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Abstract

Vortex lattices are prevalent in a large class of physical settings that are characterized by different

mathematical models. We present a coherent and generalized Hamiltonian fluid mechanics-

based formulation that reduces all vortex lattices into a classic problem in linear algebra for a

non-normal matrix A. Via Singular Value Decomposition (SVD), the solution lies in the null

space of the matrix (i.e., we require nullity(A) > 0) as well as the distribution of its singular

values. We demonstrate that this approach provides a good model for various types of vortex

lattices, and makes it possible to extract a rich amount of information on them. The contributions

of this thesis can be classified into four main points. The first is asymmetric equilibria. A

‘Brownian ratchet’ construct was used which converged to asymmetric equilibria via a random

walk scheme that utilized the smallest singular value ofA. Distances between configurations and

equilibria were measured using the Frobenius norm ‖ · ‖F and 2-norm ‖ · ‖2, and conclusions

were made on the density of equilibria within the general configuration space. The second

contribution used Shannon Entropy, which we interpret as a scalar measure of the robustness, or

likelihood of lattices to occur in a physical setting. Third, an analytic model was produced for

vortex street patterns on the sphere by using SVD in conjunction with expressions for the center

of vorticity vector and angular velocity. Equilibrium curves within the configuration space were

presented as a function of the geometry, and pole vortices were shown to have a critical role in

the formation and destruction of vortex streets. The fourth contribution entailed a more complete

perspective of the streamline topology of vortex streets, linking the bifurcations to critical points

on the equilibrium curves.
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Chapter 1. Introduction

1.1 Purpose

A vortex lattice is a set of point vortices that are in a state of relative equilibrium. The vortices

remain equidistant with time, but the system as a whole can undergo rigid rotations and trans-

lations. Vortex lattices have been observed in a variety of physical settings, each characterized

by a different mathematical model. These include superconductors ([2], [3], [27]), superfluids

([74]), plasma gases ([23]), milli-sized magnets ([34]), in the wakes of islands ([28]), in geo-

physical flows ([37], [33], [75], [48], [49], [50], [76]), and in the wakes of other bluff bodies.

Vortex lattices observed in nature include highly symmetric ones (in particular: triangular and

hexagonal structures ([74], [1])), structures with broken symmetries ([1]), structures that have

elastic or periodic inter-vortical dynamics ([17], [25]), and structures that are completely irreg-

ular and asymmetric ([26]). Lattices exist throughout a wide range of scales in the physical

world including: nano scale (superfluids and superconductors), bacteria scale ([20]), laboratory

macro-scale ([18]), planetary scale ([8], [16]), and on the interplanetary scale ([12], [68]). On

the sphere, lattices can take the form of periodic vortex streets such as on the surface of Jupiter

([37]). A general coherent theory that describes lattices in all these shapes, sizes and forms does

not yet exist, nor does a satisfactory model that describes the formation of irregular patterns. In

this thesis, we describe an approach which reduces all of these systems to a classical problem

in linear algebra for a non-normal matrix−that of characterizing the null space of the matrix as

well as the distribution of singular values. This method opens the door to a series of possible

investigations, specifically understanding and controlling properties of the lattices including: the
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relative vortex strengths, the flow-field’s streamline topology, angular & translational velocities,

and the robustness associated with vortex equilbria.

1.2 Organization

In Chapter 1, we present the motivation for this thesis. Previous research on vortex lattices

will be introduced−with an emphasis on the types of equilibrium geometries found in nature.

Numeric and analytic models that have been developed to date will also be mentioned.

The main mathematical techniques used in this thesis are split between Chapters 2 and 3. In

Chapter 2, a general overview of fluid mechanics is presented that leads to the Hamiltonian point

vortex model. The derivations for relative point vortex equilibria on the plane and sphere are

presented in this chapter as well. In Chapter 3, the main tools from linear algebra that are imple-

mented in the analysis are introduced. The first tool is Singular Value Decomposition (SVD),

which provides rich geometric information for non-normal matrices, such as the null space and

singular values. The next tool is the Shannon Entropy, which provides a scalar measure of a

configuration’s robustness. The third tool is matrix approximation, which is used to measure

the distance to equilibrium.

Chapters 4, 5 and 6 contain the results of this thesis, with Chapter 4 addressing configura-

tions on the plane, while Chapters 5 and 6 deal with those on the sphere. The contributions of

this thesis can be classified into four main points. First, we present a model that describes the

properties and formation of asymmetric vortex equilibria (i.e., lacking any discrete symmetries.

See Chapter 4). Second, we implement ‘Shannon Entropy’, which we describe in Section 3.2,

and interpret as a scalar measure of disorder, or likelihood that a lattice configuration will exist

in a physical setting (see Chapters 4, 5 and 6). Third, we provide a means of deriving a fully

analytic expression for the solution of vortex streets on the sphere (in Chapters 5 and 6), and

highlight the importance of pole vortices in the formation and destruction of the streets. Fourth,

we study the streamline topology of vortex streets on the sphere, and propose an analytic way of

classifying bifurcations in the topology (in Chapters 5 and 6).
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Figure 1.1: Left: the first Abrikosov triangular lattice image by [27], on the order of 1 micron. Black dots repre-

sent cylindrical magnetic flux tubes. Right: Image from [36] of an NbSe2 triangular lattice made using scanning-

tunneling microscope imaging, showing high degree of symmetry, on the order of several thousand angstroms.

Figure 1.2: Image from [74] of superfluid Helium lattices. Images contain 1-11 equal-circulation vortices, with the

vortex number depending on system parameters (rotational speed of capsule, etc.).

In the next section, we will introduce several examples of vortex lattices and highlight their

relevance to our work.
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Figure 1.3: Image from Abrikosov’s Nobel Prize Lecture ([3]) of velocity vs. distance from vortex center. The

solid line represents the velocity flow around an isolated lattice site. The plot’s features include a potential vortex

core, and constant decay proportional to the distance from the site. The curve-fitted dashed line 1/r demonstrates

that the point vortex model makes a good fit for sufficiently spaced vortices.

1.3 Vortex Lattices

1.3.1 Symmetric Lattices: Superconductors and Superfluids

We will now outline several lattices that possess a high degree a symmetry. Triangular lattice

structures were first predicted to exist by Abrikosov in 1957 (see [2]) during his research on a

class of superconductors that are now referred to as type II superconductors. A study of super-

conductivity, previously published by Ginzburg & Landau ([32]), used a wave-based theory to

study phase transitions. An order parameter, now referred to as the Ginzburg-Landau parame-

ter, was used to quantify the phase transitions in which the energy of the fluid became negative.

When the parameter reached a critical value, Abrikosov then predicted the formation of quan-

tized periodic arrays consisting of individual cylindrical magnetic flux tubes, and argued that

the geometric structure which minimized the free energy should be triangular. The existence of

these structures was not taken seriously until 10 years later, when the first image of a supercon-

ductor triangular lattice was observed and published by Essmann & Trauble ([27]), see Figure

1.1. The second image in Figure 1.1 from Hess et al. ([36]) was made using scanning-tunneling

microscope imaging on a much smaller length scale.

Feymann then published a study in 1955 ([29]) on superfluid helium vortex tubes with quan-

tized circulations Γ = ~/m ≈ 0.001cm2/s, where ~ is Plank’s constant and m is the mass of a
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Figure 1.4: Images from [25] showing that lattices possess a nearly two-dimensional structure. (a) is a top view,

(b) is cross-sectional intensity reading and (c) is a sideview of the lattice.

4He atom. The first good set of images of superfluid Helium lattices obtained by Yarmchuck et

al. ([74]) is shown in Figure 1.2.

The model used in this thesis is one based on a collection of interacting point vortices. The

vorticity at individual lattice sites is localized at a point in R2, and is purely radial (with no

azimuthal component). The ‘core size’ of a vortex is measured by its visible diameter d (the

spots), divided by the intervortical spacing, l. This ratio d/l must be sufficiently small (� 1). In

the lattice structures mentioned, the ratio is on the order of 10−2−10−4. Abrikosov’s lecture, [3],

displayed two important features. First, the vortices have a core region in which the vortex has a

flattened maximal strength. Second, the field exhibits a monotonic decay (inversely proportional

to the distance from the vortex site), and the velocity tends to zero with increasing distance (see

Figure 1.3). Since the vortices are sufficiently spaced, the behavior immediately inside the core

is treated as unimportant. Therefore, the flow in an Abrikosov vortex lattice can be approximated

quite well with the fluid mechanics model of point vortices presented in Chapter 2.

1.3.2 Asymmetric Lattices: Bose Einstein Condensates

We now shift our focus to Bose-Einstein condensates, which in recent years have been the subject

of intensive focus. The image in Figure 1.4(c) (from [1]) shows that BEC (Bose-Einstein con-

densates) possess a nearly two-dimensional structure based on the fact that the vortex tubes are
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Figure 1.5: Bose Einstein condensate image from [1]. Lattices include 16, 32, 80, 130 vortices, with the vortices

being the dark spots.

Figure 1.6: Image from [26] of (a) an initially regular triangular lattice, (b) getting blasted by a laser, (c) resulting

in a perturbed configuration that undergoes cooling, and the vortices exhibit random motion before (d) the vortices

settle into a new irregular equilibrium.

nearly parallel. Figures 1.4 and 1.5 are excellent examples of the kind of imaging now available

to study those lattices. The main feature of interest to us in these lattices is that some underlying

structures exhibit broken symmetries, or entirely irregular patterns. These findings have exposed

the current lack of knowledge on the formation of such configurations or of their robustness,

dynamics and stability. Previous analytic and computational work that describes vortex lattice

structures focused almost solely on highly symmetric geometries such as those of section 1.3.1.

An interesting study in which a regular triangle lattice was blasted by a laser demonstrates

that completely irregular equilibrium configurations can result−see the work done by Engels et
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Figure 1.7: Another image from [26] of (a) an asymmetric equilibrium lattice configuration. (b) Cross-section

image of vortex intensity; lattice was initially symmetric before being blasted by laser, and settling into a final

asymmetric configuration after cooling and random motion had settled. (c) Cross-sectional intensity reading showing

the irregular distribution after the ‘random’ motion has settled.

Figure 1.8: Rapidly rotating BEC lattice perturbed by a laser-induced perturbation at the center of the lattice

supports small sinusoidal waves referred to ‘Tykachenco oscillations’ ([17]).

al. ([26]). From Figure 1.6, the vortex lattice begins as a highly symmetric triangular configura-

tion (in subfigure 1.6(a)). The lattice is then blasted by a laser (in 1.6(b)), and appears to follow a

random motion after the blast, (in 1.6(c)). As the cooling process takes place, the vortices seem

to thermally fluctuate towards a final irregular pattern (see Figures 1.6(d) and 1.7). In Chapter 4,

we introduce a Brownian ratchet method ([55]) which uses a random walk algorithm to mimic

the process described in Figure 1.6 in order to find asymmetric equilibria.

Two interesting studies have demonstrated shearing effects on lattices. In [25], Engels et al.

showed that adding external forces to a lattice can change its shape and size (see Figure 1.9).

In a related work by Coddington et al. ([17]), it was shown that a controlled laser blast to
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Figure 1.9: Images from [25] showing that external forces on a lattice can change its shape and size.

the center of a rapidly rotating BEC lattice resulted in the removal of an atom from the center

of the lattice, which can be interpreted as a change in the circulation of the central vortex.

This perturbation triggers the propagation of small amplitude sinusoidal waves referred to as

‘Tykachenko oscillations’ (see Figure 1.8). Tykachenko oscillations appear to have a shearing

effect on the angular velocity of the lattice. This phenomenon is explored in Chapter 6.

In summary, Bose Einstein condensates produce the need for a mathematical model that

describes asymmetric lattices in addition to symmetric ones, and one that can analyze shearing

effects.

1.3.3 Lattices in Other Physical Systems

Thus far, vortex lattices have solely been referenced in the context of superfluids and supercon-

ductors. In this section, we highlight lattices that form in a variety of other physical settings.

Grzybowski et al. ([34]) demonstrated lattices resulting from millimeter-sized magnetic struc-

tures on an air-liquid interface. As shown in Figure 1.10, floating magnetic disks were rotated

by a spinning magnet underneath the tank of water, and the disks interacted as particles with

fluid (1/r velocity field) and magnetic interactions. Tests were done for a different number of

magnets, each of which yielded a symmetric equilibrium configuration. Some of the systems

have two resultant equilibrium configurations for a given number of magnets between which
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Figure 1.10: Milli-sized magnetic structures floating on a rotating fluid. Magnets form lattice-like structures.

Images above are for different numbers of magnets, from [34].

(a) Fluid Dye demonstrates rotation about magnets (b) Variable-sized magnets and surfaces

Figure 1.11: Left, (a): magnets far from center of rotation possess asymmetric structure; and dye injected into fluid

shows that magnets are themselves rotating, and form a prototype of point vortex equilibria. Right, (b): Subplots a,

b: Lattices formed by variable-sized lattices. Interchangeable arrows indicate that system switches between the two

configurations. Subplot c: Lattices formed on the curved surface of a drop. These configuration types never formed

on the flat water-air interface. Images from [34].
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Figure 1.12: Trapped plasma in a cylindrical structure with a spiral electron source. Vortex lattice tubes form with

different vortex numbers and configurations. Image from [30].

Figure 1.13: An image from the Los Alamos 2-dimensional vortex lattice catalogue of [14]. N = 18 vortices for

all the configurations above, energies and vortex strengths are labeled below with the first (1 6 11) having the lowest

energy.

the system sporadically switched. Tests were also done with different-sized magnets, which can

be interpreted as point vortices with different relative strengths. Figure 1.11(a) shows that the

magnets themselves rotated since the dye injected into the fluid was advected around the mag-

nets in a manner consistent with the streamline topology of point vortices ([53]). Figure 1.11(b)

demonstrated two things. First, equilibria from different-sized magnets were investigated, and in

the context of vortices, the size of the magnets can be interpreted as the strength of their circula-

tion. Second, equilibria on the non-flat surface of a drop demonstrated that different equilibrium

geometries can result on different-shaped surfaces. In a study from a different physical setting,

vortex lattice formation in a confined cylindrical plasma tube (see Figure 1.12) was published by
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Fine et al. in [30]. Again, depending on system parameters, different lattice patterns emerge. In

the case of a central vortex, it occasionally had a larger diameter than the outer vortices.

Campbell & Ziff ([14]) compiled the Los Alamos catalogue of equilibria for systems of

equal strength vortices made up of circular, concentric vortex patterns along with their proper-

ties, particularly the Hamiltonian energy. They showed that for the same number of vortices,

there exist multiple equilibria, each of which generally has a different energy. The symmetric

lattices in [14] can be found with classic gradient methods since the energy landscape associated

with such structured configurations is generally not complex. But for large numbers of vortices

(N > 100) or for asymmetric equilibria, classical gradients techniques become inconvenient

since their associated energy landscapes are far more complex. Thus, the works cited in this

section illustrate that vortex lattices exist in a variety of physical settings. Note that in [14], it

was illustrated that more than one geometry is possible for the same number of vortices. Fur-

thermore, certain geometry types appear to be more prevalent than others on a given surface. In

the next section of this chapter, we move our discussion to vortex streets, which are an important

kind of vortex lattice that are prevalent in a variety of physical settings.
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Figure 1.14: Side view schematic of vortex wake formation. The critical height, hc, above which air passes over

island, and below which the flow separates around the island and forms the vortex street. Image from [28].

1.4 Von Kármán Vortex Streets

The motivation for studying vortex streets is because of their presence in the physical world,

their role in geophysical climates, and their possible usefulness in engineering applications. On

the plane, idealized vortex streets are thought of as two infinite lines of evenly spaced vortices,

where one line is shifted by a half-wavelength (skewed). The vortices in each line are equal in

strength and opposite to those in the other line. Thus, the full system of N = 2n vortices has

vanishing circulation. Generally, they exist in nature as a dissipative set of vortices that remain in

approximate relative equilibrium for a finite period of time. On the sphere, a street is formed by

a closed set of two parallel skewed rings−with each ring having an equal number of vortices (see

Figure 1.16 from [49]). The following section summarizes the most common physical settings

in which vortex streets exist.

1.4.1 Where They Exist

One place where vortex streets form is in the wake of bluff bodies due to the viscous boundary

layer−a process that is well understood. In Figure 1.14 (from [28]), the island is modeled as a

conic-shaped body. Above a critical altitude, the flow simply rises above the island and passes

over it without separation or the formation of eddies. Below this altitude, the flow separates
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Figure 1.15: Juan Fernandez islands off the coast of Chile. Island’s geophysical wake forms a vortex street.

and goes around the island. Behind the island, the separated flow does not reconnect, and it is

in this region that the vortex street is formed. See Figure 1.15 for a satellite image of a vortex

street in the wake of an island. The wake as a function of the Reynolds number is a well-

studied problem−for a thorough overview see [72]. Vortex shedding only commences when the

Reynolds number Re > 45, and there are three different shedding regimes, characterized by

different shedding frequencies, see [65] for a thorough empirical analysis of this problem. For a

rationale of the relation between the Reynolds number and shedding frequency, see [62].

Vortex streets also affect aquatic life, and a recent study by Liao et al. ([47]) showed its

potential usefulness by fish swimming in a stream. The study showed that the trout swimming

in the wake of the cylinder (and interacting with a vortex street) modified their body motion, and

that they used less locomotive energy than did the fish swimming in the free-stream. Therefore,

fish can benefit from the presence of vortices in their ambient fluid. In the context of point vortex

lattices, the methods described in Chapters 2 and 3 are applicable to point vortex equilibria in

the absence of solid bodies. If one wishes to solve for lattices that contain solid bodies (such as

a fish), it would be possible to expand the techniques in those chapters by using the method of

images.

In this thesis, we will be addressing vortex streets that appear in geophysical flows in the

complete absence of bluff bodies, as is the case with Jupiter (see Figure 1.16). According to
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Figure 1.16: Vortex street on Jupiter. Points labeled C, E and G are cyclones while points D and F are anti-cyclones.

These are part of a set of twelve cyclones coupled with twelve staggered anti-cyclones forming a loop about Jupiter.

Image from [49].

Humphreys & Marcus ([37]), a very clear vortex street that wraps around Jupiter was first formed

around the year 1939, remained steady until around 1998, at which point it began to disintegrate.

In the Jovian atmosphere, the full atmospheric layer consists of 12 major zonal jet streams and

an additional 80 easily visible vortices, with the largest of these being the well-known Great Red

Spot [48]. The physical mechanisms and processes which set the scale for the spacing and core

size of vortex streets are less understood. The topic of ‘pattern formation’ is addressed in [37].

In Chapters 5 and 6, we propose that Shannon Entropy (defined in Section 3.2) can be used as a

means to predict what street parameters are most likely (i.e, number of vortices per street, angle

between the streets’ rings).
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(a) Symmetric (b) Staggered

Figure 1.17: Symmetric and Staggered configurations for a vortex street with two vortices per periodic strip.

Definition of vortex spacing for a staggered von Kármán street is present in (b).

1.4.2 History of the Vortex Street Model

The first known result that described a vortex street appeared in 1928 ([31]). The authors’ result

was that the constant velocity of N repeating vortices is given by

żα
∗ = U − iV =

1
2Li

N∑
β=1

Γβ cot(
π

L
(zα − zβ)), (1.1)

where U , V are the Cartesian velocity components of the system, Γβ is the strength of the βth

vortex, L is the width of the periodic strip, N is the number of vortices in the periodic strip, and

zβ = xβ + iyβ is the complex coordinate of vortex β (see [45] for a comprehensive overview of

von Kármán’s work). Von Kármán used this idea for a strip with N = 2 and with the strengths

of the two vortices being Γ1 = −Γ2 = Γ. The street then propagates with velocity

U − iV =
−Γ
2Li

cot(
π

L
(z+ − z−)), (1.2)

where z+ and z− are the complex locations of any two vortices in the same period. For a street

that moves along the real axis, V = 0, which implies that the cotangent portion of Equation (1.2)
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must be purely imaginary. For this condition, the requirement is that R(z+ − z−) = 0 or L/2,

which corresponds to symmetric and staggered configurations respectively (see Figure 1.17).

Von Kármán then performed a linear stability analysis on the streets. He did so by per-

turbing the position of one vortex. The result was that the symmetric configuration was always

linearly unstable, and that the staggered configuration was linearly stable for a specific ratio of

the spacing for the two vortices in each strip, namely that

sinh
πa

h
= 1, (1.3)

where a and h are defined in Figure 1.17(b). Domm went on to show that even streets satisfy-

ing this special aspect ratio failed the stability test in second order perturbation theory ([21]).

Although this thesis will not be addressing the issue of stability of either vortex streets or of

vortex lattices, we will direct the reader in the next paragraph to several references that do.

Both linear and non-linear studies have been made for evenly distributed vortex cores in

rectilinear planar settings (see [66]). This problem is reasonably well understood and used as

a basis to predict the persistence and lifetimes of vortex streets found in physical systems. The

stability of more general point vortex configurations on the sphere is not a very well studied

or understood problem, but there is presently a small body of work available on the subject.

One study can be found in Laurent-Polz et al. ([46]). Pekarsky & Marsden ([61]) studied the

nonlinear stability of three point vortices on the sphere by considering the momentum map (i.e.,

center of vorticity vector in Equation (2.53)), and referred to their technique as the energy-

momentum method. Studies on the nonlinear stability of N evenly distributed point vortices on

the same latitude can be found in the works of [13], [10] and [44].

