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Abstract

ESA and NASA scientific missions to the Jupiter and Saturn systems will answer funda-

mental questions on the habitability of icy worlds. The missions include unprecedented

challenges, as the spacecraft will be placed in closed, stable orbits near the surface of

the moons. This thesis presents methods to design trajectories that tour the moons and

ultimately insert the spacecraft into orbits around them, while mitigating the mission

costs and/or risks.

A first technique is the endgame, a sequence of moon flyby preceding the orbit inser-

tion. Historically, the endgame is designed with two approaches with different results:

the v∞-leveraging transfer (VILT) approach leads to high-∆v (hundreds of m/s), short

time-of-flight (months) endgames, while the multi-body approach leads to low-∆v (tens

of m/s), long time-of-flight (years) endgames. This work analyzes and develops both

approaches.

We introduce a fast design method to automatically compute VILT endgames, which

were previously designed in an ad-hoc manner. We also derive an important simple

quadrature formula for the minimum ∆v attainable with this approach. This formula

is the first important result of this work, as it provides a lower bound for assessment

studies.

We explain and develop the complex multi-body approach introducing the Tisserand-

Poincaré (T-P) graph, which is the second important result of this work. It provides a link

between the two approaches, and shows the intersections between low-energy trajectories

around different moons. With the T-P graph we design a five-month transfer between
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low-altitude orbits at Europa and Ganymede, using almost half the ∆v of the Hohmann

transfer.

We then focus on missions to low-mass moons, like Enceladus. We show that non-

tangent VILT (an extension of the traditional VILT) significantly reduce the ∆v while

maintaining a satisfactory transfer time (< 4 years in the Saturn system). With a new

design method we compute a 52 gravity-assist trajectory from Titan to Enceladus. The

time of flight is 2.7 years, and the ∆v is almost 10 times better then the Titan-Enceladus

Hohmann-like transfer. This trajectory and the design method are the third important

contribution of this work; they enable a new class of missions which were previously

considered unfeasible.

Finally we study the capture problem, which seeks chaotic trajectories with multiple

orbit insertion opportunities. We explore the solution space extending the design tech-

niques used by ESA for the BepiColombo mission capture to Mercury. Such problems

are better modeled in the spatial, elliptic, restricted three-body problem, which we ana-

lyze in detail. We define new regions of motions and to compute new families of periodic

orbits and their stability properties. This analysis is the fourth important contribution

of this work. Finally we show that capture trajectories shadow the manifolds of special

periodic and quasi periodic orbits. This is the last important contribution of this report,

as if both explains the complex dynamics of capture trajectories, and suggests new ways

to design them.

xvii



Chapter 1

Introduction

1.1 Motivations

In recent years both NASA and ESA have studied a variety of mission options to the

Galilean moons at Jupiter and to the moons of Saturn including Enceladus and Titan.

These moons are very interesting for the scientific community; their exploration will help

understanding the habitability of icy worlds orbiting giant planets.

On February 2009, NASA and ESA announced their cooperation in the design of

the Europa Jupiter System Mission, to be launched around 2020. NASA will design

the Europa orbiter, while ESA will design the Ganymede orbiter. JAXA (Japan) and

Roscosmos (Russia) might also contribute with the Jupiter Magnetospheric Orbiter and

the Europa lander.

In the same year it was announced that the NASA/ESA Titan Saturn System Mission

will explore Titan and Enceladus, and is currently planned to be launched sometime in

the 2020s. In part as a result of the work presented in this thesis, JPL is also studying

mission scenarios for an Enceladus orbiter.

Both missions are very challenging. The long distance from the Sun and the Earth

affect all the subsystems, starting with power, thermal and telecommunications. Differ-

ently from the spacecraft Voyager 1 and 2, Galileo, and Cassini-Huygens, which success-

fully explored the outer solar system, the new planned missions include moon orbiters,

with an additional set of challenges. The orbit insertion, which place the spacecraft in

orbit around the moon, becomes one of the most critical and expensive part of the mis-

sions. With the exception of the Titan orbiter, which can use aerobraking techniques,
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all the other orbiters need to carry large amount of propellant to provide the change in

energy (or speed, ∆v) for the orbit insertion maneuver.

To mitigate the costs and risks of orbit insertion maneuver, and to enhance the

exploration of moon systems, the spacecraft must perform complicated sequences of

flyby and impulsive maneuvers. A few of such trajectories were computed in an ad-hoc

manner; however, the astrodynamic community is seeking new design methods and new

techniques for the computation of more and diverse solutions. By reducing costs and/or

risks, these solutions can save the missions from future cancellations.

This thesis study, compare, extend old, and create anew astrodynamic techniques

for moon system explorations. The techniques exploit the fast dynamics of the moon

systems, where the time scale is on the order of days, rather then of years as in the

planet explorations. The results presented in this report are published in conference

proceedings and peer-reviewed journals[CR10a, CR10b, CSR10, SCR09, CL08, CLN08].

1.2 Background

In this section we introduce the astrodynamic techniques currently in use to design the

mission to the moons.

1.2.1 Endgames and begin-games

The endgame [JD99] is the last part of a trajectory before the insertion maneuver into

the science orbit. An example of endgame is the last part of the trajectory to Mercury

of the NASA Messenger Mission (see Fig. 1.1). The endgame aims at a low-∆v orbit

insertion maneuver. The “begin-game” is the symmetric problem and starts with a low

∆v escape from an initial orbit around a minor body. Both strategies have been studied,

designed and implemented in space missions with two distinct approaches.
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The first approach uses the v∞− leveraging transfer (VILT) technique, where the

combined effect of gravity assists and impulsive maneuvers (at the almost opposite apsi-

dal point of the spacecraft orbit) changes the spacecraft velocity relative to the minor

body[Hol75, SLS97]. Typically the transfer is first computed in the linked-conic model

(i.e. the zero-sphere-of-influence, patched-conic model), and then optimized in a real

ephemeris model and patched together to the rest of the trajectory. The VILT approach

is very intuitive and quickly provides solutions. NASA and ESA use the VILT approach

for the design of the endgame trajectories to Europa [JD99, RS07], Ganymede [BdPC]

and Titan. The VILT originates and is used frequently with interplanetary trajectories

[Hol75, SLS97]. The Messenger mission to Mercury implements a VILT sequence for

the endgame at Mercury [MDF+06]; the BepiColombo mission to Mercury implements

a low-thrust version of the VILT at Earth and at Mercury [Lan00], followed by a grav-

itational capture at Mercury [JCGK04]. A The Cassini spacecraft performed a VILT

at Venus before the last Earth gravity assist [GGH98]. The Juno mission, targeted to

launch in 2011, implements a VILT at Earth to reach Jupiter [KJT08].

The second approach uses the multi-body technique[RL03, SPC99], where small ∆vs

(if any) are applied when the spacecraft is far from the minor body, typically to target

high altitude flyby passages which produce the desired effects (e.g. behind or in front

of the minor body to increase or decrease the spacecraft energy). The trajectory is

computed directly in the real ephemeris model, or in the restricted three, four, or five

body model. This approach cannot be explained with the linked-conics model, where

ballistic transfers cannot change the arrival conditions at the minor body. Trajectories

are typically found with some heuristic method. Recently, nonlinear dynamical system

theory has been used to help the design of endgames or multi-moon orbiters [RS07, GR09]

(See Fig 1.2). Usually the multi-body technique results in low-cost trajectories with long

times of flight. The Smart1 mission successfully implemented this strategy to get the

spacecraft gravitationally captured around the Moon [SPC99].
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Figure 1.1: Endgame trajectory in the Messenger mission to Mercury (picture from
NASA).

1.2.2 Capture trajectories

Capture trajectories allow the spacecraft to approach a moon and to be temporarily

captured around it without any insertion maneuver. This feature can be used to explore

moons at no additional cost before transferring into another minor body, or to increase

the robustness of the orbit insertion maneuver by providing back-up orbit insertion

opportunities. An example of capture trajectory is the gravitational capture at Mercury

of the ESA BepiColombo mission to Mercury to be launched in 2014 (see Fig. 1.3).

There are two different approaches to the design of capture trajectories. The first

approach is a systematic search of the solution space by varying the orbital parameters

before the orbit insertion maneuver. This approach was partly implemented at the

European Space agency for the design of the nominal trajectory of the BepiColombo

Mission to Mercury[JCGK04].
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Figure 1.2: Multi-moon Orbiter (From [RL03])

The second approach consists of computing suitable unstable periodic and their man-

ifolds. The periodic orbits are computed in the circular, restricted three-body problem

(CR3BP) [RL07, vKZA+05].

1.3 Dissertation overview

Chapter 2 introduces the main mathematical models used in this work. In particular

we recall the 2-body problem (2BP), the patched-2BP model, the circular, restricted,

3-body problem (CR3BP) and the patched-CR3BP model.

Chapter 3 and 4 analyze the endgame problems with the two approaches (VILT and

multi-body techniques) and draw connections between them. In particular, in chapter
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Figure 1.3: Capture trajectory for the BepiColombo mission to Mercury (approved ESA
mission to be launched in 2014)

3 we derive new formulae for the VILT and build the leveraging graph to be used as a

reference guide for designing endgame tours. We prove that the cost of a VILT sequence

decreases when using high altitude flybys (as done in the multi-body technique). Finally

we find a simple quadrature formula to compute the minimum ∆v transfer between

moons using VILTs, which is the main result of the chapter. The leveraging graphs and

associated formulae are derived in canonical units and therefore apply to any celestial

system with a smaller body in a circular orbit around a primary. Specifically we demon-

strate the new method to provide rapid calculations of the theoretical boundary values

for ∆v requirements for moon tours in the Saturn and Jupiter systems using the VILT

model.
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In chapter 4 we focus on the multi-body approach using a new graphical tool, the

Tisserand-Poincaré (T-P) graph. The T-P graph shows that ballistic endgames are

energetically possible and it explains why they require resonant orbits patched with high

altitude flybys, whereas in the VILT approach flybys alone are not effective without

impulsive maneuvers in between them. We then use the T-P graph to design quasi-

ballistic transfers. Unlike previous methods, the T-P graph provides a valuable, energy-

based, target point for the design of the endgame and begin-game, and a simple way to

patch them. We finally present two transfers. The first transfer is between low-altitude

orbits at Europa and Ganymede using almost half the ∆v of the Hohmann transfer; the

second transfer is a 300-day quasi-ballistic transfer between halo orbits of the Jupiter-

Ganymede and Jupiter-Europa. With approximately 50 m/s the transfer can be reduced

by two months.

In chapter 5 we focus on tour of low-mass moons. In such systems the strategies

presented in the previous chapter lead to too long transfers. For this reason, we had to

extend the theory of chapter 3 and study non-tangent (or generalized) VILTs. We start

studying the solution space of the generalized VILT and to derive a linear approximation

which greatly simplifies the computation of the transfers. Using this approximation,

Tisserand graphs, and a heuristic optimization procedure we introduce a fast design

method for multiple-VILT tours. We use this method to design a trajectory from a highly

eccentric orbit around Saturn to a 200 km science orbit at Enceladus. The trajectory is

then recomputed removing the linear approximation, showing a ∆v change of less than

4%. The trajectory is 2.7 years long and comprises 52 gravity assists at Titan, Rhea,

Dione, Tethys, and Enceladus, and several deterministic maneuvers. Total ∆v is only

445 m/s , including the Enceladus orbit insertion, almost 10 times better then the 3.9

km/s of the Enceladus orbit insertion from the Titan-Enceladus Hohmann transfer. The

new method and demonstrated results in this chapter enable a new class of missions that

tour and ultimately orbit small mass moons. Such missions were previously considered

infeasible due to flight time and ∆v constraints.
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In chapters 6 and 7 we study the capture problem. The capture problem is more

affected by the science orbit constraints, and less by the time scale. Because the sci-

ence orbit constraints for the mission to the Jupiter and Saturn systems are currently

under definition, we consider the capture problem for a mission to Mercury, where the

constrains on the science orbit are given. In chapter 6 we define regions of motion and

periodic orbits in the ER3BP. A deep understanding of the ER3BP is required for the

design of capture trajectories at Mercury presented in the next chapter. We replace the

Hill’s zero-velocity surfaces in the CR3BP by the low-velocity regions, which divides the

subregions of motion from the forbidden subregions. We compute periodic trajectories

using a continuation method, starting with orbits in the CR3BP with period synchronous

to the period of the primaries. We show that different branches of periodic orbits bifur-

cates in the ER3BP and that the new branches have different linear stability properties.

In Chapter 7 we present two approaches to the design of capture trajectories. We first

develop and use the dedicated software tool GraCE to explore the solution space. Then

we reproduce the BepiColombo trajectory in the model of the elliptic restricted three

body problem, showing that it follows the stable and unstable manifolds of quasi-periodic

orbits. In particular, we show that the manifolds of a symmetric quasi-periodic orbit

around Mercury play a key role as their symmetry properties provide several recovery

opportunities to the mission.
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Chapter 2

Models

In this chapter we recall the mathematical models. Throughout this work we use the

tilde for dimensional variables.

2.1 The 2-body problem and the linked-conics model

2.1.1 The 2-body problem

The 2-body problems studies the motion of two bodies moving under their gravitational

attraction. The position of the second body m̃2 relative to the first body m̃1 is defined

by the equations of motion

¨̃r12 = −G (m̃1 + m̃2)

r̃3
12

r̃12 (2.1)

where r̃12 is the position of the second body with respect to the first body, and G is

the universal gravitational constant.

The restricted problem assumes that the one of the two body (M) has much smaller

mass then the other (P ), so that Eq. 2.1 can be written as

¨̃r = − µ̃P
r̃3

r̃ (2.2)

where µ̃P = Gm̃P is the gravitational constant of the body P , and r̃ is the position

of M in the inertial reference frame centered in P . The energy per unit mass of the

second body is

Ẽ =
1

2
‖ṽ‖2 − µ̃P

‖r̃‖
= − µ̃P

2ã
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The momentum is

h̃ = r̃× ṽ

The eccentricity vector is

e =
‖ṽ‖2 r̃
µ̃P

− (r̃ · ṽ)ṽ

µ̃P
− r̃

‖r̃‖

The motion in the orbital reference plane, with the z-axis aligned with the momentum

and the x axis aligned with the eccentricity vector, is defined in polar coordinates by

r̃ =
h̃2/µ̃P

1 + e cos f

where f is the true anomaly. We also recall the definition of pericenter and apocenter

for elliptical orbits

r̃p = ã (1− e) r̃a = ã (1− e)

and, for hyperbolic orbits, the velocity at infinity and deviation angle

ṽ∞ =
√

2Ẽ

δ = 2 arcsin

(
µ̃P

µ̃P + r̃pṽ2
∞

)
(2.3)

Figure 2.1 shows the orbital plane and the associated orbital parameters: the inclina-

tion i, the right ascension of the ascending node RAAN, and the argument of pericenter

ω . Figure 2.2 on the left shows the pericenter, apocenter and semi-major axis of the

elliptic orbit; on the right, the semi-major axis, pericenter, deviation angle and v∞ of a

hyperbolic orbit.
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Figure 2.1: The orbital parameters solution of the 2-body problem

2.1.2 Sphere of influence, gravity assists and linked-conics model

The sphere of influence of a minor body M orbiting a major body P is the region in

space where the gravitational attraction due to M dominates the gravitational attraction

due to P . This regions is called sphere of influence and has a radius

r̃SOI = ãM

(
mM

mP

)2/5

The flyby is a technique by which a spacecraft orbiting P can change its orbital

parameter with respect to a major body by using the gravitation attraction of a minor

body M . Figure 2.3 shows the flyby of a spacecraft and the sphere of influence.

The gravity assist is similar in definition to a flyby, except that usually the spacecraft

closest approach to the minor body is well within the sphere of influence.

Gravity assists can be modeled as an instantaneous change in the velocity of the

spacecraft, as shown in Figure 2.4 , satisfying the equations

∥∥vout∞ ∥∥ =
∥∥vin∞∥∥ = v∞ (2.4)
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Figure 2.2: On the left, the semi-major axis, pericenter and apocenter of an elliptic orbit.
On the right, the semi-major axis, v∞ and deviation angle of a hyperbolic orbit.

Figure 2.3: Flyby and the sphere of influence (from [LPS98])

< vin∞,v
out
∞ >= v2

∞ cos δ (2.5)

where δ is defined in Eq. 2.3.

The linked-conics model is a commonly used model in the design of interplanetary

trajectories. The idea is to represent a trajectory as a sequence of conic sections, which

are solution of the equation 2.2. Conic arcs are patched by instantaneous changes of

velocities, provided by gravity assists or impulsive maneuvers performed with on-board

thrusters.
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Figure 2.4: Gravity assist modeled as instantaneous change of the spacecraft velocity.

2.2 The circular, restricted 3-body problem and the

patched-CR3BP model

2.2.1 The circular, restricted 3-body problem

In this section we briefly recall some key features of the circular restricted three body

problem[Sze67a]. In the general restricted three-body problem, an infinitesimal mass

moves under the gravitational attraction of two primaries P and M (m̃M < m̃P ), with-

out affecting them. The motion of the infinitesimal mass is usually described in a nondi-

mensional, rotating reference frame, where the position of the primaries is fixed along

the X − axis (also called the syzygy axis) and their mutual distance is normalized to 1;

the Z-axis is perpendicular to the primary orbit, and we call the XZ plane the normal

plane.

In the circular restricted three body problem (CR3BP), the primaries move on cir-

cular orbits. Using the scale factors

l∗ = ãM , t∗ =

√
ã3
M

µ̃P + µ̃M
m∗ = m̃M + m̃P

the equation of motion for the spacecraft in the rotating frame are [Sze67a]
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Ẍ − 2Ẏ = ∂Ω

∂X

Ÿ + 2Ẋ = ∂Ω
∂Y

Z̈ = ∂Ω
∂Z

(2.6)

Ω(X,Y, Z) ≡ 1

2

(
X2 + Y 2

)
+

1− µ
R1

+
µ

R2
+

1

2
(1− µ)µ (2.7)

where R1 =
√

(X + µ)2 + Y 2 + Z2 and R2 =
√

(X + µ− 1)2 + Y 2 + Z2 are the

distances to the primaries, and µ = µM = m̃M
m̃M+m̃P

is the mass parameter. It is well

known [Jac36, Sze67b] that the system of Eq. (2.6) has one integral of motion, the Jacobi

constant1

J = 2Ω− V 2 =
(
X2 + Y 2

)
+ 2

1− µ
R1

+ 2
µ

R2
+ (1− µ)µ− V 2 (2.8)

where V 2 =
(
Ẋ2 + Ẏ 2 + Ż2

)
is the velocity in the rotating frame. The Jacobi

constant is used to define regions of motion. The system of Eq. (2.6) has five fixed

points, the Lagrangian points Li, i = 1, . . . , 5. The positions of the Lagrangian points

depend on the parameter µ.

Transfer trajectories are possible only if JC < JL1, where JL1(µ) is the Jacobi con-

stant associated to the first libration point.

2.2.2 Zero velocity surfaces

Hill used Eq. (2.8) to define zero-velocity surfaces which separate regions of motion from

the forbidden regions[Hil78]. Given a set of initial condition (t0,X0), Hill’s zero-velocity

surfaces are level sets of 2ΩC :

2ΩC = JC(X0)

1The Hamiltonian H, which is time-independent and is therefore an integral of motion, is related to
the Jacobi constant: 2H = −JC + µ (1− µ).
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If the initial conditions are such that JC < 3, the motion of the third body in the xy

plane is unbounded. If the initial conditions are such that JC > JL1, the motion of the

third body is bounded around either of the primary, or far away from both. Figure 2.5

shows the zero-velocity surfaces for the Pluto-Charon system.

Figure 2.5: Level sets of the function 2Ω in the Pluto-Charon system (µ ' 0.123). In the
circular restricted three-body problem, the level sets are the Hill’s zero-velocity surfaces,
and separate regions of motion from the forbidden regions.

2.2.3 Periodic orbits

A fundamental step in understanding any dynamical system is to identify its periodic

orbits and classify their linear and nonlinear stability [Poi92]. For a fixed value of the

mass parameter µ, the CR3BP possesses families of periodic orbits parametrized by the

Jacobi constant JC , as implied by the Cylinder Theorem[Mey99]:

An elementary periodic orbit of a system with an integral I lies in a

smooth cylinder of solutions parametrized by I.

Several authors computed families of periodic orbits in the CR3BP [Con68, BB79,

DRP+07, Góm79, How84]. In this work we use orbits of the halo orbit families. Their

linear stability is determined by computing the linear map
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ϕC : δX(t0)→ δX(T + t0) = MδX(t0)

between consecutive crossings through a Poincar section. Here δX(t0) is an arbitrary

initial perturbation of the state X = [X,Y, Z, U, V,W ], M is the monodromy matrix and

T is the principal period of the orbit. The stability of the map ϕ, and hence of the orbit,

is related to the eigenvalues λ of the monodromy matrix M : eigenvalues inside the unit

circle (λ < 1) are associated to the stable manifold Ws ; eigenvalues outside the unit

circle are associated to the unstable manifold Wu ; and pure imaginary eigenvalues are

associated with tori of quasi periodic orbits.

In the restricted three-body problem, the eigenvalues λ of the monodromy matrix

come in reciprocal pairs, so that the periodic orbit is linearly stable if and only if all the

eigenvalues are on the unit circle. Also, in the CR3BP two eigenvalues are real unitary,

and are associated to eigenvectors δX0 tangent to the trajectory: because the system is

autonomous, such perturbation corresponds to a small phase change along the orbit.

2.2.4 The patched, CR3BP model

The patched CR3BP model is an approximation of an n-body problem, where the mass

of the spacecraft is negligible, and where at any time only two gravitational body are

affecting its motion. The spacecraft trajectory is approximated by a sequence of trajecto-

ries, each one solution of the system of Eq. 2.6 for a choice of the major and minor body.

For instance, a trajectory flying by Europa and Ganymede can be split in two parts: the

first is well approximated by a solution of the Jupiter-Europa-spacecraft CR3BP, the

second is well approximated by a solution of the Jupiter-Ganymede-spacecraft CR3BP.
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Chapter 3

The endgame problem using the

v∞-leveraging technique and the

leveraging graph

In this Chapter and in the next one we study the endgame transfers and show the con-

nections between two different approaches: the v∞-leveraging transfer (VILT) approach,

which uses a patched 2-body problem model, and the multi-body approach which uses

multibody dynamics. This chapter studies the anatomy of the VILT.

In the first section we derive formulae to show that VILTs are efficient only for v∞

greater than a minimum value. In the second section we use the formulae to introduce

the leveraging graph, which has broad endgame design applications. Based on the graph

we demonstrate a branch and bound search to globally explore the flight time vs. ∆v

solution space. The canonical form of the leveraging graphs and formulae are applicable

to any planet system or moon system modeled as a smaller body in a circular orbit

around a primary. A simple scaling transforms the problem to any dimensioned system

of interest. In the third section we define and study the efficiency of the VILT. We prove

that the cost of a sequence of VILTs decreases when using high altitude gravity assists

(as done when using the multi-body technique). Finally we find the theoretical minimum

∆v for transfer between moons computed using the VILT approach. This new design

capability is the main result of this chapter.

In the next chapter, we will focus on the multi-body technique and will explain the

connection to the VILT approach.
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Nomenclature

aM Semi-major axis of the minor body (=1 in nondimensional units).

A/B Point in the spacecraft trajectory where the impulsive maneuver takes place. The

point A belongs to the orbit ending / starting at L, the point B belongs to the

orbit ending/starting at H.

E/I Superscript indicates the quantity is referred to an exterior/interior VILT.

hπ Altitude of the spacecraft’s closest approach to the minor body.

H± Points of the v∞−leveraging transfer where the spacecraft orbit crosses the minor-

body orbit. There are two possible crossings: H+ corresponds to the longer trans-

fer and H− corresponds to the shorter transfer. Subscripts indicate a quantity

evaluated at the corresponding point.

