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Abstract

A pendulum is statically unstable in its upright inverted state due to the Earth�s

gravitional attraction which points downward. However, with proper forcing, the pendulum

can be stabilized in its upright inverted state. Special interest is on periodic vertical forc-

ing applied to the pendulum�s base to stabilize it around the upright inverted equilibrium.

Many researchers have studied how to stabilize the system by varying various parameters,

in particular its amplitude and frequency. Most have focused on the single degree of free-

dom inverted pendulum case, which with linear assumption can be described via Mathieu�s

equation. The system stability can then be characterized by Floquet theory. Our focus is

on searching for the periodic solutions inside the linearly stable region of the pendulum�s

inverted state when the pendulum is under proper periodic forcing. Our research shows that

under appropriate excitation by controlling the forcing amplitude and frequency, the pen-

dulum can maintain certain periodic orbits around its inverted state which we characterize

in a systematic way.

In this thesis, we applied four di¤erent kinds of geometric realizations of the system

response: system time traces, system phase portraits, three dimensional views of the system

phase portrait as a function of input forcing, and the system�s power spectral density dia-

gram. By analyzing these four diagrams simultaneously, we characterize di¤erent kinds of

multi-frequency periodic behavior around the pendulum�s inverted state. To further discuss

the e¤ect of the nonlinearity, we applied perturbation techniques using the normalized forc-

ing amplitude as a perturbation parameter to carry out the approximate periodic solutions

on a single degree of freedom inverted pendulum nonlinear model.



xi

We also discuss the multiple degree of freedom inverted pendulum system. Both

numerical simulation and experiments were performed and detailed comparisons are dis-

cussed. Our numerical simulations show close qualitative agreement with experiments.
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Chapter 1

Inverted Pendulum Dynamics

1.1 Introduction

This dissertation discusses the e¤ect of pendulum stabilization around its inverted

state under vertical high-frequency periodic forcing. Although, in general, the inverted

pendulum�s response won�t be periodic under periodic forcing, we are interested in charac-

terizing periodic and multi-periodic behavior. Of special interest is the inverted pendulum

stabilized in periodic orbits where the system performs multiple frequency nodding behavior

as discussed in Acheson [1], [2]. This phenomenon, is also known as �hovering motion�(refer

to Weibel and Baillieul [60]). The system�s phase portrait exhibits periodic orbits which are

similar to limit cycles to a time-invariant system. In this dissertation, we study the system

through four di¤erent types of diagrams: system time traces, system phase portraits, three

dimensional views of the system phase portrait as a function of input forcing, and the sys-

tem�s power spectral density diagram. First, we discuss the single degree of freedom system

showing modeling, numerical simulation and experiments. In later chapters, we extend the
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single degree of freedom system to higher degree of freedom cases. Our system response

results show close agreement (qualitatively) between numerical simulation and experiments.

Beginning from the single degree of freedom inverted pendulum model under verti-

cal periodic forcing, a set of nonlinear non-autonomous ordinary di¤erential equations were

obtained to describe our model. First, we follow those remarkable ancestors in researching

the stability in the single degree of freedom inverted pendulum problem such as Acheson

[1], [2], Weibel and Baillieul [60], Rand and Morrison [46], [38]. The linearized equation

of motion (Mathieu�s equation) is shown in early sections of this dissertation. We apply

Floquet theory to Mathieu�s equation, which is also known as Hill�s equation, to obtain

the stability diagram through transition curves calculated from Hill�s equation. To under-

stand the e¤ect of the nonlinearity, we then apply a two-timing perturbation technique

by assigning a (normalized) forcing amplitude � as the perturbation parameter. We then

carry out analytic solutions from the nonlinear single degree of freedom model. Later, we

perform numerical simulations based on the nonlinear single degree of freedom model to

obtain periodic solution sets which we characterize using di¤erent normalized forcing para-

meters and initial conditions. Finally, we conducted a sequence of experiments to obtain

detailed measurements to compare with our simulation results. Although experimental re-

sults show damping e¤ects, which contradict our assumption of energy conservation, for

short times and for the purposes of identifying the multi-frequency state, the experiments

and simulations matched reasonably well.

Presented in this paper is a way to analyze a dynamic system where the non-

linearity and time-varying properties cannot be neglected. Unlike the well-known simple
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pendulum example in classical mechanics, the inverted pendulum doesn�t provide the same

kind of clockwork regularity which can be properly predicted by the solutions of a simple

time invariant linear ordinary di¤erential equation. Furthermore, such regularity in the sim-

ple pendulum can be properly modelled by conservation laws where the system is regular

back-and-forth swinging motion can be seen from exchanging its potential and kinetic ener-

gies. On the other hand, the inverted pendulum needs certain external energy to excite the

system to overcome the Earth�s gravitational attraction in order to stabilize it in a statically

upright state. The periodic excitation to a simple pendulum brings additional complexity

to the system and its governing equation of motion usually needs to be treated as non-

autonomous, non-conservative and nonlinear. The analysis of such systems is a challenging

task because there is no closed-form analytical solution that can be directly applied.

We use a 4th order Runge-Kutta numerical integration technique to get solutions

for di¤erent initial conditions. By examining the time evolution in its phase portrait, we can

�nd limit cycles under speci�c driving parameters and initial conditions. In later chapters,

we apply singular perturbation techniques to the nonlinear model to derive sequences of

asymptotic approximations to get higher order of accuracy to the solution of the inverted

pendulum under multi-frequency nodding state which can be compared directly to the

numerical integration and experimental results. Perturbation analysis also provides a better

understanding of the complex system and stimulated the development of new methods

for the numerical solution of the higher order approximations. Experiments were then

introduced and compared with the analytical and numerical integration results in detail.
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1.2 Motivation and Related Early Work on Inverted Pendu-

lum Dynamics

The instability of the pendulum in its inverted state can be removed by applying

rapid vertical oscillatory forcing to its pivot point. This phenomenon had been discovered

in early 20th century by Stephenson [53] [54] . When placing it initially in its upright

state, the inverted pendulum will remain in its upright vertical state without falling over.

However, this is not the only stable state when pendulum is inverted. Acheson et al [1] [2]

[3] discovered that the pendulum may withstand large initial disturbances when applying

appropriate vertical oscillatory forcing with proper driving amplitude and frequency. Under

such conditions, the pendulum will oscillate around its upright vertical equilibrium point

without falling over. The pendulum becomes trapped in a limit cycle oscillation. This is an

interesting phenomenon which can be applied to model many engineering systems undergo-

ing periodic vibrations. Many research papers discuss the oscillations of a driven pendulum.

Here are some examples: Blackburn et al [12] studied the stability and Hopf bifurcations in

an inverted pendulum; Smith et al [49] investigated the behavior of an inverted pendulum

through experimental measurements; Kalmus [25] worked on a driven inverted pendulum

experiment using a speaker; Michaelis [36] used an electric jigsaw to drive an inverted pendu-

lum and study its behavior through stroboscopic photos; Acheson et al [1],[2],[3] compared

the stability of an inverted pendulum from theoretical models and experimental approaches;

Flashner et al [18] studied the bifurcation through the point mapping method. This kind of

system has a time-dependent coe¢ cient in a governing di¤erential equation also known as

parametric excitation. The physical sense of the parametric excitation is that the sti¤ness
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or moment of inertia in a dynamic system depends on time. This is quite di¤erent compared

with adding a nonhomogeneous term in the governing di¤erential equation which results

from external excitation. Parametric excitation occurs in a wide variety of engineering

applications. Here are a few recent applications: Stephan G. et al [51] investigated para-

metric excitation in high-speed milling applications; Gani [19] studied parametric excitation

of stay-cables; Yu realized parametric excitation in a nanowire system using an oscillating

electric �eld; Mennem [35] studied parametrically excited vibrations in spiral bevel geared

systems; Kaajakari [26] realized parametric excitation in ultrasonic surface micromachine

actuation.

Most analysis methods for time-varying nonlinear dynamic systems are coordinate-

based approaches. This dissertation aims to develop a systematic technique to understand

and analyze time-varying and, more speci�cally, time-periodic nonlinear inverted pendulum

dynamic systems in a geometric setting. Series expansion methods and averaging theory

were two powerful tools used in solving time varying nonlinear di¤erential equations. Vela

[64],[65] gives a detailed treatment of the method of averaging and the related theorems

that comprise averaging theory which showed how averaging theory may be used to time-

dependent di¤erential equations and it can also be applied to nonlinear control theory of

underactuated systems. He pointed out that the averaging theory is derived from nonlinear

Floquet theory and perturbation theory. Vela�s work also shown that nonlinear time-varying

control systems can also be given an exponential representation, meaning that all of the

intuition and analysis from linear control theory may provide the control engineer with the

needed background to construct and analyze stabilizing controllers for nonlinear systems.
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Bogoliubov and Mitropolsky [13] cover the same topics, and also give a general algorithm

for calculating higher-order averages. The Poincaré map is a powerful tool for visualizing

the results from Floquet theory and extending it to the nonlinear regime. Bogoliubov

and Mitropolsky were aware that the averaged equations of a time-dependent di¤erential

equation gave the Poincaré map, thereby allowing for stability analysis, and also posited

that their method was able to recover higher orders of averaging. This method of averaging

is known as the Krylov- Bogoliubov-Mitropolsky (KBM) method of averaging. The higher-

order methods proposed by Bogoliubov and Mitropolsky have been studied and extended by

several researchers as they are the most general and most powerful of the known averaging

methods. Averaging theory also includes two-timing methods, which involve fast and slow

time scale; only the fast time scale is averaged over. In many cases averaging over multiple

dimensions will introduce resonance. There also exist other papers detailing higher-order

averaging theory, however they focus on particular classes of time-periodic systems.
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Chapter 2

Inverted Pendulum Under Periodic

Vertical Forcing

2.1 Single Degree of Freedom Inverted Pendulum Model

Equations of Motion

Consider a simpli�ed single degree of freedom inverted pendulum which consists of

a weightless rigid rod with length L. A point mass m is mounted on one end of the inverted

pendulum and on the other end a frictionless pivot point P is subjected to periodic vertical

forcing with coordinate u(t) = " cos!t measured downward from some �xed point O. Here

" denotes the vertical driving amplitude and ! denotes the periodic driving frequency. The

whole system is under uniform gravitational �eld with gravitational acceleration g pointing

downward. The pendulum has angular displacement � measured from the vertical upright

position(inverted state) as shown in Figure 2:1. Here we neglect the e¤ect of damping in
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order to apply the energy conservation property by means of Lagrange�s equations. The

equations of motion can be derived from the general form of Lagrange�s equations as

d

dt

�
@T

@ _�

�
� @T
@�

+
@V

@�
= � (2.1)

d

dt

�
@T

@ _u

�
� @T
@u

+
@V

@u
= U (2.2)

where T is the kinetic energy, V is the potential energy and � and U are generalized

nonconservative forces with respect to � and u direction respectively. Since the vertical

driving vibration is the only source of nonconservative forces, the right hand side of equations

(2:1) and (2:2) can be written as

� = 0 , U = F: (2.3)

From the energy conservation law, (2:1) indicates the energy exchange between

kinetic energy and system potential due to the rotational motion of the pendulum; (2:2)

indicates the balance of vertical periodic forcing and system energy transfer between kinetic

energy and potential energy due to the applied force. The kinetic energy can be derived as

T =
1

2
m
�
v2x + v

2
y

�
=

1

2
m

��
L _� cos �

�2
+
�
_u+ L _� sin �

�2�
=

1

2
m
�
L2 _�

2
+ 2L _u _� sin � + _u2

�
(2.4)

where vx is horizontal velocity vector and vy is vertical velocity vector of the point mass

as shown in Figure 2:1. The potential energy V depends on the vertical displacement �y
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Figure 2.1: Single degree of freedom inverted pendulum under vertical periodic forcing at
its base P:

which can be written as

V = mg�y = mg [L (1 + cos �) + u] : (2.5)

As indicated in (2:5), the system potential only depends on the posture of the pendulum at

that instance, not its motion. In other words, V is not a function of _� or _u. We can then

calculate individual components of (2:1) from derivatives of (2:4) and (2:5) as

@T

@ _�
= mL2 _� +mL _u sin � (2.6)

d

dt

�
@T

@ _�

�
= mL2�� +mL

�
�u sin � + _u _� cos �

�
@T

@�
= mL _u _� cos �

@V

@�
= �mgL sin �
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From derivatives of (2:4) and (2:5) to individual components of (2:2) we get

@T

@ _u
= m

�
L _� sin � + _u

�
(2.7)

d

dt

�
@T

@ _u

�
= m

�
L�� sin � + L _�

2
cos � + �u

�
@T

@u
= 0

@V

@u
= mg

Hence, substitute (2:6) and (2:7) into (2:1) and (2:2), we obtain the explicit Lagrange�s

equations as

mL2�� +mL�u sin � �mgL sin � = 0; (2.8)

m
�
L�� sin � + L _�

2
cos � + �u

�
+mg = F: (2.9)

From time derivatives to the driving displacement u , we obtain it�s velocity as _u =

�"! sin!t. From second time derivatives to u, we obtain it�s acceleration as

�u = "!2 cos!t: (2.10)

The simpli�ed equation of motion of the single degree of freedom inverted pendulum model

under vertical vibration can then be obtained by inserting (2:10) into (2:8) as

mL2�� �
�
mgL+mL"!2 cos!t

�
sin � = 0: (2.11)
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Equation (2:11) is a nonlinear di¤erential equation with a time-dependent coe¢ cient. By

dividing both sides of (2:11) by mL2 we obtain

�� �
�
g

L
+
"!2

L
cos!t

�
sin � = 0: (2.12)

Unlike the simple pendulum case whose state coe¢ cient is constant, our system has

a time-varying coe¢ cient due to driving forces. When the driving acceleration amplitude is

smaller than gravity, "!2 < g, the system coe¢ cient, gL+
"!2

L cos!t; doesn�t change sign and

the system response has little e¤ect due to forcing. Based on linear theory, the state is said to

be hyperbolic since the eigenvalues of the Jacobian matrix around the equilibrium points do

not lie on the imaginary axis. In this case, the nonlinear behavior can be properly predicted

through linear analysis around its equilibrium points. On the other hand, when the driving

acceleration amplitude is larger than gravity, "!2 > g, the system coe¢ cient changes sign.