1.4.3 Bifurcation Problems and Streamline Topology

The observed vortex street patterns on Jupiter have had long, but finite lifetimes, and their pres-

ence affects the overall mixing regimes on the planet and its climate. Therefore, it is funda-

mentally important to understand how fluid transport changes with the vortex configuration, and
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Figure 1.18: An exotic wake with one singlet (S) and one pair (P ) per periodic strip, denoted ‘S + P ’, from [73].

the associated bifurcations. The techniques presented in Chapters 2 and 3 make it possible to

thoroughly and analytically investigate bifurcations in the vortex strengths and streamline topol-

ogy when smoothly varying a parameter linked with the geometry of the lattice. This analysis

is fleshed out in Chapters 5 and 6 in the context of vortex streets on the sphere. In this section,

we will reference some of the work that has analyzed bifurcations in the street geometry and

streamline topology. The references will include both streets formed in the wake of a bluff body,

and streets in the absence of a bluff body. Although our work deals exclusively with vortex

equilibria formed in the absence of solid bodies, we reference bluff body wakes in order to fully

understand the mechanisms creating vortex streets. Furthermore, we focus on the geometry of

the street itself, and ignore the presence of the bluff body by confining our analysis to the vortex

street pattern that lies sufficiently far from the bluff body.

Computational models of different shedding regimes in the wake behind a stationary cylinder

can be found in the works of [38], [64], [77], [24], [58], [59], and most recently by [11]. Vortex

shedding also takes place behind non-stationary bluff bodies. When the cylinder in the flow

is allowed to oscillate, an “exotic” wake results, which consists of both single shed vortices

‘S’−also referred to as singlets, and vortex pairs ‘P ’. For instance, in Figure 1.18, the wake

is labeled ‘S + P ’, for one singlet and one doublet. The wake is affected by two parameters:

the amplitude (normal to the free stream) and wavelength of oscillation, with the wavelength

compensating for both the frequency of oscillation and the free stream velocity. For an empirical
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Figure 1.19: Three different streamline topology types for Jovian vortex streets (JVS) on the sphere identified in

[37], labeled as (a) Type I, (b) Type II, and (c) Type III. In Type III, the sets of separatrices collapse, which entails that

the region of flow that travels across the street disappears. Different types correspond to different parameter values.

study of all the different possible exotic wakes, see [73]. In [63], a rationale for how the exotic

wake changes with the parameters of oscillation was formulated.

In Chapters 5 and 6, two sets of analytic equilibrium curves for vortex streets on the sphere

that undergo bifurcations are derived. The first set (Figures 6.52, 6.57) illustrates the relative

vortex strengths of the streets’ vortices as a function of the vortex street’s geometry (i.e., angle

between the rings, or number of vortices per ring). The second set (Figures 5.45, 6.53) represents

the rigid rotational velocity as a function of its geometry. The analogy is made to the bifurcations

encountered in the aforementioned experiments of this section, in which shedding regimes (or

street geometries) encounter bifurcations and change with the system parameters−just as the

exotic wake changes with the parameters of oscillation (Figure 1.18).

Next, we consider bifurcations in the streamline topology of vortex streets. In Figure 1.19

from [37], three different topology types for a vortex street are identified and labeled, each

corresponding to different parameters. In our work (see Figures 5.46, 6.56 and 6.58), we identify
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Figure 1.20: Streamline topology for 2 vortices per periodic strip and velocity V = 0 (see Equation (1.1)). The

images are for the strength ratios (a) 1:1 (b) 1:3 (c) (-1):3, from [69].

a broader class of topology types corresponding to single and double vortex streets on the sphere,

and note that any two topology types are separated by a bifurcation topology point. In addition,

we show that the topology type in Figure 1.19(c) corresponds only to a bifurcation point within

the configuration space, and not to that of a range of parameters. In a second relevant study for

inviscid point vortex streets by Stremler ([69]), the streamlines of vortex streets on the plane

containing 2 and 3 vortices per periodic strip are studied. Using Equation (1.1) for N repeated

vortices per strip, and multiplying both sides by Γα, the author derives

1
2Li

N∑
β=1

ΓαΓβ cot
(π
L

(zα − zβ)
)

= SV ∗ = 0, (1.4)

where

S =
N∑
α=1

Γα. (1.5)

Therefore, the vortex street is in equilibrium (i.e., all vortices remain equidistant) if either V = 0

(the street has no velocity) or S = 0 (the strengths of the vortices in each street sum to zero).

Revisiting von Kármán’s configuration for the case of two vortices per periodic strip (N = 2):
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Figure 1.21: Propagation angle θ vs. horizontal spacing (see Equation (1.6)) for (a) ∆y = L/10, 000, (b)

∆y = L/10, (c) ∆y = L sinh−1(1/π) and (d) ∆y = L. From [69].

if V = 0 and for any S, the cotangent must be zero which requires that all vortices are collinear

on the real line (see Figure 1.20). For the case S = 0, this implies that the two vortices have

equal and opposite strength (i.e., Γ1 = −Γ2 = Γ). For this case, any choice of vortex positions

results in an equilibrium configuration that is translating with a constant velocity. The angle of

propagation of the street (from the real axis) is determined from the ratio

R(V ) = sinh(
2π4y
L

), I(V ) = sin(
2π4x
L

), (1.6)

where 4x and 4y are the Cartesian distances between the two vortices in each periodic strip.

Off-axis propagation occurs unless the spacing 4x = 0 or L/2. Figure 1.21 illustrates the

propagation angle as a function of vortex spacing. Furthermore, from [51], the vortex street is

linearly stable if it satisfies the criterion

sinh(
2π4y
L

) = sin(
2π4x
L

). (1.7)

An interesting observation for the case of two vortices per strip is the existence of heteroclinic

orbits that connect different stagnation points. In Figure 1.22, two such configurations are pre-

sented. In the first, a heteroclinic orbit connects stagnation points from two adjacent periodic
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Figure 1.22: Heteroclinic orbits are presented as dashed lines, vortex streets with two opposite-strength vortices

per strip. Upper subplot has n = 1, lower has n = 2, where n denotes how many strips are passed with each

heteroclinic connection. From [69].

Figure 1.23: Streamline topology for two vortices per periodic strip, and with Γ1 = Γ2 = Γ. Configurations (a) -

(e) are linearly stable. ∆y is determined for (a) ∆x = L/2, (b) ∆x = 6L/13, (c) ∆x = 4L/9, (d) ∆x = 3L/8, (e)

∆x = L/4 and (f) ∆x = 0 with ∆y = sinh−1(1/π), from [69].
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Figure 1.24: Three vortex streets per period with V = 0 and G > 0. The vortex strengths of the above configura-

tions are (a) 3:(-1):3, (b) (21/10):(-1):(21/10), (c) 2:(-1):3 and (d) 3:1:3. Image from [69].

Figure 1.25: Left: Vortex positions and streamlines for three vortices with V = 0 and G < 0. Images above
correspond to (from top to bottom) (a) Γj

2 > |G| = 2, (b) Γ1
2 = 1 < |G| = 7, (c) Γ1

2 = 1 < |G| = 6. Right:
Three vortices per strip with S = 0, configurations have the strength ratio 1:2:(-3). From [69].
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strips, and this configuration is denoted n = 1. In the lower subplot, a heteroclinic orbit con-

nects stagnation points from two periodic strips that are two strips apart (i.e., separated by a

single strip), and this configuration is denoted as n = 2. Heteroclinic orbits have interest-

ing implications for mixing. Fluid in these configurations passes from above the street, swirls

through it and exits below. As n increases, less fluid passes through the street until finally, when

n ≡ ∞, no fluid passes through the street at all, and the configuration for n ≡ ∞ can be found

in Figure 1.23(a).

For the case of three repeated vortices per periodic strip, a similar analysis was conducted,

and highlights of the results will be mentioned here. An important quantity for these configura-

tions is the geometric strength sum

G = Γ1Γ2 + Γ2Γ3 + Γ1Γ3. (1.8)

For the static case V = 0, if G > 0, all three vortices lie on the real line, and the relative

positions depend on the vortex strengths (see Figure 1.24). If V = 0 and G < 0, either all

three vortices lie on a vertical line if Γα2 > |G|, or two lie on a vertical line while the third

satisfies the condition Γα2 > |G| and is offset by L/2 (see Figure 1.25). In the second case

when S = 0 (i.e., Γ1 + Γ2 + Γ3 = 0), two of the vortex positions can be chosen arbitrarily

while the third is determined analytically (Figure 1.25). Furthermore, these configurations will,

in general, translate with a constant speed V . Configurations can be chosen to have a particular

speed.

To summarize, the works that have been referenced in this chapter presented several impor-

tant features that describe vortex lattices: prevalent configuration geometry types, relative vortex

strengths, and bifurcations−specifically within the streamline topology. The methods (Chap-

ters 2 & 3) and results (Chapters 4, 5 & 6) presented in the remainder of this thesis provide a

thorough, and unified approach to the aforementioned problems referenced in this chapter.
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Chapter 2. Fluid Mechanics

Formulation

In this chapter, we detail all the required mathematical background that leads to the point vortex

model. We begin by introducing the Navier-Stokes equation which is the most general formula-

tion in fluid mechanics, given by

Du
Dt
≡ ut + u · ∇u = −∇p+ f +

µ

ρ
∇2u, (2.9)

where u is the velocity field. D(·)/Dt = ∂(·)/∂t+(·,∇·) is the absolute derivative with respect

to time, f is a set of conservative external forces, µ is the viscosity of the fluid, and ρ its density.

In our work, we will be dealing exclusively with inviscid (i.e., µ = 0), incompressible fluid. The

condition for incompressibility is characterized by

∇ · u = 0, (2.10)

and this is referred to as the continuity equation for an incompressible fluid. The properties for

this class of fluids will be expanded in the following section.
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2.5 General Properties of Inviscid, Incompressible Flows

The balance of linear momentum of an inviscid, incompressible fluid acted upon by conservative

forces is given by the Euler equation

Du
Dt
≡ ut + u · ∇u = −∇p+ f , (2.11)

where the fluid density ρ is normalized to one. The vorticity field ω ∈ R3 associated with a

velocity field u ∈ R3 is defined as

ω = ∇× u. (2.12)

Substituting Equation (2.12) into (2.11) gives the vorticity equation

Dω

Dt
≡ ωt + ω · ∇ω = ω · ∇u. (2.13)

The fluid is said to be irrotational if ω is zero. Taking the dot product and curl of Equation (2.12),

yields respectively

∇ · ω = ∇ · (∇× u) = 0, (2.14)

∇× ω = ∇× (∇× u) = −∇2(u). (2.15)

Using Stokes’ theorem and integrating the divergence of the vorticity in a finite volume gives

∫
V
∇ · ωdV =

∫
S
ω · ndS = 0, (2.16)

where S is a closed surface with normal vector n bounding a volume V of fluid with vorticity

field ω. This relation tells us that flux of the vorticity across S is zero. The same conclusion can

be made regarding the flux of the velocity.
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2.5.1 Hodge Decomposition

The velocity field can be decomposed into a superposition of translational and rotational motion

components using Helmholtz, or Hodge Decomposition, and this is given by

u = uφ + uω = ∇φ+∇× ψ. (2.17)

If a fluid is irrotational (i.e., ∇ × u = 0), the fluid velocity is given solely by u ≡ uφ and can

be derived from the gradient of a scalar field φ. Since our velocity field is divergence free, it

follows that φ satisfies Laplace’s equation: ∇2φ = 0. If we have a rotational component to the

velocity field, we define this as uω, which can be derived from the curl of a vector field ψ. It

follows from Equation (2.12) for ψ of Equation (2.17) that the vorticity scalar field is given by

the Poisson equation

∇2ψ = −ω. (2.18)

A standard solution ([19]) to this Poisson equation in terms of the Green’s function for the

Laplacian is

ψ(x) =
∫
G(x− z)ω(z)dz, (2.19)

where

G(x) =


− 1

2π log ‖x‖, x ∈ R2

1
4π

1
‖x‖ , x ∈ R3

 , (2.20)

with

∇2G(x) + δ(x) = 0. (2.21)

Finally, since uω = ∇× ψ, we can substitute into Equation (2.19) to get

uω = ∇×
∫
G(x− z)ω(z)dz (2.22)

=
∫
K(x− z)ω(z)dz, (2.23)
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where K is the singular Biot-Savart kernel defined for 2D and 3D as

K(x) =



+ 1
2π

1
‖x‖2 ( −y x ), x ∈ R2

1
4π

1
‖x‖3


0 z −y

−z 0 x

y −x 0

 , x ∈ R3


. (2.24)

2.5.2 Circulation

A fundamental quantity associated with vorticity (and with the point vortex model in the next

section) is circulation, given by the scalar via Stokes’ theorem

Γ =
∮
C

u · ds =
∫
A
∇× u · ndS =

∫
A
ω · ndS. (2.25)

C is a curve that encloses a surface A. In an ideal, incompressible fluid, the circulation of a

body of fluid bounded by its moving material boundary C(t) remains constant (i.e., dΓ/dt =

0 =⇒ Γ(t) = Γ0). Equation (2.25) can be used to prove that for a point vortex, the circulation

is located at a single point (i.e., the vortex site), and remains unchanged for any selection of C

or A for the integral in Equation (2.25).

2.5.3 Application of the Cauchy-Riemann Equations

The final definition we will reference is the general Cauchy-Riemann identity for analytic func-

tions ([53]), and we will demonstrate its usefulness in the context of the point vortex model in

the following section.

Definition 1. The complex analytic function

w(z) = φ+ iψ
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is called the complex potential for the flow, where z = x + iy. The real part, φ, is called the

velocity potential, while the imaginary part, ψ, is the streamfunction. Since the function w(z)

is analytic, φ and ψ are related to each other via the Cauchy-Riemann equations

∂φ

∂x
= +

∂ψ

∂y
,

∂φ

∂y
= −∂ψ

∂x
.

The complex velocity is defined by

dw

dz
= u− iv = ẋ− iẏ ≡ ż∗.

2.6 Point Vortex Dynamics

2.6.1 Two Dimensions

In deriving an expression for point vortices on the plane, we first consider Equation (2.13) in two

dimensions. The right hand side is equal to zero, therefore

Dω

Dt
≡ 0, (2.26)

with ω = (0, 0, ωz)T ≡ (0, 0, ω)T and u = (u, v, 0)T = (ẋ, ẏ, 0)T . We now deal with the scalar

vorticity

ω =
(
∂v

∂x
− ∂u

∂y

)
. (2.27)

Another key feature is that the vector potential ψ from Equation (2.17) becomes the scalar

streamfunction found in Definition 1. Therefore,

u = ∇× ψ ≡

 0 1

−1 0

 ∂x

∂y

ψ = (ψy,−ψx)T . (2.28)
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We now define the Hamiltonian as the streamfunction,H ≡ ψ, since we can write

ẋ =
∂H
∂y

(x, y; t), ẏ = −∂H
∂x

(x, y; t). (2.29)

The Cartesian positions (x, y) are the canonical conjugate variables of H. When the flow is

time-independent, it is referred to as steady state. The streamlines arising from H are tangent

to the velocity lines for all time. The normal component to the velocity field, n, becomes the

gradient of the streamfunction, namely that

n = ∇ψ = ∇H. (2.30)

Since we can state that u · n = u · ∇ψ = 0, we can conclude that the streamline curves form

solid boundaries which the fluid cannot pass. This is the Hamiltonian that is used for the point

vortex formulation. In the next section, we will introduce the model for N interacting discrete

point vortices.

2.6.2 The Point Vortex Model

For the flowfield around a system of N discrete vortex sources, we assume the vorticity distribu-

tion

ω(x) =
N∑
i=1

Γi
2π
φε(x− xi),

φε(x) =
1
ε2
φ
(x
ε

)
.

In this definition, ε is a small number such that ε � 1. φ is a normalized, radially symmetric

function (i.e.,
∫
φdx = 1). In taking the limit ε→ 0, we generate what is called the point vortex,

and our φε function becomes the Dirac delta function (i.e., ω(x) = φε(x) ≡ δ(x)). Using the
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solution to Poisson’s equation via Green’s function for the Laplacian (Equation (2.19)), we derive

that the streamfunction for vortex α with position xα = (xα(t), yα(t)), where 1 ≤ α ≤ N to be

ψα(x, t) = − 1
2π

∫
Γα log(x− z)δ(x− z)dz (2.31)

= −Γα
2π

log(x− xα). (2.32)

The velocity of a passive particle in the fluid that is being advected by N point vortices can be

obtained via linear superposition. That is, with the velocity being the curl of the streamfunction

as in Equation (2.28), the velocity of a passive particle in the flow becomes

ẋ =
N∑
β=1

∇× ψβ(x, t). (2.33)

The net velocity at the site of vortex α therefore is

ẋα =
N∑
β=1

′∇× ψβ(xα, t). (2.34)

The prime in the summation implies that the terms α = β are excluded since a vortex does

not advect itself. Plugging Equation (2.32) into (2.34) gives us an expression for the Cartesian

velocities in the plane (ẋα(t), ẏα(t)) as

ẋα = − 1
2π

N∑
β=1

′Γβ(yα − yβ)
l2αβ

, (2.35)

and

ẏα =
1

2π

N∑
β=1

′Γβ(xα − xβ)
l2αβ

, (2.36)
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where l2αβ = ‖xβ − xα‖2 is the square of the inter-vortical distance of vortices α and β. See

Figure 2.26 for an illustration. In more compact form using zα = xα + iyα, the equations of

motion can be expressed as

żα =
i

2π

N∑
β=1

′Γβ
zα − zβ
|zα − zβ|2

, β 6= α, (β = 1, . . . , N), (2.37)

or alternately as

ż∗α =
1

2πi

N∑
β=1

′ Γβ
zα − zβ

, β 6= α, (β = 1, . . . , N). (2.38)

The result in Equation (2.37) was first presented by Helmholtz in 1857. Kirchhoff in 1887 used

Helmholtz’s equations of motion to derive the Hamiltonian in canonical form:

Γαẋα =
∂H
∂yα

, Γαẏα = − ∂H
∂xα

, (2.39)

whereH, the Hamiltonian energy from Equations (2.35) and (2.36) ([53]) is given by

H =
1

4π

N∑
β=1

N∑
α=1

ΓαΓβ log(zα − zβ). (2.40)

The Hamiltonian is also referred to as the interaction energy in the literature. The phase space,

therefore, is described by the Cartesian coordinates with contours corresponding to passive fluid

streamlines. The next set of constants for vortex systems is given by

Q+ iP =
N∑
α=1

Γαzα, (2.41)

where the complex quantityQ+ iP is also referred to as the center of vorticity or linear impulse,

and for the planar setting defines the complex point about which the system is instantaneously
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rotating. This quantity is also the discrete equivalent of the linear momentum for point vortex

systems. In vector form, the center of vorticity is commonly written as

J = (Q,P )T . (2.42)

The last conserved quantity is

I =
N∑
α=1

Γα|zα|2, (2.43)

where I is referred to in the literature as the angular impulse, and is the discrete equivalent of the

angular momentum for point vortex systems. The next major result for point vortex dynamics

was the solution to the three-vortex problem. The results were first published by Gröbli in 1877,

but were not given much notice. Fourteen years later, however, Poincaré published his results

for the three-vortex problem. For more background on the N -vortex problem, see [53], [5] and

[52]. In the following section, we derive the condition for equilibrium on the plane and sphere.

2.7 Condition for Relative Vortex Equilbrium

2.7.1 On the Plane

Several references for vortex equilibria on the plane can be found in [7], [69], [54], [55], [56],

[6], and [4]. In this section, the condition of relative vortex equilibria will be derived. We begin

with the vector form of Equation (2.37) which is given by

ẋα =
1

2π

N∑
β=1

′Γβ
êz × (xα − xβ)

l2αβ
, (α = 1 . . . N), (2.44)

in which ẋα is the Cartesian coordinate of vortex α, and l2αβ is the square of the distance between

vortices α and β, see Figure 2.26. The equilibrium condition, therefore is that these squared

distances are invariant with time−namely:

d

dt
(l2αβ) = 0 = 2(xα − xλ) · (ẋα − ẋλ). (2.45)
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Figure 2.26: Three generic vortices α, β, λ in the plane. The distance between the vortices and the area formed

between them are labeled.

Note that net translation and rotation of the system as a whole is allowed. The condition is

that the distance between the vortices themselves remains unchanged with time. Rewriting the

difference of velocities in terms of summations as in Equation (2.44) and simplifying,

ẋα − ẋλ =
1

2π

N∑
β=1

′Γβ
êz × (xα − xβ)

l2αβ
− 1

2π

N∑
β=1

′Γβ
êz × (xλ − xβ)

l2λβ

=
N∑
β=1

′′Γβ

(
êz × (xα − xβ)

l2αβ
−
êz × (xλ − xβ)

l2λβ

)

+
Γα + Γλ

2π
êz × (xα − xλ)

l2αλ
.