L Point of the v∞−leveraging transfer (VILT) where the spacecraft orbit is tangent

to the minor body orbit with a low relative velocity v∞L. Subscript indicates a

quantity evaluated at this point.

n : m±K v∞−leveraging transfer classification. n is the number of moon revolutions, m is

the number of spacecraft revolutions, K is the number of full revolutions in the arc

HB, ± refers to the long/short transfer.

P/M Subscript indicates the quantity is referred to the major body (P) or minor body

(M).

rA Distance from the point A,B to the major body.

rM Radius of the minor body.

vc Velocity of the spacecraft at a circular orbit with altitude hπ around a moon with

gravitational constant µM .
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vM Velocity of the minor body with respect to the major body (=1 in nondimensional

units).

v∞ Relative velocity of the spacecraft at the minor body.

v∞H Velocity of the minor body relative to the major body at the point H.

v∞L Velocity of the minor body relative to the major body at the point L.

vπ Velocity of the spacecraft with respect to the minor body at the pericenter of the

hyperbola.

∆vAB Impulsive transfer at the point A,B.

µ Gravitational constant.

x̃ Tilde indicates dimensional variable.

± In the formulae, the plus sign is used for exterior VILTs and the minus is used for

the interior VILT. If superscript of H, it refers to the long/short transfer.

3.1 v∞−leveraging

A v∞−leveraging transfer (VILT) is a technique by which a spacecraft orbiting around

a major body (P ) can change its speed relative to a minor body (M) [Hol75, SLS97].

The technique consists of a gravity assist and a small impulsive maneuver (∆vAB) that

occurs at opposite apses in the spacecraft orbit around the major body (see Figure 3.1)

. VILTs are typically modeled in the linked-conic model (or zero-sphere-of-influence,

patched-conic model) where the minor body is considered massless and is on a circular

orbit around the major body. The spacecraft trajectory is coplanar and starts and ends

at the minor body. The gravity assist is modeled as an instantaneous change in the

direction of v∞ vector by angle δ.
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Figure 3.1: Example of a v∞−leveraging transfer (VILT) to reduce the relative velocity
at a minor body: The spacecraft approaches the minor body tangentially and the gravity
assist at H rotates the relative velocity v∞H of an angle δ. At the apocenter of the new
orbit (point B), the impulsive maneuver ∆vAB changes the shape of the spacecraft orbit
so that it becomes tangent again to the minor body orbit at the point L. Although the
maneuver actually increases the spacecraft energy, at the point L the spacecraft has a
new relative velocity v∞L < v∞H .

3.1.1 Nondimensional variables

Throughout this chapter we will use nondimensional variables, so that the results are

general and can be applied to any endgame problem. To obtain the nondimensional

variables we divide the dimensional variable (denoted with the tilde) by the time and

length scale factors

lscale = ãM tscale =

√
ã3
M

µ̃P

Then the velocity scale factor becomes the velocity of the minor body ṽM , and the

nondimensional velocity, the semi-major axis of the minor body, and the gravitational

constant of the major body are one.

We also define vc as the nondimensional velocity of the circular orbit of radius r̃π =

r̃M + h̃π around the minor body

vc =

√
µ̃M
r̃π

/ṽM
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This nondimensional parameter groups the problem dependency on the minor

body gravity constant, minor body radius and altitude of the final/initial orbit inser-

tion/escape.

In nondimensional units, the gravity assist deflection angle is

δ = 2 arcsin
(

1/
(

1 + (v∞/vc)
2
))

(3.1)

and the spacecraft velocity at the closest approach to the minor body, vπ, is

vπ (v∞, hπ) =
√
v2
∞ + 2v2

c (3.2)

3.1.2 VILT model and classification

In this section we refer to Figures 3.2 and 3.3 to define the general variations and associ-

ated relevant variables of the VILT. We assume that the impulsive maneuver is tangential

and is performed exactly at the apses. This assumption is typically included when study-

ing VILTs because the Jacobi constant in the rotating frame is maximally changed by

performing the maneuver when the rotating velocity is the greatest - this occurs at apses

[Swe93]. We also assume that the spacecraft departs/arrives at point L tangent to the

minor body orbit. This condition guarantees the lowest v∞L [VC09] and greatly sim-

plifies the tour problem because we can decouple each VILT as opposed to having to

optimize a large sequence of VILTs altogether.

We divide the trajectory into two legs (A − L and B − H) joining four different

states of the spacecraft (L,A,B,H). At the point L the spacecraft is at an apse with

a relative velocity v∞L with respect to the minor body. At the point A the spacecraft

is at the opposite apsidal point, at a distance rA from the major body and with a

velocity vA. In between states A and B the spacecraft performs the impulsive maneuver

∆vAB = |vA − vB|. At the point H+ or H− the spacecraft intersects the minor body

orbit with a relative velocity v∞H > v∞L.
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We recall from the literature [SLS97] that there are four types of v∞−leveraging

transfers, depending on the following features:

• forward (backward) if the ∆vAB is in the same (opposite) direction of the spacecraft

velocity.

• exterior (interior) if the ∆vAB occurs at apocenter (pericenter) , thus if rA > aM

(rA < aM ).

From these definitions it follows that the forward-exterior v∞−leveraging and backward-

interior v∞−leveraging decrease the v∞, while the forward-interior v∞−leveraging and

backward-exterior v∞−leveraging increase the v∞.

From our definitions it also follows that

v
(E,I)
L = 1± v∞L (3.3)

v
(E,I)
A = vB ±∆vAB (3.4)

where the upper sign refers to the exterior VILT and the lower sign refers to the

interior VILT. Note that from these definitions and from Figure 3.2 we find boundary

values for v∞. In particular, 0 < v∞L <
√

2 − 1 for the exterior VILT for rA to be

bounded, and 0 < v∞L < 1 for the interior VILT for vL to be positive.

For each type of VILT we also specify:

• the resonant ratio: n : m, where n (m) is the approximate number of the minor

body (spacecraft) revolutions during the VILT.

• K, the number of full revolutions in the arc H −B 1.

• the point H−or H+ where the spacecraft encounters the minor body, resulting in

a long-transfer VILT or short-transfer VILT respectively. Exterior, long-transfer

1In literature we can find a different choice of letters: K : L(M)± where K ≡ n, L ≡ m, and M ≡ K
for exterior VILT
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Figure 3.2: Four variations of the v∞−leveraging transfer (VILT).

VILTs and interior, short-transfer VILTs are linked by prograde gravity assists.

Exterior, short-transfer VILTs and interior, long-transfer VILTs are linked by ret-

rograde gravity assists.

As an example, Figure 3.3 shows the schematic of a 5 : 4+ and of a 5 : 4−VILT. In the

rest of the chapter we refer to “backward/forward, interior/exterior n : m±K” VILTs. For

example the Europa endgame when approached from Ganymede is a sequence of forward

exterior VILTs.

3.1.3 Phase-free formulae

In this section we present a general formulation that is valid for all the four types of VILT.

We start by considering the phase-free problem that does not require the spacecraft and

the minor body to be at the points L and H± at the same time. The formulae presented

in this section are new and allow us to perform many useful, fast, preliminary and global

analyses which we present in the next sections. The details of the following calculations

are in appendix A.

We first define the function
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Figure 3.3: Schematic of two different 5 : 4 VILTs. In one case the ∆vAB occurs after
two full revolutions of the spacecraft on the leg H+ − B. Also, the transfer lasts a bit
more than 5 revolutions of the minor body; hence the notation 5 : 4+

2 . In the other case
the ∆vAB occurs after one full revolution of the spacecraft on the leg H−−B. Also, the
transfer lasts a bit less than 5 revolutions of the minor body; hence the notation 5 : 4−1 .

Γ(E,I) (v∞L) ≡ ± (rA − vA) = v∞L
v3
∞L ± 3v2

∞L − v∞L ∓ 7

v3
∞L ± 3v2

∞L + v∞L ∓ 1

where Γ(E) is computed for the exterior VILT , and Γ(I) for the interior VILT. If no

distinction is necessary we simply refer to Γ. We can show that Γ is a positive strictly

monotonic function of v∞. Later, we will see that Γ is convenient because it provides a

minimum bound on v∞ values where VILTs are useful.

With this notation we can explicitly state the high relative velocity v∞H as a function

of the low relative velocity v∞L and of the ∆vAB

v∞H (v∞L,∆vAB) =

√
(v∞L)2 + (∆vAB)2 + 2∆vABΓ (3.5)

Equivalently , we can explicitly state the ∆vAB as a function of the high and low

relative velocity

∆vAB (v∞L, v∞H) = −Γ +
√

Γ2 +
(
v2
∞H − v2

∞L
)

(3.6)
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Finally we define the phase-free efficiency of the VILT. The phase-free efficiency of

backward-interior or forward-exterior VILT εBI−FE is the increase of the final relative

velocity v∞H due to a change in cost ∆vAB, for a fixed initial relative velocity v∞L

εBI−FE ≡
∂v∞H
∂∆vAB

≡ D2v∞H =
∆vAB + Γ

v∞H (v∞L,∆vAB)
(3.7)

where Di is the derivative with respect to the i − th argument. The phase-free

efficiency of a backward-exterior or forward-interior VILTs εBE−FI is the decrease of

the final relative velocity v∞L due to a change in cost ∆vAB, for a fixed initial relative

velocity v∞H

εBE−FI ≡ −
∂v∞L
∂∆vAB

We derive an expression for εBE−FI by first taking the partial derivative of v∞H with

respect to v∞L

D1v∞H ≡
∂v∞H
∂v∞L

=
v∞L + ∆vAB

dΓ
dv∞L

v∞H (v∞L,∆vAB)
(3.8)

We then use the Implicit Function Theorem[AMR88] to compute

εBE−FI = − ∂v∞L
∂∆vAB

= D2v∞H ◦ [D1v∞H ]−1 =
∆vAB + Γ

v∞L + ∆vAB
dΓ

dv∞L

(3.9)

3.1.4 Phase-fixed solutions

In this section we restore the phasing constraint and introduce the concept of leveraging

graphs. A numerical solution to this constrained problem can be computed using an

algorithm described by Sims et al. [SLS97]. In general, given v∞H :

• We assume the minor body and the spacecraft are both at the point H at time tH ;

• We guess the flight-path angle γ at H (see Figure 3.1), and find the orbital param-

eters of the leg H −B.

• We compute the orbital parameters of the leg L−A with apses at L and rA.

• We compute the transfer time and the time tL when the spacecraft is at L
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Figure 3.4: (v∞L − v∞H) leveraging graph for the exterior (a) and interior (b) VILT. for
each resonance n : m we only plot the VILT n : m+

m−1, which we show to be the most
efficient. The domain of feasible v∞L is discussed in the previous section.

• We compute the distance from the point L to the position of the minor body at

time tL and differentially correct the flight-path angle γ until the distance vanishes.

The numerical solutions to the VILT problem are one set of v∞H (v∞L) curves for exterior

n : m±K VILTs, and one set of v∞H (v∞L) curves for the interior n : m±K VILTs. We plot

these solutions on a special graph , which we call (v∞L − v∞H) leveraging graph. We

can also plot these solutions using other variables related to v∞, thus defining different

leveraging graphs. In the next section we build and use the Tisserand leveraging graph.

Following this definition, the graphs in literature can be referred as (raphelion − v∞Earth)

leveraging graph or (raphelion −∆vTOT ) leveraging graph etc.([Hol75, SLS97]).

Figure 3.4 shows the (v∞L − v∞H) leveraging graphs for the exterior (a) and interior

(b) VILT (The domain of feasible v∞L is discussed in the previous section). In these

graphs, for simplicity and clarity, we plot only one VILT (the most efficient) for each

n : m case. We emphasize that the leveraging transfers and graphs are computed only

once in nondimensional units, so that they can be applied to any endgame problem

using the scale factors. Note that all of the numerical solutions presented in Figure

26



Figure 3.5: (v∞L − v∞H) leveraging graph for the exterior (a) and interior (b) VILT. In
these close-ups,we plot 2m curves for each n : m resonance. The dash curves are the
short-transfer VILTs (one dash curve for each K , 0 < K < m− 1). The solid curves are
the long-transfer VILTs (one solid curve for each K, 0 < K < m−1). The K parameter
is indicated in the box. We also plot contour lines representing constant-∆vAB .

5 are computed using a 200 line code written in Matlab. The computational time is

approximately 1 minute using a dual-core 1.83 GHz laptop processor.

Figure 3.5 shows a close-up of the exterior (a) and interior (b) VILT. In contrast

to Figure 3.4, all VILT solutions are plotted for each n : m case. As an example , we

show that the 3 : 2 exterior VILT reduces the v∞ from v∞H = 0.131 to v∞L = 0.1135.

By plotting the level sets of the phase free function ∆vAB(v∞L, v∞H) of Eq. (3.6) we

estimate the ∆vAB ≈ 0.0022. For a VILT at Europa, we multiply these values by

the average velocity of Europa of approximately 13.7 km/s to find that we decrease

ṽ∞H = 1.8 km/s to ṽ∞L = 1.56 km/s using approximately 30 m/s.

Finally we define the phase-fixed efficiency E of the VILT as the ratio between the

variation of v∞ and the ∆vAB

E =
v∞H − v∞L

∆vAB
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Figure 3.6: Efficiency of the exterior (a) and interior (b) VILT. The dash curves are the
short-transfer VILTs, while the solid curves are the long-transfer VILTs. The numbers
in the boxes represent the values of the parameter K. For any given resonance n : m,
the most efficient VILT is n : m+

m−1

Figure 3.6 shows the phase-fixed efficiency of the exterior (a) and interior (b) VILT.

The figure shows that the most efficient VILTs are the one with the largest possible value

of K (Kbest = m − 1) and longest transfer time. However, we avoid discarding the less

efficient solutions because the difference in efficiency can often be compensated when

computing the VILT in more accurate models.

3.1.5 Minimum v∞L

In the previous example we showed that a ∆vAB of approximately 30 m/s reduces the

relative velocity by approximately 240 m/s. However it is not always true that the ∆vAB

is smaller than the actual gain/loss in relative velocity magnitude at the flyby body. In

what follows we show that this occurs only if v∞L is larger than a given value, which

depends on vc.

Let’s assume an endgame problem where the spacecraft initially approaches the minor

body with v∞H . The spacecraft needs ∆vπH = vπH − vc to be captured in the target
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orbit. Alternatively, the spacecraft can perform a VILT which reduces the relative veloc-

ity to v∞L, and the new orbit insertion maneuver requires ∆vπL = vπL − vc. Then the

VILT is efficient as long as the reduction of vπ is greater than the VILT cost ∆vAB.

Proposition The VILT strategy is efficient iff v∞L > v∞ where v∞ =
√
v2
π − 2v2

c and

vπ (vc) is the root of the function

f(vπ) = Γ ◦ v∞ (vπ; vc)− vπ (3.10)

where vc is a parameter for f , and ◦ denotes function composition.

PROOF From Eq. (3.2) we find

v2
∞H = v2

πH − 2v2
c , v2

∞L = v2
πL − 2v2

c (3.11)

We square Eq. (3.5) and use Eq. (3.11) to find

(vπH)2 = (vπL + ∆vAB)2 + 2∆vAB (Γ− vπL)

The VILT strategy is efficient if ∆vAB is less than the change in vπ, thus

if

vπH > (vπL + ∆vAB) −→ Γ− vπL > 0

To solve the problem we need to study the function f(vπL) = Γ ◦

v∞ (vπL; vc)− vπL, where vc is a parameter.

For vπL =
√

2vc, we have v∞L = Γ = 0, thus f(
√

2vc) = −vc. Also

df/dvπ = dΓ/dv∞L ∗ vπL/v∞L − 1 > 0 2. Then f(vπ) > 0 iff V > vπ, where

vπ (vc) is the only root of f (vπ) = 0. Note that the root for the exterior

VILT is different from the root of the interior VILT, as Γ(E) 6= Γ(I).

To compute vπ we find numerically the root of the function in Eq. (3.10).

Then we use Eq. (3.2) to find v∞. v∞ as function of the parameter vC for

2An expression for dΓ/dv∞L is given in appendix A
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the exterior and interior case can be approximated by the following cubic

splines:

vE∞ = + (5.9561662273454e− 5) v3
c − (5.1344907043886e− 2) v2

c +

+ (2.0441849005940e− 1) vc − (7.2712278793706e− 6)

vI∞ = − (1.9176499488104e− 2) v3
c + (5.1814140491440e− 2) v2

c +

+ (2.0377335047117e− 1) vc + (8.7463066767540e− 6)

3.2 Leveraging graph and the Europa endgame

In this section we introduce the Tisserand leveraging graph which we use to design

endgame strategies.

The Tisserand graph is a graph representing the pericenter rp and period T of a

Keplerian coplanar orbit around a major body [LPS98, SL02]. Certain points (rp,T ) on

the graph represent orbits that intersect the orbits of minor bodies of the system. For

these points we can compute the v∞s with respect to the minor bodies that the given

orbits intersect. We can then populate the Tisserand graphs with a set of v∞−level sets

for each minor body. When a spacecraft performs a gravity assist at one minor body,

it changes its location on the graph while staying on the v∞−level set. For this reason

the Tisserand graph is a useful graph of the planetary / moon systems, and it has been

used to design complicated multiple gravity assist trajectories [SS01, PLB00, VC09].

The Tisserand leveraging graph is an extension of the Tisserand graph which includes

the numerical solutions of the VILT. Because we use nondimensional units we need only

compute the graph once, and then scale it for the different minor bodies we want to

include. To build the graph we begin by computing the Tisserand graph[LPS98, SL02]

and representing it with the apocenter on the x−axis and the pericenter on the y−axis.

This choice of the axes results in rectangular, semi-infinite sub domains of the minor

bodies, and in period level sets which are straight diagonal lines with a slope of -1.
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Starting with a (ra, rp) orbit, the new (ra, rp) following a VILT is aligned horizontally

or vertically with the initial state. In particular:

• The ∆vAB of the interior VILT changes the apocenter but not the pericenter of

the initial orbit. We represent the interior VILT with a horizontal shift from/to

the line ra = 1.

• The ∆vAB of the exterior VILT changes the pericenter but not the apocenter of

the spacecraft orbit. We represent the exterior VILT with a vertical shift from/to

the line rp = 1.

In Figure 3.7 we show a schematic Tisserand graph. We use the apocenter-pericenter

representation, and show the effect of an interior and exterior VILT. We also plot the

period level sets and the v∞ level sets, and the effect of a gravity assist. We clearly see

how the ∆vAB changes the v∞.

We proceed by including the numerical solutions of the VILT. We plot the curves

in Figure 3.4 onto the Tisserand graph, and we obtain the Tisserand leveraging graph.

Figure 3.8 shows the Tisserand leveraging graph in nondimensional units. We only

include the VILTs with K = m − 1, as we showed in the previous section they are the

most efficient. The solid thick lines are the long transfer VILTs, and the dotted thick

lines are the short transfer VILTs.

3.2.1 Endgame at Europa using the Tisserand leveraging graph

In this section we use the Tisserand leveraging graph to design Europa endgames starting

at ṽ∞INITIAL = 1.8 km/s 3. We assume the endgame consists of a series of forward-

exterior VILTs. We first design one single endgame and then apply the same design

strategy in a branch and bound search, storing the total time of flight (ToF ) and the

31.8 km/s is slighty above the ṽ∞which can be achieved by multiple gravity assists only [KCC04,
VC09].
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Figure 3.7: A schematic apocenter-pericenter Tisserand graph and the effect of an interior
and exterior VILT. We also plot the period level sets and the v∞ level sets. A gravity
assist moves the spacecraft (ra, rp) along the v∞level set. The VILT ∆vAB moves the
spacecraft (ra, rp) horizonally or vertically, thus changing the v∞.

total ∆ṽTOT =
∑

i (∆ṽAB)i + ∆ṽπEOI , where ∆vπEOI is the Europa orbit insertion

maneuver

∆ṽπEOI = ṽπ

(
ṽ∞FINAL, h̃π

)
− ṽc

We start designing one Europa endgame, which is a sequence of forward interior

VILTs. Figure 3.9 is a close-up of the Tisserand leveraging graph scaled to Europa by

multiplying the distances by the semi-major axis of the Europa orbit, and by multiplying

the velocities by the velocity of Europa. We also plot the level sets of the function

∆ṽAB(ṽ∞L, ṽ∞H) in Eq. (3.6). The starting point of the endgame is the point A on

the figure. The first VILT is composed of a gravity assist and a (∆ṽAB)1. During the

gravity assist, the spacecraft moves along the ṽ∞ = 1.8 km/s level set until it intersects

, e.g., the 3 : 2+
1 curve (point B). Then the ∆ṽAB at apocenter raises the pericenter

to aM (point C). Using the ∆ṽAB level sets we estimate (∆ṽAB)1 ≈ 30 m/s. The

transfer time is approximately 3 Europa revolutions (around 10 days) and the new ṽ∞

is around 1.6 km/s. The second VILT consists again of a gravity assist and an impulsive

maneuver. The gravity assist moves the spacecraft (ra, rp) left and down on the graph

32



Figure 3.8: The Tisserand leveraging graph in nondimensional units obtained plotting
the numerical solutions of the VILTs onto the Tisserand graph. We only include the
VILTs with K = m−1, as we showed in the previous section they are the most efficient.
The solid thick lines are the long transfer VILTs, and the dotted thick lines are the short
transfer VILTs. The contour lines are the v∞ level sets.

until intersecting the 5 : 4+
0 curve (point D). The second VILT takes some 5 Europa

revolutions, it costs some 60 m/s and it reduces the v∞ to less than 1.2 km/s. We design

the third VILT in the same way and end up with a total transfer time of 6 + 4 + 3 = 13

Europa revolutions and a total cost of approx 60 + 60 + 30 = 150 m/s, to which we can

add the orbit insertion ∆ṽπ for ṽ∞FINAL = 0.8 km/s and the desired h̃π.

This design strategy is well-suited for a “branch and bound”[LD60], a global mini-

mization algorithm composed of three steps. The first step (branching) split the solution

space in subsets (nodes) which are linked in a tree structure. The second step (bound-

ing) evaluates the upper and lower bounds of the merit function for a given node. The

third step (pruning) discards the nodes with lower bound greater then a chosen pruning

global variable (typically the minimum solution). Using a recursive function, the tree can

be explored efficiently because suboptimal solutions are pruned early in the search. In

our problem, starting from a fixed ṽ∞INITIAL the algorithm recursively applies forward-

exterior VILTs and stores the ToF and total cost of the endgame, which are used to

prune the branches. The result of the branch and bound search is shown in Figure
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Figure 3.9: Simple endgame design using the Tisserand leveraging graph. Gravity assists
move the spacecraft along the v∞ level sets. The VILTs movethe spacecraft up to the
rp = 1 line.

Figure 3.10: The result of the branch and bound search for the Europa endgame problem
with initial velocity of 1.8km/s. The circles are the non-dominated solutions. Among
those, the square is the test case presented previously.

3.10, where we plot some of the solutions (the stars) and the non-dominated solutions

(circle). The test case explained previously is one of the non-dominated solutions (the

square). The branch and bound solutions from Figure 3.10 on the right agree qualita-

tively with those from [BR09] that are found using an enumerative method based on

dynamic programming principles.

3.3 Minimum and maximum ∆v endgame using VILTs

In this section we use the phase-free formula introduced previously to discuss the effi-

ciency of the endgame in terms of total ∆v. We first prove that the cost of a sequence

of VILTs decreases when favoring high altitude gravity assist. Then we use this result
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to compute the minimum and maximum cost of a multiple v∞ -leveraging transfer, with

a focus on the Europa endgame. Future works will include minimum time estimates.

Finally we compute the minimum and maximum cost of a multiple v∞- leveraging trans-

fer between different moons, with focus on the Ganymede-Europa transfer.

3.3.1 Efficiency of the v∞- leveraging

In this section we are interested in the efficiency of the VILTs in terms of ∆v.