In this case, the equilibrium point will change from hyperbolic to non-hyperbolic since the

eigenvalues of the Jacobian matrix around its equilibrium points will sometimes lie on the

imaginary axis.

De�nition 1 For a continuous-time system, an equilibrium is called non-hyperbolic if the

Jacobian matrix evaluated at the equilibrium point has at least one eigenvalue with zero

real part. In other words, if there is any eigenvalue located on the imaginary axis then the

system is non-hyperbolic. For a discrete-time system a �xed point is called non-hyperbolic

if the Jacobian matrix evaluated at the �xed point has at least one multipliers located on the

unit circle.

The nonlinear behavior of a hyperbolic system can be properly predicted from its
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linearized counterparts. The Hartman-Grobman theorem states that the local phase por-

trait near a hyperbolic equilibrium point of the nonlinear system is topologically equivalent

to the phase portrait of its linearization. One important consequence is the stability type of

the equilibrium point of the nonlinear system is preserved by its linearization. However,if

the system is non-hyperbolic, the theorem does not hold. In this paper, we are exclusively

discussing the e¤ect of driving acceleration amplitude much larger than gravity or "!2 >> g

which will excite the pendulum to stabilize at its inverted state and such a system usually

is non-hyperbolic. Acheson [3],[1] shows that the pendulum can be stabilized in its inverted

state only when "2!2 > 2gL which guarantees "!2 >> g under small driving amplitude

". Our experimental results also show that a driving acceleration of about 30G � 50G is

required for a single degree of freedom pendulum to stabilize its inverted state, i.e. "!2

needs to be 30 to 50 times larger than g.

The analysis of time-varying, nonautonomous nonlinear systems is a challenging

task. The time-varying coe¢ cient or parametric excitation of (2:12) plays a big role in

contributing to the response of the system when the driving acceleration is much larger

than the gravitational acceleration, or "!2 >> g. When the frequency of excitation is

su¢ ciently far from the primary resonance, a small parametric excitation can produce a

large response. This time-varying property makes the system di¢ cult to solve analytically

and the system response is highly dependent on the initial conditions. However, the system

response can be simpli�ed if we limit the time-varying parameters to be time-periodic.

With time-periodic parametric excitation, there may exist periodic solutions (from averaging

theory) if the system initial conditions are selected properly. Averaging theory is a technique
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which synthesizes Floquet theory and perturbation theory by applying series expansions to

approximate time-varying vector �elds [64], [65]. In the next section, we apply averaging

theory to a linear single degree of freedom inverted pendulum system by means of Floquet

theory and series expansion through system perturbation parameter. System stability can

be shown using transition curves and Stutt�s diagram.

Linearized sDOF Model and Mathieu�s Equation

When using the small angle assumption, sin � ! �, the original nonlinear single

degree of freedom inverted pendulum equation of motion (2:12) can be linearized as

�� �
�
g

L
+
"!2

L
cos!t

�
� = 0: (2.13)

Equation (2:13) is then transformed to well-known Mathieu�s equation

d2�

d�2
+ (� + � cos �) � = 0: (2.14)

Here, the �rst system parameter � = �
�
!n
!

�2 is de�ned as negative value of the square
of the ratio of the system natural frequency !n =

q
g
L and the driving frequency !. The

second system parameter � = "
L is de�ned as normalized driving amplitude. Equation (2:14)

has new system time de�ned as � = !t.

Primary Resonance of the Transition Curves of Mathieu�s Equation

Apply the 2-timing perturbation technique by introducing two new variables: fast

time � = � and slow time � = �� to (2:14). The system�s state is then translated into

� (�) 7! � (�; �) and its derivatives can be carried out using chain rule as follows:
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_� =
d�

d�
=
@�

@�

d�

d�
+
@�

@�

d�

d�
=
@�

@�
+ �

@�

@�
; (2.15)

�� =
d2�

d�2
=
@2�

@�2
+ 2�

@2�

@�@�
+ �2

@2�

@�2
: (2.16)

Substitute (2:16) into (2:14),

@2�

@�2
+ 2�

@2�

@�@�
+ �2

@2�

@�2
+ (� + � cos �) � = 0: (2.17)

An approximate solution of (2:14) can be obtained from expanding � in a power series for

small � as:

� (�; �) = �0 (�; �) + ��1 (�; �) + �
2�2 (�; �) + ::: (2.18)

Substituting (2:18) into (2:17) and neglecting higher order terms of O
�
�2
�
we get

@2 (�0 + ��1)

@�2
+ 2�

@2 (�0 + ��1)

@�@�
+ �2

@2 (�0 + ��1)

@�2
+ (� + � cos �) (�0 + ��1) = 0 (2.19)

Collect terms of the same orders of �:

@2�0

@�2
+ ��0 = 0; (2.20)

@2�1

@�2
+ ��1 = �2 @

2�0
@�@�

� �0 cos �: (2.21)

The general solution to (2:20) can be expressed as

�0 (�; �) = A (�) cos
p
�� +B (�) sin

p
��: (2.22)

Di¤erentiating to (2:22) with respect to � and � we have

@2�0
@�@�

= �
p
�
dA (�)

d�
sin
p
�� +

p
�
dB (�)

d�
cos

p
��: (2.23)
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Substituting (2:22) and (2:23) into (2:21) , we then obtain

@2�1

@�2
+ ��1 = �2

�
�
p
�
dA (�)

d�
sin
p
�� +

p
�
dB (�)

d�
cos

p
��

�
�
�
A (�) cos

p
�� +B (�) sin

p
��
�
cos �: (2.24)

Apply the following trigonometric identities to simplify (2:24)

sin� cos� =
1

2
(sin (�+ �)� sin (�� �)) ; (2.25)

cos� cos� =
1

2
(cos (�+ �) + cos (�� �)) ; (2.26)

where �, � are dummy variables. Substitute (2:25) and (2:26) using proper variables in

(2:24) to replace � and � we obtain

@2�1

@�2
+ ��1 = 2

p
�
dA (�)

d�
sin
p
�� � 2

p
�
dB (�)

d�
cos

p
��

�A (�)
2

�
cos
�p
� + 1

�
� + cos

�p
� � 1

�
�
�

�B (�)
2

�
sin
�p
� + 1

�
� � sin

�p
� � 1

�
�
�
: (2.27)

For general values of �, removal of resonance terms require the coe¢ cients of sin
p
�� and

cos
p
�� become zero which gives the trivial solutions as:

dA (�)

d�
= 0; (2.28)

dB (�)

d�
= 0: (2.29)

This means that for general �; the cos!t driving term in Mathieu�s equation (2:14) has no

e¤ect. However, if we choose � = 1
4 and substitute into (2:27) we get
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@2�1

@�2
+
1

4
�1 =

dA (�)

d�
sin

�

2
� dB (�)

d�
cos

�

2
�A (�)

2

�
cos

3�

2
+ cos

�

2

�
�B (�)

2

�
sin

3�

2
� sin �

2

�
: (2.30)

From analyzing the right-hand side of (2:30), the removal of resonance terms gives the

following solutions:

dA (�)

d�
= �B (�)

2
; (2.31)

dB (�)

d�
= �A (�)

2
: (2.32)

We may also rewrite (2:31) and (2:32) in matrix form as

2664
dA(�)
d�

dB(�)
d�

3775 =
2664 0 �1

2

�1
2 0

3775
2664 A (�)

B (�)

3775 : (2.33)

Combine (2:31) and (2:32) to obtain

d2A (�)

d�2
=
A (�)

4
: (2.34)

Here A (�) and B (�) involve exponential growth where the instability occurs when � = 1
4 :

This corresponds to a 2 : 1 subharmonic resonance in which the driving frequency is twice

the natural frequency [38]. By expanding � in a power series in � we may get a � � � curve

due to resonance excitation in more generalized way as

� =
1

4
+ �1�+ �2�

2 + ::: (2.35)

Substitute (2:35) into (2:19) and neglecting terms of O
�
�2
�
we get
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@2 (�0 + ��1)

@�2
+ 2"

@2 (�0 + ��1)

@�@�
+ "2

@2 (�0 + ��1)

@�2
+

�
1

4
+ �1�+ � cos �

�
(�0 + ��1) = 0:

(2.36)

Collect terms of the same � orders, yields

@2�0

@�2
+
1

4
�0 = 0; (2.37)

@2�1

@�2
+
1

4
�1 = �2 @

2�0
@�@�

� �0 cos � � �1�0; (2.38)

which results in the following additional terms in (2:31) and (2:32) as

dA (�)

d�
=

�
�1 �

1

2

�
B (�) ; (2.39)

dB (�)

d�
= �

�
�1 +

1

2

�
A (�) : (2.40)

We may also rewrite (2:39) and (2:40) in matrix form as

2664
dA(�)
d�

dB(�)
d�

3775 =
2664 0 �1 � 1

2

�
�
�1 +

1
2

�
0

3775
2664 A (�)

B (�)

3775 ; (2.41)

Comparing with (2:34) ; an additional term is introduced

d2A (�)

d�2
+

�
�21 �

1

4

�
A (�) = 0: (2.42)

From (2:42) we may conclude that if �21 � 1
4 > 0 , that is, if either �1 > 1

2 or �1 < �1
2 ,

then A (�) and B (�) will be sine and cosine function of slow time �. We may substitute

boundary values of �1 into (2:35) ; which yields

� =
1

4
� �

2
+O

�
�2
�
: (2.43)
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There are two curves described in (2:43) ; starting from the point � = 1
4 on the � axis in ���

plane. These are recognized as primary resonances of the transition curves [46]. Transition

curves as in Figure 2.2 represent stability changes, region in between of these two curves

is unstable. Inside the unstable region, for small � , � grows exponentially in time and the

solution is unbounded. Outside the unstable region, from (2:22), (2:39), (2:40) and (2:42),

� is the sum of terms each of which is the product of two periodic or harmonic functions

and � is bounded, speci�cally, �(t) is a quasiperiodic function of time.