The first of the two summations on the first RHS of the equation above excludes the α = β

term, and the second excludes the λ = β term. When these two summations are combined in

the second RHS, an additional term needs to be removed from each summation in order to make

the merger possible. This entails removing the β term from the first summation, and the λ term

from the second summation. The last quantity in the equation above corresponds to the removed
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α and β terms, and the double prime implies that β 6= α and also that β 6= λ. The next step

would be to plug the above result into Equation (2.45):

d

dt
(l2αβ) = 2(xα − xλ) · (ẋα − ẋλ)

=
xα − xλ

π

N∑
β=1

′′Γβ

(
êz × (xα − xβ)

l2αβ
−
êz × (xλ − xβ)

l2λβ

)

+
Γα + Γλ

π
(xα − xλ) · êz × (xα − xλ)

l2αλ

=
1
π

N∑
β=1

(xα × xβ + xλ × xα + xβ × xλ)

(
1
l2αβ
− 1
l2λβ

)
,

with
Γα + Γλ

π
(xα − xλ) · êz × (xα − xλ)

l2αλ
= 0, (2.46)

since (xα−xλ) is clearly perpendicular to êz × (xα−xλ). The sum of the three cross products

above can be rewritten in the following way:

(xα × xβ) + (xλ × xα) + (xβ × xλ)

= (xα × xα)− (xβ × xα)− (xα × xλ) + (xβ × xλ)

= xα × (xα × xλ)− xβ × (xα × xλ)

= (xα × xβ)× (xα × xλ)

= ±2Aαβλêz

= 2εαβλAαβλêz,

where Aαβλ is the area of the parallelogram generated by the cross product of the two vectors

(which also corresponds to the sides of the triangle in Figure 2.26. εαβλ is the sign of the
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expression (± 1), which is dictated by the clockwise (+1) or counter-clockwise (−1) ordering

of vortices α, β and λ. The governing equilibrium condition then becomes

d

dt
(l2αβ) ≡

N∑
β=1

′′ΓβAαβλεαβλ

(
1
l2αβ
− 1
l2λβ

)
, α 6= β 6= λ, (2.47)

or
N∑
β=1

′′ΓβAαβλεαβλ

(
1
l2αβ
− 1
l2λβ

)
≡ 0. (2.48)

The idea is to cycle through all the possible intervortical distances and come up withN(N−1)/2

equations, which can be rewritten in matrix form:

AΓ = 0, (2.49)

where A ∈ RN(N−1)/2×N is the configuration matrix and Γ ∈ RN is a vector containing the

vortex strengths of the system. The system has a non-trivial solution if the covariance matrix

ATA is singular, namely that

det (ATA) ≡ 0. (2.50)

2.7.2 On the Sphere

The equilibrium condition for vortices on the sphere is solved in a similar fashion as that for

vortices on the plane. The coupled equations of motion of N vortices on the surface of a unit

sphere are given by

ẋα =
1

2π

N∑
β=1

′Γβ
xα × xβ

1− xα · xβ
, (α = 1 . . . N), (2.51)

where x is the three dimensional Cartesian unit vector that points from the center of the sphere

to a fluid point on the surface of the sphere and 1 ≤ α ≤ N is the vortex number. The α term is
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(a) 3 vortices on sphere (b) Volume view

Figure 2.27: Image of three generic vortices on the sphere that show the definition of vortex strengths (Γ’s),

intervortical lengths (l12, l13, l23), and volume V123.

excluded from the summation since a vortex does not advect itself. The denominator of Equation

(2.51) is the square of the chord distance between vortices α and β:

l2αβ = ||xα − xβ||2 = 2(1− xα · xβ). (2.52)

Additional relevant formulations for vortex systems on the sphere in our analysis include the

center of vorticity vector J which describes the instantaneous axis about which the system is

rigidly rotating, and is given by

J =
N∑
α=1

Γαxα. (2.53)

Furthermore (from [53]), the equations of motion in terms of the longitudinal and latitudinal

angles (θα and φα respectively) are given by

φ̇α =
1

4π

N∑
λ 6=α

Γλ
sinφα sinφλ cos (θα − θλ)

1− cos γαλ
, (2.54)
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and

θ̇α =
1

4π sinφα

N∑
λ 6=α

Γλ
sinφα cosφλ − cosφα sinφλ cos (θα − θλ)

1− cos γαλ
, (2.55)

with

cos γαλ = cosφα cosφλ + sinφα sinφλ cos (θα − θλ). (2.56)

As for the condition for an equilibrium configuration, as before, is that the distance between the

vortices remains equidistant, or that

d

dt

(
l2αβ
)

= 2(xα − xβ) · (ẋα − ẋβ) = 0. (2.57)

The difference of velocities can be written as

ẋα − ẋβ =
1

2π

N∑
λ 6=α

′Γλ
xα × xλ
l2αλ

− 1
2π

N∑
λ6=β

′Γλ
xβ × xλ
l2βλ

=
1

2π

N∑
λ 6=β,λ 6=α

′′Γλ

(
xα × xλ
l2αλ

−
xβ × xλ
l2βλ

)

− 1
2π

(Γβ + Γα)
xα × xβ
l2αβ

.

Using this result in Equation 2.57,

d

dt

(
l2αβ
)

=
1
π

(xα − xβ) ·
N∑

λ 6=β,λ 6=α

′′Γλ

(
xα × xλ
l2αλ

−
xβ × xλ
l2βλ

)

− 1
π

(Γβ + Γα)(xα − xβ) ·
xα × xβ
l2αβ

.

The last portion on the second line of the equation above is equivalent to zero since the cross

product of xα and xβ is perpendicular to the plane containing them (and the inner product is

zero). Simplifying, one gets

π
d

dt

(
l2αβ
)

=
N∑

λ 6=β,λ 6=α

′′Γλ

(
xβ · xλ × xα

l2αλ
−

xβ · xλ × xα
l2βλ

)
. (2.58)
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Note that xβ · xλ × xα is the scalar triple product that gives the volume of the parallelepiped

formed between the three vectors; this volume is denoted as Vαβλ. The condition for equilibrium

becomes:
d

dt

(
l2αβ
)

= 0 ≡
N∑

λ 6=β,λ 6=α

′′ΓλεαβλVαβλ

(
1
l2αλ
− 1
l2βλ

)
. (2.59)

Using this equation, as before, it is necessary to cycle between all the possible lengths in the

configuration. Therefore, we will have a total N(N − 1)/2 equations. The system can be placed

in matrix form:

AΓ = 0, (2.60)

where A and Γ are synonymous to those of Equation (2.49). The condition for equilibrium is

identical to Equation (2.50). More detailed results for vortex equilibria on the sphere can be

found in [39] and [15].
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Chapter 3. Linear Algebra Methods

In this chapter, three main methods from linear algebra will be discussed. In 3.1, we will define

Singular Value Decomposition. In 3.2, Shannon Entropy will be introduced, and in 3.3 a matrix

approximation technique will be presented. In each section, examples showing either their appli-

cation to the vortex equilibrium condition in equations (2.49) (on the plane) and (2.60) (on the

sphere) or to matrices will be presented.

3.8 Singular Value Decomposition

We begin with Singular Value Decomposition (a definitive reference on this topic can be found

in [41]). Now that an equilibrium condition has been formulated (see sections 2.7.1 and 2.7.2),

the solution to the dynamical system has to be found (i.e., the strength of the vortices, or vector

Γ from (2.49) and (2.60)).

3.8.1 Definition

Singular Value Decomposition (SVD) is the equivalent of matrix decomposition for non-normal

matrices (i.e., ATA 6= AAT ). Instead of having eigenvalues and eigenvectors, SVD has singular

values and singular vectors. SVD is utilized in a variety of applications−from robotics & kine-

matics, to graphics ([71]), information compression ([22]) and retrieval ([9]), and the following
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chapter will illustrate its usefulness in the context of point vortex equilbria. For an M ×N non-

normal real rectangular matrix A with M > N , the singular values must satisfy the following

conditions:

Av(i) = σ(i)u(i), ATu(i) = σ(i)v(i), i = 1 · · ·N, (3.61)

where σ(i) is the ith singular value, u(i) ∈ RM is the ith left singular vector and v(i) ∈ RN is

the ith right singular vector. The decomposition is expressed as

A = UΣV T , (3.62)

where U and V are square unitary matrices (i.e., UTU = I ∈ RM , V TV = I ∈ RN ) composed

of the left and right singular vectors respectively. Σ is an M ×N diagonal matrix containing the

singular values in the form

Σ =



σ(1) 0 · · · 0 0

0 σ(2) 0 0
...

. . .
...

0 0 σ(N−1) 0

0 0 · · · 0 σ(N)

0 0 · · · 0 0
...

...
...

...

0 0 · · · 0 0



. (3.63)

The singular values are ordered diagonally from largest to smallest in the first N rows of Σ,

and the remaining M − N rows are zeros. The rank of A is ‘r’ and is equal to the number of

non-zero σ(i)’s (i.e., σ(max) ≡ σ(1) ≥ σ(2) ≥ · · · ≥ σ(r) > 0 = σ(r+1) = · · · = σ(N)). As

can be seen from multiplying the first equation in Eq. (3.61) by AT and the second by A, the

following relations emerge:

(ATA− σ(i)2)v(i) = 0, (AAT − σ(i)2)u(i) = 0, (3.64)
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which indicates that the squares of the singular values ofA are also the eigenvalues of the square

covariance matrices ATA and AAT and their eigenvectors are v(i) and u(i) respectively. Note

also that the ranks of A, ATA and AAT are all the same. With the knowledge that nullity(A) +

rank(A) = N , a nontrivial solution to Equations (2.49) and (2.60) exists when the rank of A is

less than N , which in (3.61) implies that σ(i) = {0, i > r}, and gives

Av(i) = σ(i)u(i) = 0. (3.65)

Therefore, the columns of V associated with σ(r+1), σ(r+2), · · · , σ(N) correspond to to the non-

trivial solution of the homogeneous system of equations AΓ = 0, or namely by the linear super-

position

Γ = c1v(r+1) + c2v(r+2) + · · ·+ cN−rv(N), (3.66)

where c1, c2, · · · cN−r are constants in R that can be chosen arbitrarily. In the context of point

vortex equilibria and with null spaces larger than one, it is desirable to convert the solution

in Equation (3.66) into a rational basis of reduced echelon form by using a series of matrix

operations. In other words,

(
v(r+1) v(r+2) · · · v(N)

)


c1

c2
...

cN−r


≡ X



α1

α2

...

αN−r


= 0. (3.67)

Matrix X =
(

x(r+1) x(r+2) · · · x(N)
)

is in reduced echelon form, α1 · · ·αN−r are the

new arbitrary constants, and the new solution is given by

Γ = α1x(r+1) + α2x(r+2) + · · ·+ αN−rx(N). (3.68)

Note that in the event that vectors v(r+1),v(r+2), · · · ,v(N) are already in reduced echelon form,

no linear transformation needs to be made.
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3.8.2 Computation of the SVD

A basic way of computing the singular values is by first forming the square covariance matrices

AAT or ATA, and then solving for their eigenvalues. From Equation (3.64), the singular values

of A are then the square root of the eigenvalues. The problem with this approach is that it can

be numerically unstable ([70]). From [41], an alternative way of computing the singular values

is by solving the left and right singular vectors directly from

 0 A

AT 0

 u(i)

v(i)

 = σ(i)

 u(i)

v(i)

 (3.69)

The benefit of this approach is that if the matrix A is perturbed by a small amount, it can be

shown that the perturbed singular value σ̂(i) satisfies

|σ̂(i) − σ(i)| = O(ε‖A‖).

For further efficient algorithms for deriving the decomposition, see [60] and [42].

3.8.3 SVD Example

Examples of how this method works in the context of point vortex equilibria will be given for

two square configurations with N = 4 and N = 5.

3.8.3.1 Havelock’s Square (N = 4)

The square vortex configuration was studied by Havelock ([35]), and was shown to be lin-

early stable. The configuration contains four vortices placed at the corners of a square (see

Figure 3.28). See Figures 1.2 and 1.10 for examples of this lattice configuration in physical set-

tings. Recall that for N vortices, there exist N(N − 1)/2 intervortical distances. The number

of vortices N = 4 for this case gives a total of 4(3)/2 = 6 intervortical distances, and hence

there are 6 equations and 4 unknown vortex strengths to be solved. Using equation (2.45), and
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Figure 3.28: Four vortices on the plane in a square configuration, and without loss of generality, with side of unit

length S = 1.

considering that the sides of the square have unit length, the first of the six equations for this

system has the form:

π
d

dt
(l212) = 0 + 0 + Γ3A132ε132

(
1
l213

− 1
l223

)
+ Γ4A142ε142

(
1
l14

2 −
1
l224

)
= Γ3

(
1
2

)
(−1)

(
1
2
− 1

1

)
+ Γ4

(
1
2

)
(−1)

(
1
1
− 1

2

)
=

1
4

Γ3 −
1
4

Γ4

=
1
4

(
0 0 1 −1

)


Γ1

Γ2

Γ3

Γ4


= 0.

The next five equations in A, which correspond to rate of change of the squares of the inter-

vortical distances l213, l214, l223, l224, and l234 can be solved in a similar fashion, and placing them
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in matrix form (see Equation (2.49)) as well as reordering them diagonally, the configuration

matrix for this particular system becomes:



A341

(
1
l231
− 1

l241

)
A342

(
1
l232
− 1

l242

)
0 0

A241

(
1
l221
− 1

l241

)
0 A243

(
1
l223
− 1

l243

)
0

A231

(
1
l221
− 1

l231

)
0 0 A234

(
1
l224
− 1

l234

)
0 A142

(
1
l212
− 1

l242

)
A143

(
1
l213
− 1

l243

)
0

0 A132

(
1
l212
− 1

l232

)
0 A134

(
1
l214
− 1

l234

)
0 0 A123

(
1
l213
− 1

l223

)
A124

(
1
l214
− 1

l224

)


. (3.70)

Replacing all the symbolic forms above with their numerically equivalent results, and placing A

in Equation (2.49), we get

AΓ =
1
4



1 −1 0 0

0 0 0 0

−1 0 0 1

0 1 −1 0

0 0 0 0

0 0 1 −1





Γ1

Γ2

Γ3

Γ4


=



0

0

0

0


(3.71)

As in Equation (3.62), Singular Value Decomposition of A gives the following three matrices:

U =



−0.5 0.5 0.5 −0.1015 0 0

0 0 0 0.9792 0 0

0.5 −0.5 0.5 −0.1015 0 0

0.5 0.5 −0.5 −0.1015 0 0

0 0 0 0 0 0

−0.5 −0.5 −0.5 −0.1015 0 0


, (3.72)
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Σ =



−0.5 0 0 0

0 0.3536 0 0

0 0 0.3536 0

0 0 0 0

0 0 0 0

0 0 0 0


, (3.73)

V =



−0.5 0.7071 0 −0.5

0.5 0 −0.7071 −0.5

−0.5 −0.7071 0 −0.5

0.5 0 0.7071 −0.5


. (3.74)

The singular values are (σ(1), σ(2), σ(3), σ(4)) = (1/2, 1/2
√

2, 1/2
√

2, 0). The 4th singular

value in matrix Σ is equal to zero, which indicates that the rank of the configuration matrix A

is 3, giving a null space of 1. Using Equation (3.68), the solution of the system lies in the 4th

right-most eigenvector v(4):

Γ = v(4) =



−0.5

−0.5

−0.5

−0.5


≡ α1



1

1

1

1


, α1 ∈ R. (3.75)

This solution means that the four vortices must all have the same strength for the configuration

to remain in equilibrium. Note also that this strength, given by α1, can be any real number.

3.8.3.2 Havelock’s Square Plus Central Vortex (N = 5)

We now consider the same square configuration with an additional vortex located at the center of

the square, thus having a total of five vortices (see the schematic of the solution in Figure 3.29).

This type of configuration appears in the milli-sized magnets lattices from [34], and they appear
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Figure 3.29: Solution to the 5-vortex square lattice configuration. The four outer edge vortices share one common

strength, while the central vortex has an independent strength ([56]).

on the curved surface of a water drop in Figure 1.11. The configuration matrix from Equation

(2.49) for this case will be of dimension 5(4)/2× 5 = 10× 5 and when solved gives

A =



−1 0 1 0 0

0 1 0 −1 0

1 −1 0 0 0

1 0 −1 0 0

0 0 0 0 0

−1 0 0 1 0

0 −1 0 1 0

0 −1 0 1 0

0 1 −1 0 0

0 0 1 −1 0



. (3.76)
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Matrix decomposition as in (3.62) for this configuration gives

U =



−0.5774 0 0 −0.2224 0 0 0 0 0 0

0 0.5774 0 −0.7195 0 0 0 0 0 0

0.2887 −0.2887 −0.5 −0.0908 0 0 0 0 0 0

0.5774 0 0 −0.2993 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

−0.2887 −0.2887 0.5 −0.1677 0 0 0 0 0 0

0 −0.5774 0 −0.5481 0 0 0 0 0 0

0.2887 0.2887 0.5 0.0806 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

−0.2887 0.2887 −0.5 0.0037 0 0 0 0 0 0



, (3.77)

Σ =



√
3

2
√

2
0 0 0 0

0
√

3
2
√

2
0 0 0

0 0 1/2 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0



, (3.78)

V =



0.7071 0 −0.5 0.5 0

0 0.7071 0.5 0.5 0

−0.7071 0 −0.5 0.5 0

0 −0.7071 0.5 0.5 0

0 0 0 0 1


. (3.79)
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The singular values for this configuration are



σ(1)

σ(2)

σ(3)

σ(4)

σ(5)


=



√
3

2
√

2√
3

2
√

2

1
2

0

0


. (3.80)

The two smallest singular values are zero, which indicates that the dimension of the solution

space of this configuration is 2 and is found in the 4th and 5th right singular vectors. The

solution, therefore, becomes

Γ =



Γ1

Γ2

Γ3

Γ4

Γ5


= α1v(4) + α2v(5) = α1



1

1

1

1

0


+ α2



0

0

0

0

1


, α1, α2 ∈ R, (3.81)

where α1 and α2 are arbitrary constants. This implies that the four vortices forming the square

have equal strengths (Γ1 = Γ2 = Γ3 = Γ4 = α1), and that the central vortex has a different,

independent strength ( Γ5 = α2 ). This 5-vortex configuration can be reduced to the square

lattice by choosing α2 = 0.

In this section of this chapter, our focus has solely been on the role of the zero singular values

associated with the configuration matrix, as they determined whether a given configuration has

a non-trivial solution. In the following two sections, we will look at the information encoded in

the non-zero singular values.
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Figure 3.30: Shannon Entropy vs. the probability of getting heads from a dice throw. Maximum entropy occurs

when the probability = 1/2, which coincides with the proposition that the probability with the highest Shannon

Entropy is also the most likely to occur.

3.9 Shannon Entropy

3.9.1 Definition

Shannon in [67] introduced a scalar measure for entropy, which is referred to as the Shannon

Entropy ‘H’. We describe the entropy, or modal energy distribution of a system ~P with proba-

bilities (P1, P2, . . . , PN ) by

H = −
N∑
α=1

Pα lnPα, Pα 6= 0, 0 ≤ H ≤ lnN. (3.82)

Alternately, to normalize the system, logN can be chosen instead of ln ≡ loge in Equation (3.82).

In other words, the normalized Shannon Entropy becomes

H = −
N∑
α=1

Pα logN (Pα), Pα 6= 0, 0 ≤ H ≤ 1. (3.83)

The Shannon Entropy of a system can be used to determine how likely it is for a certain system

~P to occur. An intuitive example is the throwing of a dice. The system has two likely outcomes,

49



and is defined as ~P = (P (heads), P (tails)) = (P1, P2), where P1 is the probability of landing

heads, and P2 is the probability of landing tails with P1 + P2 = 1. Note that we can rewrite the

system as ~P = (P1, 1− P1). Intuitively, we know that the most likely outcome of the coin toss

would be that we land heads half the time (P1 = 1/2), and tails during the other half. Therefore,

we expect the system ~P = (1/2, 1/2) to be the most likely or most robust, while the systems

~P = (1, 0) and ~P = (0, 1) to be least likely. Since there are only two possible outcomes to the

coin toss, we can use log2 in the formulation, and with Equation (3.83) the Shannon Entropy of

our system becomes

H = −
N∑
α=1

Pα log2 Pα

= −P1 log2 P1 − (1− P1) log2 (1− P1).

Figure 3.30 illustratesH vs. P1, and shows us that the maximum entropy occurs when P1 = 1/2.

This supports the claim that there is a positive correlation between the Shannon Entropy and

likelihood of an event to occur.

In the context of a non-normal matrix A, we interpret the normalized eigenvalues of the

corresponding covariance matrices AAT and ATA from Equation (3.64) as the probabilities,

which gives us

Pα = λ̂α =
λα∑N
β=1 λβ

=

(
σ(α)

)2∑N
β=1

(
σ(β)

)2 , α = 1 · · ·N. (3.84)

An alternate way of interpreting the Shannon Entropy is by the information compression present

in a system, which we will briefly define in the following subsection.
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3.9.2 Information Compression

Consider the two general square diagonal matrices of dimension N below:

Vmin =



1

1
. . .

1

1


, Vmax =



1

0
. . .

0

0


. (3.85)

Since both matrices are diagonal, the eigenvalues are simply the diagonal elements. Vmin has

eigenvalues (1, 1, . . . , 1, 1). All its eigenvalues are equal in magnitude, and the matrix is said to

have minimum information compression since all its numerical information is equally distributed

among its N modes, or eigenvalues. We can also state that the probability for numerical infor-

mation to lie on any given mode is (100/N )%. Matrix Vmax’s eigenvalues are (1, 0, . . . , 0, 0).