Theorem - The total ∆v of a sequence of VILTs decreases if one low altitude gravity-

assist VILT is replaced with two or more high altitude gravity-assist VILTs. That

is, the total ∆v of a sequence of VILTs decreases when favoring VILTs with high

altitude gravity assists.

PROOF: We recall the definition of the phase-free efficiencies of Eq. (3.7)

and Eq. (3.9)

εBI−FE ≡
∆vAB + Γ

v∞H
εBE−FI ≡

∆vAB + Γ

v∞L + ∆vAB
dΓ

dv∞L

We recall that Γ > 0. Thus for ∆vAB −→ 0 , εBI−FE > 0 and εBE−FI > 0.

Now compute the variation of the efficiency due to a variation of ∆vAB

∂εBI−FE
∂∆vAB

(∆vAB) =
v∞H − (∆vAB + Γ) (D2v∞H)

v2
∞H

=

=
v2
∞H − (∆vAB + Γ)

2

v3
∞H

= −Γ2 − v2
∞L

v2
∞H

< 0

∂εBE−FI
∂∆vAB

(∆vAB) = −
Γ dΓ
dV∞L

− v∞L(
v∞L + ∆vAB

dΓ
dv∞L

)2 < 0

where we used Γ > vπL > v∞L for the first equation , and Γ dΓ
dv∞L

> v∞L

(proved in appendix A) for the second equation. Thus both εBI−FE and
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εBE−FI are positive at ∆vAB = 0 and strictly decreasing with ∆vAB: The

efficiencies are at their maximum when ∆vAB −→ 0, i.e. for small impulsive

maneuvers that - when multiple VILTs are patched together - requires high

altitude gravity assist. Because this is true for any initial relative velocity,

the cost of a sequence of VILTs decreases if we use more VILTs with low-

∆vAB as opposed to fewer VILTs with large ∆vAB. In practice, flight time

consideration will limit the number of feasible VILTs.

The previous theorem is more intuitive when looking at the level sets of v∞H (v∞L,∆vAB)

in Eq. (3.5), as explained in the following.

Figure 3.11 shows the curves v∞H (v∞L,∆vAB) for the Europa endgame case. At

each gravity assist the spacecraft moves along a v∞H level set. The VILT moves the

spacecraft coordinates vertically from top to bottom.

The endgame discussed in the previous section and shown in Figure 3.11(a) is com-

posed of three VILTs for a total transfer time of 46 days and a total ∆v of 154 m/s

to reduce the ṽ∞ from 1.8 km/s to 0.77 km/s. Figure 3.11(b) shows a hypothetical

endgame composed of fourteen VILTs, each using 10 m/s for a total of 140 m/s. The

second strategy is cheaper in terms of ∆v (it certainly has a much larger transfer time),

because the slope of the curves ∆v(v∞L) is larger for higher ∆v. Note in fact that

∂∆vAB
∂v∞L

= − (εBE−FI)
−1 (3.12)

Thus the cheapest way to move from an initial to a final v∞ is by zigzagging “low” on

the x − axis. This suggests a simple strategy to compute the the minimum ∆v of the

VILT, which we explain in the next section. Conversely the more expensive way to move

from an initial to a final v∞ is to perform one large VILT.
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Figure 3.11: In this figure we compare the endgame at Europa computed in the previous
section (a), with a hypothetical endgame composed of 14 VILTs (b). The countour lines
are level sets of v∞H . The hypothetical endgame (b) is composed of several low-∆vAB,
high altitude gravity assist. The cost of the hypothetical endgame is lower because of
the slope of the level sets, which is also related to the phase-free efficiency.

3.3.2 Theoretical minimum and maximum ∆v for VILT with v∞ bound-

ary conditions

In this section we compute the minimum and maximum ∆v cost to transfer from a v∞H

to v∞L through a sequence of VILTs. We also compute the minimum and maximum cost

for a transfer between two minor bodies M1 and M2 (with ã(M1) < ã(M2)) , where the

boundary conditions are expressed as relative velocity at the first minor body v∞(M1)

and at the second minor body v∞(M2) (we assume both velocities are larger than the

respective v∞).

In the previous section we showed that the minimum ∆v is achieved for infinite

transfer times , and infinite altitude gravity assists. We recall that the linked-conics

model is less and less accurate for high altitude gravity assist, thus we do not exclude

the existence of cheaper transfers computed in more accurate models. The interested

reader is referred to [RL03, RS07, GR09, GMCM09]. In fact, in the next chapter we
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Figure 3.12: The slope of the v∞H level sets at ∆vAB = 0 can be used to estimate the
∆vAB for a sequence of VILTs between infinitesimally close v∞’s .

explain how the patched three-body problem allows for cheaper (even ballistic) transfers

even when the VILT sequence requires a minimum ∆v of several hundred meters per

second. However, cheaper transfers are at the expense of larger times of flight - and larger

radiation doses for missions to Europa; thus the VILT approach and fast transfers are still

used by ESA and NASA to compute the nominal trajectories to Europa and Ganymede.

In this context, the theoretical minimum ∆v is a valuable piece of information during

the design of resonant transfers as it sets the limit of the VILT approach. Further, as the

non-dominated front in Figure 3.10 on the right shows, the variation in ∆v across the

full flight time spectrum is generally not more than 10% . The minimum ∆v calculation

is the main result of this chapter as it provides a simple, fast, and accurate estimate for

a preliminary total ∆v cost for any moon tour.

From the previously discussed theorem , and also looking at Figures 3.11 and 3.12, it

follows that the minimum ∆v needed to transfer from two different v∞’s is the integral

of the slope of the level sets v∞H (v∞L,∆vAB) at ∆v= 0.

From Eq. (3.12) and Eq. (3.9) we find

∂∆vAB
∂v∞L

∣∣∣∣
v∞L = v∞

∆vAB = 0

= − v∞
Γ(v∞)

where we recall that for v∞L = v∞H = v∞ when ∆vAB = 0. Then the minimum cost

problem between v∞L and v∞H is reduced to simple quadrature
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∆v
(E,I)
min (v∞L, v∞H) =

∫ v∞H

v∞L

v∞
Γ(E,I)(v∞)

dv∞ (3.13)

Using the definition of Γ in Eq. (9), we rewrite Eq. (3.13) as

∆v
(E,I)
min (v∞L, v∞H) =

∫ v∞H

v∞L

v3
∞ ± 3v2

∞ + v∞ ∓ 1

v3
∞ ± 3v2

∞ − v∞ ∓ 7
dt (3.14)

where the integral can be solved numerically with quadrature or with partial fractions.

We recall that 0 ≤ v∞ ≤
√

2− 1 for the exterior VILT, and 0 ≤ v∞ ≤ 1 for the interior

VILT.

The maximum ∆v is obtained by performing one unique VILT connecting v∞H and

v∞L, and the formula is given by Eq. (3.6):

∆vmax (v∞L, v∞H) = −Γ +
√

Γ2 + (v2
∞H − v2

∞L) (3.15)

Note that ∆vmax = v∞H if v∞L = 0. Using Eq(3.14) and Eq.(3.15) we can compute

the minimum and maximum ∆v to increase or reduce the v∞using a sequence of exterior

or interior VILTs.

Now we compute the minimum ∆v for transfers between two minor bodies M1 and

M2 ( with ã(M1) < ã(M2)). ṽ∞(M2) is the initial velocity relative to the outer minor

body M2, while ṽ∞(M1) is the final velocity relative to the inner minor body M1 . We

define ṽ
(h)
∞(M1) and ṽ

(h)
∞(M2) as the (dimensional) relative velocities at M1 and M2 of the

Hohmann transfer between the two minor bodies. We can use the scale factors associated

with M1 and M2 respectively to compute:

v
(h)

∞(M1) =

√
2aM2

1 + aM2
− 1 v

(h)

∞(M2) = 1−
√

2aM1

aM1 + 1
(3.16)

The Tisserand graph in Figure 3.13(a) shows that the transfer is free if the initial and

final relative velocities (ṽ∞(M2) and ṽ∞(M1), respectively) are greater than the Hohmann

transfer relative velocities (ṽ
(h)
∞(M1) and ṽ

(h)
∞(M2), respectively). Figure 3.13(a) also sug-

gests that the logical strategy for the minimum ∆v transfer consists of a sequence of
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Figure 3.13: Minimum VILT moon-to-moon transfer (a) and multi-moon transfer (b).

interior VILTs at M2, followed by the Hohmann transfer, and finally a sequence of exte-

rior VILT at M1. Then ∆vmin is computed by applying Eq. (3.14) twice, first from

v∞H = v∞(M2) to v∞L = v
(h)
∞(M2), and then from v∞H = v

(h)
∞(M1) to v∞L = v∞(M1). The

∆vmax is then computed using Eq. (3.15) instead of Eq. (3.14).

Figure 3.13(b) shows that other minor bodies can be used to decrease the total ∆ṽ.

In the case of a transfer from Callisto to Europa using Ganymede, for example, we only

need to increase the initial ṽ∞(Ca) until ṽ
(h)
∞(Ca) to reach the free-transfer zone. Then

gravity assists at Ganymede, Europa and Callisto can move the spacecraft to ṽ
(h)
∞(Eu),

where we start using VILTs at Europa until reaching the desired ṽ∞(Eu).

Using this notion, together with Eq. (3.14), Eq. (3.15), and Eq. (3.16), we can

compute the minimum and maximum ∆ṽ for any VILT. We apply these formulae for a

transfer between Europa and Ganymede, and plot the results in Figure 3.14.

3.3.3 Theoretical minimum and maximum ∆ṽ for transfers with hπ

boundary conditions

In this section we compute the ∆ṽ for a sequence of VILTs connecting a circular orbit

at M1 with a circular orbit at M2. Pushing the VILT model to its limit, we start

considering rπ → ∞. In this case vc, v∞, vπ, v∞L → 0 and the maximum ∆v given by

the formula Eq. (3.15), which also corresponds to the cost of a Hohmann transfer ∆v

when no VILT is implemented. In general, we consider the Hohmann transfer as the

∆vmax to transfer from given circular orbits.

40



Figure 3.14: Minimum and Maximum cost for VILTs between Ganymede and Europa
with v∞ boundary conditions. The contour lines are the total ∆v level sets in km/s.

The minimum cost is computed using Eq. (3.14). In particular, the cost to reach the

ṽ
(h)
∞(M1) and ṽ

(h)
∞(M2) in the M1 and M2 nondimensional units are

∆v(Mi)

(
vc(Mi)

)
= vπ(Mi)

(
vc(Mi)

)
− vc(Mi) +

∫ v
(h)
∞(Mi)

v∞(Mi)(vc(Mi))

v∞

Γ
dv∞ i = 1, 2 (3.17)

The first two terms on the right-hand side of Eq. (3.17) represent a propulsive

maneuver at pericenter of the escape or insertion hyperbola. This maneuver is the

escape or capture orbit insertion maneuver(∆vescape,∆vcapture) required to reach the v∞

( the minimum v∞ where it becomes efficient to start using VILT). The integral term

represents the minimum endgame or begin-game (∆vendgame,∆vbegingame) to reach the

Hohmann transfer conditions. Note that the total cost is a function of vc, i.e. of the

altitudes hπ.

The total minimum cost in dimensional units is:

∆ṽ = ∆v(M1)ṽM1 + ∆v(M2)ṽM2

Table 3.1 and 3.2 show the minimum and maximum ∆ṽ [km/s] for transfers between

moons in the Jupiter System and in the Saturn System. The minimum ∆ṽ is the cost of
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the escape, begin-game, endgame, and capture. All the initial and final circular orbits

are at 100 km altitude, except for the orbits at Titan, which are at 1500 km altitude.

Table 3.2 shows the same results for transfers with intermoon gravity assists. In this

case the cost of the transfer is significantly reduced because the spacecraft only need to

reach the closest moons where it can start performing several gravity assists at different

moons, as explained previously and suggested in Figure 3.13(b).

Table 3.3 shows the semi-major axis and physical data4 used in the computation of

the minimum ∆ṽ . We also show the radius of the circular orbits, and the corresponding

ṽ∞ in case of exterior and interior VILTs. The velocity of the moon ṽM is the scale

factor for all the velocities.

4http://ssd.jpl.nasa.gov/
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Table 3.1: Minimum and maximum ∆ṽ for transfers between moons using VILTs.
The transfers start and end at two circular orbits with high or low altitude.
The minimum ∆ṽ is computed assuming infinite transfer time, and consists of a
∆ṽescape,∆ṽbegingame,∆ṽendgame,∆ṽcapture. The maximum ∆ṽ is the cost of the Hohmann
transfer without VILTs. In the estimated transfer time NaN indicates a flight time >
25 years. Note that using multi-body dynamics it can be possible to find long transfers
which require lower ∆ṽs than the one in this table. Also, in transfers involving low-mass
flyby bodies or large separation distances, shorter flight time solutions are possible if
considering the non-tangent class of VILTs.

Transfer ∆vmin ∆vmax ∆vmin (km/s) - details

(km/s) (km/s) ∆vesc ∆vbeg ∆vend ∆vcap

Callisto-Ganymede 1.81 2.13 0.73 0.13 0.13 0.81

Callisto-Europa 1.94 3.75 0.73 0.3 0.31 0.59

Callisto-Io 2.43 6.00 0.73 0.46 0.48 0.75

Ganymede-Europa 1.71 2.18 0.82 0.14 0.16 0.59

Ganymede-Io 2.3 4.38 0.82 0.36 0.37 0.75

Europa-Io 1.76 2.54 0.6 0.21 0.2 0.75

Titan-Rhea 1.15 2.19 0.64 0.15 0.18 0.18

Titan-Dione 1.28 3.33 0.64 0.23 0.27 0.14

Titan-Tethys 1.37 4.31 0.64 0.29 0.33 0.11

Titan-Enceladus 1.43 5.27 0.64 0.33 0.4 0.06

Rhea-Dione 0.52 1.12 0.18 0.10 0.10 0.14

Rhea-Tethys 0.66 2.3 0.18 0.19 0.19 0.11

Rhea-Enceladus 0.78 3.53 0.18 0.27 0.27 0.06

Dione-Tethys 0.42 0.97 0.14 0.08 0.09 0.11

Dione-Enceladus 0.55 2.19 0.14 0.17 0.18 0.06

Tethys-Enceladus 0.34 1.00 0.11 0.08 0.09 0.06
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Table 3.2: Minimum ∆ṽ for transfers between moons using VILTs and gravity assists.
The minimum ∆ṽ is computed assuming infinite transfer time. The maximum ∆ṽ is
the cost of the Hohmann transfers to the closest inner/outer moons. Using multi-body
dynamics it might be possible to find long transfers which require lower ∆ṽs than the
one in this table.

Transfer ∆vmin ∆vmax ∆vmin (km/s) - details

(km/s) (km/s) ∆vesc ∆vbeg ∆vend ∆vcap

Callisto-G-Europa 1.61 2.07 0.73 0.13 0.16 0.59

Callisto-G-E-Io 1.81 2.35 0.73 0.13 0.2 0.75

Ganymede-E-Io 1.91 2.45 0.82 0.14 0.2 0.75

Titan-R-Dione 1.03 1.55 0.64 0.15 0.099 0.14

Titan-R-D-Tethys 0.98 1.47 0.64 0.15 0.086 0.11

Titan-R-D-T-Enceladus 0.93 1.5 0.64 0.15 0.086 0.061

Rhea-D-Tethys 0.47 1.04 0.18 0.097 0.086 0.11

Rhea-D-T-Enceladus 0.43 1.07 0.18 0.097 0.086 0.061

Dione-T-Enceladus 0.37 1 0.14 0.084 0.086 0.061

Table 3.3: Moon data used for the computation of the ∆vs and transfer times.

Moon µ̃M

(
km3/s2

)
ãM (km) ṽM (km/s) r̃π(km) ṽ∞ (r̃π) E/I (km/s)

Io 5960 421800 17.330 1922 0.351 / 0.368

Europa 3203 671100 13.739 1661 0.277 / 0.290

Ganymede 9888 1070400 10.879 2731 0.372 / 0.404

Callisto 7179 1882700 8.203 2510 0.328 / 0.361

Enceladus 7 238040 12.624 352 0.029 / 0.029

Tethys 41 294670 11.346 633 0.052 / 0.052

Dione 73 377420 10.025 662 0.067 / 0.068

Rhea 154 527070 8.484 864 0.085 / 0.087

Titan 8978 1221870 5.572 4076 0.283 / 0.321
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Chapter 4

The endgame problem using the

multi-body technique and the

T-P graph

In this chapter we continue studying the endgame problem, focusing on the multi-body

technique.

In the first section we show how to transform the linked-conic gravity assist parameter

in a state vector to be used in the CR3BP. We then consider two VILT endgames at

Europa which were presented in Part A and use them as first guesses for the design

of endgames in the CR3BP. The results show that although some VILT solutions cost

almost the same, their total ∆v might differ by as much as 10% when computed in a more

accurate model. In general, the VILT approach should be used for fast preliminary design

only if lower-cost longer-transfer solutions are not an option. Quasi-ballistic endgames

and transfers cannot be designed either using the VILT approach or starting from VILT

solutions, hence the need for a more accurate model and design strategy.

In the second section we introduce a Poincaré section in the negative x-axis of the

rotating reference frame of the CR3BP. Far from the minor body the spacecraft trajectory

is very similar to a Keplerian orbit; thus we can compute the osculating orbital elements

of the spacecraft as it crosses the section, and plot them in a pericenter vs apocenter

graph. On the same graph we plot Tisserand parameter level sets: the Tisserand param-

eter T is an approximation of the Jacobi constant, and it is very accurate when far from

the minor body and for small mass parameters. The result is the Tisserand-Poincaré
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(T-P) graph, which is a natural extension of the Tisserand graph, as the v∞ level sets

are synonymous to Tisserand level sets noting that T = 3 − v2
∞ (see appendix B). Yet

the Tisserand level sets extend beyond the v∞curves well into the regions where v∞ is

not feasible in the linked-conic models (v2
∞ < 0 if T > 3). Therefore when considering

the conservation of the Tisserand parameter, the T-P graph demonstrates that ballis-

tic transfers between moons are energetically possible despite the contrary conclusion

derived from linked-conics theory. This is the first important result of the T-P graph.

In the third section we analyze the T-P graph in more detail. We use it to explain

the multi-moon orbiter[RL03] and to explain in general the anatomy of multi-body tech-

niques. We focus on ballistic endgames and question the need for multiple flybys and

resonant orbits, noting that ballistic transfers do not change the Jacobi constant and

hence do not change the arrival speed at the minor body (the ballistic endgame para-

dox ). Then we use the T-P graph to solve the paradox, showing that at low energy

levels, high altitude flybys of the minor body are the only ballistic mechanism to move

along the Tisserand curves and to reach the target altitude at the minor body.

In the last section we design transfers between Europa and Ganymede. Using the

considerations from the previous section, we find trajectories that move through the

graph in the shortest time and reach a prespecified target point on the T-P graph, which

is the intersection of the Tisserand level sets of the endgame at Europa and begin-game

at Ganymede. In particular we compute a transfer from a circular orbit at Ganymede to

a circular orbit at Europa for comparison with the VILTs solutions. We also compute a

transfer between a halo orbit at Ganymede and a halo orbit at Callisto; in both cases the

T-P graph provides an estimate of ∆v. We argue that, while the total cost might increase

in the full ephemeris model due to the fourth-body perturbations, non-circular orbits, and

change-of-plane maneuvers. We also argue however that a robust optimization algorithm

should reduce the conservatively estimated costs with the introduction of several small

mid-course maneuvers. Finally we recall that in the Jupiter system long time-of-flight

trajectories are prohibited the radiation exposure.
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Nomenclature

a, e, i Semi-major axis, eccentricity, inclination with respect to the major body.

J Jacobi constant.

M Subscript indicates the quantity is referred to the minor body.

P Subscript indicates the quantity is referred to the major body.

ra, rp Pericenter, apocenter with respect to the major body.

rπ, vπ Position and velocity of the spacecraft with respect to the minor body at the closest

approach.

T Tisserand Parameter.

v∞ Relative velocity of the spacecraft at the minor body.

X,x Upper case for variables in the rotating frame, lower case for variables in the inertial

frame.

µ Gravitational constant.

x̃ Tilde indicates dimensional variables.

4.1 Endgames from linked-2BP to CR3BP

The conventional method for designing endgame trajectories is by patching v∞-leveraging

maneuvers (VILTs) in the linked-conic model [BdPC, JD99, CR10a].Yet near ballistic

endgames have been designed only in more accurate models, like the restricted 5-body

problem[RL03] or the full ephemeris model[SPC99]. In this work, we use the circular

restricted three-body problem (CR3BP) model to design ballistic endgames, and patched

CR3BP models to design transfers between moons.
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Figure 4.1: Direct and retrograde gravity assists.

In this section we show how to reproduce a linked-conics gravity assist in the planar

CR3BP. We then consider two very similar Europa endgames in the linked-conics model

(designed using the leveraging graphs, from the previous chapter) and optimize them in

the CR3BP model. The results give insight into the difference between the two models,

and into the limitations of the lower fidelity VILT approach when designing long flight

time, low-cost endgame trajectories.

In this chapter, variables without the tilde have been normalized using the usual

space, time, and mass scale factors

l∗ = ãM , t∗ =

√
ã3
M

µ̃P + µ̃M
m∗ = m̃M + m̃P

4.1.1 Flyby

In this section we reproduce a linked-conic gravity assist in the CR3BP. In particular we

use the parameters of the linked-conic gravity assist to generate the vector state of the

spacecraft at rπ, the closet approach to the minor body. We focus on the planar case,

because we will use the results to reproduce VILTs in the CR3BP. Figure 4.1 shows the

schematic of the direct and retrograde gravity assists.

From the velocity v(i) and flight-path angle γ of the spacecraft just before the

encounter we find
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v∞ =
√

1 + v2
(i) − 2v(i) cos γ , β(i) = arcsin

v(i) cos γ

v∞
(4.1)

The gravity assist parameters rπ and σ (σ = 1 for direct gravity assists and σ = −1

for retrograde gravity assists) provide the deviation angle with Eq. (3.1), but also the

norm and direction of the velocity at pericenter vπ, as shown in Figure 4.1 and in the

following equations

vπ =
√
v2
∞ + 2µ/rπ , α = β(i) − σδ/2 (4.2)

Now we can write the state s = (x, y, ẋ, ẏ) of the spacecraft at the closest approach

in the inertial reference frame centered in the minor body. Always referring to figure 4.1,

we find

θ = −α+ (1− σ)π/2 , s = (rπ cos θ, rπ sin θ,−σvπ sin θ, σvπ cos θ) (4.3)

Finally we apply the transformation of coordinate (see appendix B) to find the state

vector in the rotating reference frame

S = ((1− µ) + rπ cos θ, rπ sin θ,− (σvπ − rπ) sin θ, (σvπ − rπ) cos θ) (4.4)

We now consider the special case β(i) = 0 (the case when the v∞ vector is aligned

with the body velocity vector), which we use in the next section. From Eq. (4.2) and

Eq. ( 4.3) we find

θ = −π
2

+ σ
(π

2
+ δ
)

(4.5)

4.1.2 Endgame optimization in the CR3BP

In this section we compute two endgames in the CR3BP. We take two VILT endgames

at Europa rom the previous chapter, reproduce them in the CR3BP and use them as

first guesses for an optimization algorithm which minimize the total ∆v.
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The first endgame is a sequence of long-transfer VILTs: 3 : 2+
1 , 4 : 3+

0 , 5 : 6+
0 , where

the plus sign refers to a long-transfer VILT. The second endgame is a sequence of short-

transfer VILTs: 3 : 2−1 , 4 : 3−0 , 5 : 6−0 , where the minus sign in refers to a short-transfer

VILT. Both endgames require some 150m/s to decrease the v∞ from 1.8 km/s to approx.

0.8 km/s, and both endgames are composed by VILTs in which β(i) = 0. However the

long-transfer VILTs are linked by direct gravity assists (σ = 1) while the short transfer

VILTs are linked by retrograde gravity assists (σ = −1).