Floquet Theory

Because the time-varying coe¢ cient in Mathieu�s equation (2:14) is periodic in

time, we may apply Floquet theory to simplify the system. Floquet theory is concerned

with the following system of �rst order di¤erential equations:

dx

dt
= A(t)x; (2.44)

where x is an n� 1 column vector, and A is an n�n time-periodic coe¢ cients matrix with

period T with the following property:

A(t+ T ) = A(t): (2.45)

Although A(t) varies periodically in time, the general solutions of (2:44) are typically not

periodic. Floquet theory indicates that there exists a fundamental matrix solution �A0;t of

(2:44) of the form

�A0;t = P (t) exp (�t) ; (2.46)
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where P (t) is period in time P (t+ T ) = P (t), and � is in general a complex number. The

general solution of (2:44) takes the following form:

x (t) =
nX
i

Ci exp (�it)Pi (t) (2.47)

where Ci are constants that depend only on initial conditions x (t0) = x0: They take the

following form:

C =
�
�A0;t0

��1
x0:

Pi (t) in (2:47) are vector-valued functions which are also periodic in time with period T ,

and �i are complex numbers known as Floquet exponents. The Floquet multipliers can be

de�ned as

�i = exp (�iT ) : (2.48)

The Floquet exponents are not unique since exp
�
�i +

2�ik
T

�
T = exp (�iT ) for any integer

value k . Furthermore, the long-term behavior of the solution of x (t) is determined by

the Floquet exponents. Floquet theory allows us to reach an important conclusion about

the solution�s stability. If any of the Floquet multipliers have modulus greater than unity,

i.e. j�ij > 1, then x (t) is unbounded as t ! 1 and the system becomes unstable. On

the other hand, if all Floquet multipliers have modulus less than unity, i.e. j�ij < 1,

then x (t) is bounded as t ! 1 and the system is stable. The Floquet exponents and

Floquet multipliers represent the growth rate of di¤erent perturbations averaged over a

cycle. Floquet exponents are rates with unit t�1 and Floquet multipliers are dimensionless

numbers that give the period to period increase or decrease of the perturbation.
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Floquet theory can be applied to a generalized Mathieu equation (also known as

Hill�s equation [46]) which takes the following form:

d2x

dt2
+ f(t)x = 0;

f(t+ T ) = f(t): (2.49)

Here x and f are scalars, and f(t) represents a general periodic function with period T .

The second order ordinary di¤erential equation in (2:49) can be transferred into a system of

two �rst order o.d.e�s by de�ning x1 = x and x2 = _x and then substitute into (2:49) yields2664 _x1

_x2

3775 =
2664 0 1

�f(t) 0

3775
2664 x1
x2

3775 : (2.50)

Two fundamental solutions can then be constructed as

2664 x11(t)
x12(t)

3775 and
2664 x21(t)
x22(t)

3775 which

satisfy the initial conditions

2664 x11(0)
x12(0)

3775 =
2664 1
0

3775 and
2664 x21(0)
x22(0)

3775 =
2664 0
1

3775 respectively.
We can then construct a matrix C which is the fundamental solution matrix evaluated at

time T

C =

2664 x11(T ) x12(T )

x21(T ) x22(T )

3775 : (2.51)

From Floquet theory, we may conclude that the system stability is determined by the

eigenvalues of C. If all eigenvalues of C have modulus less than unity, the system�s solution

will be bounded and the system is stable; if any eigenvalue of C is greater than unity, the

system�s solution will grow exponential in time and the system is unstable. The eigenvalues

of C can be written as

�2 � tr (C)�+ det (C) = 0; (2.52)
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where tr (C) denotes the trace of C which de�nes as tr (C) = x11(T ) + x22(T ) and det (C)

denotes the determinant of C which de�nes as det (C) = x11(T )x22(T )�x12(T )x21(T ). The

Hill�s equation (2:49) has a special property that its determinant has value equal to one,

i.e. det (C) = 1. Due to this special property,(2:52) becomes

�2 � tr (C)�+ 1 = 0; (2.53)

and the eigenvalue � has solution

� =
tr (C)�

q
(tr (C))2 � 4
2

: (2.54)

Therefore, the eigenvalue has real roots when jtr (C)j > 2 and the eigenvalues have

a pair of complex conjugate roots when jtr (C)j < 2. Another special property is the product

of the eigenvalues must equal to unity. Thus, in the case of two real roots, if one root is less

than unity then the other root must be larger than unity which results in instability. There

are two stable conditions for two real roots case which can be obtained when jtr (C)j = 2:

If tr (C) = 2 then two real eigenvalues are �1;2 = 1; 1 and according to Floquet theory,

this condition corresponds to a periodic solution with period T: If tr (C) = �2 then two

real eigenvalues are �1;2 = 1; 1 and according to Floquet theory this condition corresponds

to a periodic solution with period 2T: On the other hand, in the case of a pair of complex

conjugate roots, both eigenvalues must lie on the unit circle. We can conclude this condition

as neutral stability and the system has quasiperiodic solution. All stable conditions in Hill�s

equation have eigenvalues which lie on the unit circle. Such a system is non-hyperbolic.

Since Hill�s equation has no damping e¤ect and its stable conditions are non-

hyperbolic, it allows us to make conclusions about long time behavior using the solution
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form merely one forcing period. Full transition curves can be carried out using the harmonic

balance technique by applying the fact that the period of the forcing function in Mathieu�s

equation (2:14) is 2� periodic, i.e. T = 2�: Detail discussion about Hill�s equation and

harmonic balance is shown in Rand [46].

Transition Curves of Mathieu�s Equation: Strutt�s Diagram

The transition curves on the � � � plane also known as Strutt�s diagram is shown

in Figure 2.2. The transition curves were obtained by applying Floquet theory to linear

Mathieu�s equation and then applying the harmonic balance technique. Refer to the Ap-

pendix at the end of this paper for a listing of the complete sets of transition curves derived

by Rand [46].

In Figure 2.2, the region of � > 0 denotes the pendulum has downward vertical

equilibrium where inside the bounded region(shaded area) the pendulum will be trapped

around its downward vertical position(normal state); the region of � < 0 denotes the pendu-

lum has upright vertical equilibrium where inside the bounded region(shaded area) the pen-

dulum will be trapped around its upright vertical position(inverted state). The unbounded

region between the two transition curves were obtained through resonance excitation, start-

ing from

� =
n2

4
; n = 0; 1; 2; 3::: (2.55)

for small �. The unbounded region from the starting point � = 1
4 at n = 1 is called the

primary resonance and its transition curves were calculated from (2:43). The unbounded

region under primary resonance has the largest area. As n value increases, the unbounded

region moves to the right hand side of the primary resonance and its covering area becomes
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Figure 2.2: Transition curves for the linear Mathieu equation on the � � � plane separate
regions of bounded solution(shaded area) from regions of unbounded solution or unstable
system(white area).
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smaller. We only discuss the region of � < 0 when the pendulum has upright vertical

equilibrium. In other words, our special interest focuses on the bounded region(shaded

area) of � < 0 covered in between the two transition curves of n = 0 and n = 1. Figure 2.3

shows the zoom-in view of Figure 2.2 where � < 0 region being emphasized. Recall that in

our inverted pendulum model (2:14) � was de�ned as negative value of the square of the

ratio of the system natural frequency and the driving frequency which takes the following

equation: � = �
�
!n
!

�2. If system�s natural frequency remain �xed then the higher the
forcing frequency !, the closer � approaches 0. There are 3 regions labelled A;B;C in

Figure 2.3 which indicates our region of interest in our single degree of freedom inverted

pendulum model. These regions are in relative higher forcing frequency region (> 25Hz)

where � is close to 0. In our simulation trials, we �xed the forcing frequency while varying

the forcing amplitude gradually from A to B then to C regions. Our main focus is on B

region where the pendulum is stabilized in its inverted state, while A and C regions are

only to test stability boundaries.

Another way to present the stability boundaries on a graph of an inverted pendu-

lum under periodic forcing is to graph the stability region in the � � �! plane as in Figure

2.4. The shaded area in Figure 2.4 indicates the results from Acheson and Mullin [3] which

showed the stability boundaries calculated from solving linear Mathieu�s equation. Inside

the shaded region, the pendulum can be stabilized around its inverted posture where the

system has bounded solutions. On the other hand, the region outside the shaded region

has unbounded solutions. Left(n = 0, blue-color curve) and right(n = 1, green-color curve)

transition curves in �� �! stability diagram in Figure 2.4 show the stability boundaries of our
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Figure 2.3: Stutt�s diagram for stability regions separated by the transition curves of n = 0
and n = 1 within the range of �0:5 < � < 0:5.
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calculations matched with the results from Acheson and Mullin [3]. These two transition

curves are the same curves as shown in Figure 2.3 inside � < 0 region. The left stabil-

ity limit curve described by "2!2 = 2gL was calculated from Acheson [1] which showed

more conservative stability region compared with the left transition curve(n = 0). This left

stability curve(red-color) is very close to the left transition curve(blue-color) as shown in

Figure 2.4. Those green-color data points denote the experimental results from Acheson

and Mullin [3] which show the stability boundary from their experimentations were even

wider than their prediction from solving linear sDOF inverted pendulum model. This can

be explained by the e¤ect of system damping due to friction in their experimental setups.

In other words, system damping helps the system�s stability in this case.

There are three sets of diamond data points in Figure 2.4, indicating 3 sets of

periodic solutions from our numerical simulations to the nonlinear single degree of free-

dom inverted pendulum model. Basically, these diamond data points indicate the sta-

bility boundaries and periodic solutions to the same single degree of freedom inverted

pendulum model where we �xed the normalized forcing frequency �! at three locations:

�! = 11:6218; �! = 14:2784; and �! = 20:0, while we varied normalized forcing amplitude �

from small to large values. Our simulation results showed that the left limit was located

on the left transition curve, while the right limit was wider than the right transition curve.

The periodic solutions were discovered in numerical simulation inside the stable region in

Figure 2.4 labelled as 4 : 1; 5 : 1; 6 : 1;..., where the ratio indicates the forcing period

with respect to system�s periodic response. We denoted this ratio as frequency ratio Nr

whose detail will be shown in later chapters. The set of data points in blue-color circles
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Figure 2.4: Stability regime diagram of single degree of freedom inverted pendulum under
vertical periodic forcing showing in the �� �! plane.
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indicates the parameter distributions of our single degree of freedom inverted pendulum ex-

perimentations. Due to physical limitations of our experimental setups, experimental data

only occupied the region of normalized forcing amplitude � < 0:2 and normalized forcing

frequency 10 � �! � 20. More details of Figure 2.4 will be shown in later sections in this

paper.

Numerical Integration of the Nonlinear sDOF Inverted Pendulum Model

Simulation Based on Parameter Continuation Code Using 4th Order Runge-

Kutta Numerical Integration Scheme

This section discusses the simulations from direct numerical integration of the

time-varying single degree of freedom inverted pendulum model. We normalized the sDOF

model by substituting the normalized driving amplitude � and normalized driving frequency

�! into (2:12). The normalized driving amplitude � is de�ned as � = "
L and normalized

driving frequency is de�ned as �! = !
!n
, where the system natural frequency is !n =

q
g
L .

Therefore, (2:12) can be expressed as:

��(t)�
�
1 + ��!2 cos!t

�
!2n sin �(t) = 0: (2.56)

The original 2nd order system equation can then be re-written as two 1st order equations

_x1 = x2; (2.57)

_x2 = (1 + ��!2 cos!t)!2n sinx1:

where x1 = �; and x2 = _�: The natural frequency of the system is !n =
q

g
L ; the

normalized driving amplitude is � = "
L , and the normalized driving frequency is �! =

!
!n
.
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The periodic forcing in the system can be replaced by introducing two more dimensions as

_u = u(1� u2 � v2)� !v; (2.58)

_v = v(1� u2 � v2) + !u:

where the two dynamic harmonic functions are described as u = cos!t and v = sin!t. We

apply a 4th order Runge-Kutta numerical integration scheme to (2:57) and (2:58).

Four Geometric Representations of the System Response

In this paper, we apply four di¤erent kinds of geometric realizations of system

response: system time traces, system phase portrait, three dimensional view of system

phase portrait compare to input forcing, and system�s power spectral density diagram.

Below are short descriptions to these four representations.

System Time Trace The system time trace represents the system response with respect

to time evolution. Periodic responses of a system can be detected by inspecting the repeated

patterns in a system time trace. If a system response repeats itself after some constant time

T , or x(t+ T ) = x(t), then such a system is periodic with period T .

System Phase Portrait A phase portrait is a geometric representation of the trajectories

of a dynamic system in the phase plane. A system with periodic response exhibits closed

trajectories or orbits in a phase portrait. Associated with our phase portrait graphs are

vector �elds showing piecewise system response in a phase plane starting from uniformly

distributed initial conditions.
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3D View of System Phase Portrait By adding a new dimension, the system�s periodic

input u = " cos!t; to a system phase portrait, we may get a three dimensional view of a

dynamic response. All closed orbits shown in a periodic phase portrait graph result in closed

curves in a 3D phase portrait. Recall that the system response in a periodically forced

inverted pendulum system is, in general, non-periodic. However, if a system�s response is

periodic under periodic forcing, one period of the system response cycle must be an integer

multiple of the periodic forcing period. In other words, the periodic forcing frequency

is Nr times larger than the periodic system response�s frequency where Nr is an integer.

Therefore, the frequency ratio Nr can be measured from counting the cycles of a 3D phase

portrait graph of a periodic response.