Since all the numerical information is compressed into its first mode, Vmax is said to have max-

imum information compression. For this matrix, there is a 100% probability that the numerical

information will lie on the first mode, and a 0% probability for it to lie on any of the remaining

(N − 1) modes.

If a system has minimum compression, it is said to have maximum entropy since its infor-

mation is as distributed as possible throughout the modes of the system. On the other hand, if a

system has maximum compression, it is said to have minimum entropy since its information is

condensed into a single mode. Referring back to the two matrices Vmin and Vmax (which rep-

resent the two extreme possible scenarios) defined in Equation (3.85), the probabilities (derived

from Equation (3.84)) associated with Vmin are (1/N, 1/N, . . . , 1/N, 1/N). Using Equation

(3.82),

Hmax = − 1
N

ln
1
N
− 1
N

ln
1
N
− . . .− 1

N
ln

1
N

= lnN. (3.86)
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On the other hand, the minimum possible Shannon Entropy, Hmin can be derived from

~P (Vmax) = ~P (1, 0, . . . , 0). From Equation (3.82), the minimum entropy is simply

Hmin = − ln 1 = 0. (3.87)

This tells us that the entropy H of any system with dimension N is bounded by 0 < H < lnN .

Therefore, from [67], any system has the following properties:

1. H = 0 if and only if all the Pα but one are zero, this one having the value unity. Thus

only when we are certain of the outcome does H vanish. Otherwise H is positive

2. For a given N , H is maximum and equal to lnN when all the Pα are equal (i.e., 1
N ). This

is also intuitively the most uncertain situation.

With this in consideration, we can derive an expression for the percentage of information com-

pression in a system as
lnN −H

lnN
· 100%, (3.88)

which for the system {Vmax, Hmin} is 100%, and 0 % for {Vmin, Hmax}.

3.9.3 Shannon Entropy Examples

Let’s now apply the principle of Shannon Entropy to the same vortex lattice examples introduced

previously in Section 3.8.3.

3.9.3.1 Havelock’s Square (N = 4)

Consider again Havelock’s square. The (four) singular values were given as(
σ(1), σ(2), σ(3), σ(4)

)
=
(
1/2,
√

2/2,
√

2/2, 0
)
. Squaring and normalizing using Equation

(3.84) gives us the probabilities of the system

(P1, P2, P3, P4) =
(

1
2
,
1
4
,
1
4
, 0
)
. (3.89)
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This gives us a Shannon Entropy of

H = −
N∑
α=1

Pα lnPα = −1
2

ln
1
2
− 1

4
ln

1
4
− 1

4
ln

1
4

= 1.0397. (3.90)

Note that the maximum possible entropy for N = 4 is ln 4 = 1.3863. Using Equation (3.88),

the percentage of information compression for this system 25 %.

Remark 1. Note that the Shannon Entropy of point vortex systems is simply a function of their

geometry, and is completely unaffected by the allowable choice of the vortex strengths.

3.9.3.2 Havelock’s Square Plus Central Vortex (N = 5)

The normalized eigenvalues for this configuration are

(P1, P2, P3, P4, P5) =
(

3
8
,
3
8
,
1
4
, 0, 0

)
, (3.91)

which gives us an entropy of

H = −
N∑
α=1

Pα lnPα = −3
8

ln
3
8
− 3

8
ln

3
8
− 1

4
ln

1
4

= 0.3890. (3.92)

Compared to the maximum entropy for N = 5, which is ln 5 = 1.6094, Equation (3.88) tells us

that the percentage of information compression for this lattice configuration is 76 %. From this,

we conclude that the square lattice without the square (N = 4) has a higher entropy than the

lattice with the central vortex (N = 5), which means that the energy is more evenly distributed

among the modes when there is no central vortex. This also tells us that for vortices on the

Cartesian plane, the configuration without the central lattice has a higher likelihood of existing

than does the lattice with the central lattice.
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An alternative way for comparing two different systems with the same number of particles

(or vortices in our case), is by computing the Kullback-Leibler divergence given by [43]. Con-

sider two systems with modal probabilities P = (P1, . . . , PN ) and Q = (Q1, . . . , QN ). The

value is defined as

DKL(P,Q) =
N∑
α=1

Pi ln
Pα
Qα

. (3.93)

An equivalent way of writing the equation is

DKL(P,Q) =
N∑
i=1

Pi ln(Pi)−
N∑
i=1

Pi ln(Qi)

= −
N∑
i=1

Pi ln(Qi) +
N∑
i=1

Pi ln(Pi)

= H(P,Q)−H(P ),

where H(P,Q) is defined as the cross-entropy between systems P and Q, and H(P ) is simply

the Shannon Entropy of P . Such a formulation can be used to contrast two configurations with

the same number of vortices.

Note that our application of Shannon Entropy was for systems with one set of events, which

for our case corresponded to the set of normalized eigenvalues of AAT (i.e., H = H(P (α)),

with α = 1 · · ·N ). The Shannon Entropy formulation, can be extended to systems in which more

than one event can occur simultaneously, for instance if two events can occur simultaneously,

H(x, y) = −
∑
α,β

P (α, β) lnP (α, β),

H(x) = −
∑
α,β

P (α, β)
∑
β

lnP (α, β),

H(y) = −
∑
α,β

P (α, β)
∑
α

lnP (α, β).
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3.10 Matrix Approximation

Matrix Approximation is the third linear algebra tool that we use in our analysis. It is primarily

used in Chapter 4 when dealing with asymmetric equilibria. We begin this section by introducing

the Frobenius norm.

3.10.1 The Frobenius Norm

The Frobenius norm ‖A‖F gives us a measure of the ‘size’ of a matrix. It is a function of a

matrix’s singular values, and is given by

‖A‖2F =
(
σ(1)

)2
+
(
σ(2)

)2
+ . . .+

(
σ(r)

)2
≡ trace(ATA), (3.94)

where r is the rank of covariance matrix ATA. Note also that the 2-norm, ‖A‖2 is given by

‖A‖2 = σ(1). (3.95)

For instance, the size of Havelock’s square configuration without a central vortex is given by

‖A‖2F =
(

1
2

)2

+
(

1
2
√

2

)2

+
(

1
2
√

2

)2

=
1
2
,

‖A‖2 =
1
2
.

Upon adding the central vortex, the size the conguration becomes

‖A‖2F =

(√
(3)

2
√

2

)2

+

( √
3

2
√

2

)2

+
(

1
2

)2

= 1,

‖A‖2 =
√

3
2
√

2
.

Clearly, the configuration with the central vortex is larger than the configuration without the

central vortex. We can also express the distance between two matrices A and B from (3.94) as

‖A−B‖F .

55



3.10.2 Reduction

For a given matrix, it might be desirable to reduce its size, given by ‖A‖F . This is a process

commonly done in graphics and information compression ([22]). Since any non-normal matrix

A ∈ RM×N with rank r can be decomposed by Equation (3.62), the matrix can equivalently be

expressed as the linear sum of sub-matrices given by

A = σ(1)u(1)v(1)T + σ(2)u(2)v(2)T + . . .+ σ(r)u(r)v(r)T , (3.96)

or alternatively as

A =
r∑

α=1

σ(α)Λ(α), Λ(α) = u(α)v(α)T . (3.97)

The sub-matrix Λ(α) is scaled with the corresponding αth singular value, which gives a measure

of its size relative to A. A rank-1 approximation entails the removal of the rth term from the

summation in Equation (3.97). From an information storage perspective, we have effectively

reduced the size of our matrix. The net size reduction between A and a rank-1 approximation

A1, is given via the Frobenius norm

‖A−A1‖2F =
(
σ(r)

)2
, (3.98)

Note that if σ(r) is sufficiently small, we have effectively approximated the matrix with a rela-

tively small loss of information. A generalized rank-k approximation is given by

‖A−Ak‖2F =
(
σ(r)

)2
+ . . .+

(
σ(r−k+1)

)2
. (3.99)

We can quantify the amount of information reduction with the ratio

‖A−Ak‖F
‖A‖F

· 100%. (3.100)
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Example 1. (From [41]) Find a rank-one approximation to the matrix

A =


1 1

0 1

1 0

 .

Begin by decomposing the matrix as in (3.62):

U =
(

u(1) u(2) u(3)
)

=


2/
√

6 0 1/
√

3

1/
√

6 1/
√

2 −1/
√

3

1/
√

6 −1/
√

2 −1/
√

3

 ,

V =
(

v(1) v(2)
)

=

 1/
√

2 −1/
√

2

1/
√

2 1/
√

2

 ,

Σ =


σ(1) 0

0 σ(2)

0 0

 =


√

3 0

0 1

0 0

 .

Next, decompose the matrix into the form of Equation (3.97), and make the estimation

A1 ≈ σ(1)Λ(1)

= σ(1)u(1)v(1)T

=
√

3


1/
√

3 1/
√

3

1/2
√

3 1/2
√

3

1/2
√

3 1/2
√

3



=


1 1

1/2 1/2

1/2 1/2

 .
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With Equation (3.99), the change between A and A1 is ‖A− A1‖F = σ(2) = 1. The amount of

information reduction from (3.100) becomes

‖A−A1‖F
‖A‖F

· 100% =
1
2
· 100% = 50%.
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Chapter 4. Vortex Lattices on the Plane

In this chapter, we apply the tools from Chapters 2 and 3 to systems of N vortices on the Carte-

sian plane. The first two of the four main contributions of this thesis are presented in this chapter.

The first contribution is the study of asymmetric equilibria, and the second is the application of

Shannon Entropy on vortex equilibria. Before we proceed to these main results, a few compar-

isons to physical lattices will be made in the following section, and at the close of this chapter

we will address the reverse problem of Equation (2.49).

(a) N = 6 Triangle Model (b) Plasma Crystal

Figure 4.31: Triangular lattice, N = 6. SVD solution produced for configuration was Γ = (-1/4, -1/4, -1/4, 1, 1,

1)T . System resembles a plasma crystal configuration found in [30]. In (a), center of vorticity is labeled with an ×
symbol.
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(a) N = 7 Semi-circle Model (b) N = 7 Hexagon Model

(c) N = 7 Different-Sized Milli-Size Magnets (d) N = 7 Uniform-
Sized Milli-Size Mag-
nets

Figure 4.32: Vortex lattices with N = 7 vortices. (a) Semi-circle model has null space of one, with Γ =

α(1, 0, 0, 0, 0, 0)T . This implies that central vortex has arbitrary strength, while remaining 6 vortices on the circle

of radius r are stagnation points orbiting the central vortex with velocity uθ = α/2πr. (b) Hexagonal model has

non-trivial null space of dimension 2 with Γ = α1(1,0,0,0,0,0)T+α2(0,1,1,1,1,1)T with α1 and α2 being unrelated

arbitrary constants. This implies that central vortex has one independent strength, while the outer vortices have

second independent strengths. (c) Comparison is made to milli-magnetized structures (from [34]) with different-sized

magnets. Two configurations arise for different ranges of angular velocity (as denoted in figure), and we compare

them to models (a) and (b) which support different-strength vortices with the selection α1 6= α2 6= 0. (d) Uniform-

sized milli-magnetized structures. Comparison is made to (b), since the solution to (b) can support uniform-strength

vortices with the selection α1 = α2. Center of vorticity coincides with location of central vortex.

4.11 Comparison to Physical Lattices

Figure 4.31 is a triangular lattice with N = 6, and the comparison is made to the plasma lattice

in Figure 1.12 ([23]). Note that this configuration also appears in the milli-magnets on the curved

water drop surface in Figure 1.11 from [34]. The configuration was formulated as in (2.49), and

a solution satisfying (2.50) was found. The dimension of the null space for this configuration is
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(a) N = 19 Double Hexagon Model (b) Superfluid lattice

Figure 4.33: Triangular vortex lattice, N = 19 with solution. Lattice consists of two concentric hexagonal rings.

Solution to system can be found in Equation (4.101).

1 (i.e., σ(6) = 0). From Equation (3.68), the three outer corner vortices have equal strengths to

one another; the three inner vortices have equal strengths to one another and are one-fourth as

strong as the outer vortices with opposite circulation.

The milli-sized magnets in Figure 1.11(b) possess two special features ([34]). First, the

magnets have different sizes (we interpret different-sized magnets as having different vortex

strengths). Second, more than one configuration geometry occurs for the same number of mag-

nets. In Figure 4.32, we specifically modeled the two geometry types for the case N = 7, and

implemented Equation (2.49). The first model presented in Figure 4.32(a) is of a configuration

consisting of a central vortex coupled with six vortices evenly spaced along a semi-circle cen-

tered at the central vortex. The SVD solution yields a null space of one for this configuration

given by Γ = α(1, 0, 0, 0, 0, 0)T . This tells us that the central vortex has arbitrary strength α,

while the six vortices on the semi-circle have zero strength, and are passive non-rotating parti-

cles being advected around the central vortex with constant angular speed uθ = α/2πr, where

r is the radius of the semi-circle. Note that for any α 6= 0, this model’s vortex strength distri-

bution agrees with magnet size distribution in Figure 4.32(c) when ω < 800 r.p.m.. The second
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geometry type is presented in 4.32(b). It consists of a central vortex and six vortices distributed

evenly about a full circle around the central vortex, resulting in a hexagonal structure. The SVD

solution to this model returns a solution with a null space of two with Equation (3.68), being

Γ = α1(1,0,0,0,0,0)T+α2(0,1,1,1,1,1)T , where α1 and α2 are independent and unrelated arbi-

trary constants. This model agrees with the different-sized magnetic system of Figure 4.32(c)

(ω > 800 r.p.m) for the selection α1 6= α2, as well as the uniform-sized magnet system illus-

trated in 4.32(d) for the selection α1 = α2.

In Figure 4.33, we have a full numerical solution to a configuration with two radially con-

centric hexagonal rings−containing 19 vortices in total (1 central vortex, 6 vortices in the inner

hexagonal ring, and 12 in the outer hexagonal ring). The SVD method’s solution found that the

null space of this configuration is 2. In Equation (4.101) below, horizontal lines in the vector dis-

tinguish the central vortex (top-most entry), the inner-hexagon vortices (next set of six entries),

and the outer-hexagon vortices (remaining twelve entries). The solution is given by
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Γ =



Γ1

Γ2

...

Γ7

Γ8

Γ9

Γ10

Γ11

Γ12

Γ13

Γ14

Γ15

Γ16

Γ17

Γ18

Γ19



= α1



+7/6

−1/6
...

−1/6

1

0

1

0

1

0

1

0

1

0

1

0



+ α2



5/9

3/7
...

3/7

0

1

0

1

0

1

0

1

0

1
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. (4.101)

The corner vortices of the outer ring share a common strength of α1; the mid-edge vortices of

the outer ring share a different common strength of α2; the vortices of the inner ring all share a

single strength which is a linear combination of the strength of the outer ring’s corner and mid-

edge vortices ((−1/6)α1 + (3/7)α2). Finally, the strength of the central vortex is also a linear

combination of the strength of the outer ring’s corner and mid-edge vortices ((7/6)α1+(5/9)α2).

The micro-scale image in the figure is of a superfluid vortex crystal that possesses the same type

of radial hexagonal structure.

63



Figure 4.34: Left: minimum eigenvalues of 106 random configurations, N = 10 (None are in equilibrium). Right:

square root of sum of the squares of two smallest eigenvalues of 106 random configurations, N = 10 (None have a

null-space of two).

4.12 Asymmetric Equilibria

The study of asymmetric equilibria corresponds to the first main contribution of this thesis, which

will be fleshed out in the following subsections.

4.12.1 Existence

In the former section, we only made comparisons to symmetric lattices. As was discussed in

Section 1.3.2 of the introduction (see Figures 1.6 and 1.7), vortex lattices with broken symmetries

also exist in nature, see Figure 4.35 from [1]. In the investigation asymmetric equilibria, we

began by depositing a finite number of point vortices at random from a uniform distribution

in the compact planar region x ∈ (−1, 1), y ∈ (−1, 1). Next, the configuration matrix from

Equation (2.49) was derived, and the minimum eigenvalue of the covariance square matrix ATA

satisfying (3.64) was found. If the smallest eigenvalue is a non-zero number, then the matrix

A has full rank and (2.50) is not satisfied. This implies that the configuration has only a trivial

equilibrium solution (i.e., Γ = 0).
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Figure 4.35: Broken symmetries in triangular lattices of Bose Einstein Condensates. Left: Line defect. Right:

Grain boundary defect (from [1]).

A million random configurations containing N = 10 vortices were generated, and their

covariance matrices’ minimum eigenvalues were computed. Figure 4.34 shows that the min-

imum eigenvalue associated with all 106 random configuration is always non-zero, indicating

that an asymmetric configuration with a non-trivial equilibrium cannot be chosen at random, and

these configurations form a set of measure zero in the space of all possible configurations. Also

from Figure 4.34, we conclude that a configuration with a null space of two is even less likely

to be chosen at random. In the next section, an algorithm that utilizes the minimum singular

value as a scaling factor to drive the random asymmetric configuration to a converged non-trivial

equilibrium is introduced.

4.12.2 The Brownian Ratchet

Recall from Figures 1.6 and 1.7 from Section 1.3.2, that when a regular triangular lattice was

blasted by a laser, the vortices exhibited an apparently random motion that resembled a thermal

cooling process which eventually homed in on a new irregular / asymmetric equilibrium con-

figuration ([26]). (Another good example with lattices with broken symmetries is illustrated in

Figure 4.35). The Brownian ratchet method starts off with a random configuration ofN vortices.

Using the SVD method, the ratchet process has the following algorithm:
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Figure 4.36: Schematic of the Brownian ratchet method. The vortices take a random walk, each within a circle

scaled with the smallest singular value, σ(0) associated with its configuration matrix until the smallest singular value

gets smaller , σ(1). The vortices continue to take random walks in circles of ever decreasing radius until the smallest

singular value drops below a prescribed threshold.

Figure 4.37: (a): Smallest singular value squared vs. Brownian ratchet step number on lin-log scale for N =

6, 8, 10. The smallest singular value converges continuously to zero. (b): Close-up view of a vortex converging to an

equilibrium point, scale is magnified ×106 the scale of configuration.
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Figure 4.38: Examples of converged asymmetric equilibrium configurations with one-dimensional null spaces

using Brownian ratchet method. Total of six plots for 6, 8, 10 vortices, with one initial configuration (unfilled

circles) and two corresponding final converged states (filled circles) with smallest singular value on the order of 10−6.

(a) N = 6, Γ = (0.0040, -0.0033, -0.0254, -0.0079, -0.9996, -0.0001)T ; (b) N = 6, Γ = (-0.2394, -0.1049, 0.1078,

0.0314, 0.7461, -0.6020)T ; (c) N = 8, Γ = (0.0064, -0.0221, -0.0743, 0.0456, 0.1197, -0.1380, 0.0751, -0.9761)T ;

(d) N = 8, Γ = (0.0040, -0.0033, -0.0254, -0.0079, -0.9996, -0.0001)T ; (e) N = 10, Γ = (-0.0364, -0.0666, -0.0253,

-0.0335, -0.1392, -0.5016, -0.0716, 0.0163, -0.8462, 0)T ; and (f) N = 10, Γ = (0.1561, 0.0048,0.0970, -0.0078,

0.1108, 0.2844, -0.0047, -0.0410, 0.9334, 0.0004)T .
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Figure 4.39: Reverse Brownian ratchet scheme used to derive initial random configuration not in equilibrium from

symmetric equilibrium configurations. (a) N = 6 triangular configuration with null-space 1 in open circles, with

random non-equilibrium configuration that converges to it. (b) N = 7 hexagonal equilibrium configuration with null

space 2 in open circles, with random non-equilibrium configuration that converges to it.

1. We identify the smallest singular value σ(0)
min associated with A.

2. The vortices are then randomly fluctuated−each within a circle that is scaled with σ(0)
min.

During this fluctuation, the singular values of the ‘fluctuated’ configuration also fluctuate,

and we continuously monitor the smallest singular value associated with the fluctuated

configuration, σ′min.

3. As soon as σ′min becomes smaller than σ(0)
min, we consider that we have converged one step

closer to an equilibrium, and the fluctuation is paused. The current configuration is saved

as the new one, and the smallest singular value now becomes σ(1)
min = σ′min.

4. The random fluctuation recommences, and is repeated for each of the vortices, but this time

within a smaller circle scaled with the new smallest singular value σ(1)
min. This process is

repeated K times until σ(K)
min drops below a prescribed threshold δthresh ≈ 10−6.

Figure 4.36 provides a schematic of the Brownian ratchet’s convergence process. In Figure 4.37,

we track the square of the smallest singular value of A as the Brownian ratchet step number

increases, and we show that it converges continuously to zero. Also in that figure, a close-up
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image that is magnified to a millionth the area of the overall configuration shows the convergence

process of a single vortex with individual ratchet steps. Figure 4.38 illustrates configurations of

vortices that converged to an asymmetric equilibrium with a null space of 1. The important

results here are that

1. Asymmetric equilibria do exist.

2. An initial configuration not in equilibrium will converge to completely different asym-

metric equilibrium configurations each time the ratchet is repeated (i.e., there are many

neighboring equilibrium configurations, possibly lying arbitrarily close to one another).

3. It is quite curious that configurations always numerically converge to purely asymmetric

patterns as did the Bose-Einstein condensates upon being blasted by a laser. Hence, the

Brownian ratchet scheme appears to have a convergence bias towards asymmetric, rather

than symmetric configurations.