As a consequence, Eq. (4.5) shows that the closest approaches of the first endgame

occur on the L2 side (−π/2 < θ < π/2), while the closest approaches of the second

endgame occur on the L1 side (π/2 < θ < 3π/2). Although the two endgames have

similar costs, sequence of resonances and transfer time, they are significantly different in

the region around the minor body, and they belong to two different basins of attraction for

the optimization problem in the CR3BP. This subtlety justifies the choice of optimizing

both of them.

The trajectory optimization problem in the CR3BP is formulated as a nonlinear

parameter optimization problem, where the dynamics constraints (equations of motion)

are solved implicitly. The control variables are the times, altitudes rπ − r̃M , speeds Vπ

and angles θ of all the closest approaches and the times of the mid-course maneuvers.

The optimizer first propagates the states of every close approach backward and for-

ward in time until the mid-course maneuvers time. The position of the last point of the

forward propagation is then constrained to match the position of the last point of the

backward propagation from the next closest approach1. The corresponding velocities are

free but their difference, in norm, is added to the merit function.

1Because the problem is formulated in the rotating reference frame, the approach is robust despite the
several revolutions (in the inertial frame) which occur between the flybys and the mid-course maneuvers.
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Figure 4.2: Long-transfer (direct) and short-transfer (retrograde) endgames at Europa
optimized in the CR3BP (solid lines). Initially the VILT solutions are used to find the
times of the midcourse and the states and times of the spacecraft at the close approaches.
Those states are then propagated backward and forward in time in the CR3BP generating
the first guess solutions (dash lines) for the optimization problem.

As we are ultimately interested to compare the VILT solutions to the CR3BP

endgame, we add constraints to fix the boundary conditions. In particular, we con-

strain the first closest approach to keep the first guess β(i) and v∞, and we constrain the

last closest approach to a given altitude and v∞.

The first guess is generated using the VILT approach. The VILT solutions provide

the times of the mid-course maneuvers and the flyby times, altitudes, and v∞. Eq.

(4.2), Eq. (4.5) , and Eq. (4.4) are used to compute the angles θ and the velocities Vπ.

Finally the parameter optimization problem is fed into the Matlab solver fmincon, which

implements a sequential quadratic programming (SQP) method. For both endgames,

Figure 4.2 shows the initial guesses (dash lines) and the optimized solutions (solid lines).

The total cost of the optimized long-transfer endgame is 147 m/s (the VILT solution
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costs 154 m/s) with a time of flight of 47.0 days, while the cost of the optimized short-

transfer endgame is 165 m/s (the VILT solution costs 155 m/s) with a time of flight of

45.4 days.

4.1.3 Limitations of the VILT approach

The VILT approach is very fast and intuitive, and we envision using it for preliminary

design of endgame and begin-game trajectories whenever long- transfer time low-cost

solutions are not an option. However the previous section showed that the VILT approach

has some important limitations that deserve attention.

First, the cost of the VILT endgames can be off up to ±5% when compared to the

more accurate CR3BP solutions2. We expect this error to increase as more resonances

and high-altitude gravity assists are added.

Second, while the VILT approach estimates approximately the same ∆v for the short-

transfer solution and the long-transfer solution, the CR3BP shows that one kind of

transfer is preferable (the long-transfer in the case shown in the previous section).

Finally, and most importantly , quasi-ballistic endgames cannot be found by simply

designing a VILT endgame and optimizing it in the CR3BP. The linked-conic approach

cannot explain the existence of ballistic endgames - not even in the limit of infinite

transfer time where a minimum ∆v 6= 0 can be computed (ee prevous chapter). In

addition, the last chapter showed that the VILT solutions do not converge to quasi-

ballistic endgames in the CR3BP. In fact the multi-resonant transfers are chaotic in

nature where the design space is plagued by multiple local minima[RS07] that can easily

trap gradient based optimizers. Clearly local minima exist in the CR3BP when using

the VILT as an initial guess, but it’s unrealistic for the optimizer to climb out of that

basin en route to quasi ballistic solutions. Instead we should seek solutions that start in

the correct basin!

2These values are consistent with the ±10% difference observed during the design of the Cassini tour
when comparing ∆v costs in the linked conics model with more accurate models (personal communication
from Nathan Strange).
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For the above reasons we seek to further our understanding of the dynamics of near

ballistic endgame transfers. Ultimately, we seek systematic methods and tools to design

such transfers. While the patched CR3BP is the first step towards solutions in a fully

perturbed n-body model, the CR3BP indeed captures the dominant dynamics. Further,

the system is Hamiltonian, allows for rapid computations, and preserves the Jacobi

constant (or equivalently, in the case of this study, the Tisserand Parameter).

4.2 The Tisserand parameter and the T-P graph

In this section we introduce the T-P graph (named after Tisserand and Poincaré ). The

graph is a fundamental tool that provides dynamical justification for the multi-body

technique and can be used to design quasi-ballistic transfers between moons. The T-

P graph is built plotting Poincaré sections of different CR3BP models in one unique

ra, rp graph. In the same graph the level sets of the respective Tisserand parameters are

also plotted. The result is the T-P graph, which can be interpreted as an extension of

the Tisserand graph [LPS98, SL02] from the linked-conic model to the patched CR3BP

model.

4.2.1 Poincaré section

The first step in building the T-P graph is the introduction of a Poincaré section in

the negative x-axis of the rotating reference frame of each CR3BP. When the space-

craft crosses the Poincaré section, far from the minor body, its trajectory is very well

approximated by a Keplerian orbit around the major body. From the state vector at

the crossing point we compute the osculating pericenter and apocenter relative to the

main body, which we plot in a ra− rp graph, similar to the one described in the previous

chapter. Figure 4.3 shows a schematic of the Poincaré section and the corresponding

ra − rp graph.
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Figure 4.3: The Poincaré section for the definition of the T-P graph (schematic).

Figure 4.4: Tisserand parameter level sets on the T-P graph and corresponding regions
of motion in the CR3BP (schematic).

4.2.2 The Tisserand parameter

On the same graph we plot the level sets of constant Tisserand parameter . The Tisserand

parameter T is a function of the semi-major axis a (in normalized units: a = ã/ãM ),

inclination i and eccentricity e of a spacecraft orbiting a major body[Tis96]

T (a, e, i) =
1

a
+ 2
√
a (1− e2) cos i (4.6)

In this work we consider the planar problem and rewrite Eq. (4.6) as a function of

the pericenter and apocenter only

T (ra, rp) =
2

ra + rp
+ 2

√
2rarp
ra + rp

(4.7)
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The Tisserand parameter remains approximately constant even after a close

encounter with a minor body. This is known as the Tisserand criterion [Tis96]. It

is well-known in fact that the Tisserand parameter is an approximation of the Jacobi

constant J of the CR3BP, .i.e T ≈ J .

The approximation is increasingly accurate for smaller mass parameters µ and when

the spacecraft is far from the minor body (e.g. when it crosses the Poincaré section

defined previously). In appendix B we show how to derive the Tisserand parameter from

the Jacobi constant; similar derivations are found in literature [Tis96, MW].

4.2.3 The T-P graph

Now we are ready to plot the level sets of the Tisserand parameter onto the ra−rp graph.

We start plotting the four level sets T = JLi , i = 1, . . . , 4, where JLi is the value of the

Jacobi constant associated to the ith Lagrangian points (note that JL4 = JL5 = 3). The

level sets divide the ra − rp graph into regions of motion, as shown in Figure 4.4.

As the spacecraft crosses the Poincaré section, the osculating orbital elements are

represented with a point on the T-P graph. If the point is in the region Ii, the spacecraft

position is bounded in a region close to the major body and no transfer to the minor

body is possible. Similarly, if the spacecraft is in the region Ie, the spacecraft is bounded

in a region far from the major body and no transfer to the minor body is possible.

Transfers to the minor body are possible only when the spacecraft is in the regions

IIi, IIe, III. In particular, we expect low-energy transfer and capture trajectories to

occur in the region IIi (if coming from the inner moons) or IIe(if coming from the outer

moons).

Note that inside the box rp < 1 , ra > 1 (within region III) we can also plot the

constant v∞ level sets, as done in the Tisserand graph [SL02]. The v∞-infinity level

sets overlap with the constant Tisserand level sets3. In fact it can be proved that (see

appendix B)

3Then we can think of the Tisserand level sets as J level set or C3=v2
∞ level sets

55



T = 3− v2
∞ ≈ J

In the ra − rp graph we can plot curves at constant resonance n : m (where n is the

number of body revolutions and m is the number of spacecraft revolutions), which are

lines with slope −1

a =
( n
m

)2/3
→ rp = −ra + 2

( n
m

)2/3

In order to study transfers between minor bodies, we plot on the same graph several

Tisserand level sets, each in the dimensioned coordinates of the corresponding minor

body. The Tisserand parameter with respect to the minor body M is

TM =
2ãM
r̃a + r̃p

+ 2

√
2r̃ar̃p

(r̃a + r̃p) ãM
(4.8)

Finally we include a grid which shows the ∆v required to change the pericen-

ter/apocenter using an impulsive maneuver.

The result is the T-P graph , which we show in Figure 4.5(b). In Figure 4.5(a) we

plot the ra − rp Tisserand graph . We see how the extension from a linked-conics model

(for the Tisserand graph) to patched CR3BP model ( T-P graph) results in level sets

which extend over the feasible domain of the Tisserand graph. As a consequence, even

low-energy (low v∞) level sets reach very high apocenters.

Figure 4.6 shows the T-P graph for the Saturn system. We can see that the low-

energy level sets (region IIe and IIi) of any two moons cross, in contrast to the linked

conics model where ballistic intermoon transfers are only possible for v∞ greater than

that of the corresponding Hohmann transfer. From an energetic point of view, then,

a ballistic transfer between any two moons in the patched CR3BP is always possible.

This does not guarantee that such transfers can be found, especially within a practical

transfer time. Some recent works demonstrate that such transfers can exist[RJJ09].
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Figure 4.5: Tisserand Graph (a) and T-P graph (b).

The intersection point between the Tisserand level sets of two different moons is the

solution of the system:

 TM1 = 2ãM1

r̃a+r̃p
+ 2
√

2r̃ar̃p
(r̃a+r̃p)ãM1

TM2 = 2ãM2

r̃a+r̃p
+ 2
√

2r̃ar̃p
(r̃a+r̃p)ãM2

(4.9)
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Figure 4.6: The T-P graph of the Saturn System.

where we solve for ra, rp giving the desired TM1 and TM2 along with the ãM1 and

ãM2 for the systems of interest. We emphasize that the T-P graph provides a reliable

energetic based strategy to patch the two CRTBP systems. The patch point target

provides a significant advantage over prior multi-body design methodologies.

4.2.4 Three-dimensional T-P graph

In this section we consider the 3D case, where the Tisserand parameter is function of

the apocenter, the pericenter, and the inclination:

TM =
2ãM
r̃a + r̃p

+ 2

√
2r̃ar̃p

(r̃a + r̃p) ãM
cos i (4.10)

The 3D T-P graph can be used to visualize families of asteroids in the solar

system[Geh09], or to analyze missions like the Solar Orbiter which uses resonant gravity

assists at Venus to reach high inclinations over the ecliptic [JBC05]. Figure 4.7 shows

the Earth and Jupiter Tisserand level sets, and the main-belt asteroids. Most of the

main-belt asteroids are outside the surfaces TEarth = JL1Earth and TJupiter = JL1Jupiter.

We also can see the Kirkwood gaps at the resonances[MD00] 1 : 4, 3 : 1, 2 : 5, and 1 : 2.

Figure 4.8 shows the Near Earth Asteroids and, among those, the Potentially Hazardous
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Figure 4.7: Example of a 3D T-P graph: the Earth and Jupiter level sets and the
main-belt asteroids.

Figure 4.8: Examples of a 3D T-P graph: the Near Earth Asteroids and, among those,
the Potentially Hazardous Asteroids.

Asteroids. We can see the Potentially Hazardous Asteroids are all within the level set

TEarth = JL1Earth.

4.3 The anatomy of the multi-body technique

In this section we use the T-P graph to explain how the multi-body techniques are used

to design endgame trajectories.

The multi-body techniques propagate the state of the spacecraft in multi-body

dynamics, targeting high altitude encounters with a minor body to achieve the most

suitable effect (typically a reduction or an increase of the one of the apses). Trajectories

designed with multi-body techniques include the Smart1 mission to the Moon [SPC99],

and the multi-moon orbiter by Ross and Lo [RL03].
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4.3.1 The multi-moon orbiter

The multi-moon orbiter is a trajectory designed by Ross and Lo [RL03] for a mission

to the Jovian moons. The trajectory was computed in the planar, restricted 5 body

problem.

Figure 4.9: The multi-moon orbiter [RL03]. (a) The trajectory osculating parameters
are plotted in the (ra,rp) conventional Tisserand graph. (b) The same trajectory is
represented with the T-P graph. The T-P graphs shows that the trajectory jumps
between resonances and is mostly ballistic. We can see the no-transfer zones (light gray)
and the capture zones. At the end of the trajectory, the spacecraft is inside the Europa
capture zone.

Figure 4.9(a) shows the Tisserand graph of the trajectory in the Jupiter system. The

orbital elements vary mostly during short time intervals when the spacecraft approaches

a moon, making the Tisserand graph not easy to read. Also, the osculating pericenter

and apocenter are often outside the boundaries (r̃a > r̃M , r̃p < r̃M ) imposed by the

linked-conic model.
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We now represent the same trajectory with the T-P graph. We first split the tra-

jectory in three parts, depending on the dominating perturbing body. The first part

is dominated by Callisto, the second by Ganymede and the third by Europa. For each

part we place a Poincaré section on the negative x-axis of the corresponding rotating

reference frame, and build the T-P graph of the transfer. The result is shown in Figure

4.9(b). We see that the spacecraft jumps between resonant orbits using flybys at the

moons. Although Ross and Lo’s trajectory was computed in the restricted 5 body prob-

lem, Figure 4.9(b) shows that the patched CR3BP model is a good approximation and

that the T-P graph captures the main dynamics; in fact the spacecraft first shadows the

TM level sets of Callisto, then of Ganymede, and finally of Europa. The T-P graph also

shows that the trajectory is quasi-ballistic4.

4.3.2 The ballistic endgame paradox

Endgame or transfer trajectories designed with the linked-conic model always require

some impulsive maneuver (∆v). The ∆v is needed to increase/decrease the v∞ from

the escape/capture condition because in general the departure/arrival low-energy (low

V∞) level sets do not intersect, as shown in Figure 4.5 (a) . To decrease the required

∆v, a VILT strategy can be implemented using a sequence of almost resonant orbits

and small maneuvers (i.e. a zig-zag path in the ra − rp leveraging graph). For very

long transfer times a theoretical minimum ∆v can be computed, as we explained in the

previous chapter.

In the patched CR3BP model the T-P graph shows that the same low-energy ( high

Tisserand) level sets do indeed intersect. Then there might be endgames and transfers

between moons which require little or no ∆v, and which consist of resonant orbits only;

in fact, the multi-moon orbiter trajectory[RL03] is one example of such a transfer.

Yet an interesting paradox arises when considering planar ballistic endgames:

4Another ballistic transfer is explained with the T-P graph in the Saturn-Titan system in [GMCM09]
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Figure 4.10: Possible orbit insertion locations at the end of an endgame strategy.

Given a fixed Tisserand energy and arrival circular orbit altitude, the inser-

tion maneuver costs remain essentially fixed for all possible arrival geome-

tries.

The paradox seems to questions the utility of resonant orbits, and of quasi-ballistic

endgames in general. In what follows we first prove the paradox, and then we explain

why resonant orbits are still necessary for the design of low-energy endgames.

Assume a ballistic endgame begins at Europa with a very high apocenter (for example

in the region IIe), and ultimately targets a low altitude circular orbit (e.g. 100 km) at

Europa. In the planar case, the orbit insertion location is somewhere on a circle of

radius R2 = rπ around Europa. Figure 4.10 shows the possible orbit insertion locations

as function of the angle θ. In particular, in Figure 4.10(a) the arrival conditions are

represented in the rotating reference frame; in Figure 4.10(b) the arrival conditions

and the orbit insertion maneuvers ∆vπ are represented in the inertial, moon-centered

reference frame.

We now compute the orbit insertion maneuver as a function of the angle θ, for a

given Jacobi constant and altitude at the moon. From simple geometric considerations:

R1 =
√

1 + r2
π + 2rπ cos θ (4.11)

R2 = (1− µ)
2

+ r2
π + 2 (1− µ) rπ cos θ (4.12)

Substituting Eq.(4.11) and Eq.(4.12) in Eq.(2.8) we find that the velocity in the

rotating frame is:
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Moon ∆vMAX/∆vMIN (km/s)

JL1@100km JL4@100km JL1@1000km JL4@1000km

Europa 421.1/420.1 606.5/605.5 276.7/273.7 513.7/511.1

Titan 668.6/668.5 766.5/776.4 553.7/553.5 667.6/667.5

Table 4.1: The maximum and minimum orbit insertion maneuver (m/s) for given alti-
tudes and Jacobi constant at Europa and at Titan.

V 2 = (1− µ) + r2
π + 2 (1− µ) rπ cos θ + 2

1− µ√
1 + r2

π + 2rπ cos θ
+ 2

µ

rπ
− J (4.13)

The velocity in the inertial frame is (see appendix B):

vπ = (V + σrπ) (4.14)

The orbit insertion/escape ∆v is:

∆vπ = vπ − vc = V + σrπ − vc (4.15)

where vc =
√
µ/rπ. Then the orbit insertion cost depends on V . It is easy to

prove that V 2 (θ) has a global maximum at θ = 0 and a global minimum at θ = θ∗ =

arccos (−rπ/2). Also,
(
V 2
)
MAX

−
(
V 2
)
MIN

= r2
π (1− µ) 3+rπ

1+rπ
, and because r2

π is small

compared to other terms in Eq. (4.13) we infer that VMAX ≈ VMIN , i.e. the velocity and

thus the orbit insertion maneuver doesn’t depend significantly on the angle θ.5 Table

(4.1) shows (∆vπ)MAX and (∆vπ)MIN , computed for θ =0 and θ = θ∗ respectively, for

several cases of interest. We see that in all cases the difference in the orbit insertion

maneuver is just a few meters per seconds or less, thus given a fixed energy a ballistic

endgame (which can only change θ) cannot reduce the cost significantly6.

5It would be interesting to know if the paradox extends to the 3D case, where R2 = 1 + r2
π cos2 α +

2rπ cos θ cosα, R1 =
√

1 + r2
π + 2rπ cos θ cosα and α is the elevation angle on the xy plane. The velocity

in the inertial frame has two components, i.e. V and ω × r, which are not aligned in general.

6Non-ballistic endgame can reduce the orbit insertion maneuver by applying impulsive ∆v which
results in the highest change in the Jacobi constant. The VILT strategy can be justified with this
argument also [Swe93]
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The paradox seems to question the utility of the ballistic endgame, at least in the

planar case, because no matter how we design a sequence of resonant orbits, the orbit

insertion ∆v is fixed by the Jacobi constant and cannot change. We wonder then why

we need resonant transfers in the first place.

The T-P graph clarifies this point, and enables strategies for the design of low-cost,

quasi-ballistic endgames and transfers. A low-cost , quasi-ballistic endgame at Europa,

e.g., must end with a low ∆v orbit insertion. Referring to Figure 4.4, the corresponding

T level sets will probably lie within region IIe. Because the endgame is quasi-ballistic,

the initial conditions also lie in the region IIe and according to the boundaries of the

region IIe in Figure 4.5, an initial high apocenter requires an initial high pericenter,

beyond Europa’s orbit. How can the spacecraft, then, ever reach a 100 km altitude to

Europa, an impossible scenario based on the conventional wisdom of linked-conics? The

T-P graph shows, however, that if the spacecraft has the right phasing, it can use Europa

perturbing force to slightly lower its apocenter AND pericenter, thus moving to the left

in the T-P graph, along the level set.

Such maneuver is in fact a high altitude flyby performed close to the pericenter of

the spacecraft orbit. When several high altitude flybys are linked together by free-return

orbits, the pericenter can be lowered to the point where a 100 km approach at Europa is

possible. Thus the high altitude flybys are necessary to reduce the pericenter and to reach

the required altitude at Europa, while the resonant orbits simply provide a mechanism

to achieve multiple flybys. We note that energy levels of the endgame scenario require

non intersecting spacecraft and minor body orbits (in the exterior problem the spacecraft

orbit engulfs completely the orbit of the minor body for all time while the interior problem

is reversed). Therefore, the point of closest approach for the two orbits occurs only at a

single point in the nonrotating frame: the apse of the spacecraft orbit. Accordingly, the

low-cost endgame return orbit must be approximately resonant; whereas a non-resonant

returns would necessarily have two intersection points between the spacecraft and minor

body orbits.
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An alternative way to explain the ballistic endgame is the following: of all the tra-

jectories arriving at 100 km altitude at Europa with a fixed velocity defined by Eq.(3.2),

the only one which starts at a very high apocenter must have performed several high

altitude flybys and resonant orbits. In the next section we use this concept to design

ballistic transfers.

4.4 The design of multi-body transfers with the T-P graph

The previous section showed that even for low energy levels (i.e. Tisserand parameter

between JL1 and 3) there can be trajectories which reach a low altitude at a moon,

starting at a very high apocenter, through a sequence of flybys and resonant orbits. In

this section we implement a simple search to find such trajectories and design low-cost

transfers between Ganymede and Europa. A similar search was implemented in the

design of the BepiColombo capture trajectory at Mercury[JCGK04]; in fact at these

energy levels many ballistic capture or escape trajectories can be designed[CL08, PS06,

VS03], as we will show in the last chapter of this work.

We first design a transfer between a 100 km altitude orbit at Ganymede and a 100 km

altitude orbit at Europa. With this set of boundary conditions we can compare the ∆vs

of a Hohmann transfer to the ∆v of the begin-game and endgame trajectories, designed

using either the multi-body technique or the VILT technique. However, we recall that

longer time-of-flights yield to higher exposures to the radiation environment at Jupiter,

so in practice longer time-of flight transfers are penalized by need of heavier shielding.

A direct Hohmann transfer from a 100 km altitude orbit at Ganymede to a 100 km

altitude orbit at Europa requires only a few days, but costs 2.18 km/s. A VILT strategy

can reduce this ∆v up to a theoretical minimum of 1.71 km/s (see previous chapter).

Using the T-P graph and the higher fidelity CR3BP, we demonstrate how a low-cost

transfer can require significantly less propellant.
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Figure 4.11: Schematic of a transfer between Europa and Ganymede designed using the
T-P graph.

The basic scheme for the design is shown in Figure 4.11. We start by fixing an energy

value for the escape and for the capture such that the spacecraft starts in the “escape

region” IIe and ends in the “capture region” IIi. In particular, we choose

T ≈ J = (JL2 + JL3) /2 (4.16)

From the Jacobi constants we find the velocities at pericenter using Eq. (3.2)7, and

calculate the cost to insert into/escape from a circular orbit at 100 km altitude from

Eq.(4.15) : ∆vEscape ∼= 0.72 km/s and a ∆vCapture ∼= 0.51 km/s. Immediately we see

that the floor for a potentially ballistic transfer ∆v is ∆vEscape + ∆vCapture. We then

scan the angles θGa, propagate the initial conditions and store the transfers that decrease

the pericenter the most in the shortest time. We also scan the angles θEu, propagate

backwards the initial conditions and store the transfers that increase the apocenter the

most in the shortest time. In both the forward and backward propagations we have a

precalculated target value for ra and rp respectively - from the intersection point in the

TP graph - found from the solution to Eq. (4.9).