Power Spectral Density (PSD) Analysis Power spectral density(PSD) describes how

the power of a signal or discrete time series is distributed with frequency. PSD requires

that the Fourier transforms of the signals exist and that the signals are square-integrable or

square-summable. PSD can be applied to extract the frequency components of the response

in order to obtain the periodic pattern of the signals composed of harmonic functions. We

apply the discrete Fourier transform(DFT) to the dynamic response as follows:

uk � u (tk) � u(k�t) = a0 + 2
N=2X
n=1

�
an cos

2�ntk
T

+ bn sin
2�ntk
T

�
: (2.59)

where k = 1; 2; :::; N is an integer index of tk � k�t and �t is the sampling interval; N is

the total number of samples and T = N�t is the sample period. The sampling frequency is

de�ned as fs = 1
�t which leads to the maximum observable frequency, or Nyquist frequency,
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fny = fs=2 or fny = 1
2�t . For convenience, throughout this paper for PSD calculations we

used a uniform sampling frequency which is 500Hz. The spectral coe¢ cients an and bn are

de�ned as

an =
1

N

NX
j=1

uj cos
2�nj

N
; (2.60)

bn =
1

N

NX
j=1

uj sin
2�nj

N
: (2.61)

The spectral coe¢ cients represent the amplitudes of the harmonic components extracted

from the dynamic response. The power spectral density is then de�ned as:

PSD = U �U = a2n + b
2
n; (2.62)

where U is the spectrum of u(t) de�ned as

U
�n
T

�
� an � ibn =

1

N

NX
j=1

uj exp

�
�i2�nj

N

�
: (2.63)

where i �
p
�1 and �U represents the complex conjugate of U .

Numerical Simulation Results of a sDOF Inverted Pendulum

We begin by presenting the �rst three types of system representations: time traces

of inverted pendulum angles and angular velocities, phase portraits of the system, and a

3-dimensional view of the system phase portrait with respect to periodic forcing. Later

in this chapter we introduced the power spectral density to further inspect its harmonic

components.
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Figure 2.5: Numerical integration results of the single degree of freedom inverted pendulum
under normalized forcing amplitude � = 0:1708 and normalized forcing frequency �! = 8:7313
with initial condition �0 = 0:1 and _�0 = 0. (a)System time response. (b)Angular velocity
time trace. (c)System phase portrait. (d)3D view of phase portrait with respect to periodic
forcing.



33

From inspection of Figure 2.5(a) we see the system time trace repeats itself in

a period around 1:5 s; which refers to slow time of the system response. The fast time

response is proportional to the periodic vertical forcing at normalized forcing parameters

� = 0:1708 and �! = 8:7313. From Figure 2.5(b) we can see that the system angular velocity

response also has the same slow time period of around 1:5 s: From the phase portrait graph

in Figure 2.5(c), we see a symmetric periodic orbit starting from a uniform distribution of

initial conditions. There are two straight nullclines in the phase portrait at � = 0(vertical)

and _� = 0(horizontal) lines. The intersection of these two nullclines is the system �xed

point at
�
�; _�
�
= (0; 0). Figure 2.5(d) indicates the 3-dimensional view of the system phase

portrait with respect to forcing displacement u = cos!t. In a periodic response we may

use this 3D graph to count the number of forcing cycles in one period of the phase portrait

cycle, which is the same as the number of fast time cycles in one slow time response period

in the time trace. We can then obtain the frequency ratio of 28 : 1 from Figure 2.5(d).

Notice that if the periodic orbit in the phase portrait is symmetric, then its ratio will have

even numbers. For asymmetric phase portrait orbits, the ratio will have odd number.

De�nition 2 Let _x = f(x) be a system of �rst order ordinary di¤erential equation. The xj

nullcline is the set of points which satisfy fj (x1; x2; :::; xn) = 0 and the intersection points

of nullclines are equilibrium points of the system.

From inspection of Figure 2.6(a) we may see the system time trace repeats itself

in a period of around 0:3 s; which refers to slow time of the system response. The fast time

response of time trace is proportional to the periodic vertical forcing at normalized forcing

parameters � = 0:1710 and �! = 14:2784. From Figure 2.6(b) we can see that the system
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Figure 2.6: Numerical integration results of single degree of freedom inverted pendulum
under � = 0:1710 and �! = 14:2784 with initial condition �0 = 0:1 and _�0 = 0. (a)System
time response. (b)Angular velocity time trace. (c)System phase portrait. (d)3D view of
phase portrait with respect to periodic forcing.
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angular velocity response also has the same repeated period around 0:3 s: In the system

phase portrait graph in Figure 2.6(c), we see a symmetric periodic orbit in a vector �eld

starting from uniform distribution of initial conditions. Figure 2.6(d) indicates 10 : 1 ratio

from its 3D phase portrait.

Figure 2.7: Numerical integration results of single degree of freedom inverted pendulum
under normalized forcing amplitude � = 0:2193 and normalized forcing frequency �! =
14:2784 with initial condition �0 = 0:1 and _�0 = 0. (a)System time response. (b)Angular
velocity time trace. (c)System phase portrait. (d)3D view of phase portrait with respect to
periodic forcing.
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From inspection of Figure 2.7(a) we may see the system time trace repeats itself

in a period of around 0:25 s; which refers to slow time of the system response. The fast time

response of time trace is proportional to the periodic vertical forcing at normalized forcing

parameters � = 0:2193 and �! = 14:2784. From Figure 2.7(b) we can see that the system

angular velocity response also has the same repeated period of around 0:25 s: In the system

phase portrait graph in Figure 2.7(c), we see an asymmetric periodic orbit in a vector �eld

starting from uniform distribution of initial conditions. Figure 2.7(d) indicates 7 : 1 ratio

from its 3D phase portrait.

From inspection of Figure 2.8(a) we may see the system time trace repeat itself

in a period around 0:14 s; which refers to slow time of the system response. The fast time

response of time trace is proportional to the periodic vertical forcing at normalized forcing

parameters � = 0:400 and �! = 12:8506. From Figure 2.8(b) we can see that the system

angular velocity response also has the same repeated period of around 0:14 s: In the system

phase portrait graph in Figure 2.8(c), we see a symmetric periodic orbit in a vector �eld

starting from uniform distribution of initial conditions. Figure 2.8(d) indicates 4 : 1 ratio

from its 3D phase portrait.

Since the system response is in general not periodic, more often we may get qua-

siperiodic orbits for bounded solutions as shown in Figure 2.9. Figure 2.9 has forcing

parameters � = 0:200 and �! = 14:2784 which is very close to Figure 2.8. However, their

system responses are total di¤erent. From time trace of Figure 2.9 we can only conclude

that the system has bounded solution. Although system show symmetric pattern but we

cannot obtain its repeatability as easy as in Figure 2.8.
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Figure 2.8: Numerical integration results of single degree of freedom inverted pendulum
under normalized forcing amplitude � = 0:400 and normalized forcing frequency �! = 12:8506
with initial condition �0 = 0:56 and _�0 = 0. (a)System time response. (b)Angular velocity
time trace. (c)System phase portrait. (d)3D view of phase portrait with respect to periodic
forcing.
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Figure 2.9: Numerical integration results of single degree of freedom inverted pendulum
under normalized forcing amplitude � = 0:200 and normalized forcing frequency �! = 14:2784
with initial condition �0 = 0:1 and _�0 = 0. (a)System time response. (b)Angular velocity
time trace. (c)System phase portrait. (d)3D view of phase portrait with respect to periodic
forcing.
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Increasing the Forcing Amplitude

Figure 2.10, 2.11 and 2.12 present the numerical results for the inverted pendulum

under varying periodic forcing amplitudes. In these 3 graphs, we vary the forcing amplitude

�; holding the normalized forcing frequency �! �xed at �! = 14:2784. This normalized

forcing frequency corresponds to the physical forcing frequency around 25Hz. All system

initial conditions start from �10 = 0:1 and _�10 = 0. Four system response representations

are shown in a systematic way from left to right as: system response time trace, system

phase portrait, 3D phase portrait, and power spectral density graph of system response,

respectively. The normalized forcing amplitude � increases from top to bottom and from

Figure 2.10 to Figure 2.12. Recall Figure 2.4 in the previous chapter where this simulation

data sets were presented in the sDOF inverted pendulum stability diagram shown in �� �!

plane. This set of data points are referred to as �numerical simulation 1 (Chen)�indicated

by the red diamond dots in Figure 2.4. As � increases, the location of the data point moving

toward the right side of Figure 2.4 horizontally with �xed �! value. All data points were

within the bounded region as predicted by the transition curves obtained from solving the

linear Mathieu�s equation. From inspecting Figure 2.10 to Figure 2.12, we notice that as �

increases, the frequency ratio Nr decreases.

As shown on the top graph in Figure 2.10, under � = 0:1019 the time trace has two

distinct frequencies. One is referred to as the fast time response which is directly related

to the forcing frequency; the other is referred to as slow time response which frequency is

54 times less than the forcing frequency. It�s phase portrait has right moving vector �eld

when _� > 0; and left moving vector �eld when _� < 0. Two nullclines are shown at the
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horizontal line _� = 0 and the vertical line � = 0 in the phase plane which indicate that the

system has an equilibrium point located at
�
_�; �
�
= (0; 0). The phase portrait shows one

closed orbit, even with large numerical integration time. It�s 3D phase portrait measured

54 : 1 frequency ratio where 54 forcing cycles can be counted from one phase portrait orbit.

The power spectral density graph shows three distinct harmonic components, the largest

peak in the low frequency region where the resolution of the graph is not �ne enough to

identify the exact location, the second peak is located at around 25Hz, and the third peak

is located at around 50Hz. The low frequency peak is referred to as the slow time response

of the system which may be measured from the time trace graph around 0:5Hz; the peak at

around 25Hz is referred to as fast time system response which corresponds to the periodic

forcing frequency. As we increase the value of �, the system�s slow time response becomes

more rapid, resulting in a higher frequency in its largest peak in the power spectral density

graph. If we inspect the evolution of system power spectral density graphs from increasing

�, we note that not only its largest peak moving toward the higher frequency region, it�s

second and third peaks become wider in shape and eventually split into two new peaks as

shown in � = 0:1611. There were higher frequency peaks after the third peaks and they

became more obvious when � increased. These peaks also became wider in shape and �nally

split at higher � values. When the frequency ratio Nr has even value, the phase portrait

exhibits a symmetric pattern, as shown in Nr = 54; 40; 30; ::; 10; 6; 4; while the frequency

ratio Nr has odd value, the phase portrait exhibits an asymmetric pattern as shown in

Nr = 27; 19; ::; 11; 7; 5. Figure 2.10 to Figure 2.12 does not show periodic solutions with

every periodic. In fact, we may �nd solutions in every period from Nr � 4 provided that
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the numerical simulation tool has high enough resolution.

Nonlinear Analysis of sDOF Model Using Perturbation Theory

In order to understand the nonlinear e¤ect further in detail in the single degree of

freedom inverted pendulum model described in (2:12), we applied a two-timing perturbation

technique to the normalized model (2:56). Di¤erent than the direct numerical integration

method that deal with time-varying model as described in previous sections, perturbation

technique can transfer the original time-varying equation of motion into a set of autonomous

ordinary di¤erential equations. One of the advantages of applying perturbation technique

is that large system response solutions can be obtained, system response won�t be limited

by the small angle assumption as in the linear case. Also, the cost for numerical simulations

on perturbation technique is usually less than direct numerical integration to the full time-

varying model.

We applied 2-timing perturbation technique by assigning t as slow system time

and � = �!t as fast system time then making second time derivatives using chain rules:

d2

dt2
=
@2

@t2
+ 2�!

@2

@t@�
+ �!2

@2

@�2
: (2.64)

We then apply a uniform expansion using the normalized driving amplitude � as a pertur-

bation parameter in the following form:

�(t; � ; �) = �0(t; �) + ��1(t; �) + �
2�2(t; �) + ::::: (2.65)

Substitute (2:64) and (2:65) into (2:56),
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Figure 2.10: Numerical simulation results of periodic solutions from varying normalized
forcing amplitude � with �xed normalized forcing frequency �! = 14:2784. Graphs from top
to bottom show � values increase from � = 0:1019 to � = 0:1240. From left to right showing
four geometric representations of system response: time trace, phase portrait, 3D phase
portrait, and PSD, respectively.
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Figure 2.11: (Cont. of 2.10) Numerical simulation results of periodic solutions from vary-
ing normalized forcing amplitude � with �xed normalized forcing frequency �! = 14:2784.
Graphs from top to bottom show � values increase from � = 0:1293 to � = 0:1531. From
left to right showing four geometric representations of system response: time trace, phase
portrait, 3D phase portrait, and PSD, respectively.
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Figure 2.12: (Cont. of 2.11) Numerical simulation results of periodic solutions from vary-
ing normalized forcing amplitude � with �xed normalized forcing frequency �! = 14:2784.
Graphs from top to bottom show � values increase from � = 0:1611 to � = 0:3346. From
left to right showing four geometric representations of system response: time trace, phase
portrait, 3D phase portrait, and PSD, respectively.
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�
@2

@t2
+ 2�!