Figure 4.39 uses a reverse Brownian ratchet process to show that a configuration can in theory

converge to a symmetric configuration, and can also converge to a configuration with a null space

greater than one.

4.12.3 Distance to Equilibrium

The next natural question to ask is: how close is the nearest equilibrium to a random configura-

tion? In other words, the question is whether the set of asymmetric equilibrium configurations

is dense in the broader set of asymmetric configurations. The comparison is made to rational

and irrational numbers on the real line. Both rational and irrational numbers are dense in the

sense that a rational number exists between any two irrational ones, and an irrational number

exists between any two rational ones. That is, a rational number is arbitrarily close to an irra-

tional one. The difference between the two is that, if a number is picked at random from the real

number line, it will always be an irrational number. Therefore, irrational numbers form a full-

measure set, while the rational numbers have measure zero on the real line. The question now
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Table 4.1: Converged Brownian ratchet configurations of Figure 4.38 with (i) the Frobenius size of the converged

equilibrium configuration, (ii) distance to exact equilibrium, (iii) Hamiltonian energy and (iv) the distance between

the two converged configurations that had the same initial conditions.

N ||Afinal||F ||Ainit −Afinal||F H ||A1 −A2||F
N = 6(a) 53.6412 3.15× 10−05 −0.0047 59.0357

N = 6(b) 23.4493 6.14× 10−06 0.0816 59.0357

N = 8(a) 22.0578 1.00× 10−05 −0.0104 55.5116

N = 8(b) 51.4244 9.99× 10−06 −0.05100 55.5116

N = 10(a) 22.0578 9.96× 10−06 0.0166 51.0580

N = 10(b) 44.6184 9.99× 10−06 0.0157 51.0580

is whether randomly deposited vortices (that are always not in equilibrium) can be compared to

the irrational numbers, while the converged asymmetric configurations (with null space one) can

be compared to rational numbers. The answer to this question is no. The ‘minimum distance’

between a rectangular matrix A0 with full rank to a rank-1 deficient matrix A1 (i.e., the smallest

singular value is zero) is given via the Frobenius norm in (3.94) as equal to the smallest singular

value σ(N): Since A0 is not rank deficient, this distance is not arbitrarily small. The Frobenius

norm tells us that an asymmetric equilibrium configuration does not lie arbitrarily close to a ran-

dom configuration, but rather has a minimum and finite distance to it, namely σmin ≡ σ(N). In

other words, the rank-1 deficient matrixA1 is also the closest equilibrium to full rank matrixA0.

Tables 4.1 and 4.2 contain a set of numerical information associated with the converged

equilibria of Figure 4.38. The matrix Ainit corresponds to the converged configuration, Afinal

corresponds to the equilibrium approximation, and ||Ainit − Afinal||F is the converged con-

figuration’s closest distance to a configuration whose minimum singular value is exactly zero.

Remark 2. Consider two configuration matrices A and B such that their dimensions are the

same. If ‖A‖F = ‖B‖F , we conclude that A and B correspond to configurations of the same

size, but in general the configurations can foreseeably have different locations, or even different

geometries, whereas if ‖A − B‖F = 0, we conclude that the two matrices have the same size
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Table 4.2: Singular values of converged Brownian ratchet configuration of Figure 4.38.

N σ’s
N = 6(a) (36.8899, 34.0091, 16.8357, 8.0756, 3.3529, 3.15× 10−05)

N = 6(b) (16.4495, 15.1967, 6.6437, 2.0431, 0.1741, 6.42× 10−06)

N = 8(a) (11.8714, 11.344, 9.347, 8.4775,
5.43, 4.5957, 2.6626, 1.00× 10−05)

N = 8(b) (34.6657, 34.5454, 11.1811, 9.6584,
4.1464, 2.9317, 2.2993, 9.99× 10−06)

N = 10(a) (13.2665, 12.1482, 10.7102, 8.7633, 7.4807,
5.1647, 4.7517, 2.4412, 0.8549, 9.96× 10−06)

N = 10(b) (28.3155, 27.8314, 12.5556, 10.5146, 7.3477,
7.1772, 5.1661, 3.6358, 0.9141, 9.99× 10−06)

and, if each configuration matrix corresponds to a single unique configuration, that the vortices

of A and B have the same relative locations as well, with respect to rotations and translations.

4.13 Shannon Entropy

We now move our focus to the second main contribution of this thesis: Shannon Entropy. We

claim that this measure can predict the likelihood of formation for a given lattice geometry in

the physical systems referenced in the introduction (plasma lattices, magnetic lattices, helium

lattices). We begin the analysis by comparing two configurations that have the same number of

vortices, but different inter-vortical distances.

For four-vortex equilibra, we compare the square configuration in Section 3.8.3.1 to an equi-

lateral triangle lattice with a central vortex. The square configuration is more prevalent than the

equilateral triangle configuration (Figures 1.2 and 1.10). As it turns out, the Shannon Entropy

from Equation (3.82) of the square configuration is H ≈ 1.0397, while that of the triangle is

H ≈ 0.6931. Therefore, the square configuration has a higher entropy, and arguably, a higher

likelihood to exist. Note also that from Equations (2.40) and (3.68) that the square configuration

has a lower Hamiltonian energy. For five-vortex equilbria, consider the pentagon configuration

(5 vortices evenly distributed on a circle) and the Havelock’s square with a central vortex (see
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(a) Normalized eigenvalues of ATA (b) Shannon Entropy

Figure 4.40: Averaged 250 times + standard deviation. Comparison of Shannon Entropy associated with: ran-

dom asymmetric configurations (not in equilibrium), random matrices (all entries are random numbers), converged

asymmetric equilibria with null space 1, and the triangle lattice from Figure 4.31. Triangle lattice has significantly

higher entropy than asymmetric equilbria, with entropy of asymmetric configurations not in equilibrium and in equi-

librium being indistinguishable from one another within standard deviation. Random matrices have substantially

lower entropy than any configuration matrix.

the example in Section 3.8.3.2). The pentagon configuration is more prevalent in the referenced

physical systems than the square lattice with a central vortex (Figures 1.2, 1.10 and 1.12). The

Shannon Entropy of the pentagon configuration isH ≈ 1.3662, while that of the square configu-

ration isH ≈ 0.3890. Again, the configuration that is more prevalent in physical systems has the

higher entropy. Comparing the Hamiltonian of these two configurations is not as clear-cut, since

the dimension of the null space for the square lattice with a central vortex is two. This makes

the Shannon Entropy analysis more definitive in this case since it relies solely on the system’s

geometry, and not its null space (i.e., relative vortex strengths). An interesting observation is that

the square lattice with a central vortex appears to be the most likely geometry type on the curved

surface in Figure 1.11. This tells us that the entropy of a given configuration may change with

its surface’s curvature.

In Figure 4.40, four sets of matrix modal probabilities (i.e., normalized squared eigenval-

ues of ATA) corresponding to different geometry types are computed and compared. Namely
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these four include: averaged probabilities of 250 random configurations (not in equilibrium),

averaged probabilities from random matrices (all elements chosen from uniform distribution),

probabilities of 250 converged asymmetric equilibria (via the Brownian ratchet), and the prob-

abilities of the triangular lattice from Figure 4.31. The triangular lattice comparatively had the

highest entropy of all. This supports the claim that higher entropy equates to higher likelihood

for existence, since triangular geometries are the most common configuration types found in

many different lattice types (specifically in Figure 1.12). It is important to note that asymmet-

ric configurations both in equilibrium and not in equilibrium had indistinguishable entropies.

This could be due to the fact that the Brownian ratchet searches for equilibria in the vicinity of

the initial configuration, and can in theory, home in on a configuration within the same entropy

range. In the context of Figure 1.6, in which a regular triangle lattice converged to an asym-

metric equilibrium after the blast, it is foreseeable from the distribution in Figure 4.40, that the

Shannon Entropy is quantized. In other words, after the laser blast the entropy of the system

changed. The Brownian ratchet’s search can be broadened or condensed (i.e., the vortices can be

controlled to fluctuate within circles of variable radius), and this potentially could have an effect

on the standard deviation of the entropy when averaged over many runs. We will revisit Shannon

Entropy in Chapters 5 and 6 in the context of vortex streets on the sphere.

4.14 The Reverse Problem

With the closing of this chapter, we pose the question: can a single configuration matrix cor-

respond to more than one configuration? Moreover, looking at the problem in reverse: can a

configuration be derived from a configuration matrix? And if so, can a single configuration

matrix correspond to more than one configuration? A scenario in which the answer to the latter

is yes was found. For the case N = 3, the associated configuration matrix has three columns

and 3(2)/2 = 3 rows. Consider a zero matrix A0 with the same dimensions as a system with

N = 3 vortices (i.e., A0 ∈ R3×3). This implies that either (a) all the intervortical distances are

equal, or that (b) the intervortical area is zero. The first corresponds to an equilateral triangle,
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and the second corresponds to three collinear vortices. Therefore, it was possible to identify

two configurations that correspond to a single configuration matrix. This can be thought of as

a degenerate scenario, so in the next subsections, the combinatorial structures of the configura-

tion and configuration matrices will be studied and compared in order to provide a more general

answer for non-degenerate scenarios.

4.14.1 Configuration Construction With and Without a Coordinate System

In the presence of a coordinate system, a minimum of 2N values are required to fully character-

ize a system of N points in the plane (i.e., (xα, yα) or (rα, θα), where α = {1, . . . , N}). In the

absence of a coordinate system, one way to construct a configuration is with the use of relative

distances lαβ (α = {1, . . . , N − 1} and β = {α + 1, . . . , N}) and relative orientations εαβλ

(α = {1, . . . , N − 2}, β = {α+ 1, . . . , N − 1} and λ = {β + 1, . . . , N}) .

Let’s begin by choosing the relative distances between point 1 and points α = {2, . . . , N}.

These distances can be chosen arbritrarily such that l1α > 0, and this gives us a total of N − 1

independent values (Figure 4.41(a)). Next, we consider the distances l2β between point 2 and

the remaining N − 2 points defined as β = {3, . . . , N}. Since l12 and l1β have already been

defined, the distance l2β is constrained by |l12 − l1β| < l2β < |l12 + l1β|, see Figure 4.41(b)

for an illustration of this constraint. This gives us an additional N − 2 values. Finally, the

relative orientation between vortices 1, 2 and β (β = {3, . . . , N}) can be chosen to be ε12β =

±1; this gives us an additional N − 2 values. Note that a triangle with lengths l12, l13, l23 can

either have relative orientation ε123 = +1 or ε123 = −1. The two possible orientations give

us two geometrically different triangles with respect to rigid rotations−see Figure 4.41(c) for a

schematic of this.

The remaining relatives distances lαβ with α = {3, . . . N − 1} and β = {α + 1, . . . N},

and orientations (εαβλ, α = {1, . . . , N − 2}, β = {3, . . . , N − 1} (with β > α), and λ =

{β + 1, . . . , N}) between the points are fully determined. The area between any three points in

the configurations (Aαβλ) can then be solved using the relative distances and orientations.
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Table 4.3: Comparison of the minimum number of data points required to construct a configuration of N points

in the plane in: (a) the presence of a coordinate system, and (b) in the absence of a coordinate system. Note that for

N < 5, less values are required to construct the system in the absence of a coordinate system, for N = 5 the number

of values is the same, and for N > 5, less values are required in the presence of a coordinate. The last column

demonstrates the number of non-trivial entries in configuration matrix A associated with different N .

Number of With Without Non-trival
points coordinate system coordinate system entries in A
N 2N 3N − 5 N(N − 1)(N − 2)/2

N = 2 2 1 0
N = 3 6 4 2
N = 4 8 7 8
N = 5 10 10 20
N = 6 12 13 40
N = 7 14 16 70
N = 8 16 19 168

Therefore, in the absence of a coordinate system, a total of 3N − 5 values are required to

fully characterize the system, see Table 4.3.

4.14.2 Number of Elements in the Configuration Matrix

For a general configuration, A has N − 2 non-trivial entries per row (recall that each row is

associated with the rate of change of the relative distance between two unique vortices α =

{1, . . . , N − 1} and β = {α + 1, . . . , N}, and the non-trivial entries correspond to the entries

where λ 6= α, λ 6= β). With N − 2 non-trivial entries per row and a total of N(N − 1)/2

rows, in general we will have a total of N(N − 1)(N − 2)/2 non-trivial matrix entries. The

non-trivial entries of A are a function of the configuration’s intervortical lengths, orientations

and areas. As described in the previous section, there are 3N −5 unique independent values that

describe the coordinate-free configuration. The reverse problem remains an open question since

the analysis in this section is not fully conclusive. However, using the information presented,

we can conclude whether the configuration matrix is over-determined or under-determined for

different values of N (Table 4.3).
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(a) Relative Distances l12, . . . , l1β (b) Relative Distance l2β(min) < l2β < l2β(max)

(c) Relative Orientation ε12β = ±1 (d) Identification of Remaining Points

Figure 4.41: Configuration Construction of N points in the plane in the absence of a coordinate system. (a) N − 1

relative distances from point 1 can all be chosen independently from R+, (b) N − 2 relative distances from point 2

to β = {3, . . . , N} can be chosen from the constricted range |l12 − l1β | < l2β < |l12 + l1β |, (c) N − 2 Relative

orientations between points 1, 2 and β = {3, . . . , N} can be chosen to be ε12β = ±1. This subfigure highlights the

fact that the two possible choices for ε12β result in two geometrically unique configurations (i.e., one configuration

cannot be obtained from the other via rigid body rotations and translations), with vortex β either having the relative

position β(1) or β(2), (d) The information corresponding to the remaining points, labeled λ = {β + 1, . . . , N}, can

be solved analytically by identifying their locations (in Regions I - VII) relative to three preceding fully-solved points

{1, α, β}, such that α < β, β < λ and λ ≤ N .
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Chapter 5. Single Von Kármán Streets

on the Sphere

In this chapter, we move our focus to single vortex streets on the sphere. From the four main

contributions of this thesis (outlined in Section 1.2 of the introduction), three are present in this

chapter. First, this chapter includes a derivation of the analytic solution to the single street using

the center of vorticity and angular velocity equations. Second, we will flesh out the streamline

topology and bifurcations for this class of configurations, and third, we will apply the Shannon

Entropy formulation. The analysis is repeated for configurations with and without vortices at the

poles.

5.15 Construction and SVD Solution

5.15.1 Without Pole Vortices

In this subsection, we investigate the existence of single von Kármán streets (VKS) consisting

of two symmetrically skewed n-vortex rings without pole vortices. That is, we write (2.60) for

a total of N = 2n vortices on the sphere as illustrated in Figure 5.42, and seek configurations

satisfying (2.50). Admissible solutions are those that also satisfy the VKS requirement, that is,

two rings of vortices with equal and opposite strength that rotate rigidly about a fixed center of

vorticity axis.
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Figure 5.42: Schematic of a single von Kármán street on the sphere with an illustration of the vorticity vector J

and the angle φ.

5.15.1.1 Number of Vortices Per Ring: n 6= 3

We first consider configurations containing n = 2, 4, 5, 6, 7, ... (excluding 3) vortices per ring.

As an example, the configuration matrix for the case n = 2, using Equation (2.49) becomes

A2 =



a2 0 a2 0

−a2 0 0 −a2

0 −a2 −a2 0

0 a2 0 a2

0 0 0 0

0 0 0 0


, (5.102)

where a2 = a2(φ), and φ is the co-latitude of the ring in the Northern hemisphere (Figure 5.42).

In our notation, the subscript associated with a configuration matrix and its entries’ names cor-

responds to n. The entry a2 is given by

a2 = −
cosφ

(
3 cos2 φ− 1

)
2(cos2 φ+ 1)

. (5.103)
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Note that a2 is the only unique non-trivial entry in A2 associated with the case n = 2 (In

general, there are multiple distinct non-trivial entries when n ≥ 4 in the configuration matrix.

For example, in the configuration matrix associated with n = 4, one finds 9 distinct entries

which would be labeled a4, b4, c4, . . . , i4.). From (3.62), the singular values of (5.102) are

σ2 =
(

2
√

2a2, 2
√

2a2, 2a2, 0
)T

. (5.104)

Since one of the singular values is zero, the null space of this configuration is one (i.e.,

nullity(A2) = 1). From (3.68) the solution to this configuration has the general form

Γ = Γ
(

1, 1, −1, −1
)T

. (5.105)

This solution can be generalized, and the general form of Γ for any n 6= 3 becomes

Γ = Γ
(

1, . . . , 1, −1, . . . , −1
)T

, (5.106)

where Γ has length 2n, with the first and second set of n vortices corresponding to upper (north-

ern) and lower (southern) vortex rings respectively, see Figure 5.42. Therefore, the general

solution to the SVD problem is that the two rings have equal and opposite strengths. For these

configurations, the center of vorticity given by Equation (2.53), is aligned with the z-axis,

J = 2nΓ


0

0

cosφ

 . (5.107)
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Figure 5.43: Top and oblique view. Solution using SVD of single von Kármán street on the sphere for n = 3.

Dimension of null space is three with same-shape vortices having equal and opposite strength.

5.15.1.2 Number of Vortices Per Ring: n = 3

The case of 3 vortices per ring (n = 3) is a special degenerate case worthy of separate treatment.

For this case, the configuration matrix from Equation (2.49) takes on the form

A3 =



a3 0 0 0 a3 0

−a3 0 0 0 −a3 0

0 a3 0 0 0 a3

0 −a3 0 0 0 −a3

0 0 a3 a3 0 0

0 0 −a3 −a3 0 0

0 0 0 0 0 0
...

...
...

...
...

...

0 0 0 0 0 0



, (5.108)
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where the lower 9 rows are all zeros rows, and, a3 is given by

a3 = −3
√

3
2

sin2 φ cosφ(
1

sin2 φ+ 4 cos2 φ
− 1

3 sin2 φ
). (5.109)

From (3.62), the singular values of A3 are

σ3 =
(

2a3, 2a3, 2a3, 0, 0, 0
)T

. (5.110)

Clearly, the nullspace of the configuration matrix has dimension 3 and the corresponding Γ

vector from Equation (3.68) has the form

~Γ = Γ1



1

0

0

−1

0

0


+ Γ2



0

1

0

0

0

−1


+ Γ3



0

0

1

−1

0

0


, (5.111)

where Γ1, Γ2, and Γ3 are three independent constants. One vortex in the northern ring is equal

and opposite to the vortex in the southern ring that subtends it longitudinally by an angle equal to

π (see Figure 5.43 for an illustration). With (2.53), the center of vorticity of the system satisfies

J =


sinφ 0 0

0 sinφ 0

0 0 cosφ


Γ1


2

0

2

+ Γ2


−1
√

3

2

+ Γ3


−1

−
√

3

2


 , (5.112)

which, in general, does not align with the z-axis, hence does not correspond to a von Kármán

street (i.e., the street was constructed about the polar axis, and we require the center of vorticity

to be aligned with the polar axis). One obtains a von Kármán street only when Γ1 = Γ2 = Γ3

(= Γ, say) in which case Γ = Γ(1, 1, 1,−1,−1,−1)T and the center of vorticity aligns with the
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Figure 5.44: Computational result of time evolution of 6 vortices on the sphere with φ = 5π/12. The initial

configuration is the same as that defined in the previous figure. Images of the first column represent degenerate case

with single VKS VKS and vortex strengths [Γ1,Γ2,Γ3] = [1, 1, 1]. Second column has strengths [Γ1,Γ2,Γ3] =

[1, 1.5, 1] with no resultant VKS, third case is [Γ1,Γ2,Γ3] = [1, 1.5, 1.2], also with no resultant VKS.

z-axis. In this case, when integrating (2.51), the vortices evolve as a single VKS (maintaining

constant latitudes), see Figure 5.44. Whereas for Γ1 = Γ3 6= Γ2 , the vortices no longer evolve

as a von Kármán Street (do not maintain constant latitude) and move on three orbits about a

common axis that is not aligned with the z-axis. When Γ1 6= Γ2 6= Γ3, each vortex rotates about

its own orbit (total of six).

5.15.2 With Pole Vortices

Pole vortices exist in geophysical flows, such as on the surface of Jupiter, and have been shown

to play a critical role in the stability of co-latitudinal vortex rings on the sphere ([13], [10] and

[44]).