We plot the results in the T-P graph. A close up is shown in Figure 4.12. In the

graph we plot the level sets corresponding to the value of the Tisserand parameter in

Eq. (4.16). One of the most important features of the T-P graph is the availability of a

target pericenter-apocenter for both endgame and begin-game strategies, which is at the

7In this example we do not consider the retrograde solution.
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Figure 4.12: Zoom of the T-P graph showing the Ganymede escape options and the
Europa capture options.

Figure 4.13: Quasi-ballistic transfer in the inertial reference frame.

intersection of the level sets. For clarity we do not plot all the Poincaré crossings from all

the trajectories; we only plot the set of Pareto-optimum points (shortest time, highest

apocenter) reached by all the solutions. Note that the final points of the begin-game

and the initial points of the endgame do not coincide in general. Thus some impulsive

maneuvers are needed to patch the two parts of the transfer; the grid in the T-P graph

provides a means to estimate a brute force patching cost of a Hohmann-like transfer to

connect the points in the graph. For instance we can estimate a ∆v of some 70 m/s to

patch the 82 day begin-game with a 252 day endgame.

Among all the possible solutions on the graph, we choose the one with lower ∆v

which takes (291 + 82) days to transfer from Ganymede to Europa. In this case the T-P

graph shows that a very little ∆v (approx.10 m/s) is required to patch the begin-game
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with the endgame. Then the total cost of the transfer (to and from 100 km circular

orbits) is mostly given by the escape and capture maneuver for a ∆vTOT ≈ 1.25 km/s,

almost 500 m/s less than the VILT theoretical minimum ∆v , and almost 1 km/s less

(but one year more!) than the direct Hohmann transfer.

Figure 4.14 shows the endgame and Figure 4.14 shows the begin-game part of this

trajectory in the corresponding rotating reference frames. Figure 4.13 shows the same

trajectories in the inertial reference frame centered at Jupiter. The figure also shows the

Hohmann transfer which patches the two parts of the trajectory.

Figure 4.14: Quasi-ballistic transfer in the rotating reference frame: the endgame at
Europa.

Figure 4.15: Quasi-ballistic transfer in the rotating reference frame: the begin-game at
Ganymede.
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Figure 4.16: T-P graph of the transfer from a halo orbit around Ganymede to a halo
orbit around Europa - projection onto the i = 0 plane.

A typical mission to the moons of Jupiter would not include a 100 km science orbit

at Ganymede, mainly because of the very high costs of the capture and escape ∆v at

Ganymede. For this reason, a more interesting case for a real mission is the transfer

between a halo orbit around Europa and a halo orbit around Ganymede (although the

time of flight must be limited because of the radiation exposure). In this case the orbit

insertion ∆v and the orbit escape ∆v are negligible, and the long transfer time is justified

by a fully quasi-ballistic transfer. The trajectories are computed in the patched , spatial

CR3BP, and the inclination at the Poincaré section never exceeds 1.5 degree.

To find suitable transfers we scan the initial position along the initial and final halo

orbits and perturb the starting conditions along the unstable and stable eigendirec-

tion respectively. The initial halo orbit has a Jacobi constant in the Jupiter-Ganymede

CR3BP of J=3.0052, and the final halo orbit has a Jacobi constant in the Jupiter-Europa

CR3BP of J=3.0023. The energy levels are selected to be appropriate for ballistic trans-

fers to a high altitude closed orbits about each moon [RL07].

Of all the solutions found, we show one with a reasonably low flight time and comes

close to hitting the target (ra, rp) intersection of (694641 km, 1021834 km), found from

the solution to Eq. (4.9). Figure 4.16 shows the T-P graph at i = 0 of the begin-

game and of the endgame. For simplicity, the osculating pericenter and apocenter and

inclination at the Poincaré section are projected on the i = 0 plane (we recall that the
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Figure 4.17: Begin-game at Ganymede, the first part of the Ganymede to Europa trans-
fer, in the rotating reference frame.

inclination never exceeds 1.5 degrees) . The Ganymede begin-game takes 191 days to

reach a very low pericenter, where it can be patched to the Europa endgame with a very

little ∆v. The endgame lasts 110 days. Then the whole transfer takes less than 300

days (some initial revolutions are spent on the initial and final halos) and from the T-P

graph we see that almost no ∆v is required to patch the two trajectories. Note that the

begin-game could be reduced by two months with some additional 50 m/s , resulting in

a 8-month transfer from Ganymede to Europa. Also, the begin-game can be reduced

by one month with some additional 50 m/s, resulting in a 7-month transfer which costs

some 100 m/s.

The next figures show some details of the 300-day transfer. Figure 4.17 shows the

begin-game in the Jupiter-Ganymede CR3BP , with a close up of the escape from the
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Figure 4.18: Endgame at Europa, the second part of the Ganymede to Europa transfer,
in the rotating reference frame.

halo orbit. Figure 4.18 shows the endgame in the Jupiter-Europa CR3BP, with a close up

of the capture into the halo orbit. In total there are 3 high altitude flybys of Ganymede

and 6 high altitude flybys of Europa.

In future works we plan to optimize this trajectory or similar ones in the full ephemeris

model. We do not expect the transfer time of the full-ephemeris trajectory to differ too

much from the estimated value on the T-P graph. The total ∆v might vary due to two

important factors. On one hand the ∆v can increase due to change of plane maneuvers

and fourth body perturbations. On the other hand we can reduce the ∆v by inserting

several mid-course maneuvers along the trajectory and using an optimizer to minimize
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the total cost. Also we can reduce the ∆v by fine-tuning the initial and final energies.

Future works could also include explicit VILT-type maneuvers to shorter the time of

flight of low-energy transfers.

We emphasize that the design approach outlined in this study requires no apriori

knowledge of the resonant path and relies only the chaotic nature of the CR3BP and

fine-scale perturbations of the initial conditions. Future work includes methods that

allow specification of the resonant paths to reduce the computation requirements and

provide more systematic searches. Recent works in the field also suggest some ways to

achieve this goal[GR09].
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Chapter 5

Exploration of low-mass moons

In this chapter we study the general (non-tangent) VILTs, which are an extension of the

(tangent) VILT presented in chapter 3. Throughout this chapter, the notation VILT is

referred to the general case, as opposed to the tangent VILTs.

The first section present the general VILT problem and its solution space. The

main steps of the section are (1) demonstrate that the solution space is almost flat

for a specific choice of coordinates, (2) construct approximated solutions using minimal

memory storage. In the second section we exploit the large reduction in complexity and

computational time resulting from this approximation to develop a new design method

amenable for broad design space searches. In the third section we present the Enceladus

orbiter trajectory.

Nomenclature

α Pump angle between the v∞ vector and the minor body velocity vector

δ Turning angle between the incoming and outgoing v∞ vectors of a gravity assist

γsv∞1 Section of the VILT solution manifold for a given s and v∞1

∆θ Spacecraft angular gain

σi Element of s: if +1 denotes a long ith arc, if −1 denotes a short ith arc

µM , µP Gravitational parameter of the minor and major body

EI Element of s: if +1 denotes exterior VILTs, if −1 denotes interior VILTs
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f,E,M True, eccentric and mean anomaly of the spacecraft with respect to the major

body

n Number of minor body revolutions during the VILT

m Number of major body revolutions during the VILT

ki Element of s: number of full revolutions in the ith arc

rπ Pericenter of the gravity assist hyperbola

ra, rp, a Apocenter, pericenter and semi-major axis of the spacecraft with respect to the

major body

rLA, rV A Leveraging and vacant apses of the spacecraft with respect to the major body

, i.e. the furthers and closest apse to r = 1 respectively

s VILT parameter vector; in particular s = (σ1, k1, σ2, k2, n, EI)

vp, va Velocity of the spacecraft at pericenter and at apocenter with respect to the major

body

v∞ Velocity of the spacecraft relative to the moon at r = 1

Vs VILT solution manifold

1, 2 Subscripts indicates the first or second arc

5.1 General VILTs

Generalizing the definition in chapter 3, V-infinity leveraging transfers (VILTs) are tra-

jectories around a major body (e.g., a planet) that start and end at a minor body (e.g.,

a moon) and include one small impulsive maneuver (∆v) to achieve a large change in

the spacecraft velocity relative to the minor body (v∞). VILTs are usually modeled with

two Keplerian arcs patched by a tangential ∆v at the leveraging apse rLA, while the
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Figure 5.1: Geometry of the gravity assists when the turn angle is small

moon is in a circular coplanar orbit. In most of the literature, and in chapter 3, one of

the two Keplerian transfers is assumed tangent to the moon’s orbit (tangent VILT ) to

both simplify the analysis and to achieve a near optimal increase or decrease in v∞ at

the moon[VC09].

In cases where VILTs are patched together with flybys of non-massive bodies, the

tangent VILT is very inefficient in terms of flight time due to geometry of the flyby.

As demonstrated in Figure 5.1, the impulsive ∆v vector associated with a gravity assist

beginning with the tangent geometry is almost perpendicular to the spacecraft veloc-

ity, thereby leaving the magnitude of the velocity relative to the central body almost

unchanged. Whereas in the case of the non-tangent flyby geometry, the ∆v vector goes

almost entirely towards changing the velocity magnitude. In the limit as the available

turn angle approaches zero, the tangent geometry flyby provides no change in energy

while the most efficient energy change occurs in the non-tangent case with pump angle

equal to (π − arccos v∞). Following the work of Strange et al[SCR09]., this lack of effi-

ciency for VILTs constrained by small turn angles motivates us to remove the tangent

assumption.
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We normalize the distances and the times with the scale factors l∗ = ãM and

t∗ =
√
ã3
M/µ̃P , where the tilde denotes the dimensioned variables. As a result of the

normalization, µP = 1, vM = 1 and the VILTs start and end at r = 1. We model the

gravity assist as usual by linking two consecutive VILTs with an instantaneous rotation

of the v∞vector by the turning angle δ = 2 arcsin
(
µ̃M/(µ̃M + ṽ2

∞r̃π)
)
, where r̃π is the

pericenter of the gravity assist.

5.1.1 Classification and special solutions

We classify the VILTs with the parameter vector s = (σ1, k1, σ2, k2, EI, n) and the

notation:

(EI) n : mσ1,σ2
k1,k2

where m = k1 + k2 + 1 is the number of spacecraft revolutions and the elements of p are:

ki i = 1, 2 Number of full revolutions in the ith arc

σi =

 −1 Short transfer 2kiπ < ∆θ < π + 2πki

+1 Long transfer π + 2πki < ∆θ < 2π + 2πki

EI =

 −1 Interior VILT (∆v at apoapsis)

+1 Exterior VILT (∆v at periapsis)

n Number of moon revolutions

Figure 5.2 shows an example of an exterior VILT on the left, and explains the notation

for the first arc on the right. In the figure the leveraging apse rLA is the apocenter, while

the vacant apse rV A (opposite to the leveraging apse) is the pericenter.
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Figure 5.2: Example of exterior VILT on the left. On the right, the first arc of the VILT

A special family of VILTs is the family of tangent VILTs, described in chapter 3 with

the notation n : mσ(k), where σ, k refers to the non-tangent arc. Note that n : mσ(k) is

a special case of a (EI) n : mσ1,σ

k1,k
VILT (first arc tangent to the moon’s orbit) and of a

(EI) n : mσ,σ2

k,k2
VILT (second arc tangent to the moon’s orbit).

A second special family of VILT is the family of ballistic transfers, where ∆v = 0

implies rV A1 = rV A2. We classify the ballistic transfers with the notation n : mσ,

where σ = 0 corresponds to the ballistic resonant transfers, and σ = ±1 correspond to

nonresonant transfers with slightly more or fewer than m revolutions, respectively (also

called generic or non-nπ returns). Note that n : m±1 is a special case of a (EI) n : m±1,±1
k1,k2

VILT, while n : m0 is a special case of a (EI) n : m±1,∓1
k1,k2 VILT.

5.1.2 Phasing constraint

Using our notation, the true and mean anomaly spanned by the spacecraft in either arc

are (see also Strange at al.[SCR09]):

∆f (σi,ki,EI) = 2πki − f |(σi,EI)r=1 + π[1 + σi(EI − 1)/2] i = 1, 2 (5.1)

∆M (σi,ki,EI) = 2πki −M |(σi,EI)r=1 + π[1 + σi(EI − 1)/2] i = 1, 2 (5.2)
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where f |(σi,EI)r=1 ∈ (−π, π] and M |(σi,EI)r=1 ∈ (−π, π] are the true and mean anomaly of

the spacecraft at the moon. Using Eq.(5.1) and Eq.(5.2) we define the spacecraft angular

gain :

(∆θ)i = ∆f (σi,ki,EI) − a3/2
i ∆M (σi,ki,EI) i = 1, 2 (5.3)

where the second term is the true anomaly spanned by the moon , which is also the

transfer time.

Due to the symmetry of the problem, each of the two arcs composing the VILT

is completely defined with only two independent variables (coordinates), like (ai, ei) or

(rai, rpi) or (v∞i, rLAi), i = 1, 2. Thus four coordinates completely define the VILT.

However, as we patch the two arcs together, the VILT coordinates must satisfy the apsis

constraint equation:

rLA1 = rLA2 (5.4)

Also, the true anomaly spanned by the moon must equal the true anomaly spanned

by the spacecraft, modulo 2π. That is , the VILT must satisfy the phasing constraint

equation[SCR09] :

(∆θ)1 + (∆θ)2 = 2π(k1 + k2 + 1− n) (5.5)

For a choice of the VILT parameter vector s = (σ1, k1, σ2, k2, EI, n) and under certain

regularity conditions which we do not discuss here, the Submersion Theorem [AMR88]

applied to Eq.(5.4) and Eq.(5.5) shows that the solution space of the VILT is a two-

dimensional differentiable manifold. In other words, we have a four dimensional space

with two constraints leaving two degrees of freedom. We denote the VILT manifolds

with the notation Vs, where s is the VILT parameter vector.
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Table 5.1: Some useful two-body mechanics formulae as functions of ra, rp in normalized
variables

(a, e, p)
(
ra+rp

2 ,
ra−rp
ra+rp

,
2rarp
ra+rp

)
(va, vp)

(√
rp
ra

2
(ra+rp) ,

√
ra
rp

2
(ra+rp)

)
v∞

√
3− 2

ra+rp
− 2
√

2rarp
ra+rp

f |(σi,EI)r=1 (−σEI) arccos
(

2rarp−ra−rp
ra−rp

)
and (−σEI)2 arctan

(√
ra
rp

(1−rp)
(ra−1)

)
E|(σi,EI)r=1 (−σEI) arcsin

(
2

√
(1−rp)(ra−1)

ra−rp

)
and (−σEI)2 arctan

(√
(1−rp)
(ra−1)

)
M |(σi,EI)r=1 (−σEI)

[
2 arctan

(√
(1−rp)
(ra−1)

)
− 2

√
(1−rp)(ra−1)

ra+rp

]

5.1.3 Coordinates

In this section we introduce some choice of coordinates (independent variables) which

describes a Keplerian arc. In the next section we use these coordinates to write the

constraint equations (5.4-5.5), i.e. to define the embedding space and compute the VILT

manifold.

If we choose (ra, rp) as coordinates, many orbital parameters take a very simple form,

as shown in Table 5.1. The formulae1 in Table 5.1 are derived using the conservation of

momentum and energy.

Another two choices of coordinates are (rLA, v∞) and (rLA, rV A) , for which we derive

the following coordinate transformations:

ϕ : (rLA, rV A) 7→ (ra, rp) =

 (rLA, rV A) if EI = +1

(rV A, rLA) if EI = −1
(5.6)

and

ψ : (rLA, v∞) 7→ (rLA, rV A) (5.7)

1In the table, the third third row comes from v2
∞ = 1 + v|2r=1 − 2h = 1 + (2− 1

a
)− 2

√
p . The fourth

row uses the trigonometry identity tan f
2

= ±
√

1−cos f
1+cos f

. The fifth row uses the trigonometry identity

sinE = 2 tan(E/2)

1+tan2(E/2)
.
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where rV A is given by Eqs.(5.8) and (5.9)2

vLA = rLA − EI
√
r2
LA − 3 +

2

rLA
+ v2
∞ (5.8)

rV A =
(
2/(rLAvLA)2 − 1/rLA

)−1
(5.9)

5.1.4 Solution space representation

In this section we use the coordinates introduced previously to represent the VILT solu-

tion space. Other choices of coordinates are possible[SCR09].

First we write the spacecraft angular gain of Eq.(5.3) as function of (ra, rp) using

Table 5.1:

∆θ(σ,k,EI)(ra, rp) = 2πk + σEI arccos
(

2rarp−ra−rp
ra−rp

)
+ π[1 + σ(EI − 1)/2]+

−
√

(ra+rp)3

8

(
2πk + σEI

[
2 arctan

(√
(1−rp)
(ra−1)

)
− 2

√
(1−rp)(ra−1)

ra+rp

]
+ π[1 + σ(EI − 1)/2]

)
(5.10)

Then we choose the coordinates (rLA, v∞1) for the first arc and (rLA, rV A2) for the

second arc, and write the phasing constraint Eq. (5.5) using Eq.(5.10) with the coordi-

nate transformations Eq.(5.6-5.7):

∆θ(σ1,k1,EI) ◦ ψ(rLA, v∞1) + ∆θ(σ2,k2,EI) ◦ ψ ◦ ϕ(rLA, rV A2)− 2π(k1 + k2 + 1− n) = 0 (5.11)

where the circle ◦ denotes function composition. For the external VILT, for instance,

Eq.(5.11) looks like

2From the conservation of energy and momentum we find the quadratic: v2
LA − 2vLArLA +

2
(

1− 1
rLA

)
+ 1 − v2

∞ = 0. Using energy-based arguments we can pick the correct root, as shown

in the formula. The second equation is derived from the conservation of energy.
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σ1 arccos


2ra − ra

(
2/

(
r2a −

√
r4a + (v2∞1 − 3)r2a + 2ra

)2
− 1/ra

)
− 1

ra

(
2/

(
r2a −

√
r4a + (v2∞1 − 3)r2a + 2ra

)2
− 1/ra

)
− 1

+

−

√√√√√√
(
ra +

(
2/

(
r2a −

√
r4a + (v2∞1 − 3)r2a + 2ra

)2
− 1/ra

)−1
)3

8
{π(2k1 + 1)+

+σ1

2 arctan



√√√√√√
(

1−
(

2/

(
r2a −

√
r4a + (v2∞1 − 3)r2a + 2ra

)2
− 1/ra

)−1
)

(ra − 1)

 +

− 2

√√√√(1−
(

2/

(
r2a −

√
r4a + (v2∞1 − 3)r2a + 2ra

)2
− 1/ra

)−1
)

(ra − 1)

ra +

(
2/

(
r2a −

√
r4a + (v2∞1 − 3)r2a + 2ra

)2
− 1/ra

)−1




+ σ2 arccos

(
2rarp2 − ra − rp2

ra − rp2

)
+

−

√
(ra + rp2)3

8

π(2k2 + 1) + σ2

2 arctan

(√
(1− rp2)

(ra − 1)

)
− 2

√
(1− rp2)(ra − 1)

ra + rp2


− 2πn = 0

For a given VILT parameter vector s, we solve numerically Eq.(5.11) to compute

the two dimensional manifold Vs embedded in (rLA, rV A2, v∞1). We also take sections

of the manifold at v∞1 = const, which we denote as γsv∞1. From the Implicit Function

Theorem[AMR88], we know that the sections γsv∞1 can be written as curves

rsLA(rV A2; v∞1) (5.12)

satisfying Eq.(5.11), which we can plot on a Tisserand graph.

The special families of VILTs described previously (ballistic and tangent VILTs)

must satisfy one additional constraint equation (rV A1 = rV A2 for the ballistic solution,

rV A1 = 1 or rV A2 = 1 for tangent VILT) and are therefore one-dimensional subsets of

Vs[CR10a]. Their intersections with v∞1 = const. are points.

Figure 5.3 shows the manifold V(1,0,−1,3,+1,5) associated to the (+1) 5 : 41,−1
0,3 VILT,

embedded in the (ra, rp2, v∞1) space. It also shows the family of ballistic transfers 5 : 40

and the VILTs tangent at departure (+1) 5 : 4−1(3) and at arrival (+1) 5 : 4+1(0). As

expected, the tangent VILTs are the boundaries of the manifold. Note that the VILTs

tangent at departure are not defined for v∞1 greater than ∼ 0.15.
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Figure 5.3: The manifold V(1,30,−1,3,+1,5) , set of the solutions to the (+1) 5 : 4+1,−1
0,3

VILT with v∞1 = 0.12. The tangent VILTs (+1) 5 : 4−1(3) and (+1) 5 : 4+1(0) are at
the boundary of the manifold

Figure 5.4 on the left shows a close up of the same manifold V(1,0,−1,3,+1,5) and of

the ballistic and tangent families. In the same space we plot the pericenters of the

first arc rp1 as function of (ra, v∞1), which we compute using Eq.(5.8-5.9). The plane

v∞1 = 0.12 generates the section γsv∞1,or equivalently the curve rp2 = (ra; v∞1), and the

curve rp1(ra; v∞1), i.e. the v∞1 level set of the Tisserand graph. The plane also intersects

the ballistic and tangent VILTs in the points P1,P2,P3. The point P2 represents the

ballistic transfer, i.e. the solution with rp1 = rp2. Figure 5.4 on the right shows the same

section as a Tisserand graph (see section 3.2). It is effectively a rotated frontal view of

the 3D plot. In this example, the tangent VILTs are the vertical jumps from the rp1 curve

(i.e. the v∞1 level set) and the rp2 curve (the manifold section γsv∞1). In particular, the

figure shows the tangent VILTs with two solid arrows, noting that the tangent VILTs

must begin or end at rp = 1. The dashed arrow is an example of non-tangent VILT.

The manifold sections can have a small fold close to rp = 1, so that their numerical

computation using continuation methods is often cumbersome. Therefore, we suggests

using v∞2 as a continuation parameter. For advanced continuation methods we refer to

Doedel at al.[DKK91].
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Figure 5.4: On the left, close up of the manifold V(1,0,−1,3,+1,5) and its section at v∞1 =
0.12. On the right, the manifold section on the Tisserand graph (rotated frontal view of
the section in the left). The points P1 and P3 are the tangent VILTs (represented with
the vertical arrows), while P2 is the ballistic transfer

5.1.5 Piecewise linear approximation

Figure 5.3 suggests that the manifolds Vs and their sections γsv∞1 are almost flat (with

the exception of a very small region close rp = 1 not visible in the picture). Then we can

approximate the curves γsv∞1 with linear or piecewise linear functions, which we construct

using the ballistic and tangent solutions. Another approach would be to approximate the

entire manifold Vs with one plane; in the future we envision investigating the accuracy

of this second method, which would allow the storage of a family of solution manifolds

with only a few parameters.

The one-dimensional solution spaces of ballistic and tangent VILTs (non-

approximated) can be computed and stored easily (much more efficiently than two-

dimensional Vs)[CR10a]. In what follows we assume that the families of ballistic and

tangent VILTs are stored as points ra(v∞1), rp1(v∞1) for a discrete set of v∞ in the

feasible domain [v∞1min, v∞1max] .

We can now compute a linear approximation of γsv∞1 for a given s and v∞1. We use

the stored data to retrieve (up to) three points (rV A2, rLA) ∈ γsv∞1:
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• the ballistic solution belonging to the family of ballistic transfers n : m(σ1+σ2)/2

(the point P2 in the example of Figure 5.4).

• the VILT tangent at departure, belonging to the family of tangent VILTs n : mσ2,k2

(the point P3 in the example of Figure 5.4).

• the VILT tangent at arrival, belonging to the family of tangent VILTs n :

mσ1,k1(the point P1 in the example of Figure 5.4).

If v∞1 is outside the allowed range [v∞min, v∞max] for one family of tangent VILTs, we

can still use two points to construct a linear instead of a piecewise linear approximation,

as shown in Figure 5.5 (c). Figure 5.4 on the right shows the piecewise linear approx-

imation with black dots. We note that the approximation completely overlaps the real

solution.