@2

@t@�
+ �!2

@2

@�2

�
�(t; � ; �)| {z }

LHS

=
�
1 + ��!2 cos!n�

�
!2n sin �(t; � ; �)| {z }

RHS

: (2.66)

By expanding LHS(Left-hand-side) and RHS(Right-hand-side) of (2:66) using Taylor series

expansion and then compare them with the same � order, yields:

O(
1

�2
) :

@2

@�2
�0 = 0; (2.67)

O(
1

�
) : 2

@2

@t@�
�0 + k

@2

@�2
�1 = !

2
n [k cos!n� sin �0] ; (2.68)

O(1) :
@2

@t2
�0 + 2k

@2

@t@�
�1 + k

2 @
2

@�2
�2 = !

2
n

�
sin �0 + k

2 cos!n�(�1 cos �0)
�
; (2.69)

O (�) :
@2

@t2
�1 + 2k

@2

@t@�
�2 + k

2 @
2

@�2
�3

= !2n

�
�1 cos �0 + k

2 cos!n�(�2 cos �0 �
1

2
�21 sin �0)

�
: (2.70)

Equations (2:67) ; (2:68) ; (2:69) and (2:70) all ful�ll the governing equation in (2:66). Notice

that in above equations we introduced a scaling factor k which is de�ned as normalized

driving amplitude � multiply by normalized driving frequency �! as

k = ��! (2.71)

This k scale factor is related to the linear stability limit curve "2!2 = 2gL as shown in

Figure 2.4. In our system k has value around 1:2 to be on the stability limit curve and

stability condition in our system requires that k > 1:2.

Since we are looking for bounded solutions � (t) for (2:56), which we may get

approximate solutions from solving the equations for �0; �1; �2; ::: and then combine them

using (2:65). The bounded solutions of � (t) require that those equations of �0; �1; �2; ::: are
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also bounded. Using this bounded property we formulated the equations carrying out the

integrations of individual equations to ful�ll the original equation of motion. In the next

sections we show derivations from solving the equations for di¤erent � orders to get the �nal

approximate solution for (2:56) :

Solutions from Solving O( 1
�2
)

Starting from the lowest order of � equation, (2:67) is a homogeneous 2nd order

ordinary di¤erential equation which we may get solutions through direct integrations. We

�rst integrated the equation of order O( 1
�2
) with respect to � , (2:67) becomes

@

@�
�0(t; �) = A(t) (2.72)

where new function A(t) is being introduced from previous integration step which is not a

function of � . Making another integration to (2:72) with respect to � yields

�0(t; �) = A(t)� +B(t) (2.73)

where new function B(t) is being introduced from previous integration step. Since we were

looking for solutions where �0(t; �) remain bounded as t; � !1 , we must assign A(t) � 0

which leads to

�0(t; �) = B(t): (2.74)

This result shows that the system�s slow time response is synchronized with B(t) and the

response is not a¤ected by the fast system time � . So far, we can only conclude that B(t)

is bounded in time and if we are looking for periodic solution of � (t) then B(t) also needs
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to be periodic in time. From carrying out integrations through higher � order equations we

may �nd more constraints for B(t) to ful�ll the bounded conditions. We showed derivations

from solving higher � order equations in the following sections.

Solutions from Solving O(1� )

From (2:68) we can see that O(1� ) equation coupled �0 and �1 in a 2
nd order

ordinary di¤erential equation. The �rst term in (2:68) can be calculated by making time

derivatives to �0(t; �) with respect to t; � yields

@2

@t@�
�0(t; �) = 0: (2.75)

Substitute (2:75) and (2:74) into (2:68) yields

@2

@�2
�1 = !

2
n cos!n� sinB(t): (2.76)

Integrate (2:76) with respect to � we get

@

@�
�1(t; �) = !n sin!n� sinB(t) + C(t) (2.77)

where new function C(t) is being introduced from previous integration step. Making another

integration to (2:77) with respect to � yields

�1(t; �) = � cos!n� sinB(t) + �C(t) +D (t) (2.78)

where new function D(t) is being introduced from previous integration step. Since our goal

is to look for solutions that remain bounded as t; � !1 , we may conclude that C(t) � 0
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is required to ful�ll bounded conditions. Therefore, (2:78) becomes

�1(t; �) = � cos!n� sinB(t) +D (t) : (2.79)

Since !n� = !t , we have

�1(t) = � cos!t sinB(t) +D (t) (2.80)

Therefore, we can conclude that �1 is a function of two new bounded function B(t) and

D (t). In searching for periodic solutions to �(t) requires that �0 and �1 both periodic in time

which leads to searching for periodic functions of B(t) and D (t). Next section we continued

to carry out integrations to higher � order equations in order to �nd proper functions for

B(t) and D (t).

Solutions from Solving O(1)

From (2:69) we can see that O(1) equation coupled �0; �1 and �2 in a 2nd order

ordinary di¤erential equation. We rearranged (2:69) as

k2
@2

@�2
�2 = �

@2

@t2
�0 � 2k

@2

@t@�
�1 + !

2
n

�
sin �0 + k

2 cos!n�(�1 cos �0)
�
: (2.81)

By calculating one of the intermediate terms in (2:81) from taking time derivatives to �0(t; �)

with respect to t , we have

@2

@t2
�0(t; �) = �B(t): (2.82)

Another intermediate term in (2:81) can be calculated by taking time derivatives to @
@� �1(t; �)

with respect to t
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@2

@t@�
�1(t; �) = _B(t)!n sin!n� cosB(t): (2.83)

Substitute �0 and �1 equations in (2:74) and (2:80) into the 4th term of (2:81), we have

k2 cos!n�(�1 cos �0) = k2 cos!n� (� cos!n� sinB(t) +D (t)) cosB(t)

= �k2 cos2 !n� sinB(t) cosB(t)

+k2D (t) cos!n� cosB(t): (2.84)

We then applied the following trigonometric identities to simplify (2:84)

cos2 !n� =
1

2
� 1
2
cos(2!n�);

sinB(t) cosB(t) =
1

2
sin(2B(t)):

Therefore (2:84) becomes

k2 cos!n�(�1 cos �0)

= �k
2

4
sin(2B(t)) +

k2

4
cos(2!n�) sin (2B(t)) + k

2D (t) cos!n� cosB(t): (2.85)

Substitute (2:82),(2:83) and (2:85) into (2:81), we have
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k2
@2

@�2
�2(t; �) = � �B(t)� 2k _B(t)!n sin!n� cosB(t) + !2n sinB(t)

�k
2!2n
4

sin(2B(t)) +
k2!2n
4

cos(2!n�) sin (2B(t))

+k2!2nD (t) cos!n� cosB(t)

= �
�
�B(t)� !2n sinB(t) +

k2!2n
4

sin(2B(t))

�
| {z }

not function of �

�2k _B(t)!n sin!n� cosB(t) + k2!2n
4 cos(2!n�) sin (2B(t))

+k2!2nD (t) cos!n� cosB(t):| {z }
function of t;�

(2.86)

From (2:86), bounded conditions lead to the following equation:

�B(t)� !2n sinB(t) +
k2!4n
4

sin(2B(t)) = 0; (2.87)

D(t) = 0: (2.88)

Equation (2:87) is an autonomous 2nd order ordinary di¤erential equation governing the

response of B(t). Therefore, we may approximate the inverted pendulum�s response �(t) by

inserting the solution of (2:87) into the �rst two terms of (2:65)

�(t) �= �0(t) + ��1(t);

= B(t)� � cos!t sinB(t): (2.89)

We present numerical simulations of (2:87) ; (2:89) in later sections.
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Solve �B � !2n sinB +
k2!4n
4 sin(2B) = 0 by Energy Equation

In analyzing (2:87), we introduce the energy equation which we may obtain from

multiplying both sides of (2:87) by _B(t) as

_B(t) �B(t)� !2n _B(t) sinB(t) +
k2!4n
4

_B(t) sin(2B(t)) = 0: (2.90)

From (2:90) we get the following equation

d

dt

266664
�
1

2

�
_B(t)

�2�
| {z }

Kinetic Energy T ( _B)

+

�
!2n cosB(t)�

k2!4n
8

cos(2B(t))

�
| {z }

Potential Energy V (B)

377775 = 0: (2.91)

Equation (2:91) ful�lls the energy conservation law as

T + V = E = constant, (2.92)

where system kinetic energy T takes the form

T ( _B) =
1

2

�
_B(t)

�2
(2.93)

and the system potential energy V takes the form

V (B) = 2!2n cosB(t)�
k2!4n
4

cos(2B(t)): (2.94)

From (2:92) and (2:93) we can also get the following relation for _B

_B(t) = �
p
E � V (2.95)

where E � V = T > 0: We present results by combining the potential energy graph to the

solutions of �(t) from solving B(t) numerically as shown in Figure 2.13.
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Simulation Results Based on Perturbation Analysis

Through the derivations from perturbation analysis we may transfer the origi-

nal time-varying equation of motion as in (2:12) to describe the inverted pendulum under

periodic forcing into a set of autonomous ordinary di¤erential equations as in (2:87) and

(2:89). From solving (2:87) using numerical integration, and plugging the results of B(t)

into (2:89), we may get the inverted pendulum�s response due to di¤erent forcing parame-

ters. Figure 2.13 documents the inverted pendulum�s response with �xed periodic forcing

amplitude � = 0:1233. Notice that we are now dealing with solving the autonomous system

of B by treating the forcing parameters � and ! as constants. The advantage of this system

is that we can deal with large initial conditions and large system response. In Figure 2.13,

each individual sub-graph indicates the condition of applying di¤erent forcing frequency

and di¤erent initial conditions. Each sub-graph has four parts from top to bottom: system

time response, system angular velocity response, system phase portrait with initial starting

angle, and the potential energy graph at the starting initial conditions. The upper left

graph in Figure 2.13 shows under normalized forcing frequency �! = 3:4 the system won�t

be stable in any initial conditions. The unstable behavior can be seen from its potential

energy graph where the maximum potential occurs in its upright vertical position. There

are three sub-graphs showing the conditions of �! = 10:2, the only stable case is when the

system starts from initial conditions at �0 = 0:5236 and _�0 = 0. These three system have

the same system potential energy graph which indicates that the upright vertical position

is the local minimum of the potential. As we increase the normalized forcing frequency �!,

we notice that the potential energy graphs change. In some cases the pendulum can be sta-
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bilized near its inverted state even when the system doesn�t have local minimum potential

at its upright vertical position as in the case of �! = 20:4; �0 = 0:5236 and _�0 = 0. Under

proper conditions, the system will encounter bounded solutions as in �! = 17:4; �0 = 0:2356

and _�0 = 0; in some cases the system responses are near periodic as in �! = 20:4; �0 = 0:5236

and _�0 = 0. Our simulation result showed that large periodic system response is possible

even with large initial conditions. In the case of �! = 20:4; �0 = 0:8727 and _�0 = 0, system

started from around 50 � initial angles and the pendulum was swinging in its inverted states

with system response as large as 50 �.

Although our intention in our research wasn�t to get quantitative matches between

numerical simulations and experiments, our results showed that it is possible to get a

close match from �nd-tuned system parameters. Figure 2.14 shows one of the results of

a comparison where the simulation followed closely to experiment. The top portion of the

graph shows the system time trace with the inverted pendulum�s angle response with respect

to time; bottom portion of the graph shows system phase portrait with the pendulum�s

angle in the horizontal axis and the pendulum�s angular velocity in the vertical axis. Figure

2.14(a) shows the experimental data points of a single degree of freedom inverted pendulum

under vertical periodic forcing. The inverted pendulum was swinging in a large angle

response with the largest swinging angle around 50 �. Both time trace and phase portrait

graphs indicate near periodic system behavior and the response showed very little damping

e¤ect. Figure 2.14(b) shows the simulation result of applying perturbation technique to

nonlinear single degree of freedom inverted pendulum model as in (2:56). The system has

normalized forcing amplitude � = 0:136 and normalized forcing frequency �! = 19:3 with



54

Figure 2.13: Numerical simulation based on perturbation analysis solutions. All simulation
is under �xed normalized driving amplitude � = 0:1233.
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initial conditions �0 = 45 � and _�0 = 0.
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Figure 2.14: Quantitative comparison of the perturbation analysis simulation result to the
experimental result. (a)�ltered experimental time trace and phase portrait (b)simulation
time trace and phase portrait.
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Chapter 3

Experiments on the sDOF Inverted

Pendulum

In order to understand the inverted pendulum dynamics further, we conducted

several experiments to compare in detail the results from measuring the responses of the

real-life apparatus to the predictions from numerical simulations. In the following sections,

we show the material and methods involved in our experiments, later, we present our ex-

perimental results and then compare that to our numerical simulation results.