5.15.2.1 Example: n = 2

As an example, for a configuation with two vortices per ring (n = 2), there will be a total of

N = 2(2) + 2 = 6 vortices in the system. The configuration matrix in (2.60) has dimension
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R(6·5/2)×6 = R15×6. We label this configuration matrix Â2 (i.e., In our notation, the overhead ·̂

symbol indicates the addition of pole vortices) and it has the form

Â2 =



d̂2 −d̂2 0 0 0 0

ĉ2 −ĉ2 0 0 0 0

−d̂2 d̂2 0 0 0 0

−ĉ2 ĉ2 0 0 0 0

â2 0 â2 0 −b̂2 −b̂2

−â2 0 0 −â2 b̂2 b̂2

0 −â2 −â2 0 b̂2 −b̂2

0 â2 0 â2 −b̂2 −b̂2

0 0 ĉ2 −ĉ2 0 0

0 0 d̂2 −d̂2 0 0

0 0 −ĉ2 ĉ2 0 0

0 0 −d̂2 â4 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0



, (5.113)

with

â2 = −cosφ(3 cos2 φ− 1)
2(cos2 φ+ 1)

, (5.114)

b̂2 = cosφ, (5.115)

ĉ2 =
cosφ(cos2 φ+ 2 cosφ− 1)

2(cos2 φ+ 1)
, (5.116)
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and

d̂2 =
cosφ(cos2 φ+ 2 cosφ+ 1)

2(cos2 φ+ 1)
. (5.117)

In the state representation of Â2, the first (second) two elements correspond to the northern

(southern) street’s vortices, and the last two elements correspond to the north and south pole

vortices respectively. From (3.62), the singular values of this configuration are

σ̂2 =



2
√
â2

2 + 2b̂22√
2â2

2 + 4ĉ22 + 4d̂2
2√

2â2
2 + 4ĉ22 + 4d̂2

2

0

0

0


. (5.118)

Since three of the singular values are zero, the dimension of the null space is three (i.e.,

nullity(Â2) = 3). The solution to Γ is at best numeric for this class of configurations when

using SVD. In the next subsection, we will highlight the general numeric solution for single

vortex streets with pole vortices for any n.

5.15.2.2 General Numeric Solution

For a general single vortex with n vortices per ring, the Γ vector has length N = 2(n+ 1). The

first and second set of n values correspond to the upper and lower vortex rings respectively; the

(2n+ 1) and (2n+ 2) components correspond to the values of the north and south pole vortices.
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Using the SVD method, the general solution for n ≥ 2 has a null space of 3 and is of the general

form

Γ = Γ



1
...

1

−1
...

−1

0

0



+ Γnorth



f(φ, n)
...

f(φ, n)

0
...

0

1

0



+ Γsouth



f(φ, n)
...

f(φ, n)

0
...

0

0

1



. (5.119)

The solution that interests us is when the poles have equal and opposite strength (i.e., Γnorth =

−Γsouth) since it is the only case that will produce a single von Kármán street with equal and

opposite rings. For this selection of pole vortices, the f(φ, n) terms cancel out, the vortex street

will have equal and opposite rings with strength Γ, and the two poles will have an independent

equal and opposite strength Γp, given by the following:

Γ = Γ



1
...

1

−1
...

−1

0

0



+ Γp



0
...
...
...
...

0

1

−1



. (5.120)
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Figure 5.45: (a) Angular velocity ω as a function of vortex street latitude φ for n = 2 · · · 6. ω decreases from

+∞ to 0 as φ is increased from 0 to π/2. (b) Additional angular velocity Ω for any n from pole vortices (±Γp) with

Γp = +1. As φ approaches π/2, Ω asymptotes at Γp/(2π).

Furthermore, from (2.53), the center of vorticity for the single street with poles becomes

J = 2


0

0

nΓ cosφ+ Γp

 , (5.121)

and is parallel to the polar axis. With SVD, the solution to f(φ, n) is numeric. In the following

section, we will build on SVD, and provide analytic solutions to the angular velocity of the street

and to f(φ, n).

5.16 Angular Velocity and Explicit Solutions

From Equations (5.107) and (5.121), the longitude of vortex α, given by θα in Section 2.7.2,

rotates rigidly about the polar axis. The angular velocity, therefore, is simply θ̇α for any vortex

α such that its latitude φα 6= 0. We will solve for the angular velocity of single single streets,

and show that this formulation can provide an analytic solution to Equation (5.119), specifically

with an explicit expression for f(φ, n) in that equation.
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5.16.1 Without Pole Vortices

For the single vortex street without poles, we require that θ̇1 = θ̇2 = . . . = θ̇2n for relative equi-

librium. The two rings are symmetrically skewed (by an angle of π/n). Therefore, the longitudes

of the n vortices in the northern ring are: 0, 2π(1)/n, 2π(2)/n, · · · , 2π(n − 1)/n. The longi-

tudes of the n vortices in the southern ring are π/n, 2π(1)/n+π/n, 2π(2)/n+π/n, · · · , 2π(n−

1)/n + π/n. The longitudinal spacing between any two vortices α and λ in the same ring (i.e.,

0 < {α, λ} ≤ n or n < {α, λ} ≤ 2n) is given by

θα − θλ =
2π
n

(α− λ). (5.122)

If the two vortices are in different rings, with 0 < α ≤ n and n < λ ≤ 2n, the longitudinal

spacing is given by

θα − θλ =
2π
n

(α− (λ− n))− π

n

≡ 2π
n

(α− λ)− π

n
(5.123)

As for the latitudes, the first n vortices have a latitude of φ, while the second n vortices have a

latitude of (π−φ). Note that sin(π−φ) = sin(φ) and cos(π−φ) = − cos(φ). As for the vortex

strengths, the rings must have equal and opposite strengths ±Γ from (5.106) for any n 6= 31.

Evaluating γ1λ in Eq. (2.56) gives

cos γ1λ = cos2 φ+ sin2 φ cos
(

2π
n

(α− λ)
)
, 1 < λ ≤ n, (5.124)

cos γ1λ = − cos2 φ+ sin2 φ cos
(

2π
n

(α− λ)− π

n

)
, n < λ ≤ 2n. (5.125)

1We do not solve the angular velocity for configurations with n = 3 when the vortex strengths of the streets’ rings
do not have equal and opposite strengths ±Γ, since this system does not evolve as a vortex street (i.e., the polar axis
and center of vorticity axis are not aligned). In order to solve for the angular velocity, one must derive the angular
coordinates of the system with respect to the center of vorticity axis. For the treatment of a similar problem, see [57].
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Substituting these properties into Eq. (2.55) we get

ω ≡ θ̇1 =
Γ

4π sinφ

n∑
λ=2

sinφ cosφ− cosφ sinφ cos (2π
n (1− λ))

1− cos γ1λ
(5.126)

+
Γ

4π sinφ

2n∑
λ=n+1

sinφ cosφ− cosφ sinφ cos (2π
n (1− λ)− π

n)
1− cos γ1λ

(5.127)

=
Γ cosφ

4π

n∑
λ=2

1− cos (2π
n (1− λ))

1 + cos2 φ− sin2 φ cos (2π
n (1− λ))

(5.128)

+
Γ cosφ

4π

2n∑
λ=n+1

1− cos (2π
n (1− λ)− π

n)
1− cos2 φ− sin2 φ cos (2π

n (1− λ)− π
n)
. (5.129)

For example, if we have n = 4 vortices per ring, the angular velocity of the system becomes

ω =
Γ cosφ

4π
cos4 φ− 10 cos2 φ− 15

cos6 φ+ 5 cos4 φ− 5 cos2 φ− 1
. (5.130)

5.16.2 With Pole Vortices

From Eq. (2.55), the overall change to the rotational velocity of the single vortex street system

from the addition of vortices at the poles with equal and opposite strengths ±Γp ∈ R is denoted

as Ω (see Figure 5.45(b)), and given by

Ω =
Γp

4π(1− cosφ)
+

Γp
4π(1 + cosφ)

(5.131)

=
Γp

2π sin2 φ
. (5.132)

Furthermore, we can derive an analytic solution to f(φ, n) in Equation (5.119) by supplementing

the SVD solution with a constraint on Equation (2.55). We contrast the angular velocity of the

north and south rings with the addition of north and south pole vortices. Using the solution in

(5.119), we will approach the problem by considering a configuration that has a north pole vortex
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and no south pole vortex. That is, the selected vortex strengths are (Γ,Γnorth,Γsouth) = (1, 1, 0),

which gives us vortex strengths

Γ = Γ



1 + f

...

1 + f

−1
...

−1

f

0



. (5.133)

Plugging (5.133) into (2.55), we derive the angular velocity, ω1, for the vortices in the northern

ring to be

ω1 ≡ θ̇1 = θ̇2 = . . . = θ̇n

=
1 + f

4π sinφ

n∑
λ=2

sinφ cosφλ − cosφ sinφλ cos (θ1 − θλ)
1− cos γ1λ

+
−1

4π sinφ

2n∑
λ=n+1

sinφ cosφλ − cosφ sinφλ cos (θ1 − θλ)
1− cos γ1λ

+
f

4π(1− cosφ)
,

or

ω1 = ξ1(1 + f) + ξ2 + ξ3f. (5.134)

The angular velocity of the vortices in the southern ring, ω2, is given by

ω2 ≡ θ̇n+1 = θ̇n+2 = . . . = θ̇2n

=
1 + f

4π sinφ

n∑
λ=1

sinφ cosφλ + cosφ sinφλ cos (θn+1 − θλ)
1− cos γ(n+1)λ

+
−1

4π sinφ

2n∑
λ=n+2

sinφ cosφλ + cosφ sinφλ cos (θn+1 − θλ)
1− cos γ(n+1)λ

+
f

4π((n+ 1) + cosφ)
,
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or

ω2 = ξ4(1 + f) + ξ5 + ξ6f. (5.135)

For the system to obtain relative equilibrium, we require that ω1 ≡ ω2, which gives us the

analytic expression for f :

f ≡ f(φ, n) =
(ξ4 + ξ5)− (ξ1 + ξ2)
(ξ1 + ξ3)− (ξ4 + ξ6)

. (5.136)

Note that we have obtained this result by using only a north pole vortex in the formulation.

The procedure can be repeated for the selection of vortex strengths in Equation (5.119) to be

(Γ,Γnorth,Γsouth) = (1, 0, 1). That is, the same result for f is derived when adding only a

south pole vortex. The conclusion here is that the SVD formulation provides a simple means

to solving the structure of the null space (which would be difficult to produce without SVD).

The setback is that for large N , the SVD solution is at best numerical. When supplementing

the SVD’s numerical result with a constraint on the angular velocity of the system, we can fully

solve the system analytically.

5.17 Streamline Topology

In this section, we present the fourth main contribution of this thesis. The analysis of the stream-

line topology of vortex equilibria and the associated bifurcations is greatly facilitated by the

methods presented in Chapters 2 and 3. We will revisit this topic again in the context of dou-

ble vortex streets, and commence this section by presenting a basic tool in understanding the

streamline patterns on the sphere in the index theorem of Poincaré:

Theorem 1. (PIT): The index If (S) of a two-dimensional surface S relative to any C1 vec-

tor field f on S with at most a finite number of critical points, is equal to the Euler-Poincaré

characteristic of S, denoted χ(S), i.e. If (S) = χ(S).

We know for a sphere, χ(S) = 2. The index for a center is +1, while that for a saddle is

−1. Hence if c denotes the number of centers present (point vortices plus other centers), and s
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(a) Type I (b) Γ∗p = 0 (c) Type II (d) Γ∗p = 1.2

(e) Type I (f) Γ∗p = 7.5 (g) Type III

Figure 5.46: Streamlines topologies for a single von Kármán street with 3 vortices per ring and pole vortices of

equal and opposite strength. The pole strength increases from−5 to +10. A total of three distinct topology types are

identified within four different intervals, separated by three bifurcation topologies.

denotes the number of saddles, then one has c− s = 2. See [40] for more on applications of the

PIT to the understanding of streamline patterns on the sphere.

Consider the case n = 3, φ = 3π/8 and pole vortices of equal and opposite strength Γp. In

this case, the VKS vortices are equal and opposite, with the vortices in the northern ring having

strength Γ = −1. We vary Γp and study the change in the streamline topology. The sequence of

distinct streamline topologies when Γp is increased from −5 to 10 is shown in Figure 5.46. For

Γ = −5, one gets three stagnation points of hyperbolic or saddle type in each hemisphere. The

streamlines associated with these hyperbolic points are plotted in Figure 5.46(a). These stream-

lines are referred to as separatices because they separate regions with different fluid behavior.

For example, in a region containing a point vortex and bounded by a separatix, the fluid orbits

around the vortex, whereas in the middle region void of point vortices, the fluid is transported

globally around the entire sphere. The streamline topology remains the same until Γp reaches

the critical value Γ∗p = 0. At this bifurcation value, the stagnation points collapse to two points

of hyperbolic or saddle type at the poles as shown in Figure 5.46(b). As Γp becomes positive,

three hyperbolic points reappear around each pole as shown in Figure 5.46(c). As Γp increases,

the three hyperbolic points of the north and southern hemispheres approach each other until the
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Figure 5.47: Shannon Entropy sweeps for single vortex street with (solid line) and without (dashed line) pole

vortices. (a) Two vortices per ring, (b) Three vortices per ring.

associated separatrices coincide at a critical pole strength Γ∗p ≈ 1.2, see Figure 5.46(d). At this

bifurcation value, the overall streamline topology changes and region characterized by global

fluid transport disappears. As Γp increases beyond Γ∗p = 1.2, the separatices detach and the

streamline topology changes again with a region of global fluid transport reemerging, see Fig-

ure 5.46(e). Here, the separatices of the stagnation points of the northern hemisphere encircle

vortices from the southern hemisphere and vice-versa. The streamline topology remains the

same until Γp reaches another critical value Γ∗p ≈ 7.5 where the separatrices associated with the

hyperbolic points of northern and southern hemispheres coincide and the region of global trans-

port disappears again, see Figure 5.46(f). As Γp increases beyond Γ∗p = 7.5, the separatrices

split again forming three distinct regions characterized by global fluid transport and six regions

characterized by fluid orbiting around a local vortex.

5.18 Shannon Entropy: Effect of Adding Pole Vortices

Here we analyze the Shannon Entropy of single vortex streets upon adding pole vortices. Since

the total number of vortices in the system changes by two when adding pole vortices, we will

use Equation (3.83), which makes it possible to compare systems consisting of different number

of vortices.
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5.18.1 Number of Vortices Per Ring: n = 2

We begin our analysis for streets with two vortices per ring. Recall from (5.104) that the sin-

gular values for this configuration are σ = (2
√

2a2, 2
√

2a2, 2a2, 0)T , where a2 is given by

Equation (5.103). From (3.84), the probabilities (normalized eigenvalues of covariance matrix

ATA) are ~P = (2/5, 2/5, 1/5, 0)T , and are independent of a2(φ). The Shannon Entropy of this

configuration becomes

H =
1
2

(log4 2 + 2) = const. (5.137)

Upon adding pole vortices to this system, the singular values are given by (5.118). From Equa-

tion (3.84), the probabilities for this system become a non-linear function of φ. In Figure 5.47(a),

we illustrate the change of Shannon Entropy upon introducing pole vortices to the vortices, and

we see that for any latitude φ, the configuration without pole vortices has a higher entropy.

5.18.2 Number of Vortices Per Ring: n = 3

The dimension of the null space for a single vortex street with three vortices per ring, and no pole

vortices is three (see section 5.15.1.2),That is, three of the six singular values are equal to zero.

From (5.110), the singular values are (2a3, 2a3, 2a3, 0, 0, 0)T , with a3(φ) defined in (5.109). The

probabilities for this configuration with Equation (3.84) become ~P = (1/3, 1/3, 1/3, 0, 0, 0)T ,

and are independent of φ. The normalized Shannon Entropy from (3.83) for n = 3 becomes

H = H = log6 3 = const. (5.138)

Upon adding pole vortices, the probabilities become a non-linear function of the angle φ. In

Figure 5.47(b), we compare the normalized Shannon Entropy with and without poles. Interest-

ingly, the two lines cross, which tells us that certain intervals of φ have a higher entropy pole

vortices are present.
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5.18.3 Number of Vortices Per Ring: n ≥ 4

In Figure 5.48, we contrast the normalized Shannon Entropy of configuration with differerent n,

namely for the selections n = 4, 5, 7, 13, 20. We repeat the analysis for configurations without

(5.48(a)) and with (5.48(b)) pole vortices. We observe that all curves are nonlinear functions of

φ, and that there exist local maxima and minima on the curves. Values of φ which correspond

to local maximizers of the Shannon Entropy are deemed to be more robust with respect to their

singular value distributions, than those corresponding to local minimizers. Interestingly, the

most likely number of vortices n per ring changes with φ. That is in Figure (5.48), for any given

φ, one n curve has the highest entropy.
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Figure 5.48: Normalized Shannon Entropy sweeps for single von Kármán streets on the sphere for (a) n =

4, 5, 7, 13, 20 without poles, and (b) n = 4, 5, 7, 13, 20 with poles. The intention of these figures to compare the

entropy of configurations with different n.
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Chapter 6. Double Von Kármán Streets

on the Sphere

We now expand on the previous chapter by adding a second vortex street to our model. As shown

in Figure 6.49 from [37], two adjacent vortex streets on the surface Jupiter lie in close proximity

to one another. In this chapter, we investigate the effects that the additional street has on the

equilibrium solution, role of the pole vortices, streamline topology, and Shannon Entropy.

Figure 6.49: Double vortex street on Jupiter. Cyclones (anti-cyclones) are labeled ‘C’ (‘A’). Velocity profiles on

the left demonstrate identification of cyclones & anti-cyclones, where the first have a positive slope and the latter

have a negative slope in the y vs. v̄ domain. Image from [37].
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Γ Γ
ΓΓ

−γ1Γ−γ1Γ
−γ1Γ

γ1Γ γ1Γ
γ1Γ

ΓΓ Γ Γ

φ2φ1

Figure 6.50: Double Von Kármán Street schematic, illustrating SVD solution and ring definition. Dimension of

the null space is 1. The angle associated with the two rings are φ1 and φ2 respectively. Note that which latitude

is smaller is of no importance. Rather, we identify the different rings by the ordering in the state representation of

Equation (6.139).

6.19 Construction and SVD Solution

6.19.1 Without Pole Vortices

The double von Kármán street model used in this chapter consists of one vortex street in the

northern hemisphere, and a second in the southern hemisphere, where each street consists of two

symmetrically skewed n-vortex rings. One ring in each hemisphere has a latitude of φ1 from

its respective hemisphere’s pole−these are referred to as the φ1-rings. The second ring in each

hemisphere has an angle of φ2, and these are referred to as the φ2-rings. See Figure 6.50 for an

illustration. We write (2.60) for a total ofN = 4n vortices on the sphere and seek configurations

satisfying (2.50). Using the SVD method, it was found that the dimension of the null space

for this system is one. The φ2 rings have equal and opposite strengths ±Γ, while the φ1-rings

have equal and opposite strengths ±γ1Γ, where γ1 = γ1(φ1, φ2, n) ∈ R. Note that the SVD

method can at best provide a numerical result for γ1. As for the state representation, the first n

state variables corresponds to the northern φ2-ring’s vortices. The second and third set of n state

variables correspond to the northern and southern φ1-ring’s vortices respectively. Finally, the

97



last n state variables correspond to the southern φ2-ring’s vortices. In other words, the solution

is

Γ = Γ(1, ..., 1,−γ1, ...,−γ1, γ1, ..., γ1,−1, ...− 1)T . (6.139)

Furthermore, the general center of vorticity for this class of configurations from Equation (2.53)

is given by

J = 2Γ


0

0

n(cosφ2 − γ1 cosφ1),

 , (6.140)

which implies that the center of vorticity is aligned with the polar axis for any choice of param-

eters.
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6.19.2 With Pole Vortices

A double VKS with equal and opposite vortex rings (i.e., γ1 = 1) can be achieved by adding

vortices at the north and south poles. The dimension of the null space for the system solved

using (2.49) is three. The additional dimensionality of the solution comes from the pole vortices

that have independent strengths Γnorth and Γsouth, and the general form is

Γ = Γ



1
...

1

−γ1

...

−γ1

γ1

...

γ1

−1
...

−1

0

0



+ Γnorth



f1(φ1, φ2, n)
...

f1(φ1, φ2, n)

f2(φ1, φ2, n)
...

f2(φ1, φ2, n)

f3(φ1, φ2, n)
...

f3(φ1, φ2, n)

0
...

0

1

0



+ Γsouth



f1(φ1, φ2, n)
...

f1(φ1, φ2, n)

g2(φ1, φ2, n)
...

g2(φ1, φ2, n)

g3(φ1, φ2, n)
...

g3(φ1, φ2, n)

0
...

0

0

1



, (6.141)

where numerically (f2−g2) = −(f3−g3) = ∆p. Clearly, the pole vortices affect the strength of

the street vortices, and the poles can be chosen so to make the constant γ1 from Equation (5.106)

equal to one, thus achieving the double VKS shown in Figure 6.51. One solution would be to

choose the pole strengths to be equal and opposite with Γnorth = −Γsouth = γ2Γ, where

γ2 = γ2(φ1, φ2, n) =
γ1 − 1

∆p
. (6.142)

99



Γ

γ2Γ

−γ2 Γ

−Γ −Γ
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−Γ−Γ

Figure 6.51: Double von Kármán Street with poles schematic, illustrating SVD solution. Dimension of the null

space is 3, with the pole vortices having independent strengths of one another. Since the poles vortices affect the

street vortices’ strength, their strengths are chosen to be ±γ2Γ, γ2 = γ2(φ1, φ2, n) in order to ensure γ1 ≡ 1 in

Figure 6.50.

The solution collapses into one dimension with the pole vortices stacked at the end of the state

representation vector, such that

Γ = Γ(1, ..., 1,−1, ...,−1, 1, ..., 1,−1, ...− 1, γ2,−γ2)T ∈ R4n+2. (6.143)

Note that this solution to γ2 is numeric. In Section 6.20.1 we will couple this solution with the

angular velocity formulation to produce an analytic result. It is also relevant to note that the

center of vorticity of the double VKS is

J = 2Γ


0

0

n(cosφ2 − cosφ1) + γ2

 . (6.144)
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(a) φ1 = 3π/8 (b) φ1 = 5π/12

Figure 6.52: Equilibrium curves present for pole strength (γ2) vs. angle ratio (φ1/φ2) when n = [4, 5, 6]. Angle

φ1 is held fixed at 3π/8 in (a), and 5π/12 in (b), while φ2 is the control parameter. Recall that γ2 = γ2(φ1, φ2, n).