For a fixed (EI) n : m, and for a given v∞1, there are in total 4m curves γsv∞1(one for

each possible combination of σ1, σ2, k1). We can compute their linear approximation by

retrieving up to 3 + 2m stored points (one for each ballistic and tangent VILT solution).

Figure 5.5 shows all the twelve curves γsv∞1 for a (+1) 4 : 3 VILT with v∞1 = 0.15.

The linear approximations are the dotted curves. Note that the VILT tangent at arrival

has no solution for k1 = 2. In this case we only use P1 and P2 to compute the linear

approximation.

5.2 Design of multiple gravity assist - multiple VILT tra-

jectories

The graphical analysis developed in the previous section forms the basis for a new design

method to compute multiple gravity assist - multiple VILT trajectories.

For the sake of clarity, in this section we consider a sequence of VILTs and gravity

assists at one moon only. In particular, we are interested in the design of a sequence of

VILTs and gravity assists at Dione to bring the spacecraft from a point A to a point Z
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Figure 5.5: Numerical (solid line) and approximate (dots) solutions of the (+1) 4 : 3σ1,σ2
k1,k2

VILTs for k1 = 0 (a), k1 = 1 (b), and k1 = 2 (c). The left column shows a close up of
the right pictures. The signs in the box are the signs of (σ1, σ2) for the different curves
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Figure 5.6: A sequence of gravity assists and VILTs at Dione brings the spacecraft from
a Rhea-Dione transfer (point A) to a Dione-Tethys transfer (point Z). The solid line
curves are v∞ level sets (bold lines for v∞ = 1, 2, ...km/s). The lines with slope -1
represent orbits with the same resonance. The box on the bottom right shows a close
up of the first gravity assist (from A to B) and of the first VILT(from B to C)

of the Tisserand graph in Figure 5.6. Our design approach however is very general and

can be equally implemented to drive the spacecraft everywhere in the Tisserand graph,

depending on the mission requirements. Note that a VILT provides a mechanism to

efficiently change the v∞. If points A and Z were on the same v∞ level set, the A to Z

transfer could be accomplished using gravity assists only. In figure 5.6, the four vertical

arrows represent VILTs while the arrows following the v∞ contours are gravity assists.

5.2.1 Building block

We begin the design with one building block of the trajectory, which we call a phase,

consisting of one gravity assist and one VILT. The first phase of the Dione part of the

trajectory is shown in detail in Figure 5.6. The point A represents the initial conditions.

The gravity assist moves the spacecraft to the point B on the v∞1 level set. Then the

VILT moves the spacecraft to the point C on a solution curve γsv∞1 .

How do we design this phase, i.e. how do we find the coordinates of the points B

and C? We know that B must be on the v∞1 level set; in order to choose a single VILT

and the associated gravity assist, we could think of plotting all the solution curves γsv∞1

for all the possible parameter vectors s , and choose a point on a curve satisfying some
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heuristic criteria (or just choose a discrete set of them). Unfortunately, for each resonant

ratio n : m there are 4m curves γsv∞1 , and each point of each curve requires solving

numerically Eq(5.11). As a result, even the calculation of a discrete set of possible C

would be computationally expensive; it would also produce a clouds of points difficult

to visualize and evaluate.

We tackle this problem in two steps: first we limit the time of flight of the phase, i.e.

we limit the number of moon revolutions n for the VILT; second for each m we replace

the associated 4m solutions curves with 2 piecewise linear curves computed with m+ 2

stored data points. This second step is achieved with the following assumptions:

• We assume the gravity assists do not flip the sign of the flight path angle. Note

that flipping the flight path angle results in a very large bending angle, and leads

to inefficient (if not infeasible) gravity assists. To impose this condition, we put

a constraint on σ1 because σ1EI is the sign of the flight path angle following the

gravity assist. In particular, when patching two phases together we require σ1EI =

(−σ2EI)previous phase. This halves the number of γsv∞1 curves to be computed.

• We use the linearized approximation to γsv∞1 explained in the previous section; for

a fixed n : m and σ1 we compute the 2m piecewise linear curves using 2+m stored

data points.

• We disregard suboptimal solutions. In particular, for each n : m ,σ1,σ2 we replace

the m piecewise linear curves (k1 = 0, . . . ,m− 1) with one piecewise linear curve,

where for each rV A we chose the minimum rLA greater than rLAmin. This last

assumption is better explained in Figure 5.7, where we plot the γsv∞1 for (+1) 5 :

4−1,−1
k1,k2 (with k1 = 0, . . . , 3 ; k2 = m − k1 − 1) and v∞1 = 0.3, together with two

piecewise linear curves (in bold) obtained for two different initial conditions, hence

two different rLAmin.

With these assumptions we compute a discrete set of possible choices for C in a very

short time (� 1 second for a Matlab code on a laptop PC). We can plot the results
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Figure 5.7: Five solution curves for the (+1) 5 : 4−1,−1
k1,k2 VILT, and two optimal curves

(piecewise linear, in bold) obtained choosing the lowest ra for each rp, for two different
initial conditions

and apply some heuristic approach to choose the next point, or loop through them in a

global search algorithm like branch and bound[LD60].

5.2.2 The sequence

The sequence of Dione VILTs and gravity assists in Figure 5.6 is designed by applying

iteratively the approach explained above. The point C of the first phase becomes the

new initial condition (point A) of the second phase. The last point of the last phase (the

point Z) must allow a transfer to Tethys. Note that the initial and final points A and Z

of the sequence are usually at different v∞s. In Figure 5.6 ṽ∞ = 0.82 km/s at the initial

point A , while ṽ∞ = 0.64 km/s at the final point Z. Accordingly, the sequence must

reduce the v∞.

The following comments about VILTs are important for the design:

• It is more efficient to reduce or increase the v∞ if rV A2 is close to 1, that is on the

top (left) part of the Tisserand graph for exterior (interior) VILTs. In particular,

tangent VILTs maximize the change of v∞ for a given ∆v [CR10a](under the

assumption of tangent burns at the apse).

• In direct contrast to the previous bullet, the gravity assist is least efficient in

reducing or increasing semi-major axis if rV A1 is close to 1 (see Figure 5.1). As

a consequence, tangent and near-tangent VILTs have an adverse affect on total

88



transfer time. Therefore the design is a careful trade study balancing the fuel

efficiency of tangent VILTs with the time efficiency of non-tangent gravity assists.

• A ∆v which increases (decreases respectively) v∞ can lead to a desired decrease

(increase) of semi-major axis. In some cases the only way to reach a short time-

of-flight resonance is to accept an increase (decrease) in v∞.

• Minimum altitude gravity assists always lead to the largest change in ra and rp.

• Minimum altitude gravity assists do not always reduce the total transfer time. In

some cases a higher altitude gravity assist can lead to a VILT with a preferred

resonance (i.e. with a lower n).

Using these comments and the graphical method presented, we design the transfer in

Figure 5.6 in a few steps.

5.2.3 Example of design

Using the assumptions and comments presented in the last sections, we design the first

phase of the Dione part of the trajectory. The initial conditions and general assumptions

are the following:

• The initial apocenter relative to Saturn is 527,063 km and the initial pericenter is

377,000 km, and ṽ∞1 = 0.82 km/s.

• The flight path angle before the gravity assist is positive, which means that the

first arc of the VILM must be short (σ1 = −1).

• The maximum VILT time of flight is chosen as approximately 36 days, that is:

n < 14 (the period of Dione is 2.74 days)

• The minimum gravity-assist altitude for the first encounter is 100 km and 50 km

for the following gravity assists. A minimum-altitude gravity assists leads to the

minimum ra of 510,495 km.
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Figure 5.8 shows the initial condition (point A) and the ṽ∞1 level set. It also shows

some piecewise linear curves marked with empty triangles or filled circles. In the area of

interest there are only three n : m VILTs with n < 14. The 13 : 10 VILTs are the two

curves on the right, the 9:7 VILTs are the two curves in the center, and the 5:4 VILTs

are the two curves on the left.

A possible choice for the design of this phase consists of a gravity assist from A to

B′, followed by a VILT from B′ to C ′. This choice has the advantage to decrease the

apocenter the most, with a short time of fight of approximately 5 Dione revolutions.

However, in order to reach the 5 : 4 VILT it is necessary to apply quite a large ∆v

(indicated by the large vertical displacement) and increase the v∞.

A different option is to make a gravity assist to from A to B, and a VILT from B

to C which lies on the σ2 = −1 curve. The transfer time is almost twice that of the

previous option, however the ∆v is much smaller and also results in a desired decrease of

v∞. In this case we choose the second option, because it represents a better compromise

in the ∆v vs. time-of-flight trade; however it is clear that both presented options, and

probably a few more, might be considered for an exhaustive search of trajectory options.

Note that the point C is close to but not exactly at rp = 1, where the ∆v decreases the

v∞ the most [CR10a] but the zero flight-path angle is the least efficient for an energy

changing gravity assist.

Once we select C as the chosen solution, we are ready to design the second phase,

with Anew = C and σ1new = −σ2 = +1. We apply this design approach iteratively to

find the sequence of gravity assists and VILTs shown in Figure 5.6.

5.3 Enceladus orbiter trajectory design

Using the methodology presented in the previous section, we design a trajectory from

a highly elliptical orbit around Saturn (from the post-PRM orbit of the Titan Saturn

System Mission[SSL+09]) to a 200 km altitude orbit around Enceladus. The trajectory
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Figure 5.8: Discrete sets of possible choices for the design of the first phase of the sequence
of VILTs at Dione. The curves with filled circles represents VILTs with (σ1, σ2) =
(−1,+1). The curves with empty triangles represents VILTs with (σ1, σ2) = (−1,−1).
The chosen design ABC consists of a 350 km altitude gravity assist and of a 4.7 m/s
VILT

comprises 52 gravity assists and VILTs at Titan, Rhea, Dione, Tethys and Enceladus,

for a total time of flight tof ∼ 2.7 years and a total ∆v of ∼ 450 m/s including the

Enceladus Orbit Insertion (EOI). We stress that this ∆v is almost ten times less than

the Titan- Enceladus Hohmann transfer ∆v .

We split the trajectory into five legs : Titan , Rhea , Dione , Tethys , and Enceladus.

Each leg is composed of gravity assists and VILTs at one moon only. The final conditions

of each leg are taken as initial conditions for the following leg; Note that we do not design

the transfer connecting two consecutive legs, which is considered beyond the scope of

the work and is expected to give small contributions to the total fime of flight (a few

revolutions of the gravity-assist moon) and total ∆v.

The time of flights and total ∆vs are recomputed solving the numerical VILTs, show-

ing an agreement with the approximate piecewise linear VILT values within 3.3% (less

than 0.02 % in most cases).

Figures 5.6 and 5.9-5.12 show the Tisserand graphs of the different legs of the tra-

jectory, while Figures 5.13-5.17 show the trajectory in the x − y plane. In each plot,

the star is the location of the first flyby, while the circle is the location of the last flyby.

Tables 5.2-5.6 show the ∆v, gravity assist altitude, and the time of flight of all the phases

of each leg. Table 5.7 summarizes the total ∆v and time of flight for each phase. We
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Figure 5.9: VILTs and gravity assists at Titan. The solid line curves are v∞ level sets
(bold lines for v∞ = 1, 2, ...km/s). The lines with slope -1 represent orbits with the same
resonance

Figure 5.10: VILTs and gravity assists at Rhea. The solid line curves are v∞ level sets
(bold lines for v∞ = 1, 2, ...km/s). The lines with slope -1 represent orbits with the same
resonance

compare the solution described above to a second solution we found previously with a

larger ∆v and shorter time of flight. This second solution was presented in Strange at

al. [SCR09]. We also compare both solutions with a Titan-Enceladus Hohmann trans-

fer. For complenetess we also show the ∆v for the Saturn Orbit Insertion (SOI) and

Pericenter Raise Maneuver (PRM) and the associated time of flight.
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Table 5.2: Titan leg
Flyby tof Altitude Transfer Type v∞1 v∞2 ∆V

[d] [km] N:M(L) [km/s] [km/s] [m/s]

Titan-1 31.4 2280 (+1) 2 : 1−1,+1
0,0 1.46 1.26 28.8

Titan-2 21.3 3000 1 : 1+1,+1 1.26 1.26 0.0
Titan-3 — 15090 transfer to Rhea

Table 5.3: Rhea leg
Flyby tof Altitude Transfer Type v∞1 v∞2 ∆V

[d] [km] N:M(L) [km/s] [km/s] [m/s]

Rhea-1 9.5 100 (+1) 2 : 1+1,+1
0,0 1.66 1.68 1.9

Rhea-2 17.5 2510 (+1) 2 : 1−1,−1
0,0 1.68 1.67 1.4

Rhea-3 59.2 60 (+1) 13 : 7+1,+1
1,5 1.67 1.50 21.5

Rhea-4 39.1 70 (+1) 7 : 4−1,−1
2,1 1.50 1.30 25.1

Rhea-5 22.7 70 (+1) 5 : 3+1,−1
0,2 1.30 1.20 12.7

Rhea-6 36.1 270 8 : 5+1,−1 1.20 1.20 0.0

Rhea-7 13.6 150 (+1) 3 : 2+1,−1
0,1 1.20 1.09 14.6

Rhea-8 31.7 150 (+1) 7 : 5+1,−1
0,4 1.09 0.99 15.2

Rhea-9 40.7 120 (+1) 9 : 7+1,−1
0,6 0.99 0.90 16.9

Rhea-10 31.6 230 7 : 6+1,−1 0.90 0.90 0.0
Rhea-11 6.5 220 1 : 1+1,+1 0.90 0.90 0.0
Rhea-12 6.2 310 1 : 1+1,+1 0.90 0.90 0.0

Rhea-13 30.2 60 (-1) 6 : 7−1,−1
6,0 0.90 0.74 37.2

Rhea-14 18.1 50 4 : 5+1,−1 0.74 0.74 0.0
Rhea-15 — 3660 transfer to Dione

Table 5.4: Dione leg
Flyby tof Altitude Transfer Type v∞1 v∞2 ∆V

[d] [km] N:M(L) [km/s] [km/s] [m/s]

Dione-1 28.0 350 (+1) 9 : 7−1,−1
0,6 0.82 0.78 4.7

Dione-2 13.7 270 (+1) 5 : 4+1,−1
0,3 0.78 0.71 10.3

Dione-3 16.5 100 (+1) 6 : 5+1,−1
0,4 0.71 0.65 9.3

Dione-4 24.6 60 (+1) 9 : 8+1,−1
0,7 0.65 0.64 1.9

Dione-5 35.6 960 13 : 12+1,−1 0.64 0.64 0.0
Dione-6 2.7 120 1 : 1+1,−1 0.64 0.64 0.0
Dione-7 32.8 60 12 : 13−1,+1 0.64 0.64 0.0
Dione-8 19.2 190 7 : 8−1,+1 0.64 0.64 0.0
Dione-9 16.4 970 6 : 7−1,+1 0.64 0.64 0.0
Dione-10 — 620 transfer to Tethys
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Figure 5.11: VILTs and gravity assists at Tethys.The solid line curves are v∞ level sets
(bold lines for v∞ = 1, 2, ...km/s). The lines with slope -1 represent orbits with the same
resonance

Figure 5.12: VILTs and gravity assists at Enceladus.The solid line curves are v∞ level
sets. The lines with slope -1 represent orbits with the same resonance
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Figure 5.13: VILTs and gravity assists at Titan

Table 5.5: Tethys leg
Flyby tof Altitude Transfer Type v∞1 v∞2 ∆V

[d] [km] N:M(L) [km/s] [km/s] [m/s]

Tethys-1 13.4 250 6 : 5−1,−1 0.70 0.70 0.0

Tethys-2 13.2 60 (+1) 7 : 6+1,−1
0,5 0.70 0.66 6.0

Tethys-3 17.0 60 9 : 8+1,−1 0.66 0.66 0.0
Tethys-4 26.4 70 14 : 13+1,−1 0.66 0.66 0.0
Tethys-5 2.7 60 1 : 1+1,+1 0.66 0.66 0.0
Tethys-6 1.9 640 1 : 1+1,−1 0.66 0.66 0.0
Tethys-7 2.6 610 1 : 1+1,+1 0.66 0.66 0.0
Tethys-8 26.4 80 14 : 15−1,+1 0.66 0.66 0.0
Tethys-9 17.0 90 9 : 10−1,+1 0.66 0.66 0.0
Tethys-10 13.2 100 7 : 8−1,+1 0.66 0.66 0.0

Tethys-11 24.5 1020 (-1) 13 : 15−1,+1
14,0 0.66 0.63 6.2

Tethys-12 — 860 transfer to Enceladus
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Figure 5.14: VILTs and gravity assists at Rhea

Table 5.6: Enceladus leg
Flyby tof Altitude Transfer Type v∞1 v∞2 ∆V

[d] [km] N:M(L) [km/s] [km/s] [m/s]

Enceladus-1 27.4 240 20 : 17+1,−1 0.70 0.70 0.0
Enceladus-2 9.6 50 7 : 6+1,−1 0.70 0.70 0.0

Enceladus-3 20.7 50 (+1) 15 : 13+1,+1
4,8 0.70 0.74 6.1

Enceladus-4 12.3 50 (+1) 8 : 7−1,−1
3,3 0.74 0.70 6.5

Enceladus-5 23.3 50 (+1) 17 : 15+1,−1
1,13 0.70 0.59 19.3

Enceladus-6 12.3 190 9 : 8+1,−1 0.59 0.59 0.0

Enceladus-7 13.9 50 (+1) 10 : 9+1,+1
0,8 0.59 0.56 5.8

Enceladus-8 16.4 50 (+1) 11 : 10−1,−1
0,9 0.56 0.47 15.1

Enceladus-9 18.0 50 (+1) 13 : 12+1,+1
8,3 0.47 0.40 12.5

Enceladus-10 20.5 50 (+1) 15 : 14−1,+1
0,13 0.40 0.30 16.8

Enceladus-11 25.9 50 (+1) 19 : 18−1,+1
1,16 0.30 0.22 13.6

Enceladus-12 32.8 50 (+1) 24 : 23−1,+1
19,3 0.22 0.18 6.4
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Figure 5.15: VILTs and gravity assists at Dione

Table 5.7: Trajectory comparison
New tour Tour from Strange et al.[SCR09] Titan-Enceladus

∆v [m/s] tof [days] ∆v [m/s] tof [days] ∆v [m/s] tof [days]

SOI+PRM 1,310 — 1,310 — 1,292 —

Titan tour 29 53 27 53 0 ∼ 50

Rhea tour 146 363 251 304 — —

Dione tour 26 190 90 108 — —

Tethys tour 12 158 28 134 — —

Encel. tour 102 233 96 144 — —

EOI 129 — 242 — 3,933 —

Tours + EOI 445 997 ( 2.7 y) 734 743 (∼ 2.0 y) 3,933 ∼ 50
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Figure 5.16: VILTs and gravity assists at Tethys
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Figure 5.17: VILTs and gravity assists at Enceladus
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Chapter 6

Subregions of motion and elliptic

halos in the ER3BP

In this chapter we define new regions of motion and families of periodic orbits in the

spatial elliptic restricted three body problem (ER3BP). Periodic orbits and regions of

motion are fundamental keys to understand any dynamical system; for this reason the

Hill’s surfaces or the families of halo orbits have been extensively studied in the frame

of the circular restricted three body problem. It is our opinion that their natural exten-

sions to the ER3BP have not been studied enough. We divide the configuration space

into forbidden subregions, subregions of motion and low-velocity subregions. We use

these notions to define necessary condition for a transfer trajectory in the ER3BP. Also

we compute branches of elliptic halo orbits bifurcating from halo orbits in the circu-

lar restricted three body problem. The new periodic orbits have principal periods and

stability properties different from those of the originating halo orbit.

6.1 Introduction

In the last decades, several authors studied the model of the circular restricted three-body

problem to explore low-energy transit trajectories [KLMR00], inspiring very challenging

mission design.

We recall from chapter 2 that the CR3BP studies the motion of an infinitesimal body

under the gravitational attraction of two massive bodies (primaries) in circular motion

around their center of mass. Choosing a rotating reference frame that keeps the position

of the primaries fixed results in a set of autonomous ordinary differential equations.
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The dynamical system is Hamiltonian with the Hamiltonian as integral of motion. The

existence of a first integral helps define regions of motion and families of periodic orbits

with their stable and unstable manifolds. Those are key elements to understand any

dynamical system.

However, the motion of the planets in the solar system is better approximated by

elliptic orbits, with eccentricity varying from 0.01 up to 0.2 (for the Sun-Mercury system).

The elliptic restricted three-body problem (ER3BP) takes into account the eccentricity

of the orbit of the primaries, and it is therefore a more accurate model than the CR3BP.

Yet the ER3BP has not been studied much, because it is a more complex system than

the CR3BP. The equations of motion of the ER3BP are non-autonomous because the

distance between the primaries varies in time. The system does not possess an integral of

motion (although it may when averaged appropriately [PYFN06]), which suggests that

the ER3BP is a dynamical problem different from the CR3BP.

For instance, the CR3BP model allows one to compute families of periodic orbits,

although no real periodic orbit exists in the real solar system. The ER3BP shows that

only discrete periodic orbits exist for e 6= 0 , with a well determined period, rather than

families with continuously varying periods. These solutions are (almost) periodic also

in the ephemeris model: Figure 6.1 shows a periodic orbit in the sun-Mercury system,

integrated in the ER3BP (solid line) and in the full ephemeris (dotted line, one dot

per day). We call this periodic orbit an elliptic halo orbit since it is computed from

continuation of a halo orbit in the CR3BP into the ER3BP.

The ER3BP should be used in the preliminary or PhaseA space mission trajectory

design, if the eccentricity of the system under study is too large to use the CR3BP. In the

next chapter we will show that the gravitation capture trajectory of the BepiColombo

mission to Mercury is designed in the ER3BP and can be explained using manifolds of

quasi-periodic orbits in the ER3BP

In an effort to better understand the differences between the CR3BP and the ER3BP,

this chapter describes some of the important feature of the ER3BP: regions of motion
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Figure 6.1: Periodic orbit in the Sun-Mercury system. We call these orbits elliptic halo
orbits, as they are computed starting from halo orbits in the CR3BP . The left plot is in
the rotating reference frame, the right plot is in the Mercury equatorial reference frame.
the mercury equatorial reference frame is an inertial frame centered in Mercury. The
solid line is the trajectory integrated in the ER3BP, the dotted line is the trajectory
integrated with full ephemeris (one dot per day). This shows the ER3BP is a very
accurate model for trajectories in the Sun-Mercury system.

and periodic orbits. The main approach consists in considering the eccentricity e as a

continuation parameter: For e = 0 the equations of motion reduce to the CR3BP.

In the first section we introduce the equations of motion of ER3BP isolating the

terms containing the eccentricity. In the second section we discuss the properties of

the pulsating zero-velocity surfaces and define new subregions of motion for the elliptic

problem. The forbidden subregions, subregions of motion and low-velocity subregions

are bounded by pulsating surfaces. In the last section we compute branches of periodic

orbits at different e, bifurcating from special halo orbits in the CR3BP. We show that the

stability properties change as soon as e 6= 0, and we believe that a countable infinity of

bifurcations occur at e = 0, filling the bifurcation diagram with infinitely many (although

discrete) branches. This provides some insight on the existence and stability of the quasi-

periodic halo orbits in the full ephemeris model.
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6.2 Spatial, elliptic, restricted three-body problem

In the elliptic restricted three body problem the two primaries move on elliptic orbits

around their barycenter. Unlike the CR3BP, the ER3BP is a non-autonomous system

of ODE’s. The eccentricity e of the orbit of the primaries appears as a parameter. The

motion of the third body m3 is usually described in a pulsating reference frame, where

the position of the primaries is fixed along the x − axis (the syzygy axis) and their

mutual distance is normalized to 1; as in the CR3BP, we define the the normal plane

as the plane throught the X-axis perpendicular to the primary orbit. Again, the true

anomaly of the primaries is the preferred independent variable instead of time. The

system of ODE’s can be written in the following form:


Ẍ − 2Ẏ = ∂ΩC

∂X −
e cos f

1+e cos f
∂Ω∗

∂x

Ÿ + 2Ẋ = ∂ΩC
∂Y −

e cos f
1+e cos f

∂Ω∗

∂y

Z̈ = ∂ΩC
∂Z −

e cos f
1+e cos f

∂Ω∗

∂Z

(6.1)

Ω∗(X,Y, Z) = ΩC +
1

2
Z2

Here we isolated the term e cos f
1+e cos f which is the only one containing the independent

variable as well as the eccentricity. For e = 0, the equations of motion of the ER3BP

reduce to Eq. (2.6); therefore solutions of the CR3BP are also solutions of the ER3BP

when the eccentricity vanishes. In fact we will show that some special solutions of the

CR3BP can be continued to the ER3BP using the eccentricity as continuation parameter,

and that a bifurcation occurs at e = 0.