3.1 Material and Methods

Driving Inverted Pendulum by Loud Speaker

Following our theoretical model as described in (2:12), we conducted sDOF exper-

iments with experimental apparatus as close to the assumptions in the theoretical model

as possible. Recall our sDOF model as in Figure 2.1, our sDOF inverted pendulum model
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consists of a point mass mounted on a weightless rigid rod which encounters periodic ver-

tical forcing at its base. Since the ideal pendulum setup is not feasible experimentally, an

alternate setup with light-weight rigid rod mounted with much heavier tip mass was used

instead, as shown in Figure 3:1. The pivot point of the inverted pendulum was made by a

commercially available high precision ball bearing. There are two major functions to this

ball-bearing setup at its base: one is to minimize the rotational friction while the pendulum

is in swinging motion. The other is to keep the pendulum moving on XY planer motion

without any other 3 dimensional e¤ect. As in Figure 2.1, the pendulum consists of CNC

machined rigid rod composed of Aluminum alloy with a heavier stainless steel made ball-

bearing mounted on its tip. The full pendulum length is measured as L = 80:0 � 0:1mm,

we measured its combined center of mass located at R = 53:7� 0:1mm measured from the

base with total weight of 3:8� 0:1g.

The base of the inverted pendulum was mounted at the ball-bearing pivot which

was �rmly attached to a stand mounted on top of the center cone of the speaker. The

speaker was a 15 in diameter commercially available subwoofer loud speaker. This loud

speaker is capable of taking up to 140W RMS signals. The speaker core is composed of 2 in

thick voice coil with 40oz of magnet and its impedance rating is 4
. We applied a function

generator to generate a sinusoidal wave and ampli�ed it using a 100W PA power supply

to drive the speaker. With this setup, it is capable of generating up to 50G of acceleration

to drive the total weight of roughly 10 g inverted pendulum apparatus to oscillate in a

sinusoidal motion with forcing amplitude up to 10mm and forcing frequency up to 30Hz.

The forcing amplitude and forcing frequency can be controlled by the function generator
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Figure 3.1: Single degree of freedom inverted pendulum experimental setup.
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and the ampli�er. During each experiment, a pre-assigned forcing amplitude and forcing

frequency was applied to drive the speaker and the pendulum base in a sinusoidal vibration

while the pendulum was released. Under certain initial conditions, the pendulum stabilizes

around its upright position swinging periodically with left and right motion without falling

over. We then documented this pendulum motion with di¤erent forcing parameters and

initial conditions in a systematic way and captured the pendulum motion using a high

speed camera.

Figure 3.2: Precise experimental measurements from image acquisition and image processing
using XS-3 high-speed camera, NI Vision Builder, MS Excel and Matlab.

Inverted Pendulum Motion Using High Speed Camera

In capturing the dynamics of an inverted pendulum, we are interested in mea-

suring the input of the periodic forcing to the pendulum base and the resulting e¤ect of
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the pendulum responses. By applying the optical measuring technique through high speed

camera, we measured the pendulum�s responses with high precision. Meanwhile, we avoided

the problem of changing the sensitive inverted pendulum�s dynamics from applying tradi-

tional mechanical measuring techniques which usually require some attachments from the

sensors to the apparatus which often result in inducing system damping e¤ects. One IDT

X-Stream XS-3 high speed and high image resolution camera was used for our experimental

measurements. This high speed camera has �xed image memory which we may trade in

between of higher image resolution or longer recording time. We set the image resolution

to 1260 � 288 pixels with high camera frame rate which was recorded on 1G byte camera

memory. The camera is capable of recording 3:6 seconds of data when setting the frame

rate to 500 frames per second; 1:8 seconds of data when setting frame rate to 1000 frames

per second.

Sensing by applying the optical properties of camera would eliminate additional

friction forces which would often be induced by mechanical sensors. However, sensing by

the camera requires a large amount of computational power in image processing which

results in slower processing time. As shown in Figure 3.2, there were four major steps

of image processes involved in our experimental measurements of the inverted pendulum:

(a)Image acquisition by XVision using XS-3 high speed camera, (b)Image processing by NI

Labview and NI Vision Builder, (c) Data analysis by Microsoft Excel, and (d)Data �ltering

by Matlab Butterworth �lter.

The experimental setup was constructed as shown in Figure 3.3. An Agilent

33220A signal generator was used to generate sinusoidal forcing signal then a 100-Watt
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PA ampli�er was used to amplify the signal in order to drive the speaker so as to gener-

ate periodic vertical forcing to the pendulum base. Notice that the whole speaker setup

was mounted to a solid platform in order to minimize the table vibration. The pendu-

lum is capable of adding additional pendulum rods through the ball-bearing joint, therefore

higher degree of freedom experiments can be conducted from sharing the same experimental

equipment.

Figure 3.3: Three dimensional view of the SDOF experimental setup.

The motion of the pendulum was recorded by using an IDT X-Stream XS-3 high

speed camera. To avoid image distortion form acquisition process, the camera view angle

had been set to 0 � with respect to the pendulum base and perpendicular to the pendulum�s

swinging XY plane. The distance between the camera front lens and the pendulum base

was 2m. The camera was set to acquire 8-bit resolution images in camera speed of 500
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images per second and 1000 images per second. In order to enhance the image quality for

better image analysis results, the rod of the pendulum and the pivot point on the base were

painted with a re�ective white paint, while the rest of the apparatus was painted with a

non-re�ective black coating to reduce glare. A ruler with a re�ective white paint on its

front face and black coating on the tick marks was mounted in a �xed location vertically

onto the same pendulum moving plane. The distance between two tick marks on the ruler

was 10mm away. As shown in Figure 3.1, the ruler had two important functions: one is to

calibrate the images captured from high speed camera that we used the tick marks on the

ruler to convert the pendulum size from image pixels to physical engineering unit in mm;

the other function is to use the ruler to measure the pendulum�s angle where parallel to the

ruler indicates 0 � pendulum angle. Also, there was a DC powered truck headlight used to

illuminate the apparatus in order to get better image quality.

System Calibration and Image Processing by NI Vision Builder

Since there were huge number of images captured by high speed camera taken

from each experimental trial, it required some image processing steps to convert the im-

age information into proper physical measurements. We applied NI Vision Builder image

processing software to get our experimental results. NI Vision Builder can detect color(or

brightness) di¤erence from an digital image, the shape of an object de�ned by di¤erent

color(or brightness) captured from the camera can then be distinguished. From scanning

through a sequence of images from the same shape detecting algorithm in this software, we

may get the time evolution of the shape changes which we de�ned as motion of an object.

Figure 3.4 shows a snap shot of a single image of a single degree of freedom inverted pendu-
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lum in motion. Notice that the camera being mounted in a 90 � angle in Figure 3.4 in order

to get wider camera view from di¤erent aspect ratio to capture larger pendulum�s motion.

The high speed camera provide black and white images with gray scale color and gradient

brightness to distinguish the shape of the inverted pendulum. We �rst applied NI Vision

Builder to make more contrast to the image to enhance the image quality. The result is

shown as in Figure 3.4, the inverted pendulum shows in white color which clearly separated

from the black color background. Then we de�ned an algorithm from NI Vision Builder to

detect the shape of the pendulum base which we can assign a moving coordinate to follow

the base�s motion. We can then get the measurements of the pendulum base�s motion in

digital pixel coordinate as a function of image frames, later we converted this information

into the time trace of the pendulum�s motion in engineering unit using mm= s. One of the

zoom-in view of the pendulum base�s motion is shown in Figure 3.5. Notice that we made

use of a ruler with tick marks of 10mm to calibrate the image which can be seen from the

top portion of Figure 3.4. Similarly, we detected the pendulum angle from capturing one

of its straight edges in comparison of the vertical straight line provided from the ruler in

the �xed location. Those green boxes in Figure 3.4 indicate the regions of interest of the

image process. Therefore, all pendulum�s responses and the forcing parameters captured

from high speed camera can be measured precisely through above image process techniques.

Data Analysis and Data Filtering

Figure 3.5 shows the data points of the zoom-in view of one of the pendulum�s

base motion. The Y signal in Figure 3.5 measured the pendulum�s vertical motion which

indicated that this pendulum was under sinusoidal forcing with amplitude of 8:5� 0:2mm
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Figure 3.4: NI Vision Bulider software applied to a single degree of freedom experimental
setup.

and frequency of 25:0 � 0:1Hz. The X signal in Figure 3.5 measured the pendulum�s

horizontal motion which indicated the pendulum�s base had small horizontal motion X =

0:0� 0:1mm. Notice that Figure 3.5 indicated that the high speed camera had acquisition

rate at 500 frames per second which had 50 images or data points shown within 0:1 second

of time period.

There were high frequency noise induced from data acquisition and image process-

ing steps. Experimental raw data cannot be properly analyzed without data �ltering. In

this paper, we applied Butterworth digital �lter using Matlab to convert noisy raw signal

into cleaner waveforms. Image data acquisition had sampling frequency at 500Hz, therefore

it�s Nyquist frequency was at 250Hz. We applied 10th order lowpass digital Butterworth

�lter to all of our experimental data with cuto¤ frequency being set to 15% of Nyquist
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Figure 3.5: Zoom-in view of experimental data of inverted pendulum base motion. X
denotes vertical periodic forcing displacement which has coordinate u(t) = " cos!t; Y
denotes horiontal motion.
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frequency.

3.2 Single Degree of Freedom System Experimental Results

Below are graphs of our experimental results on sDOF inverted pendulum as de-

scribed in Figure 3.1. In Figure 3.6, the pendulum was under sinusoidal forcing with ampli-

tude 10:0� 0:2mm and frequency 25:0� 0:1Hz. We normalized the forcing amplitude and

forcing frequency by the pendulum�s length and its natural frequency in order to compare

with our numerical simulation results. The system has normalized amplitude �" = 0:14�0:01

and normalized frequency �! = 13:3 � 0:2. Under 500Hz of high speed camera acquisition

rate, we measured the pendulum�s response in high resolution. In part (a) of Figure 3.6

shows the pendulum�s vertical forcing with comparison to the pendulum�s response. It in-

dicates that the input forcing was in periodic pattern near sinusoidal motion which resulted

in a near periodic pendulum response. In part (b),(c),(d),(e),(f) of Figure 3.6 there are two

parts of system response, the top graph indicates the raw data points while the bottom in-

dicates the �ltered data points by applying Butterworth �lter. Notice from the graphs, the

�ltered data shown much cleaner results compare with raw data, especially in the system

phase portrait graph in (e), the raw phase portrait cannot conclude much while the �ltered

phase portrait shows clear near periodic pattern. There were some damping e¤ect being

detected from our measurements as in (c) of Figure 3.6. The system time trace in (c) shows

that the inverted pendulum�s response had smaller and smaller amplitude in later timing.

This damping e¤ect also implied that the pendulum�s response may eventually stabilized

in its upright vertical position and the system was asymptotically stable with the damping
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e¤ect. This result is di¤erent compare with our numerical simulation result in which we

neglect damping through out. In (e), the system phase portrait shows symmetric pattern

which also indicates the frequency ratio Nr should be an even number. This pendulum was

swinging in a special near periodic pattern which we characterized as 14 : 1 frequency ratio

pattern. This experimental results matched with our numerical simulation results described

in earlier sections. In (f) of Figure 3.6 shows the power spectral density graph to extract

the harmonic components of the pendulum response. In (f), it indicates that there was a

slow time response greater than 1Hz and the next obvious peak happened at 25Hz which

is corresponding to the sinusoidal forcing input and the fast system time.