Recall that the pole strength can be any value for the degenerate case φ1 = φ2 represented by the solid line in the

graphs (single VKS).

6.19.3 Equilibrium Curves

Each double street configuration with its unique set of parameters φ1, φ2 and n has a single

corresponding pole strength factor γ2(φ1, φ2, n) associated with its pole vortices. Figures 6.52(a)

and 6.52(b) illustrate two sets of equilibrium curves present in the coordinate system γ2 vs. the

angle ratio φ1/φ2. The angle φ1 is kept fixed at 3π/8 in 6.52(a), and 5π/12 in 6.52(b), with a

sweep of 0 < φ2 < π/2. Three curves are displayed in each of the two subplots corresponding

to n = 4, 5 and 6 vortices per ring. A degenerate case occurs when φ1 = φ2, which entails the

merger of the two rings in each hemisphere−and this results in the collapse of the system into

a single vortex street. As was described in the previous section, the configuration will be an

equilibrium single VKS for any Γnorth = −Γsouth (hence the vertical line in the figure). When

φ2 is perturbed by an infinitesimal amount from φ1 = φ2, the magnitude of the pole strength

factor γ2 required to create a double VKS must be infinitely large. It is also relevant to point out

that for certain ratio values, the pole strength γ2 ≡ 0, which implies that some configurations

are double vortex streets only in the absence of pole vortices.
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6.20 Angular Velocity and Explicit Solutions

6.20.1 Without Pole Vortices

Using the angular velocity formulation, we will derive an analytic solution to γ1(φ1, φ2, n) in

Equation (6.139). Assuming that the center of vorticity is parallel to the polar axis (i.e., Equa-

tion (6.140) applies), we conclude that the rate of change of the vortices’ longitudes in Equa-

tion (2.55) is equivalent to the angular velocity of the configuration 2. We begin our analysis by

choosing the same vortex strengths found in Equation (6.139), and assume that γ1 is an unknown

parameter to be solved. Next, we derive one expression for the angular velocity of the vortices

in the φ1 rings, and a second for the vortices in the φ2 rings. For simplicity in writing, we define

Θαλ ≡
sinφα cosφλ − cosφα sinφλ cos (θα − θλ)

4π sinφα(1− cos γαλ)
. (6.145)

Let ω1 be the angular velocity of the φ1 rings’ vortices. Therefore, it follows that

ω1 ≡ θ̇n+1 = θ̇n+2 = . . . = θ̇2n (6.146)

= θ̇2n+1 = θ̇2n+2 = . . . = θ̇3n.

Next, we come up with a general expression for ω1 from the angular velocity θ̇n+1 of vortex

n+ 1. From Equations (2.55) and (6.145), we have

θ̇n+1 =
n∑
λ=1

ΓλΘ(n+1)λ +
2n∑

λ=n+2

ΓλΘ(n+1)λ +
3n∑

λ=2n+1

ΓλΘ(n+1)λ +
4n∑

λ=3n+1

ΓλΘ(n+1)λ.

2The longitudes of the vortices in the φ2 rings are 0, 2π(1)/n, 2π(2)/n, · · · , 2π(n − 1)/n , while those of the
φ1 rings are π/n, 2π(1)/n+ π/n, 2π(2)/n+ π/n, · · · , 2π(n− 1)/n+ π/n.
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The four summations correspond to the four vortex rings, with an exclusion of the n + 1 term

from the 2nd summation. Next, we replace the Γλ terms with their values from (6.139) to get

θ̇n+1 = Γ
n∑
λ=1

Θ(n+1)λ − γ1Γ
2n∑

λ=n+2

Θ(n+1)λ + γ1Γ
3n∑

λ=2n+1

Θ(n+1)λ − Γ
4n∑

λ=3n+1

Θ(n+1)λ

= γ1Γ

(
3n∑

λ=2n+1

Θ(n+1)λ −
2n∑

λ=n+2

Θ(n+1)λ

)
+ Γ

(
n∑
λ=1

Θ(n+1)λ −
4n∑

λ=3n+1

Θ(n+1)λ

)
,

or simply that

ω1 = γ1Γϑ1(φ1, φ2, n) + Γϑ2(φ1). (6.147)

We now repeat the process for the vortices on the φ2 of rings by defining ω2 as their angular

velocity. Therefore,

ω2 ≡ θ̇1 = θ̇2 = . . . = θ̇n (6.148)

= θ̇3n+1 = θ̇3n+2 = . . . = θ̇4n.

We use the angular velocity θ̇1 of vortex 1 to form an expression for ω2. From Equa-

tions (2.55) and (6.145),

θ̇1 =
n∑
λ=2

ΓλΘ1λ +
2n∑

λ=n+1

ΓλΘ1λ +
3n∑

λ=2n+1

ΓλΘ1λ +
4n∑

λ=3n+1

ΓλΘ1λ.

Note the exclusion of the 1st term in the 1st summation. Again, we replace the Γλ terms with

their values from (6.139) to get

θ̇1 = Γ
n∑
λ=2

Θ1λ − γ1Γ
2n∑

λ=n+1

Θ1λ + γ1Γ
3n∑

λ=2n+1

Θ1λ − Γ
4n∑

λ=3n+1

Θ1λ

= γ1Γ

(
3n∑

λ=2n+1

Θ1λ −
2n∑

λ=n+1

Θ1λ

)
+ Γ

(
n∑
λ=2

Θ1λ −
4n∑

λ=3n+1

Θ1λ

)
.
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Therefore,

ω2 = γ1Γϑ3(φ1, φ2, n) + Γϑ4(φ2). (6.149)

Our condition for relative equilibrium is that the φ1 and φ2 rings have the same angular velocity

(i.e., ω1 = ω2). By equating (6.147) and (6.149), we derive an explicit expression for γ1 of

Equation (6.139) to be

γ1 =
ϑ4 − ϑ2

ϑ1 − ϑ3
. (6.150)

This result can be used to generate analytic curves for the angular velocity, or of γ1, as a function

of the parameters.

6.20.2 With Pole Vortices

Maintaining the state representation in Equation (6.143), the desired vortex strengths of the

system are given by

Γ = (Γ, . . . ,Γ,−Γ, . . . ,−Γ,Γ, . . . ,Γ, . . . ,Γ,Γp,−Γp)T , (6.151)

where Γp is the pole vortex strength that we will solve (to match the solution in (6.143)). We

can also assume that Equation (6.144) applies (i.e., the system is rotating rigidly about the polar

axis). Therefore, as in Equation (6.146), we define ω1 to be the angular velocity of the vortices

in the φ1 ring. We derive an expression for ω1 by substituting (5.131), (6.145) and (6.151) into

(2.55) to get

θ̇1 = Γ

(
n∑
λ=1

Θ(n+1)λ −
2n∑

λ=n+2

Θ(n+1)λ +
3n∑

λ=2n+1

Θ(n+1)λ −
4n∑

λ=3n+1

Θ(n+1)λ

)

+
Γp

2π sin2 φ1
,
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or

ω1 = Γζ1(φ1, φ2, n) + Γpζ2(φ1). (6.152)

Similarly, if define ω2 to be the angular velocity of the vortices in the φ2 rings, and using the

same substitutions in conjunction with the relations of Equation (6.148), we derive that

ω2 = ζ3(φ1, φ2, n)Γ + ζ4(φ2)Γp, (6.153)

where

ζ3 =

(
n∑
λ=2

Θ1λ −
2n∑

λ=n+1

Θ1λ +
3n∑

λ=2n+1

Θ1λ −
4n∑

λ=3n+1

Θ1λ

)
,

and

ζ4 =
1

2π sin2 φ2
.

Since the angular velocity of the two rings should be equal for relative equilibrium (i.e., ω ≡

ω1 ≡ ω2), we derive the analytic expression for the required pole vortex strength to be

Γp = γ2Γ, γ2 = γ2(φ1, φ2, n) =
ζ1 − ζ3
ζ4 − ζ2

. (6.154)

Example 2. Consider a double vortex street with n = 2 per ring. Derive the angular velocity.

The angular velocity ω1 in terms of φ1, φ2. From (6.152), we have

ω1 = ζ1Γ + ζ2Γp, (6.155)

with

ζ1 = − 1
4π cosφ1

(
1− cos2 φ1 cos2 φ2 + 4 cos3 φ1 cosφ2 − 4 cosφ1 cosφ2

− cos2 φ1 + cos4 φ1 cos2 φ2 + 1− cos2 φ1 cos2 φ2

)
, (6.156)
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(c) φ1 = 5π/12, 0 < φ2 < φ1
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(d) φ1 = 5π/12, φ1 < φ2 < π/2

Figure 6.53: Angular velocity ω vs. angle φ2 for n = 2 · · · 5. φ1 held fixed at 3π/8 in (a) and (b), and at 5π/12

in (c) and (d). Singularity occurs since Γp → ±∞ as φ2 → φ1.

and just as in Equation (5.131),

ζ2 =
1

2π sin2 φ1
. (6.157)

The angular velocity ω2 from (6.153) becomes

ω2 = ζ3Γ + ζ4Γp, (6.158)

with

ζ3 =
1

4π cosφ2

(
1− cos2 φ2 cos2 φ1 + 4 cos3 φ2 cosφ1 − 4 cosφ2 cosφ1

− cos2 φ2 + cos4 φ2 cos2 φ1 + 1− cos2 φ2 cos2 φ1

)
, (6.159)
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and with Equation (5.131) we have

ζ4 =
1

2π sin2 φ2
. (6.160)

The required pole vortex strength factor γ2 to ensure that ω1 and ω2 are equivalent can then be

solved analytically using Eq. (6.154).

In Figure 6.53, analytic curves for the angular velocity vs. φ2 with constant φ1 are presented

for n = 2 · · · 6, and for the two scenarios φ1 = 3π/8 and φ1 = 5π/12. The angular velocity

approaches either +∞ or −∞ when φ2 → φ1 or φ2 → π/2 since the required pole vortex

strength factor γ2 to ensure relative equilibrium also becomes infinite. Note also that the equi-

librium curves in Figure 6.52 can be derived analytically. In the next subsection, we address the

result of choosing different angular velocities for each set of vortex rings in each hemisphere

(i.e., Eq. (6.154) is not satisfied).

6.20.3 Shearing Structures

In Section 1.3.2 of the introduction, we referenced an investigation by Coddington et al. in

Figure 1.8 from [17]. To recapitulate, small amplitude sinusoidal perturbations resulted from

laser-zapping the central vortex site, and effectively modifying its circulation strength. In the

context of vortex streets on the sphere, the pole vortices can be interpreted as the ‘central’ vor-

tex, while the vortex rings can be interpreted as concentric bands. As was discussed in the

previous section, the selection of the pole vortices’ strengths plays a crucial role in attaining a

relative equilibrium. If γ2 from Eq. (6.154) is not chosen correctly, the different vortex rings

will rotate with different angular velocities, resulting in a non-equilibrium shearing-like flow.

Numerical experiments of vortex street configurations with an incorrect selection of parameter

γ2 demonstrated the existence of periodic and quasi-periodic dynamics with respect to the inter-

vortical distances (see Figures 6.54 and 6.55). These types of configurations exhibit periodic and

quasi-periodic oscillations, and can be more generally classified as shearing vortex lattices.
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(a) All vortices (side view) (b) All vortices (top view)

(c) Vortex set I (side view) (d) Vortex set I (top view)

(e) Vortex set II (side view) (f) Vortex set II (top view)

Figure 6.54: Time evolution of point vortices of double street with poles given by solid black lines. Pole vortex

strengths do not satisfy equilibrium condition given by Equation (6.143). Specifically, pole vortices have strength 0

instead of±γ2Γ. Figures (a) and (b) show evolution of all vortices. Figures (c) and (d) show evolution of one isolated

set of vortices marked by filled circles (one from each hemisphere), and demonstrate that the dynamics is periodic.

Figures (e) and (f) show the evolution of a second set of vortices, also showing periodic dynamics.
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Figure 6.55: Quasi-periodic time evolution of point vortices of double street with poles given by solid black lines.

Pole vortex strengths do not satisfy equilibrium condition given by Equation (6.143). Specifically, pole vortices have

strength ±2γ2Γ instead of ±γ2Γ.

6.21 Streamline Topology

The stagnation points for a double street naturally have a more elaborate structure than those of a

single street. Consider the case with n = 5, φ1 = 13π/40, pole vortices with equal and opposite

strength γ2Γ such as in (6.143), and with φ2 is the control parameter. We distinguish streamline

topologies based on the angle ratio R = φ1/φ2. Figures 6.56 and 6.58 contain a sequence of

streamline topologies for ratios R < 1 and R > 1 respectively. Figure 6.57 is a curve of pole

vortex strength γ2 vs. angle ratio R for the configuration at hand, and provides a supplementary

insight into the γ2 −R and changes in the streamline topology.

First consider Figure 6.56 in which R < 1 (which means that the φ2-rings are closer to

the equator). When R < 0.691, one gets ten stagnation points of hyperbolic or saddle type

in each hemisphere−each of which is aligned longitudinally with one of the street vortices. In

addition, there are two sets of separatrices in each hemisphere that separate five different regions

of global fluid transport; this is the first topology type and is illustrated in Figure 6.56(a). The

streamline topology remains the same until R∗ ≈ 0.691. At this point, the two separatices in

each hemisphere collapse into one, and two of the regions associated with global fluid transport

disappear−see Figure 6.56(b). Next, as soon as R > 0.691, the separatrix in each hemisphere
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splits into a set of two, and two regions with global fluid transport reemerge; this marks topology

type II illustrated in Figure 6.56(c). As we increase R, the five stagnation points that are aligned

with the φ1-rings in each hemisphere approach the equator until they merge at the bifurcation

value R∗ ≈ 0.755. At this point, there are five stagnation points at the equator that are aligned

with the φ1-rings. In addition, there are still five remaining stagnation points of hyperbolic or

saddle type in each hemisphere that are longitudinally aligned with the φ2-rings, see Figure

6.56(d). As soon as R > 0.755, each of the stagnation points at the equator splits into two,

and they move away from each other as R increases. The topology remains unchanged (labeled

type III in Figure 6.56(e)) until the next bifurcation value of R∗ ≈ 0.801 is reached. At this

bifurcation, two sets of separatrices in each hemisphere coincide and two regions associated

with global fluid transport disappear−see Figure 6.56(f). Note also from Figure 6.57 that γ2 = 0

at this bifurcation value.

As soon as R > 0.801, the separatrices that had just merged split and the two regions

with global fluid transport reemerge; this range of R is identified as topology type IV in Figure

6.56(g). As R increases, the five stagnation points in each hemisphere that are longitudinally

aligned with the φ2-rings approach their respective hemisphere’s poles. The next bifurcation

point is reached when R∗ ≈ 0.843 at which point the ten stagnation points collapse into two

of hyperbolic or saddle type at the poles (Figure 6.56(h)). Observe from Figure 6.57 that this

bifurcation point corresponds to an inflection point in the γ2 − R relation. As soon as R >

0.843, five hyperbolic points reappear around the poles, and begin moving towards the φ1-rings’

vortices; this returns us to topology type III shown in Figure 6.56(i). The next bifurcation that

occurs results from the ten stagnation points at the equator. AsR increases, the stagnation points

continue to move on the equator untilR∗ ≈ 0.893, at which point they collapse into a total of five

stagnation points of hyperbolic or saddle type−with each one longitudinally aligned with one of

the vortices from the φ2 rings. See Figure 6.56(j). As soon as R > 0.893, the five stagnation

points at the equator split, reappear as a total of ten, and asR increases, they begin to move away

from the equator and towards the φ2-rings. The range 0.893 < R < 1 marks the final topology

interval (which is back to Type II) for the range 0 < R < 1, and is illustrated in Figure 6.56(k).
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(a) Type I (b) R∗ = 0.691 (c) Type II (d) R∗ = 0.755

(e) Type III (f) R∗ = 0.801 (g) Type IV (h) R∗ = 0.843

(i) Type III (j) R∗ = 0.893 (k) Type II

Figure 6.56: Streamline topology sequence for the range of ratios 0.68 < R < 0.95 in ascending order. Stagnation

points move either along constant longitude lines or the equator as the ratio varies. Four different topology types are

illustrated (labeled I, II, III, IV), and are separated by five bifurcation scenarios.
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Figure 6.57: Equilibrium curve corresponding to the relation of the pole vortex strength factor γ2 vs. angle ratio

R for n = 5, φ = 13π/40, and with φ2 as the control parameter. This plot also corresponds to the configurations

found in Figures 6.56 and 6.58, and illustrates (with vertical lines) that some of the bifurcation points correspond to

either an inflection in the curve or when γ2 = 0.
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(a) Type II (b) R∗ = 1.225 (c) Type III (d) R∗ = 1.308

(e) Type IV (f) R∗ = 1.417 (g) Type V

Figure 6.58: Streamline topology sequence for the range of ratios 1.05 < R < 2.25 in ascending order. Main-

taining notation consistency with Figure 6.56, four different topology types are evident, labeled Types II, III, IV,

V.

We now describe the results of Figure 6.58 in which R > 1 (this means that the φ2 rings

are closer to the poles). We start with the first topology interval illustrated in Figure 6.58(a). To

be consistent with the notation from Figure 6.56, the first topology interval is Type II. There are

ten stagnation points of hyperbolic or saddle type in each hemisphere−each of which is aligned

longitudinally with one of the street vortices. In addition, there are two sets of separatrices in

each hemisphere that separate five different regions of global fluid transport. As R increases,

the stagnation points move away from the street vortices. The first five stagnation points in

each hemisphere are longitudinally aligned with the φ1-rings and are approaching the equator;

the second five are longitudinally aligned with the φ2-rings and are approaching the poles. The

topology remains unchanged until R∗ ≈ 1.225, at which point the first five stagnation points

from each hemisphere (total of ten) approach each other, and merge to form five stagnation points

of hyperbolic or saddle type at the equator. At this bifurcation value, one of the regions associated

with global fluid transport disappears. As soon as R > 1.225, each of the five stagnation points

at the equator splits into two, giving a total of ten stagnation points of hyperbolic or saddle type

at the equator. As R increases, these stagnation points continue to move apart on the equator
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towards the longitudes associated with the φ2-rings. This range of R is described by topology

type III, and is illustrated in Figure 6.58(c).

Meanwhile, the remaining five stagnation points in each hemisphere are longitudinally

aligned with the φ2-rings and are approaching the poles as R is increasing. The next bifur-

cation occurs when R∗ ≈ 1.308 (see Figure 6.58(d)) when the stagnation points collapse to two

points of hyperbolic or saddle type at the poles. Note that from Figure 6.57 that this bifurcation

point corresponds to the case when γ2 = 0.

As R increases, five stagnation points reappear around the poles and begin moving towards

the φ2-rings as shown in Figure 6.58(e), and described as topology type IV. The next bifurcation

takes place when R∗ ≈ 1.417 as shown in Figure 6.58(f). At this point, the ten stagnation points

at the equator merge (at the longitude associated with the φ2-rings) into five of hyperbolic or

saddle type. As soon as R > 1.417, we get our last topology type (see Figure 6.58(g)), labeled

type V. Each of the five stagnation points at the equator split into two to give a total of ten, and

begin to move away from the equator and towards the φ2-rings as R increases.

It can be observed from looking at Figure 6.57 that one can extract information about the

streamline topology by looking at the γ2 vs. R curve. In Figure 6.52, we can see that each

set of parameters n and φ1 has a unique γ2 vs. R curve, and will therefore also have a unique

set of streamline topologies over the range R. Therefore, the streamline topologies discussed

for Figures 6.56 and 6.58 are specific only to the aforementioned parameters, and cannot be

generalized as being the result for any double vortex street.

6.22 Shannon Entropy

In this section, we will illustrate a few results for the normalized Shannon Entropy (from (3.83))

of double vortex streets. In Figure 6.59, we have the Shannon Entropy vs. angle φ2, for φ1 =

3π/8 and n = 3, 4, 8, 10. In each subfigure, we illustrate the effect of adding pole vortices to the

configurations. The entropy curves for the double vortex street are much richer in structure than

were those for the single vortex street. There is a set of local minima and maxima associated with
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Figure 6.59: Shannon Entropy vs φ2 for φ1 = 3π/8 and n = 3, 4, 8, 10. The figures llustrate the effect on entropy

upon adding pole vortices to the configuration.

the curves. For the case n = 3, the curves with and without pole vortices cross several times,

while when n > 3 the curves for configurations without pole vortices have a higher entropy

than do the curves for configurations that do not for all φ2. We interpret values of φ2 which

correspond to local maximizers of the Shannon Entropy as more robust with respect to their

singular value distributions, than the remaining values of φ2. In addition, those at local maxima

would tend to get ‘selected’ more often than others in a random search setting as distributions

with larger entropy have more combinatorial ways of being chosen at random [56].
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Chapter 7. Conclusions

7.23 Summary

This report was a study of several key properties of relative vortex equilbria−or vortex lattices.