The Lagrangian points are also fixed points for the ER3BP. However, it is not possible

to find an integral of motion because the equations of motion (and the Hamiltonian H)

depend explicitly on the independent variable f . The constant of integration, which was

the Jacobi constant in the CR3BP, is now replaced by:
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JE = 2ΩC − V 2 − (A+ I) = JC − (A+ I) (6.2)

where we introduced an integral term I and a pulsating term A1

I = 2

∫ f

f0

Ω∗
e sin f

(1 + e cos f)2df

A = 2Ω∗
e cos f

1 + e cos f

Note that JE is not an integral of motion for the ER3BP as it is no longer con-

stant along a trajectory, but depends on the initial X(t0) and the initial true anomaly,

f0. However, Eq (6.2) is actually a function f as well. The interesting thing is that

JE(f0,X(f0), f) is a constant, equal to JE(f0,X(f0), f). However, choosing different ini-

tial conditions within the same trajectory results in different JE ’s: we cannot uniquely

associate a trajectory to a single value of JE . This is one of the important consequence

of the loss of the integral of motion in the ER3BP when e 6= 0. In the rest of the paper

we will discuss how this loss affects the forbidden regions and the periodic orbits.

6.3 Subregions of motion

From the definition of the constant of integration JE , the velocity squared is given by:

V 2 = 2ΩC −A− I − JE

1In literature: 
x′′ − 2y′ = ∂ωE

∂X

y′′ + 2x′ = ∂ωE
∂Y

z′′ = ∂ωE
∂Z

with ωE (x, y, z, f ; e) = ΩE
1+e cos(f)

and ΩE (x, y, z, f ; e) = 1
2

(
x2 + y2 − z2e cos f

)
+ 1−µ

r1
+ µ
r1

+ 1
2
µ(1−µ).

Also the constant of integration is commonly expressed as JE = 2ωE − V 2 − 2e
∫ f
f0

ΩE
sin f

(1+e cos f)2
df −

2e
∫ f
f0

z2 sin f
(1+e cos f)

, so that by comparing with Eq. (6.2) : I ≡ 2e
∫ f
f0

ΩE
sin f

(1+e cos f)2
df + 2e

∫ f
f0

z2 sin f
(1+e cos f)

and

2ΩC −A ≡ 2ωE
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Given a set of initial condition , zero-velocity surfaces in the ER3BP are the level

sets of the function:

2ΩC −A− I = JE(f0,x0) (6.3)

The forbidden region is the set Ff = {(X,Y, Z)|(2ΩC −A− JE) < I} and the region

of motion is the set Af = {(X,Y, Z)|(2ΩC −A− JE) > I}, where the subscript f indi-

cates that the set changes with the true anomaly.

In this section we discuss the quasi-steady approach, first proposed by

Szebehely[Sze67a] to compute approximate zero-velocity surfaces, and then introduce

an alternative approach leading to the definition of subregions of motions.

6.3.1 Pulsating zero-velocity surfaces

Because of the integral term I, Eq. (6.3) cannot be solved for (X,Y, Z) at a time f1 6= f0.

The quasi-steady approach neglects the integral term when |f1 − f0| = δf is sufficiently

small. The quasi-steady approach was formulated for the planar ER3BP and it is often

used assuming small out-of-plane motion. Eq. (6.3) then becomes

2ΩC

1 + e cos (f)
= 2ΩC −A = JE

At each instant f∗ ∈ [f0, f1], the level set of 2ΩC = JE(1 + e cos f∗) defines new

zero-velocity surfaces2. Because of the cos f∗ term, these surfaces get closer and further

to the primaries (in the non-dimensional reference frame) as the true anomaly f goes

from −π to π. Thus they are usually referred to as pulsating zero-velocity surfaces.

Yet even for very small δf the quasi-steady approach can result in very large errors.

Figure 6.2 shows an orbit with period 2π in the Sun-Mercury ER3BP. At f0 = π the

third body is on the X-axis with zero velocity; thus the initial zero-velocity surfaces

include the initial position. After just a few instants, the zero-velocity surfaces shrinks

2For z 6= 0 the zero-velocity surfaces are the level sets of 2ΩC − z2e cos f∗ = JE(1 + e cos f∗)
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to half their initial initial sizes, and the forbidden regions now include the instantaneous

third body location.

Figure 6.2: Pulsating zero-velocity surfaces in the Sun-Mercury system. fMe is the true
anomaly of Mercury. At time fMe = 180o the initial velocity is zero; the zero-velocity
surfaces are tangent to the initial point. However, after just a few instant the pulsating
surfaces have shrunken to half their size, while the third body has barely moved.

Figure 6.3: The integral term I (numerically computed) and the pulsating term A of
the constant of integration JE for the periodic orbit of Figure 6.2 as function of the
true anomaly of Mercury. When summed together, the integral term almost cancel the
pulsating term. Neglecting the integral term results in a large artificial pulsation of the
constant of integration JE , hence to the pulsating zero-velocity surfaces.

Figure 6.3 explains this paradox showing that the neglected integral term I (computed

numerically) is of the same order of magnitude of the pulsating term A; in fact the two

terms almost cancel each other out. This suggests that at least in some cases the pulsating

behavior is a spurious consequence introduced by the approximation.
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When the third body is at equilibrium , for instance, the zero-velocity surface is the

invariant set containing the equilibrium point. At any instant fthe integral term I and

the pulsating term A cancel each other (except for a constant term). By neglecting the

integral term, however, the quasi-steady approach creates artificial zero-velocity surfaces

which pulsates periodically. This pulsation is an over-estimation of either the regions

of motion or the forbidden regions. Even if the third body is in equilibrium at L1, for

instance, we can find forbidden regions that include the current position of the spacecraft

L1, or regions of motion that open up at L2 .

6.3.2 Forbidden subregions, subregions of motion and low-velocity sub-

regions

We propose an alternative approach which yields the definition of under-estimated

regions of motion and forbidden regions. In between them we define a region which

include the zero-velocity surfaces which we call low-velocity region .

First we note that the integral term I(f ; f0) has local minima and maxima at each

planet pericenter and apocenter respectively. In fact3:

dI

df
= 0→ f̄ = nπ (6.4)

and:

d2I

df2

∣∣∣∣
f=nπ

= (−1)n k (k > 0) (6.5)

Hence even if the integral term cannot be computed without the knowledge of the

full solution X(t), we can still evaluate its upper and/or lower boundaries for any finite

interval of true anomaly.

If the initial condition X0 is given at f0 = 0, Eq. (6.4) and Eq. (6.5) imply I(f ; f0) ≥ 0

for all f ∈ [−π, π]. We can then define the subset

3Assuming
∣∣∣ dΩ∗df ∣∣∣ <∞
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F∗f ⊂ Ff , F∗f =
{

(X,Y, Z)|(2ΩC −A− JpE) < 0
}

with JpE = JE (0,X(0)). We call the subset F∗f forbidden subregion of motion, as it

represents an under-estimation of the forbidden region. The forbidden subregions give

useful information in the entire interval [−π, π]. Because they shrink and expand as the

true anomaly f goes from −πto 0 and from 0 to π (their boundaries are defined by the

same equation of the pulsating curves). We use them to formulate a necessary condition

for transfer trajectories in the ER3BP:

Given a set of initial condition f0 = 2nπ;x0 = X (f0), a transfer trajectory between

the primaries cannot occur in the interval [2nπ − π, 2nπ + π] if L1 ∈ F∗(2n−1)π and L1 ∈

F∗(2n+1)π.

Similarly, given a set of initial condition f0 = π;x0 = X (π), Eq. (6.4) and Eq. (6.5)

imply I(f ; f0) ≤ 0 for all f ∈ [0, 2π]. We define the subregions of motion

A∗f ⊂ Af , A∗f = {X|(2ΩC −A− JaE) > 0}

with f ∈ [0, 2π] and J0
E = JE (0,X(0)).

Finally, if we know the state X at two consecutive apsidal positions of the primaries

we can compute both JaE and JpE , hence the low-velocity subregions

L∗f =
{

(X,Y, Z)|(2ΩC −A− JpE) > 0, (2ΩC −A− JaE) < 0
}

This set is the complement to the subregions of motion and the forbidden subre-

gions, and by definition it includes the zero-velocity surfaces. For true anomaly intervals

[fL, fU ] ⊂ [0, 2π] we can still define low-velocity surfaces, by replacing JpE and JaE with

JLE = JE(fL) and JUE (fU ).

Figure 6.4 show the subregions of motion on the xy plane of a third body in the

Earth-Moon ER3BP (e = 0.054, µ = 0.0123) in the interval [0, 2π]. The third-body is on
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a small quasi-periodic orbit around L1. In this case the low-velocity subregions always

include the quasi-periodic orbit.

Figure 6.4: Subregions of motion for a third body on a small L1 quasi-periodic orbit of
the Earth-Moon ER3BP. fMo is the true anomaly of the Moon. The subregions of motion
are plotted each 30o of true anomaly of Mercury. The white region is the subregion of
motion. The dark gray region is the forbidden subregion. The light gray region is the
low-velocity region.
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6.4 Periodic orbits

In this section we show how to compute periodic orbits in the ER3BP. In particular, we

compute and study the stability of some orbits which we call elliptic halo orbits since

they bifurcate from special halo orbits of the CR3BP. We first introduce the periodic

orbits in the ER3BP.

The right hand side of the equations of motion Eq. (6.1) is periodic with period

2π. Thus, periodic solutions of the ER3BP must have principal period T = 2Nπ,

N = 1, 2, . . . ; they are also periodic in the inertial reference frame. In the context

of the planar ER3BP, Moulton[MBB+20] used these considerations and the symmetry

properties of the system Eq. (6.1) to formulate the Strong Periodicity Criterion :

For an orbit to be periodic [in the planar ER3BP] it is sufficient that it has two

perpendicular crossing with the syzygy-axis, and that the crossings happen at moments

when the two primaries are at an apse, (i.e. , at maximum or minimum elongation, or

apoapsis and periapsis).

In the late 1960es Broucke[Bro69] used Moulton’s criterion to compute planar orbits

in the ER3BP. He chose 150 orbits of the planar CR3BP with period T = 2Nπ as

starting points, with N = 1, 2, 3, 4, 5 , and computed them in the planar ER3BP for

different eccentricities using a continuation method. In particular, each of the 150 orbits

was continued into two branches of orbits, which he called periapsis orbits and apoapsis

orbits, depending on the true anomaly of the primaries at the starting point on the

syzygy axis (f = 0 or f = π).

We use a similar approach to compute elliptic halo orbits. We extend Moulton’s

criterion and Broucke’s approach as the elliptic halo orbits are 3D and in general have

periods smaller than 2π. First we consider the following symmetries of the system

Eq. (6.1):

S1 :
(
kπ + f,X, Y, Z, Ẋ, Ẏ , Ż

)
→
(
kπ − f,X,−Y,−Z,−Ẋ, Ẏ , Ż

)
(6.6)
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S2 :
(
kπ + f,X, Y, Z, Ẋ, Ẏ , Ż

)
→
(
kπ − f,X,−Y, Z,−Ẋ, Ẏ ,−Ż

)
(6.7)

which we use to formulate the Elliptic Periodicity Conditions:

For an orbit to be periodic in the ER3BP, it is sufficient that it has two perpendicular

crossing with either the normal plane (from S1) or the syzygy axis (from S2), or both of

them, when the primaries are at an apse .

Second, we choose halo orbits with principal period TC = 2rπ, where r = N
M is the

resonant ratio between the number of the primary revolutions N and number of the third

body revolutions M . By assembling M revolutions of a halo orbit, we build an orbit

with period TE = MTC = 2Nπ which is a solution of Eq. (6.1) for e = 0, and which has

2M perpendicular crossings with the normal plane (M left X-intercepts and M right

X-intercepts).

If the first crossing of the orbit occurs when the primaries are an apse, then the

M + 1th crossing also occurs when the primaries are at an apse. More precisely, the

M + 1th crossing occurs Nπ after the first crossing. Such orbit is an elliptic halo orbit

for e = 0, and satisfies the Elliptic Periodicity Condition as it has two perpendicular

crossing with the normal plane when the primaries are at an apse. Next we compute

elliptic halo orbits for e > 0 using the eccentricity as a continuation parameter and we

impose a perpendicular crossing on the 1st and on the M +1th intercepts at fixed times.

Different kinds of elliptic halo orbits can be assembled starting from the same halo

orbit in the CR3BP. For instance, if M is odd we can compute periapsis or apoapsis

families depending on whether the first crossing occurs at the periapse or apoapse as

described by Broucke for M = 1[Bro69]. However, if M is even we can continue two new

families of orbits, which we call the left and right family, depending on whether the first

crossing is a left X-intercept or a right X-intercept.

We apply our approach to two different cases. In the first case, we consider a system

with a small mass ratio µ ≈ 1e − 6, corresponding to the Mercury-Sun system, and
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choose as L1 halo orbit with TC = 4
5π, i.e. N = 2 and M = 5. We build the elliptic

halo orbit by assembling five revolutions of the halo orbit (TE = 4π), and we compute

the periapsis and apoapsis families for eccentricities up to e ≈ 0.02. Figure 6.5 shows

the two families, in both the rotating and inertial reference frames. We also compute an

orbit of the pericenter family for e ≈ 0.2, corresponding to the eccentricity of Mercury’s

orbit, and compare our solution to one integrated with the full ephemeris model - see

Figure 6.1.

Figure 6.5: Periapsis and apoapsis elliptic halo orbits in the ER3BP (e = 0.02) generated
from a 2:5 halo orbit in the CR3BP. The first and second figure from the left show the
periapsis and apoapsis halo orbits in the rotating reference frame. The last figure shows
both orbits in the inertial reference frame.

In the second case, we consider a system with a relatively high mass ratio: µ = 0.012,

similar to the Earth-Moon system, and choose a halo orbit orbit with period TC = π, i.e.

N = 1 and M = 2. We build the elliptic halo orbit by assembling two revolutions of the

halo orbit, and we compute the left and the right elliptic halo orbits for eccentricity up to

e = 0.3. Note that when continuing the orbit from e = 0 to e > 0, the principal period

of the elliptic halo orbits changes from TC to TE = 2TC . Also one single halo orbit

generates two new elliptic halo orbits. Those elements suggest that a period doubling

bifurcation occurs at e = 0. In the next section we show that the stability properties of

the left and right elliptic halo orbits differ from those of the originating halo orbit. Figure
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Figure 6.6: Left and Right elliptic halo orbits in the ER3BP (0 < e < 0.3, µ ≈ 0.0123).
The dash lines are the L2 halo orbits in the CR3BP. The bold solid line is the elliptic
halo for e = 0.3. On the Left: ‘Left’ family that bifurcates from the L2 halo in the
pulsating reference frame. On the Right: ‘Right’ family that bifurcates from the L2 halo
in the pulsating reference frame.

6.6 shows the left and right families together with the family of halo orbits at e = 0.

Each color corresponds to an elliptic halo orbit computed with a distinct eccentricity.

6.4.1 Stability

In order to study the linear stability of the elliptic halo orbits, we briefly recall some

important results of Floquet’s theory. Consider a system of equations:

Ẏ(t) = A(t)Y(t) (6.8)

where A(t) is periodic with period T , and Y ∈ Rn. Also consider a fundamental

matrix ψ(t) for the system Eq. (6.8), and the matrix E = ψ(0)−1ψ(T ) 4. If E has n

distinct eigenvalues λi, then there are n solutions Yi(t) = qi(t)e
ρi(t+T ), where qi(t) are

periodic function with period T , and ρi are the characteristic exponents associated to

4Assume t0 = 0
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λi. Also, it can be shown that Yi(t + T ) = λiYi(t), and the eigenvalues λi determine

the stability properties of the system Eq. (6.8).

We can now apply Floquet’s theory to the ER3BP. The linearized first order system

of ODEs is:

δẊ(f) = A(f)δX(f)

where

A(f) =

 0 I

∂2ωE
∂r2 2J


and:

∂2ωE
∂r2

=
∂2ΩC

∂r2
− e cos f

1 + e cos f

∂2Ω∗

∂r2
=

=
31−µ
r3
1
r̂1 ⊗ r̂1 + 3 µ

r3
2
r̂2 ⊗ r̂2 + (1− 1−µ

r3
1
− µ

r3
2
)I
=

1 + e cos f
− eZ ⊗ eZ

The state transition matrix φ(f) is solution of the system:

φ̇(f) = A(f)φ(f) φ(f0) = I

In the ER3BP φ(f) is in fact a fundamental matrix ψ(t) for the system, and the

matrix E is the monodromy matrix M = φ(T ) and can be computed by integrating

φ(f) or by using approximation methods [GM07]. As mentioned in the previous section,

the eigenvalues of the monodromy matrix M still come in reciprocal pairs, but there

are no more unitary eigenvalues[BLB76] associated to perturbation δX tangent to the

trajectory. In the case of the left elliptic halo orbits of Figure 6.6 on the left, the

eigenvalues move on the unit circle, hinting at the existence of quasi-periodic orbits. In

the case of the right elliptic halo orbits of Figure 6.6 on the right, the eigenvalues move
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on the real axis generating new stable and unstable manifolds; the stability properties

of the halo orbits changes when the eccentricity is e 6= 0.

Figure 6.7: The real unitary eigenvalues of the halo orbit change as the eccentricity
changes. A pair of complex conjugated eigenvalues on the unit circle is generated in the
case of the left elliptic halo orbits (branches I), while a stable/unstable pair of eigenvalues
is generated in the case of the elliptic right halo orbits (branches II). The left picture is
schematic, while the right is the result of the numeric computation.
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Chapter 7

The capture in the ER3BP

This chapter present two different approaches to solve the capture problem. In particular,

we used the mission constraint given by the BepiColombo mission to Mercury[GdPJ08].

Although the models and results are mission specific, the approaches can be applied to

any missions once the main constraints on the science orbits are known.

The first approach to solve the capture was used in the original design of the Bepi-

Colombo nominal trajectory, and consist of exploring the solution space by varying

selected orbital elements of the spacecraft before orbit insertion. The BepiColombo

gravitational capture provides several recovery opportunities at nominal conditions and

orbit insertion. We extend this approach with the software tool GraCE.

The second approach consists of choosing a suitable quasi-periodic orbits in the ellip-

tic, restricted 3-body problem, and compute the stable manifold onto it. We show that

the BepiColombo trajectory near Mercury follows the invariant manifolds to its final

capture.

7.1 The BepiColombo gravitational capture

BepiColombo is the ESA mission to Mercury. Two spacecraft will be launched jointly in

2013 and will reach their destination in 2019. The nearly 6-year long transfer includes

several gravity assists and SEP (solar electric propulsion) thrust arcs [GdPJ08].At Mer-

cury a chemical burn (Mercury Orbit Insertion OI) inserts the spacecraft into a 400km

x 12000 km polar orbit, with the line of apsides almost aligned with the Sun-Mercury

eccentricity vector.
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Figure 7.1: BepiColombo Gravitational Capture in the inertial frame. Mercury is at
the origin, the z-axis is perpendicular to Mercury equator. In the 2012 baseline Bepi-
Colombo approaches Mercury from the negative x-axis. The dots are points along the
trajectory one day apart computed in the real ephemeris model. The solid line is the
trajectory computed using the equations of the elliptic restricted three-body problem.
The Gravitation Capture trajectory has no deterministic maneuvers: in case of failure
of the Mercury Orbit Insertion (OI), there are three backup OIs before the spacecraft
eventually leaves Mercury sphere of influence.

To avoid a potential single point failure of a classical hyperbolic approach, an arrival

scenario is implemented where the gravity of the Sun is exploited to weakly capture the

spacecraft. This technique is called gravitational capture.

Gravitational capture trajectories can be designed by exploring the solution space

spanned by all the admissible incoming trajectories (i.e. consistent with the mission

constraint) and assuming a failure of the orbit insertion. In the case of the BepiColombo

mission, such solution space is bounded and only two-dimensional. The gravitational

capture trajectory for the 2012 launch option1 in Figure 1 was designed with this simple

1In the last year the mission was redesigned and approved for launch in 2013; the gravitational capture
trajectories under consideration are all very similar to the 2012 baseline.
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approach, which we extend and implement in the software tool GraCE (Gravitation

Capture Explorer) presented in the next section.

Yet gravitational capture trajectories are better understood in the frame of the

restricted three-body problem. Figure 2 shows the gravitational capture in the pul-

sating reference frame, where Mercury and the Sun are at fixed position on the X-axis,

and the Z-axis is perpendicular to Mercury’s orbital plane. Part of the trajectory is

almost symmetric to the XZ plane, and crosses the syzygy axis when Mercury is at apo-

helium. This suggests that the elliptic restricted three-body problem ER3BP can give

valuable insight on such solutions, and possibly lead to alternative design techniques.

In fact, the simple approach implemented in GRaCE fails for most of the mission

feasibility study, where the target trajectory may not be completely fixed and the solution

space becomes seven-dimensional, too computationally expensive to explore, and too

difficult to visualize.

In this chapter we show that BepiColombo gravitational capture trajectories shadow

the stable and unstable manifolds of a special quasi-periodic orbit in the ER3BP, suggest-

ing that future design should make use of these tools. Ryan and Lam [RL07] designed

gravitational capture trajectories to Europa using unstable periodic orbits and their

stable manifolds in the CR3BP, and they implemented a technique to reproduce the

trajectory in the full ephemeris model. In this paper trajectories in the Sun-Mercury

ER3BP are easily reproduced in the full ephemeris model with no corrections on the

initial conditions (see Figure 1).

7.2 GraCE – Exploring Gravitational Capture Trajectories

When an interplanetary spacecraft approaches its target planet, an Orbit Insertion

maneuvers (OI) inserts the spacecraft into a closed orbit. If the approach trajectory

is hyperbolic, a failure of the orbit insertion maneuver results in an inadverted gravity
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Figure 7.2: Fig. 2 BepiColombo Gravitational Capture in the pulsating reference frame.
The Sun-Mercury barycenter is at the origin (not in the plot); Mercury and the Sun are
at fixed position on the X-axis at unit distance. The Z-axis is perpendicular to the orbital
plane of Mercury. In this reference frame the Lagrangian points are at fixed location. In
the 2012 baseline BepiColombo approaches Mercury from the negative X-axis. The dots
are points along the trajectory one day apart computed in the real ephemeris model.
The solid line is the trajectory computed using the equations of the elliptic restricted
three-body problem.

assist and often the mission is lost; in such cases the orbit insertion maneuvers is a single

point of failure.

The gravitation capture is a mechanism by which the spacecraft attains low relative

velocity with respect to the planet or moon and even can orbit around it temporar-

ily. Thus gravitational capture trajectories offer several orbit insertion opportunities

in case of failure of the nominal OI. In this work, gravitational capture trajectories are

designed to maximize the number of backup OIs with almost no deterministic maneuvers

in between them while satisfying the mission constraints.

