + | | / | |2)2 

< c + c | | ( / V ( T ) | 2 d r ) M 2 

JO 

Therefore, vm is bounded in L°°(0,T;H^(n)). Now differentiate (5.2.2) with 

respect to t: 

(5.2.9) (d2vm,wj) + (u + ia)(dtdxvm,dxWj) 

+(K + i/3)(2\vm\2dtvm + v2
m( I \Q(T)\2dT)*Vm,Wj) 

Jo 

= (dtG1+dtG2+dtf,wj) 

One could replace WJ by dtvm in (5.2.9) and take the real part: 
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(5.2.10) 5 ft||&t>m||2 + v ||0«0«wm||2 

< \(K + i&)(2\vm\2dtvm + v2
m( f \Q(T)\2dr)*vm,dtvm)\ 

Jo 

+\(dtG1+dtG2 + dtf,dtvm)\ 

< c'M2 ||0tt;m||2 + collftwmlla + c||0tt;m||2 < C0 + C\\dtvm\\2 

Here we use (5.1.5), (5.1.6) and ||um||oo < M>/||0rt;f»||2||t;m||2 < M0. By [38], 

dtvm is bounded in I»°°(0, T; L2(Q)) and we can extract uM from vm so that uM —> v 

weakly in X2(0,T;^(ft));a tuM -> x weakly in L2(0,T;L2(Q)),dtv = x and v 

solves 

(5.2.11) (dtv, h) + (u + ia)(dxv, dxh) + (K + i/3)(\v\2v, h) = (Gj + G2 + / , h) 

Vh E H^Sl). We deduce from (5.1.2),(5.1.3) and (5.2.11) that u = v + Qw satisfies 

(5.2.12) (dtu, h) + (u + ia)(dxu, dxh) + (K + ip)(\u\2u, h) - 7(u, h) = 0 

Vh E F0
x(ft) with u E ioo(0,T;iT1(ft)),a tu E i°°(0,T;L2(ft)) and u(x,0) = 

u0(x),u(0,t) = Q(t),u(L,t) = 0. 

To show the uniquess of solution u, it suffices to show the uniqueness of 

solution v to (5.2.11). Suppose v\, v2 are two solutions and write V = vx — v2. By 

(5.2.11), 

(5.2.13) (dtV^ + ^ + iaW^d^ + ^ + ipWvrfvx - \v2\
2v2,h) 

= (Gi(ui) - Gx(v2) + G2(Vl) - G2(v2), h),Vh E H^Sl) 
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In particular, we can replace h by V in (5.2.13) then take the real part: 

(5.2.14) I ( j f |Q( r ) | 2 dr) l | |V | | 2 + u\\dxV\\2 < c o H M V - |^212^21|21|^| |2 

+\\Gi(vi) - Gi(t*) | |2 | |V| |2 + | |G2(«i) - G2(i*)| |2 | |V| |a < c||V||2 

Here we use vi = V + t>2,||v,||i < c' for i = 1,2, ||V||oo < 2c' and c = 

c(c' ,Q,u>,a,/?,/c,i/ ,7,T). Since u > 0, V E iT^(ft), (5.2.14) becomes ||V||2 < 

2c f0 | |V| |2dr thus V = 0 on [0, T] because c is independent of t. We have there

fore completed the proof of the following result: 

THEOREM 5.2.1 (WEAK SOLUTION). For the GL equation (5.1.1) there exists a 

unique weak solution u satisfying (5.2.12). 
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