To recapitulate, we used a condition for relative vortex equilbrium derived from the Hamiltonian

point vortex model (Chapter 2). In Chapter 3, we introduced three tools from linear algebra to

facilitate our analysis. At the starting point of our work, the techniques presented in Chapters 2

and 3 made it possible to find all vortex strengths, given by Γ, for a given configuration that will

ensure that the vortices remain in relative equilbrium. The main contributions of this thesis can

be classified into four categories:

1. Asymmetric equilibria: It was shown that asymmetric lattices with a non-trivial equilib-

rium cannot be chosen at random (i.e., when the vortex locations are selected at random

from a uniform distribution). Instead, it is possible to begin with a general random asym-

metric lattice, and converge to an asymmetric geometry that has a non-trivial solution via

a ‘Brownian ratchet’ scheme that mimics the thermal cooling observed in Bose Einstein

Condensates ([25], [26]). Via Singular Value Decomposition (SVD), the ratchet scheme

utilized the singular values associated with the configuration matrix A (see (2.49)) to con-

verge to a non-trivial equilibrium (i.e., nullity(A) > 0). That is, the smallest singular

value must be zero. If the convergence scheme is repeated for the same initial configura-

tion, the ratchet converges to a different asymmetric equilibrium with each run. Although

non-trivial equilibria lie arbitrarily close to one another, there is a non-zero, finite distance
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between a trivial and non-trivial equilibrium configuration, and is given by the Frobenius

norm ‖ · ‖F . In other words, the set of non-trivial equilbria is not dense within the set of

all possible configurations. For results, see Chapter 4.

2. Shannon Entropy: The Shannon Entropy associated with A was studied, and it was found

that geometries that are more prevalent in physical settings have higher entropies than

those that are less common. Therefore, we interpret the Shannon Entropy as a scalar mea-

sure of the robustness, or likelihood of existence of a given configuration geometry. With

the Brownian ratchet scheme, the system tended to converge to an equilibrium configu-

ration whose entropy was within the same neighborhood as the initial configuration. By

normalizing the Shannon Entropy, we proposed that we can be compare configurations

containing a different number of vortices. In the context of geophysical flows, the Shan-

non Entropy could be used as a means to predict the most likely parameters of vortex

streets (i.e., latitude of the streets, number of vortices in the street, etc.). Shannon Entropy

results are present in Chapters 4, 5 and 6.

3. Model of vortex streets of the sphere: We presented solutions to both single (chapter 5)

and double (Chapter 6) vortex streets on the sphere. The SVD technique provided a sys-

tematic way of solving vortex equilbria for large N . The solution to Γ with this approach

was numeric since the dimension of A was large. When coupled with the center of vortic-

ity and angular velocity formulations, it was possible to build on SVD and extract analytic

results for the vortex strengths. It was found that non-trivial solutions to symmetric vor-

tex equilibria lie along smooth equilibrium curves within the configuration space, which

means that it is possible to modify the inter-vortical geometry smoothly from one con-

figuration with a nontrivial solution that possesses a certain symmetry to a second while

maintaining relative equilibrium. This also implies that certain symmetric equilibria solu-

tions lie arbitrarily close. One example of such a smooth transition was for the double
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vortex street on the sphere with pole vortices, where the relative strength of the pole vor-

tices γ2 ( in Equation (6.143)) was given by an analytic function of the system geometry,

and varied smoothly with the angles of the vortex streets from the poles.

It was found that pole vortices play an important role in fixing, or in other words, assuring

that the vorticity vector remained constant. That is, pole vortices have a central role in

the creation or destruction of vortex streets. Studies in which the strength of the pole

vortices was perturbed from equilibrium resulted in shearing, which we define as periodic

and quasi-periodic orbits of the inter-vortical distances about the center of vorticity vector.

We made the comparison to [17], in which the central vortex of a BEC lattice was blasted

by laser. The blast effectively changed the strength of the central vortex, and resulted in

small amplitude sinusoidal perturbations.

4. Streamline topology of vortex streets on the sphere: With the techniques presented,

we demonstrated that the streamline topology bifurcation analysis is greatly facilitated.

Streamline topology analysis is a crucial feature of vortex equilibria, as different topolo-

gies entail different fluid transport and mixing regimes. For single and double vortex

streets, we presented the different topology types, and linked bifurcations to critical points

on the equilibrium curves.

7.24 Future Work

Several important results and conclusions were attained in this study. However, with the closing

of this thesis, many open questions were discovered along the way, and there is now a rich variety

of topics that are ripe for investigation. Several topics include:

1. Stability of vortex lattices: In particular, the stability of vortex streets on sphere. A start-

ing point for this investigation would be to follow the work done by [13], in which they

examined the nonlinear stability of a single vortex ring with a fixed latitude−both with and

without the presence of pole vortices. The general Hessian matrix for the configuration
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was solved, and the authors were able to derive a bifurcation diagram that distinguished

stable and unstable regimes with respect to the parameters affecting the configuration’s

geometry and vortices’ relative strengths. Since a vortex street consists of two symmetri-

cally skewed rings, stability results could follow from the techniques used in this work.

2. Vortex lattices interacting with solid boundaries: This could be incorporated into the

aforementioned techniques by modeling boundaries via the method of images. A start-

ing point could be the introduction of symmetric arrays of boundaries and vortices, and

developed into cases in which solid boundary breaks the symmetry of lattices.

3. Viscous vortex lattices: The Navier Stokes equation can produce a model for a single

viscous point vortex (see Appendix B.2). Modeling systems with more than one viscous

point vortex becomes much more difficult, since the natural radial symmetry associated

with the single viscous vortex breaks. It might possible to formulate a model for approxi-

mate viscous vortices, and derive whether the types of geometries solved for inviscid point

vortices translate as solutions to viscous vortex configurations.

4. The reverse problem and uniqueness: The problem in reverse is whether it is possible to

derive or estimate a configuration from a configuration matrix. As a numeric solution,

it might be possible to do this via a Brownian ratchet, in which the geometry compo-

nents (inter-vortical distances and orientations) are fluctuated until they converge towards

a desired A. In addition, does a given configuration matrix A correspond to a single

configuration X , or can multiple configurations with unique geometries possess the same

configuration matrix? This problem was introduced in a Section 4.4, in which the number

of independent variables corresponding the positions of a configuration with N points (or

vortices) were solved, both in the presence and absence of a coordinate system, and were

compared to the number of non-trivial elements in the configuration matrix A for different

N . The point to be made was whether the system can be described as undetermined or

over-determined for different N .
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5. Biased ratchets: The Brownian ratchet presented converges with no consideration to the

form of the solution. Biased ratchets can be designed that possess constraints on the

geometry (for example: an allowable range of distances between the vortices, or bounded

domains), or on the solution (example: one might aspire to solve for configurations in

which the vortices all have equal strength.)

6. Shannon Entropy: In a work to appear by Newton & Sajako, vortex lattices are perturbed

from equilibrium, and the Shannon Entropy of A will be tracked as the vortex system

evolves dynamically with time. The motivation is to determine the correlation between

the dynamics, entropy and evolution of point vortex systems.
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Appendix A. Examples of Symmetric

Lattices

Figures A.60, A.61 and A.62 are a compact catalogue of various configurations that possess

symmetries in addition to and their solutions (which is listed in the captions).
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(a) N = 8, hollow contour (b) N = 9

(c) N = 25

Figure A.60: Square lattices. Solutions are (a) null space of 1 with Γ = (2, 1, 2, 2, 1, 2, 1, 1)T , (b) null space of

two Γ = α(0, 1, 1, 0.2, 0 , 1, 0, 1, 0)T + β(1, 0, 0, -0.1, 1, 0, 1, 0, 1)T . (c) has null space of one with Γ = (1, 76/327, 1,

-76/327, 1, - 76/327, -37/218, -69/295, -37/218, -76/327, 1, -69/295, 1, -69/295, 1, -76/327, 37/218, -69/295, -37/218,

-76/327, 1, -76/327, 1, -76/327, 1)T . Fractions represent numerical approximations.
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(a) N = 37, Triple Hexagon

(b) N = 13, Star (c) N = 10, Triangle

Figure A.61: Triangular lattices: (a) null space of 1, solution is Γ = (-11/9, - 3/2, -3/2, -3/2, -3/2, -3/2, -3/2, -34/9,

-34/9, 1, 1, -34/9, -34/9, 1, 1, 1, 1, -34/9, -34/9, 1, 1, -14/9, -14/9, -14/9, -14/9, 1, 1, -14/9, -14/9, -14/9, -14/9, -14/9,

-14/9, -14/9, -14/9, 1, 1)T , (b) null space of two, solution is Γ = α(-6/7, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0)T + β(13/14, 0,

0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1)T , (c) null space of 1, solution is Γ = (-6/7, 0, 1, 1, 0, 1, 1, 0, 1, 1)T . Fractions represent

numerical approximations.
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(a) N = 7, Two branches (b) N = 10, Three branches

(c) N = 13, Four branches (d) N = 16, Five branches

Figure A.62: Snowflake lattices. Characterized by concentric, rotational symmetry. The lattices above have a

null space of one, with vortices that possess the same distance from the center having the same strength. (a) Γ ≈
(0.1517, 0.1517, -0.1572, 0.1517, 0.1517, -0.1572, -0.0787)T , (b) Γ ≈ (0.1134, 0.1134, -0.0741, 0.1134, 0.1134,

-0.0741, 0.1134, 0.1134, -0.0741, -0.0973)T , (c) Γ ≈ (0.0918, 0.0918, 0.0500, 0.0918, 0.0918, 0.0500, 0.0918,

0.0918, 0.0500, 0.0918, 0.0918, 0.0500, -0.0657)T , (d) Γ≈ (0.0265, 0.0265, 0.1341, 0.0265, 0.0265, 0.1341, 0.0265,

0.0265, 0.1341, 0.0265, 0.0265, 0.1341, 0.0265, 0.0265, 0.1341, 0.0640)T
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Appendix B. Structure of the

Configuration Matrix: Single Vortex

Street

We now comment on the structure of the configuration matrix corresponding to single vortex

streets on the sphere for the case of a single vortex street with 3 vortices per ring. The configu-

ration matrix takes the following form

From the structure of the configuration matrix found in (5.108) for n = 3, one can readily

conclude that AΓ = 0 gives rise to a total of fifteen equations: six equations that link exactly

one vortex in the northern ring to one in the southern ring and nine equations that are identically

zero. This information can be represented pictorially as done in Figure B.63.

The number of filled vortices per ring is either 1 or 0 which means that one has 2 or 0 non-

trivial entries in a given row of the configuration matrix A. In the case of 2 non-trivial entries,

one entry is associated with a vortex from the northern hemisphere and the second is associated

with a vortex from the southern hemisphere.

For vortex streets with n > 3 vortices per ring, two distinct patterns emerge in the configu-

ration matrix: one pattern for n odd and another pattern for n even. These patterns share some

properties. The first similarity is that if, in a given row of A, there are m ≤ n non-trivial entries

associated with vortices from the northern hemisphere, there is an equal number of non-trivial

entries associated with vortices from the southern hemisphere in that row. The second similarity
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(a) 0/3 Filled, 9 eqs. (b) 1/3 Filled, 6 eqs.

Figure B.63: Combinations found in the configuration matrix of a single Von Kármán Street on the Sphere with

n = 3 vortices per ring. Image shows top view of one ring (either northern or southern). There are six equations

in the configuration matrix with 0 non-trivial terms per ring, and another nine with 1 vortex from each ring a with

non-trivial coefficient

(a) N=7 Allowed (b) N=7 Not Allowed (c) N=8 Allowed (d) N=8 Not Allowed

Figure B.64: Contrasting allowable and unallowable configurations for N = [7, 8]. Allowable configuration all

have even symmetry with respect to a planar axis, while unallowable ones visibly do not have any symmetries.

is that if there arem < n non-trivial entries in a given row ofA associated with vortices from the

northern hemisphere, the ordering of these entries must possess a certain symmetry. For exam-

ple, consider the configuration matrix A associated with n = 7 and say that one row of A has 4

non-trivial entries associated with vortices from the northern hemisphere, these 4 entries can be

ordered as shown in Figure B.64(a) but cannot appear in the order shown in Figure B.64(b).

B.1 Odd Number of Vortices per Ring

For n ≥ 5, the number of vortices per ring corresponding to non-trivial entries in the configu-

ration matrix is (n − 2), (n − 3) and (n − n). For example, for n = 9, the number of filled

vortices per ring is either 7, 6 or 0 as shown in Figure B.65, which means that one has 14, 12 or

0 non-trivial entries in a given row of the configuration matrix A. In the case of 14 non-trivial
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Table B.4: Odd n Combination Distribution
# Filled # Equations # of Total # of
per ring per combination combinations equations
n− 2 2n (n− 1)/2 n(n− 1)

n− 3 2n (n− 1)/2 n(n− 1)

n− n n 1 n

entries, 7 entries are associated with vortices from the northern hemisphere and 7 are associ-

ated with vortices from the southern hemisphere – similarly in the case of 12 non-trivial entries.

Rows for which the entries A·1, A·2, A·4, A·5, A·7, A·8 are non-trivial correspond to the vortices

[1, 2, 4, 5, 7, 8] being filled which is shown in Figure B.65(b). Note that the pattern of the con-

figuration matrix is independent of the labeling of the point vortices. For example, one could

choose to relabel vortices [1, 2, 4, 5, 7, 8] as [2, 3, 5, 6, 8, 9] or [3, 4, 6, 7, 9, 1], that is, to rotating

the label about the polar axis – this does not affect the pattern of the configuration matrix.

There are (n − 1)/2 distinct combinations in the case of (n − 2) or (n − 3) filled vortices

per ring. For example, when n = 9, there are (9− 1)/2 = 4 different combinations that contain

six filled vortices per ring as depicted in Figures B.65(b-e), which means that one has 4 distinct

rows of A containing 12 non-trivial entries.

Each combination pattern containing either n − 2 or n − 3 filled vortices is present 2n

times (note in the labeling of Figure B.65 that any pattern with 7 or 6 filled vortices is repeated

2(9) = 18 times). Next, each non-trivial equation type in the configuration matrix is repeated

exactly twice. This means that there are exactly two different equations containing non-trivial

coefficients for, say, the case when [1,2,4,5,7,8] are filled vortices. Finally, there are n trivial

equations present (i.e., n − n filled vortices, or zero vectors in the configuration matrix). The

generalized description is tabulated in B.65.

B.2 Even Number of Vortices per Ring

The pattern present for even n (with n ≥ 4) is more elaborate. The possible number of vortices

per ring with non-trivial entries in the configuration matrix are n, (n− 1), (n− 2) and (n− 4).
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(a) 1/9, 9x (b) 6/9, 18x (c) 6/9, 18x (d) 6/9, 18x

(e) 6/9, 18x (f) 7/9, 18x (g) 7/9, 18x (h) 7/9, 18x

(i) 7/9, 18x

Figure B.65: Combination types present in the configuration matrix for n = 9 vortices per ring. Number of filled

vortices per ring are 7, 6 and 0. Each non-trivial combination type is present 18 times, in addition to 9 trivial ones.

For example, if n = 10, the number of filled vortices per ring is either 10, 9, 8 or 6. For the

first case of n non-trivial entries per ring, there are (
∑(n/2)−1

α=1 2α) corresponding rows in the

configuration that have this structure, and this applies to the cases n ≥ 4. For example, in

Figure B.66(g) when n = 10, there are 20 rows in the configuration matrix that contain 10 non-

trivial entries per ring. Second, there are (
∑(n/2)−1

α=0 4 + 8α) rows with n− 1 filled vortices per

ring, and this applies to the cases n ≥ 2. For instance, in Figure B.66(f) when n = 10, there are

100 equations that contain 9 non-trivial entries from each ring. Third, there are (
∑(n/2)

α=0 (4α−2))

rows in the configuration matrix with n − 2 non-trivial entries per ring, and this applies when

n ≥ 2. However, the difference between the n − 2 case and the previous ones is that there is

only one unique kind of combination possible for n or n− 1 filled vortices, while there are more

than one different combinations found for n− 2 (and n− 4) filled vortices, and the total number

of rows containing n− 2 non-trivial entries per ring is distributed amongst the different possible

combination types according to a second sub-pattern. Figures B.66(c-e) show three different
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Table B.5: Even n Combination Distribution
#Filled #Equations

n
∑(n/2)−1

α=1 2α, n ≥ 4

n− 1
∑(n/2)−1

α=0 4 + 8α, n ≥ 2

n− 2
∑(n/2)

α=1 4α− 2, n ≥ 2

n− 4
∑(n/2)

α=1 2α− 2, n ≥ 4

(a) 6/10, 10x (b) 6/10, 10x (c) 8/10, 30x (d) 8/10, 10x

(e) 8/10, 10x (f) 9/10, 100x (g) 10/10, 20x

Figure B.66: Combination types present forN = 10. Number of filled vortices per ring are 10, 9, 8 and 6, repeated

a total of 20, 100, 50 and 20 times respectively.

types of combinations that have 8 filled vortices per ring, and these patterns are repeated in

the configuration matrix 30, 10 and 10 times respectively, giving us a total of 50 rows in the

configuration matrix that have 8 filled vortices per ring. Lastly, there are (
∑(n/2)

α=1 (2α− 2)) rows

that contain n − 4 non-trivial entries per ring, and this applies to the cases n ≥ 4. Table B.2

contains the generalized description for even n.
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Appendix C. Viscous Point Vortex

Model

This thesis has dealt exclusively with invcisid point vortices. As a supplemental reference,

we now describe the incompressible viscous point vortex model as a starting point for the

investigation of viscous lattices. An expression for a viscous point vortex can be derived

by looking at the Navier Stokes equations in cylindrical coordinates, where the velocity field

u(r, t) = (ur, uθ, uz) ≡ (0, uθ, 0). We consider the Navier Stokes equation corresponding to θ

the component, with the LHS and RHS of the equation being

LHS =
∂uθ
∂t

+ ur
∂uθ
∂r

+
uθ
r

∂uθ
∂θ

+ uz
∂uθ
∂z

+
uruθ
r

, (C.161)

RHS =
1
r

∂p

∂θ
+ ν

(
1
r

∂

∂r

(
r
∂uθ
∂r

)
+

1
r2
∂2uθ
∂θ2

+
∂2uθ
∂z2

+
2
r2
∂ur
∂θ
− uθ
r2

)
+ fθ.(C.162)

Assumptions made about the system include:

1. The flow is axisymmetric: ∂/∂θ = ∂2/∂θ2 = 0.

2. Two-dimensional: ∂/∂z = ∂2/∂z2 = 0 & uz = 0.

3. No pressure gradient: ∂p/∂θ = 0.

4. No body forces: fθ = 0.

Plugging these assumptions into our the NV equation we get
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LHS =
∂uθ
∂t

,

RHS = ν
1
r

∂

∂r

(
r
∂uθ
∂r

)
.

Therefore, our governing equation becomes

∂uθ
∂t

= ν
1
r

∂

∂r

(
r
∂uθ
∂r

)
. (C.163)

The assigned boundary conditions for our problem are:

1. At t = t0, the point vortex has the same velocity field as an inviscid point vortex:

uθ(r, t0) = Γ/2πr.

2. As r → ∞, the inviscid point vortex resembles the inviscid point vortex ∀t : uθ(r →

∞, t) = Γ/2πr.

3. The angular velocity at the center of the inviscid point vortex is zero: uθ(0, t) = 0.

Plugging the assumptions above into the continuity equation in cylindrical coordinates (see

Equation (2.10)), we have

∇ · u ≡ 0

=
1
r

∂

∂r
(rur) +

1
r

∂uθ
∂θ

+
∂uz
∂z

= 0 + 0 + 0 ≡ 0.

Note that this is also the heat equation in cylindrical coordinates. One of way solving this equa-

tion is by considering a similarity solution. We proceed by non-dimensionalizing the velocity in

Equation (C.163) by defining
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û = uθ
2πr
Γ
. (C.164)

With the chain rule, Equation (C.163) becomes

∂û

∂t
= ν

1
r

(
−1
r

∂û

∂r
+
∂2û

∂r2

)
. (C.165)

The boundary conditions in terms of the non-dimensional velocity are

1. û(r, t0) = 1,

2. û(r →∞, t) = 1,

3. û(0, t) = 0.

Defining the variable η = η(r, t, ν) as

η =
r2

4νt
, (C.166)

we can find a similarity solution û(η) when plugging Equation (C.166) into Equation (C.165)

û′′(η) + û′(η) = 0. (C.167)

Setting t0 = 0, the new boundary conditions

1. û(η = 0) = 1,

2. û(η →∞) = 0,

Our solution becomes

û(η) = 1− e−η,

or
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û(r, t) = 1− exp
(
− r2

4νt
,

)
or

uθ(r, t) =
Γ

2πr

(
1− exp

(
− r2

4νt

))
. (C.168)

The solution, therefore, coincides with a point vortex whose overall vorticity is preserved, but

is advected outward away from the center of vorticity. The above construct for a visous point

vortex contains radial symmetry reminiscent of the inviscid vortex model due to the face that

there are no other sources of rotation in the flow. Introducing a second viscous vortex into the

flow would break this symmetry, and make a clean formulation such as that in Equation (C.168)

impossible. Therefore, in order to approximate viscous point vortex systems, restrictions on the

inter-vortical viscous effects would have to be introduced. Although viscous vortex lattices will

not be addressed in this thesis, the problem has been introduced and discussed briefly since it is

an open topic worthy of notice and investigation.
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