If the target orbit around the planet is completely fixed by mission constraints, grav-

itational capture trajectories can be found by simply varying the capture time and speed

of the spacecraft right before OI. The first gravitational capture trajectory for Bepi-

Colombo was thus designed by exploring the solution space [JCGK04]. Initial conditions

were propagated backward and forward in a full ephemeris model with three different
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initial speeds and with the initial times varying on a half-day grid for a revolution of

Mercury. Among the computed solutions [CJCVD04], the trajectory selected for the

2012 baseline (shown in Figure 1 and 2) is a good compromise of number of recovery

opportunities at allowed capture times, deterministic ∆V for the trajectory correction

maneuvers and safe periherm passages. In case of failure of the orbit insertion there

are three more MOI opportunities at almost nominal condition before the spacecraft

eventually leaves Mercury’s sphere of influence.

We extend this approach in GraCE (Gravitational Capture Explorer), a software

tool developed in Matlab which computes the entire solution space in ephemeris model

and allows the user to filter and explore it through a GUI. Given a ∆v allocated for

trajectory correction maneuvers, GraCE shows level sets of feasible trajectories for each

number of the backup opportunities. GraCE also shows all the main parameters for

the design (time and osculating parameters of each periherm passages, recovery ∆v for

each opportunity) for each trajectory. In Figure 3 we use GraCE’s GUI to visualize the

solution space for the 2013 launch option of BepiColombo.

This way of computing gravitational capture trajectories quickly provides a baseline

trajectory to the mission team. Yet a full exploration of the solutions space would

become impractical if only one additional parameter is allowed to vary. Also, the current

approach does not provide any insight on the families of “good” solutions which usually

cross the Sun-Mercury syzygy line in opposition when Mercury is at apohelium. Also,

many solutions seem to loop around the Lagrangian points, when plotted in the pulsating

reference frame.

In what follows we show that gravitational capture trajectories like the one in Figure 2

are better understood in the frame of the elliptic restricted three-body problem (ER3BP),

which we briefly introduce in the next section.
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Figure 7.3: Fig. 3 GraCE explores gravitational capture trajectories for the 2013 launch
option of BepiColombo. On the bottom left: the solution space computed by GraCE;
the x-axis is the nominal arrival day, the y-axis is the osculating apoherm before OI. For
the selected recovery ∆V of 22.5 m/s, the contour lines show the number of recovery
opportunities before BepiColombo eventually leaves Mercury’s sphere of influence or
collides with the planet. Not that sometime the backward propagation results in a
collision trajectory (red stars in the solution space). We call these solutions unfeasible
as they cannot match the interplanetary transfer.

7.3 BepiColombo and unstable orbits in the ER3BP

We first recall some facts form the ER3BP. The system of equations Eq.6.1 define a non-

autonomous system, periodic with period 2π. Thus orbits of the ER3BP have principal

period 2kπ (k integer), and are periodic both in the pulsating and in the rotating reference

frame [MBB+20, Bro69].
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In the previous chapter we showed that almost all (a countable infinity of an uncount-

able set) periodic orbits of the CR3BP can generate branches of periodic orbits in the

ER3BP; in fact, we showed that periodic orbits in the CR3BP with period 2πn/m can

be continued in new periodic orbits of the ER3BP with principal period 2πn. As the

periodic orbits in the ER3BP close only after several revolutions of the primaries, most

of the orbits in the ER3BP will appear to be quasi-periodic in practical application. For

this reason we compute two quasi-periodic orbits and portions of their manifolds in the

ER3BP, and compare such trajectories with the BepiColombo gravitational capture.

Because the system is non-autonomous, we compute approximated invariant man-

ifolds of the augmented system by integrating trajectories departing from the quasi-

periodic orbits. We choose the initial perturbation aligned to the maximum stretching

direction of the deformation tensor, computed for short time intervals.

First we compute periodic and quasi-periodic orbits around the libration points. We

expect gravitational capture trajectories to follow the stable manifolds of such orbits.

In particular we compute a Lissajous orbit around L1 with amplitude close to 4e-3 (by

comparison with the BepiColombo gravitational capture). Figure 5 (top left) shows the

Lissajous orbit and a single trajectory on its stable manifold and a single trajectory on

its unstable manifold.

We then look at quasi-periodic around Mercury. We compute orbits with special

symmetric features, allowing for several recovery options at nominal conditions. In par-

ticular, we use the symmetry in Eq.(6.6) and we require the quasi-periodic orbit to cross

the syzygy axis perpendicularly when Mercury is at apohelium. Figure 5 (top-right)

shows the quasi-periodic orbit with trajectories from the stable and unstable manifolds

which shadow the gravitational capture trajectory. Note that the orbits from the mani-

folds are also symmetric.

Finally we compare the unstable orbits and their manifolds to the BepiColombo

gravitational capture in Figure 5 (bottom). Coming from the interplanetary transfer,
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Figure 7.4: Fig. 5 Trajectories in the pulsating reference frame (projection onto the
xy plane). Left: The Lissajous orbit is plotted together with one trajectory of the
stable manifold (star) and one trajectory of the unstable manifold (circle). Center: The
symmetric quasi-periodic orbit around Mercury is plotted with one trajectory of the
stable manifold (star) and one trajectory of the unstable manifold (circle). Note the
manifolds are also symmetric. Right: The BepiColombo gravitational capture (solid
line) shadows the stable and unstable manifolds.
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the spacecraft follows the stable manifold of the Lissajous and approaches L1. After less

then one revolution around the libration point, the trajectory shadows a heteroclinic

connection between the Lissajous orbit and the quasi-periodic orbit around Mercury. In

case the first MOI fails, the spacecraft continues to shadow the symmetric orbit and will

eventually escape Mercury’s attraction along the unstable manifold after several MOI

opportunities at nominal condition.

Figure 6 shows all the trajectories generated by perturbing the quasi-periodic orbit

(thick solid line) together with the BepiColombo gravitational capture trajectory (thick

dashed line).
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Figure 7.5: Fig. 6 The BepiColombo trajectory (dashed line) shadows the manifolds of
the quasi-periodic orbit around Mercury (solid thick line).
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Chapter 8

Conclusions

In this report we present new techniques for the design of trajectories touring moon

systems.

In chapter 3 we derive new formulae for the v∞-leveraging transfer (VILT). We use

these formulae to show that the VILT is only efficient when the v∞ is larger than a

minimum value. We also use the formulae to build a new graphical tool, the leveraging

graph, which gives insight on the VILT problem and allows for a fast, intuitive, prelim-

inary design of VILTs. The analysis of the VILT efficiency reveals that the total ∆v of

a sequence of VILTs decreases when implementing high altitude gravity assists. This

suggests a simple way to compute the theoretical minimum ∆v to transfer a spacecraft

between arbitrary initial conditions using sequences of VILTs. The minimum ∆v is found

by solving a simple quadrature formula. We use this formula to compute the minimum

∆vs for different transfers between the Jupiter or Saturn moons. This new design capa-

bility is the first important result of this work. The leveraging graphs and associated

formulae provide for a fast, accurate method for estimating ∆vs on the complex endgame

and general multi-moon tour problems.

In chapter 4 we present a new graphic technique, the Tisserand-Poincaré (T-P) graph,

which is the second important result of this work. We use the T-P graph to understand

and design low-cost endgames and transfers - in the context of both linked-conics and

patched three body systems. While the T-P graph can be used like the Tisserand graph,

it extends beyond the limits of the linked-conic approach into the domain of the patched

circular restricted 3-body problem (CR3BP) showing that low-energy ballistic orbits

around the moons are energetically connected. The T-P graph also provides target

points and a simple rationale for the design of such transfers.
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With a very simple search, we designed a transfer between a circular orbit at Europa

and a circular orbit at Ganymede which requires only 1.25 km/s, almost 500 m/s less than

the theoretical minimum cost achieved by v∞-leveraging maneuvers (VILT) transfers,

and almost 1 km/s less that the direct Hohmann transfer. With the same approach we

found a transfer between a halo orbit around L1 of the Ganymede-Jupiter system and a

halo orbit around L2 of the Europa-Jupiter system. The transfer is quasi-ballistic and

lasts 300 days, and can be shortened by two months for an additional 50 m/s, or by

three months by an additional 100 m/s.

In chapter 5 we study the solution space of the general (non-tangent) VILT problem

and demonstrate that the space is almost flat for a proper choice of coordinates. We

derive an approximation to the solution space which allows for fast computation of

the transfers. Using the approximation and the Tisserand graphs, we introduce a fast

graphical design method for multiple-VILT transfers, which is the third important result

of this work. Using the new method we quickly compute a trajectory from a highly

eccentric orbit at Saturn to a 200 km orbit at Encaladus. The trajectory includes 52

gravity assists at Titan, Rhea, Dione, Tethys and Enceladus. The time of flight is 2.7

years, and the total ∆v is only 445 m/s, including the Enceladus orbit insertion. For

comparison, the Enceladus orbit insertion from a Titan-Enceladus Hohmann transfer is

almost 4 km/s. The low ∆v and flight time solutions presented in this study embolden

the already strong arguments to send an orbiter to Enceladus. The new method and

demonstrated results generally apply to any mission that tours and ultimately orbits

small mass moons. This class of high-science-value missions was previously considered

impractical due to flight time and ∆v constraints.

In chapter 6 we define regions of motion and periodic orbits in the elliptic, restricted

three-body problem (ER3BP). The Hill’s zero-velocity surfaces in the CR3BP are

replaced by the low-velocity regions, which divides the subregions of motion from the

forbidden subregions. Periodic trajectories are computed using a continuation method,
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starting with orbits in the CR3BP with period synchronous to the period of the pri-

maries. We show that different branches of periodic orbits bifurcates in the ER3BP

and that the new branches have different linear stability properties, which is the fourth

important result of this work.

In chapter 7 we study the capture problem. We first extend the method used for the

BepiColombo capture at Mercury, and develop a software tool to explore the solution

space. We then reproduce the nominal trajectory in the elliptic, restricted three body

problem, showing that it follows the stable and unstable manifolds of quasi-periodic

orbits. In particular, the manifolds of a symmetric quasi-periodic orbit around Mercury

play a key role as their symmetry properties provide several recovery opportunities to

the mission. This last important result that capture trajectories can also be computed

exploiting the symmetries of the elliptic, restricted, three-body problem.
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[Góm79] G. Gómez. Effect of mass-parameter on the periodic orbits of the restricted
problem of three bodies. In Instabilities in dynamical systems, pages 285–
286, 1979.

[GR09] Piyush Grover and Shane D. Ross. Designing trajectories in a planet-Moon
environment using the controlled Keplerian map. Journal of Guidance,
Control, and Dynamics, 32(2):437–444, 2009. doi:10.2514/1.38320.

[Hil78] G. W. Hill. Researches in the lunar theory. American Journal of Mathe-
matics, 1(1,2):5–26, 129–147, 245–260, 1878.

[Hol75] G.R. Hollenbeck. New flight techniques for outer planet missions. In AAS
Microfishe series, volume 26, 1975. Supplement to the Advances in the
Astronautical Sciences, Vol. 33, Univelt, San diego, also AAS Paper 75-087.

[How84] Kathleen C. Howell. Three-dimensional, periodic, ’Halo’ orbits. Celestial
Mechanics, 32:53–71, 1984.

[Jac36] Carl Gustav Jacob Jacobi. Sur le movement d’un point et sur un cas par-
ticulier du probleme des trois corps. In Comptes Rendus de l’Académie des
Sciences de Paris, volume 3, pages 59–61. 1836.

[JBC05] Guy Janin, Arnaud Boutonnet, and Stefano Campagnola. Solar orbiter
mission analysis. Technical Report WP 481, ESA, European Operation
Center, Darmstadt, Germany, March 2005.

[JCGK04] Ruediger Jehn, Stefano Campagnola, D. Garcia, and Steven Kemble. Low-
thrust approach and gravitational capture at Mercury. In ESA special pub-
blication for the 18th International Symposium on Space Flight Dynamics,
volume 548, page 487. ESA Publications Division, The Netherlands, 2004.

[JD99] Jennie R. Johannesen and Louis A. D’Amario. Europa orbiter mission tra-
jectory design. In Advances in the Astronautical Sciences, volume 103, part
III, pages 895–908. Univelt, San Diego, 1999. also AAS Paper 99-360.

[KCC04] Michael Kahn, Stefano Campagnola, and Michael Croon. End-to-end mis-
sion analysis for a low-cost, two-spacecraft mission to Europa. In Advances
in Astronautical Sciences, volume 119, pages 463–472. Univelt, San Diego,
2004. also Paper AAS-132.

[KJT08] Theresa D. Kowalkowski, Jennie R. Johannesen, and Lam Try. Launch
period development for the Juno mission to Jupiter. In AIAA/AAS Astro-
dynamics Specialist Conference and Exhibit, Honolulu, Hawaii, 2008. Paper
AIAA-2008-7369.

131



[KLMR00] W. S. Koon, M. W. Lo, J. E. Marsden, and S. D. Ross. Heteroclinic connec-
tions between periodic orbits and resonance transitions in celestial mechan-
ics. Chaos, 10:427–469, 200.

[Lan00] Yves Langevin. Chemical and solar electric propulsion option for a corner-
stone mission to Mercury. Acta Astronautica, 47(2-9):443–452, 2000.

[LD60] A. H. Land and A. G. Doig. An automatic method of solving discrete
programming problems. Econometrica, 28(3):497–520, Jul 1960.

[LPS98] A.V Labunsky, O.V. Papkov, and K.G. Sukhanov. Multiple Gravity Assist
Interplanetary Trajectories, pages 33–68. Earth Space Institute Book Series,
Gordon and Breach Publishers, London, 1998.

[MBB+20] F. R. Moulton, D. Buchanan, T. Buck, F. L. Griffin, W. R. Longley, and
W. D. MacMillan. Periodic Orbits. Washington, Carnegie institution of
Washington, 1920.

[MD00] Carl D. Murray and Stanley F. Dermott. Solar System Dynamics, pages
456–467. Cambridge University Press, February 2000.

[MDF+06] James V. McAdams, David W. Dunham, Robert W. Farquhar, Anthony H.
Taylor, and B. G. Williams. Trajectory design and maneuver strategy for
the MESSENGER mission to Mercury. Journal of Spacecraft and Rockets,
43 5:1054–1064, 2006. doi: 10.2514/1.18178.

[Mey99] Kenneth R. Meyer. Periodic Solutions of the N-Body Problem. Springer-
Verlag, 1999.

[MW] J. K. Miller and Connie J. Weeks. Application of Tisserand’s criterion to
the design of gravity assist trajectories. Paper AIAA 2002-4717 AAS/AIAA
Astrodynamics Specialist Conference and Exhibit, Monterey, GA, August
2002.

[PLB00] Anastassios E. Petropoulos, James M. Longuski, and Eugene P. Bon-
figlio. Trajectories to Jupiter via gravity assists from Venus, Earth,
and Mars. Journal of Spacecraft and Rockets, 37(6):776–783, 2000. doi:
10.2514/2.3650.
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Appendix A

Derivation of the phase-free formula

From Figure 3.2 we see that

vL = 1± v∞L −→ v2
∞L = (vL − 1)2 (1)

vB = vA ∓∆vAB −→ v2
B = v2

A + (∆vAB)2 ∓ 2vA∆vAB (2)

with the upper sign referring to the exterior v∞leveraging, and the lower sign referred

to the interior v∞leveraging. The velocity of the moon is v2
M = kP /aM . We start

considering the leg L−A (the dash lines in Figure 3.2).

From the vis-viva equation 1
2v

2
L − 1 = −1/(1 + ra) we obtain

rA =
v2
L

2− v2
L

(3)

Note that

drA
dvL

=
4v2
L(

v2
L − 2

)2 =
4r2
A

v3
L

(4)

and

1

rA
=

2

v2
L

− 1 (5)
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From the conservation of the energy and momentum respectively we have

1

2
v2
L − 1 =

1

2
v2
A −

1

rA
−→ 2

(
1− 1

rA

)
= v2

L − v2
A (6)

vA =
vL
rA

(7)

Using Eq. (5), we have

vA =
2− v2

L

vL
(8)

We now use rA in Eq. (3), vA in Eq. (8), and vLin Eq. (1) to define

Γ (v∞L) ≡ ± (rA − vA) = ±
(

v2
L

2− v2
L

−
2− v2

L

vL

)
=

= v∞L
v3
∞L ± 3v2

∞L − v∞L ∓ 7

v3
∞L ± 3v2

∞L + v∞L ∓ 1
(9)

Note that Γ is positive, monotonic strictly increasing function of v∞L because Γ(0) =

0 and

dΓ

dv∞L
= ± dΓ

dvL
=
d (rA − vL/rA)

dvL
=
drA
dvL

(1 + vL/r
2
A)− 1

rA
=

=
4r2
A

v3
L

+
4

v2
L

− 2

v2
L

+ 1 =
4r2
A

v3
L

+
2

v2
L

+ 1 > 0 (10)

Now we consider the leg H −B.

Considering the triangle composed by vM , v∞H and vH in Figure 3.1, and using the

conservation of momentum:

v2
∞H = 1 + v2

H − 2vH cos γ = 1 + v2
H − 2vBrA (11)
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From the conservation of the energy and from Eq. (6)

v2
H − v2

B = 2

(
1− 1

rA

)
= v2

L − v2
A −→ v2

H = v2
L + v2

B − v2
A (12)

From combining Eq. (11) and Eq. (12) we get

v2
∞H = 1 + v2

B − v2
A + v2

L − 2vBrA =

= 1 + (∆vAB)2 ∓ 2vA∆vAB + v2
L − 2vArA ± 2∆vABrA = (13)

= 1 + v2
L − 2vL + (∆vAB)2 ± 2∆vAB (rA − vA) =

= v2
∞L + (∆vAB)2 ± 2∆vAB (rA − vA)

Using the function Γ defined in Eq. (9) we finally get

v2
∞H = v2

∞L + ∆v2
AB + 2∆vABΓ

and also

∆vAB = −Γ +
√

Γ2 +
(
v2
∞H − v2

∞L
)

Note that we exclude the negative root as ∆vAB has to be positive.

On the sign of Γ dΓ
dv∞L
− v∞L

First note that

dΓ

dv∞L
Γ− v∞L =

1

2

d
(
Γ2
)

dv∞L
− v∞L (14)

We recall that
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rA =
v2
L

2− v2
L

= − 2

v2
L − 2

− 1 (15)

vA =
vL
rA

=
2

vL
− vL (16)

So that

v2
A = v2

L +
4

v2
L

− 4 = v2
L + 2

(
2

v2
L

− 1

)
− 2 = v2

L − 2

(
1

rA
− 1

)
Also because d

dv∞L
= ± d

dvL

drA
dv∞L

= ±drA
dvL

= ± 2vL(
v2
L − 2

)2 (17)

Now let’s compute

(
Γ2
)

= (rA − vA)2 = r2
A + v2

A − 2rAvA = r2
A + v2

L − 2

(
1

rA
− 1

)
− 2vL

= r2
A +

2

rA
+ (vL − 1)2 − 3 = r2

A +
2

rA
+ (v∞L)2 − 3

Then

dΓ

dv∞L
Γ− v∞L =

1

2

d
(
Γ2
)

dv∞L
− v∞L =

1

2

(
2rA −

2

r2
A

)
drA
dv∞L

+ v∞L − v∞L =

= ± 2vL(
v2
L − 2

)2 (r3
A − 1

r2
A

)
= ±

(
r3
A − 1

) 2vL(
v2
L − 2

)2
(
v2
L − 2

)2
v4
L

=
∣∣r3
A − 1

∣∣ 2

v3
L

> 0
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Appendix B

Coordinate transformations

In this appendix we recall the coordinate transformations for the CR3BP and some

useful expressions used in the paper. The steps are standard and can be found in the

literature[And05].

We start by recalling the coordinate transformation from the rotating reference frame

centered in the barycenter, to the inertial reference frame centered in either body. We

define the state vector in the rotating frame:

S =
(
X,Y, Z, Ẋ, Ẏ , Ż

)T
(18)

the state vector in the inertial reference frame, centered in the barycenter:

s(B) =
(
x(B), y(B), z(B), ẋ(B), ẏ(B), ż(B)

)T
(19)

the state vector in the inertial reference frame, centered in either body:

s = (x, y, z, ẋ, ẏ, ż)T (20)

We recall that all the variables are normalized using the scale factors defined in the

paper, so that the angular velocity of the rotating frame is 1. Assuming the rotating
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frame has no initial phase w.r.t. the inertial frame, the transformation from S to s(B) is

given by:

s(B) =
(
X,Y, Z, Ẋ − Y, Ẏ +X, Ż

)T
(21)

The transformation from s(B) to s is given by:

s =
(
x(B) − d, y(B), z(B), ẋ(B), ẏ(B) − d, ż

)T
(22)

where d = −µ if the inertial reference frame is centered in the major body, and

d = 1− µ if the inertial reference frame is centered in the minor body.

Thus the transformation from the rotating reference frame to the body-centered

inertial reference frame and viceversa is given by the following equations:

(x, y, z, ẋ, ẏ, ż)T =
(
X − d, Y, Z, Ẋ − Y, Ẏ − (X − d) , Ż

)T
(23)

(
X,Y, Z, Ẋ, Ẏ , Ż

)T
= (x+ d, y, z, ẋ+ y, ẏ − x, ż)T (24)

In our work we are interested in the velocities in both reference frames. We first

recall that the components of the velocity in the major/minor body reference frame are

related to the magnitude of the angular momentum and inclination of the spacecraft

w.r.t to the major/minor body through:

ẏx− ẋy = h cos i (25)

We use Eq.(24) and Eq. (25) to derive the an expression for the square of the velocity

V 2:

V 2 = Ẋ + Ẏ + Ż = (ẋ+ y)2 + (ẏ − x)2 + ż2 = v2 +
(
x2 + y2

)
− 2h cos i (26)
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Now we consider the special case in which :

s = (rπ cos θ, rπ sin θ, 0,−σvπ sin θ, σvπ cos θ, 0) (27)

where σ = +1 for direct orbits and σ = −1 for retrograde orbits, and rπ = R2 is the

distance from the minor body.

Applying Eq. (24):

S = ((1− µ) + rπ cos θ, rπ sin θ, 0,− (σvπ − rπ) sin θ, (σvπ − rπ) cos θ, 0) (28)

so that

V = |σvπ − rπ| = |vπ − σrπ| (29)

Assuming vπ > rπ, we find:

V = vπ − σrπ , vπ = V + σrπ (30)

Tisserand Parameter, Jacobi constant, and v∞

For completeness, in this appendix we derive the Tisserand parameter from the Jacobi

constant. Similar derivations can be found in the literature[Tis96, MW].

Using Eq.(24) and Eq. (26) we express the Jacobi constant in the inertial reference

frame centered in the major body:

J =
(

(x− µ)2 + y2
)

+ 2
1− µ
r

+ 2
µ

R2
+ (1− µ)µ− v2 − r2 + 2h cos i (31)

Using the vis-viva equation and the expression for the angular momentum

v2 = 2
1− µ
r
− 1− µ

a
(32)
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h =
√
a (1− e2) (1− µ) (33)

we find:

J =
1− µ
a

+ 2
√
a (1− e2) (1− µ) cos i+ 2

µ

R2
− xµ+ µ2 + (1− µ)µ (34)

If we let µ→ 0, and assuming R2 is not too small (as in the case when far from the

minor body), Eq. (34) becomes:

J ≈ 1

a
+ 2
√
a (1− e2) cos i = T (35)

Now we assume that the spacecraft’s orbit crosses the minor body orbit. At the

crossing point, we can write the v∞as:

v2
∞ = 1 + v2 − 2v cos γ cos i (36)

where γ is the flight path angle. We recall the vis-viva equation for r = 1 and µ→ 0

and the expression of the angular momentum

1

a
= 2− v2 , h = v cos γ (37)

to find:

1

a
= 2− v2

∞ + 1− 2h cos i (38)

substituting Eq. (38) into Eq. (35) we finally find:

J ≈ T = 3− v2
∞ (39)
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