In Figure 3.7, the pendulum was under sinusoidal forcing with amplitude 8:0 �

0:3mm and frequency 25:0�0:1Hz. Similar to previous discussion, we normalized the forc-

ing amplitude and forcing frequency by the pendulum�s length and its natural frequency in

order to compare with our numerical simulation results. The system has normalized ampli-

tude �" = 0:11� 0:01 and normalized frequency �! = 13:3� 0:2. Under 500Hz of high speed

camera acquisition rate, we measured the pendulum�s response in high resolution. In part

(a) of Figure 3.7 shows the pendulum�s vertical forcing with comparison to the pendulum�s

response. It indicates that the input forcing was in periodic pattern near sinusoidal motion

which resulted in a near periodic pendulum response. In part (b),(c),(d),(e),(f) of Figure

3.7 there are two parts of system response, the top graph indicates the raw data points while

the bottom indicates the �ltered data points by applying Butterworth �lter. Notice from

the graphs, the �ltered data shown much cleaner results compare with raw data, especially

in the system phase portrait graph in (e), the raw phase portrait cannot conclude much
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Figure 3.6: Experiment on single degree of freedom pendulum under 10:0� 0:2mm driving
amplitude and 25Hz driving frequency. System has normalized amplitude �" = 0:14 � 0:01
and normalized frequency �! = 13:3� 0:2.
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while the �ltered phase portrait shows clear near periodic pattern. There were some damp-

ing e¤ect being detected from our measurements as in (c) of Figure 3.7. The system time

trace in (c) shows that the inverted pendulum�s response had smaller and smaller amplitude

in later timing. This damping e¤ect also implied that the pendulum�s response may even-

tually stabilized in its upright vertical position and the system was asymptotically stable

with the damping e¤ect. This result is di¤erent compare with our numerical simulation

result in which we neglect damping through out. In (e), the system phase portrait shows

symmetric pattern which also indicates the frequency ratio Nr should be an even number.

This pendulum was swinging in a special near periodic pattern which we characterized as

30 : 1 frequency ratio pattern. This experimental results also matched with our numerical

simulation results described in earlier sections. In (f) of Figure 3.7 shows the power spectral

density graph to extract the harmonic components of the pendulum response. In (f), it indi-

cates that there was a slow time response around 1Hz and the next obvious peak happened

at 25Hz which is corresponding to the sinusoidal forcing input and the fast system time.

In Figure 3.8, the pendulum was under sinusoidal forcing with amplitude 6:5 �

0:3mm and frequency 30:0�0:1Hz. Similar to previous discussion, we normalized the forc-

ing amplitude and forcing frequency by the pendulum�s length and its natural frequency in

order to compare with our numerical simulation results. The system has normalized ampli-

tude �" = 0:09� 0:01 and normalized frequency �! = 15:9� 0:2. Under 500Hz of high speed

camera acquisition rate, we measured the pendulum�s response in high resolution. In part

(a) of Figure 3.8 shows the pendulum�s vertical forcing with comparison to the pendulum�s

response. It indicates that the input forcing was in periodic pattern near sinusoidal motion
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Figure 3.7: Experiment on single degree of freedom pendulum under 8:0� 0:3mm driving
amplitude and 25Hz driving frequency. System has normalized amplitude �" = 0:11 � 0:01
and normalized frequency �! = 13:3� 0:2.
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which resulted in a near periodic pendulum response. In part (b),(c),(d),(e),(f) of Figure

3.8 there are two parts of system response, the top graph indicates the raw data points while

the bottom indicates the �ltered data points by applying Butterworth �lter. Notice from

the graphs, the �ltered data shown much cleaner results compare with raw data, especially

in the system phase portrait graph in (e), the raw phase portrait cannot conclude much

while the �ltered phase portrait shows clear near periodic pattern. There were some damp-

ing e¤ect being detected from our measurements as in (c) of Figure 3.8. The system time

trace in (c) shows that the inverted pendulum�s response had smaller and smaller amplitude

in later timing. This damping e¤ect also implied that the pendulum�s response may even-

tually stabilized in its upright vertical position and the system was asymptotically stable

with the damping e¤ect. This result is di¤erent compare with our numerical simulation

result in which we neglect damping through out. In (e), the system phase portrait shows

symmetric pattern which also indicates the frequency ratio Nr should be an even number.

This pendulum was swinging in a special near periodic pattern which we characterized as

36 : 1 frequency ratio pattern. This experimental results also matched with our numerical

simulation results described in earlier sections. In (f) of Figure 3.8 shows the power spectral

density graph to extract the harmonic components of the pendulum response. In (f), it indi-

cates that there was a slow time response around 1Hz and the next obvious peak happened

at 30Hz which is corresponding to the sinusoidal forcing input and the fast system time.
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Figure 3.8: Experiment on single degree of freedom pendulum under 6:5� 0:3mm driving
amplitude and 30Hz driving frequency. System has normalized amplitude �" = 0:09 � 0:01
and normalized frequency �! = 15:9� 0:2.
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Chapter 4

Multiple Degree of Freedom

Inverted Pendulum Model

The multiple degree of freedom model supports di¤erent e¤ects than the single

degree of freedom case. In this paper, we �rst considered the general n degree of freedom

inverted pendulum model under periodic vertical forcing at its base. In later sections, we

validated sDOF and 2DOF models from assigning n = 1 and n = 2 to our n degree of

freedom inverted pendulum model.

4.1 Formulate nDOF System Equation of Motion From La-

grangian Approach

Consider a nDOF inverted pendulum as shown in Figure 4.1 under planer motion

with respect to a �xed two dimensional coordinate X �Y . The inverted pendulum consists

of n point masses which connect to each other by n rigid weightless rods. Assume each
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joint is free to rotate on the X � Y plane without any friction or damping force. The base

of the inverted pendulum is subject to vertical oscillatory forcing with vertical periodic

displacement h (t) = " cos!t . For convenience we setup a sub-coordinate x� y which has

its origin (x0; y0) located on the inverted pendulum�s base. The n masses labelled from the

�rst joint counting from the base as m1;m2; :::;mk; :::;mn with length of their rods label as

l1; l2; :::; lk; :::; ln . Each point mass has their coordinate with respect to the inertial frame

written as (x1; y1) ; (x2; y2) ; :::; (xk; yk) ; :::; (xn; yn) . The inverted pendulum�s motion can

be described by the time evolution of the angles of the pendulum rods with respect to

upright vertical position of the inertial frame and the pendulum�s angles are labelled as

�1(t); �2(t); �3(t); :::; �n(t) respectively. The whole system is under the Earth�s gravitational

acceleration g which is point downward.

We can write the coordinate of each mass as

x1 = x0 + l1 sin �1;

y1 = y0 + h(t) + l1 cos �1;

x2 = x0 + l1 sin �1 + l2 sin �2;

y2 = y0 + h(t) + l1 cos �1 + l2 cos �2;

:::

xn = x0 + l1 sin �1 + :::+ ln sin �n =
nX
i=1

li sin �i;

yn = y0 + h(t) + l1 cos �1 + :::+ ln cos �n = h(t) +

nX
i=1

li cos �i:

Taking time derivatives to the above equations we may get velocity components

of each joint as
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Figure 4.1: Geometric relationship of gereral case nDOF inverted pendulum. under vertical
oscillatory forcing at its base
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_x1 = l1 _�1 cos �1;

_y1 = _h(t)� l1 _�1 sin �1;

_x2 = l1 _�1 cos �1 + l2 _�2 cos �2;

_y2 = _h(t)� l1 _�1 sin �1 � l2 _�2 sin �2;

:::

_xn = l1 _�1 cos �1 + l2 _�2 cos �2 + :::+ ln _�n cos �n =
nX
i=1

li _�i cos �i;

_yn = _h(t)� l1 _�1 sin �1 � l2 _�2 sin �2 � :::� ln _�n sin �n = _h(t)�
nX
i=1

li _�i sin �i:

Therefore, the potential energy for n-DOF inverted pendulum can be expressed as

Vn = m1gy1 +m2gy2 + :::+mngyn; (4.1)

= g

24h(t) nX
i=1

mi +
nX
i=1

nX
j=1

mjli cos �i

35 :
Kinetic energy for n-DOF inverted pendulum can be expressed as

Tn =
m1

2

�
_x21 + _y21

�
+
m2

2

�
_x22 + _y22

�
+ :::+

mn

2

�
_x2n + _y2n

�
; (4.2)

=
1

2

nX
i=1

mi

26664
_h2(t)� 2 _h (t)

iP
j=1
li _�j sin �j

+2
i�1P
j=1
ljlj+1 _�j _�j+1 cos (�j � �j+1) + 2lil1 _�i _�1 cos (�i � �1) +

iP
j=1
l2j
_�
2
j

37775 :
The inverted pendulum�s equation of motion can then be derived by means of

Lagrange�s equation applying energy conservation law. For n-DOF system it requires n sets

of Lagrange�s equations to describe the whole system�s dynamic. We may write the kth

Lagrange�s equation as
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d

dt

�
@Ln

@ _�k

�
� @Ln
@�k

= 0: (4.3)

The system has n states �1; �2; �3; :::; �n. In (4:3) ; �k denotes the kth component

of the states and _�k denotes the kth angular velocity component. The Lagrangian function

de�ned as Ln = Tn � Vn which is simply the system kinetic energy subtracts by the sys-

tem potential energy. Lagrange�s equation describes the motion generated from the system

kinetic energy will later become the system potential energy; the system potential energy

will also transfer perfectly into kinetic energy then some motions being introduced. La-

grange�s equation is bases on the energy conservation law where no energy being generated

nor dissipated in a system. Unlike the Lagrange�s equation as in (2:2) described in earlier

section that the vertical forcing being treated as nonconservative forces, our new system

has the vertical forcing shown explicitly inside its kinetic energy. Dealing with conservative

Lagrange�s equation will bene�t from solving only homogeneous di¤erential equations which

results in much lighter calculation cost. Refer to [62] and [61], Weibel and Baillieul intro-

duced a more compact form of Lagrangian equation to their n degree of freedom normal

pendulum(�k angles are measured from downward vertical) under a rapidly forced cart on

an inclined plane. We applied the compact form of Lagrangian equation to our n-DOF

inverted pendulum as follow:

Ln(Q; _Q; �) =
1

2
_QTM (Q) _Q+ �A (Q)T _Q| {z }

Kinetic Energy

� V (Q)| {z } :
Potential Energy

(4.4)

The Lagrangian equation shown in (4:4) has no di¤erence compare with the La-

grangian function calculated from our previous derivation on system kinetic energy and

potential energy in (4:2) and (4:1) respectively. However, detail break down components of
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system kinetic energy variation can be shown in more clear way in (4:4). As described in

(4:4), the system kinetic energy is composed of two parts: the e¤ect of system inertial and

the e¤ect of vertical periodic forcing. Here QT = [ �1 �2 �3 ::: �n ] 2 R
n denotes the

states of the system. _Q is time derivative of Q denotes the angular velocity of the states. �

is the velocity component due to vertical periodic forcing and is described as

�(t) = _h (t) = �"! sin!t: (4.5)

M (Q) 2 Rn�n is a state-dependent inertia tensor can be described in matrix form

as:

M (Q) =

2666666666666664

M11 (�) M12 (�) : : M1n (�)

M21 (�) : :

: : :

: : :

Mn1 (�) : : : Mnn (�)

3777777777777775
(4.6)

where the components inside can be described as

Mij (�) =

0@ nX
mk

k=max(i;j)

1A lilj cos (�i � �j) : (4.7)

A (Q) 2 Rn is known as Coriolis coupling vector which describes the vertical forcing

a¤ect the kinetic energy of the system.

A (Q)T =

�
A1 (�) A2 (�) A3 (�) ::: An (�)

�
(4.8)

where the components inside can be described as

Ai (�) =

 
nX
k=1

mk

!
li sin �i: (4.9)
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The system potential energy V (Q) 2 R depends only on the states of system and

can be described as

V (Q) =

nX
i=1

" 
nX
k=i

mk

!
gli (cos �i � 1)

#
: (4.10)

Although the general Lagrangian equation (4:4) is not necessarily conserved for

arbitrary forcing input �, the system can be considered conserved under periodic forc-

ing. This had been pointed out by Weibel and Baillieul in [62],[61]. Our system only

concern on the e¤ect of periodic forcing where �(t + T ) = �(t) for some T > 0. In [62]

and [61], Weibel and Baillieul introduced the concept of controller Hamiltonian H(Q;P ; �)

corresponding to (4:4) via the Legendre transformation H(Q;P ; �) = P T _Q � Ln where

P T =

�
P1 P2 P3 ::: Pn

�
are canonical momenta de�ned by P = @Ln

@ _Q
. They con-

cluded that for periodic forcing the controller Hamiltonian H(Q;P ; �) can be averaged over

one period of �(t) to obtain the averaged Hamiltonian which results in a proper Hamil-

tonian described as @H@t = 0 . The system can then be considered conserved thru averaging

principle.

In later sections, we will �rst verify the single degree of freedom model by applying

n = 1 to our n degree of freedom model and compare that to our earlier work as shown in

(2:12). Two degree of freedom system will then being introduced after by applying n = 2

to our n degree of freedom model. Results on numerical simulation and experimentation of

two degree of freedom system will be shown in later chapters and detailed comparison will

then be performed.
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4.2 Validate the Single Degree of Freedom Inverted Pendu-

lum Model

Apply n = 1 to (4:6) ; (4:8) and (4:10), we have

QT = [�1] ; (4.11)

M (Q) = [M11 (�1)] = m1l
2
1; (4.12)

A (Q) = [A1 (�1)] = m1l1 sin �1; (4.13)

V (Q) = m1gl1 (cos �1 � 1) : (4.14)

Therefore, the single degree of freedom system Lagrangian equation can be ex-

pressed as

L1

�
Q; _Q; �

�
=
1

2
m1l

2
1
_�
2
1 � ("! sin!t) (m1l1 sin �1) _�1 �m1gl1 (cos �1 � 1) : (4.15)

Derive @L1
@�1
; @L1
@ _�1

and d
dt

�
@L1
@ _�1

�
as follow:

@L1
@�1

= �m1l1 _�1 ("! sin!t) cos �1 +m1gl1 sin �1; (4.16)

@L1

@ _�1
= m1l

2
1
_�1 � ("! sin!t)m1l1 sin �1; (4.17)

d

dt

�
@L1

@ _�1

�
= m1l

2
1
��1 �

�
"!2 cos!t

�
m1l1 sin �1 � ("! sin!t)m1l1 _�1 cos �1; (4.18)

The Lagrange�s equation becomes

d

dt

�
@L1

@ _�1

�
� @L1
@�1

= m1l
2
1
��1 �m1l1

�
g + "!2 cos!t

�
sin �1 = 0: (4.19)

We may divide both sides of (4:19) by m1l
2
1 to make its leading coe¢ cient equal

to 1 yields

��1 �
�
g + "!2 cos!t

� 1
l1
sin �1 = 0: (4.20)
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The equation of motion in (4:20) is the same as in (2:12) derived from earlier

sections.

4.3 Two Degree of Freedom Inverted Pendulum Model

Apply n = 2 to (4:6) ; (4:8) and (4:10), we have

QT =

�
�1 �2

�
; (4.21)

M (Q) =

2664 M11 (�) M12 (�)

M13 (�) M14 (�)

3775

=

2664 (m1 +m2)l
2
1 m2l1l2 cos (�1 � �2)

m2l1l2 cos (�1 � �2) m2l
2
2

3775 ; (4.22)

A (Q) =

�
A1 A2

�
=

�
(m1 +m2) l1 sin �1 m2l2 sin �2

�
; (4.23)

V (Q) = (m1 +m2) gl1 (cos �1 � 1) +m2gl2 (cos �2 � 1) : (4.24)

Substitute (4:21) ; (4:22) ; (4:23) and (4:24) into (4:4), the Lagrangian function of
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two degree of freedom inverted pendulum model can be expressed as

L2

�
Q; _Q; �

�
=

1

2

�
_�1 _�2

�2664 M11 (�) M12 (�)

M13 (�) M14 (�)

3775
2664 _�1

_�2

3775

+�

�
A1 A2

�2664 _�1

_�2

3775
�V (Q) ;

=
1

2
(m1 +m2) l

2
1
_�
2
1 +m2l1l2 _�1 _�2 cos (�1 � �2) +

1

2
m2l

2
2
_�
2
2

� ("! sin!t)
h
(m1 +m2) l1 _�1 sin �1 +m2l2 _�2 sin �2

i
� [(m1 +m2) gl1 (cos �1 � 1) +m2gl2 (cos �2 � 1)] : (4.25)

Derive @L2
@�1
; @L2
@ _�1

and d
dt

�
@L2
@ _�1

�
as follow:

@L2
@�1

= �m2l1l2 _�1 _�2 sin (�1 � �2)� ("! sin!t) (m1 +m2) l1 _�1 cos �1

+(m1 +m2) gl1 sin �1; (4.26)

@L2

@ _�1
= (m1 +m2) l

2
1
_�1 +m2l1l2 _�2 cos (�1 � �2)

� ("! sin!t) (m1 +m2) l1 sin �1; (4.27)

d

dt

�
@L2

@ _�1

�
= (m1 +m2) l

2
1
��1 +m2l1l2��2 cos (�1 � �2)

�m2l1l2 _�2

�
_�1 � _�2

�
sin (�1 � �2)

�
�
"!2 cos!t

�
(m1 +m2) l1 sin �1

� ("! sin!t) (m1 +m2) l1 _�1 cos �1: (4.28)

The �rst set of Lagrange�s equation becomes
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d

dt

�
@L2

@ _�1

�
� @L2
@�1

= (m1 +m2) l
2
1
��1 �

�
g + "!2 cos!t

�
(m1 +m2) l1 sin �1

+m2l1l2

h
��2 cos (�1 � �2) + _�

2
2 sin (�1 � �2)

i
= 0: (4.29)

We may divide both sides of (4:29) by (m1 +m2) l
2
1 to make its leading term ��1

coe¢ cient equal to 1 yields

��1�
�
g + "!2 cos!t

� 1
l1
sin �1+

m2l2
(m1 +m2) l1

h
��2 cos (�1 � �2) + _�

2
2 sin (�1 � �2)

i
= 0: (4.30)

Similarly, we may derive @L2
@�2
; @L2
@ _�2

and d
dt

�
@L2
@ _�2

�
as follow:

@L2
@�2

= m2l1l2 _�1 _�2 sin (�1 � �2)� ("! sin!t)m2l2 _�2 cos �2

+m2gl2 sin �2; (4.31)

@L2

@ _�2
= m2l1l2 _�1 cos (�1 � �2) +m2l

2
2
_�2 � ("! sin!t)m2l2 sin �2; (4.32)

d

dt

�
@L2

@ _�2

�
= m2l1l2��1 cos (�1 � �2)�m2l1l2 _�1

�
_�1 � _�2

�
sin (�1 � �2)

+m2l
2
2
��2 �

�
"!2 cos!t

�
m2l2 sin �2

� ("! sin!t)m2l2 _�2 cos �2: (4.33)

The second set of Lagrange�s equation becomes

d

dt

�
@L2

@ _�2

�
� @L2
@�2

= m2l1l2��1 cos (�1 � �2)�m2l1l2 _�
2
1 sin (�1 � �2)

+m2l
2
2
��2 �

�
"!2 cos!t

�
m2l2 sin �2 �m2gl2 sin �2

= 0: (4.34)
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We may divide both sides of (4:34) by m2l
2
2 to make its leading term ��2 coe¢ cient

equal to 1 yields

��2 �
�
g + "!2 cos!t

� 1
l2
sin �2 +

l1
l2

h
��1 cos (�1 � �2)� _�

2
1 sin (�1 � �2)

i
= 0: (4.35)

Therefore, two sets of equations (4:30) and (4:35) describe the dynamic of two

degree of freedom inverted pendulum under vertical periodic forcing. However, these two

sets of equations are not written in a conventional form which has two highest order states in

the same equation. For the convenience of applying conventional numerical simulation tools,

we may further simpli�ed two sets of equations (4:30) and (4:35) into general formats. First

set of simpli�ed equation can be obtained from (4:30) subtract (4:35) multiple by l2
l1

m2
(m1+m2)

and then divide both sides of equation by its leading coe¢ cient 1�
�

m2
m1+m2

�
cos2 (�1 � �2)

, yields

��1 �
�
g + "!2 cos!t

�
(�11 sin �1 + �12 sin �2) + �13 _�

2
1 + �14

_�
2
2 = 0: (4.36)

The coe¢ cients inside (4:36) are

�11 =
1
l1h

1�
�

m2
m1+m2

�
cos2 (�1 � �2)

i ; (4.37)

�12 =

1
l1

m2
(m1+m2)

cos (�1 � �2)h
1�

�
m2

m1+m2

�
cos2 (�1 � �2)

i ; (4.38)

�13 =

m2
(m1+m2)

cos (�1 � �2) sin (�1 � �2)h
1�

�
m2

m1+m2

�
cos2 (�1 � �2)

i ; (4.39)

�14 =

l2
l1

m2
(m1+m2)

sin (�1 � �2)h
1�

�
m2

m1+m2

�
cos2 (�1 � �2)

i : (4.40)
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Second set of simpli�ed equation can be obtained from (4:35) subtract (4:30)multi-

ple by l1l2 and then divide both sides of equation by its leading coe¢ cient 1�
�

m2
m1+m2

�
cos2 (�1 � �2)

, yields

��2 �
�
g + "!2 cos!t

�
(�21 sin �1 + �22 sin �2) + �23 _�

2
1 + �24

_�
2
2 = 0: (4.41)

The coe¢ cients inside (4:41) are

�21 =
1
l2h

1�
�

m2
m1+m2

�
cos2 (�1 � �2)

i ; (4.42)

�22 =
1
l2
cos (�1 � �2)h

1�
�

m2
m1+m2

�
cos2 (�1 � �2)

i ; (4.43)

�23 =
� l1
l2
sin (�1 � �2)h

1�
�

m2
m1+m2

�
cos2 (�1 � �2)

i ; (4.44)

�24 =
� m2
(m1+m2)

cos (�1 � �2) sin (�1 � �2)h
1�

�
m2

m1+m2

�
cos2 (�1 � �2)

i : (4.45)

Equations (4:36) and (4:41) describe the dynamic of two degree of freedom inverted

pendulum under vertical periodic forcing at its base.

4.4 Coe¢ cients of 2DOF Inverted Pendulum Equation of

Motion

The equation of motion of 2DOF inverted pendulum under periodic vertical forcing

is described by (4:36) and (4:41). These two sets of 2nd order nonlinear ordinary di¤erential

equations has coupled time-varying coe¢ cients �11;�12;�21;�22 due to periodic forcing.

In addition, there are kinetic energy terms being induced through the interaction of two
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pendulums�motion to each other, their coe¢ cients are �13;�14;�23; and �24. Notice that all

coe¢ cients are state-dependent and they all depend on the di¤erence between two pendulum

angles �1 � �2. Due to sin (�1 � �2) term in the coe¢ cients of �13;�14;�23; and �24, their

values are always small since the angle �1 � �2 is always small when pendulum is stabilized

in its inverted states. We may also notice that all coe¢ cients in the system equation of

motion share the same denominator as 1�
�

m2
m1+m2

�
cos2 (�1 � �2). This denominator has

value smaller than unity at all conditions which is also state-dependent

0 <
m1

m1 +m2
� 1�

�
m2

m1 +m2

�
cos2 (�1 � �2) � 1: (4.46)

Since all parameters has positive values m1;m2; l1; l2 > 0 , the coe¢ cient �11 in the �rst

set of equation of motion (4:36) is always larger than �12 because

1

l1
>
1

l1

m2

(m1 +m2)
cos (�1 � �2) (4.47)

due to the facts that m2
(m1+m2)

< 1 and �1 < cos (�1 � �2) < 1. The coe¢ cient �11 always

has positive value. From (4:37) and (4:38), we can also get the following relationship:

� m2

(m1 +m2)
�11 � �12 �

m2

(m1 +m2)
�11 (4.48)

which shows the limit of �12 values. Similarly, the coe¢ cient �21 in the second set of

equation of motion (4:41) is always larger than �22. From (4:39) and (4:45) we can get the

following relationship:

�13 = ��24 (4.49)
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which states that �13 has the same quantity as �24 but has reverse sign. Notice that if we

set m2 ! 0, then �12;�13;�14 approach zero value which results in the same equation of

motion as in single degree of freedom model (2:13) : This is the special case of the 2DOF

inverted pendulum.

Two degree of freedom pendulum has two distinct modes of vibration when it

stabilized in its inverted state under vertical periodic forcing . Figure 4.2 shows two modes

of vibration. The graph on the left shows two pendulums swinging in the same direction

where _�1 and _�2 has the same sign, we named this kind of vibration as mode 1 type. On

the other hand, the graph on the right shows two pendulums swinging in the opposite

directions where _�1 and _�2 have di¤erent signs, we named this kind of vibration as mode 2

type. Although these two types of vibration modes have di¤erent pendulum responses they

share the same equation of motion sets as in (4:36) and (4:41).

4.5 Numerical Integration on Nonlinear 2DOF Inverted Pen-

dulum Model

Introduce new system states as x1 = �1; x2 = �2; x3 = _�1; x4 = _�2 and two

additional states u = cos!t and v = sin!t that adapt to periodic forcing terms, then

nonlinear 2DOF system equation of motion (4:36) and (4:41) becomes
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Figure 4.2: Simpli�ed two degree of freedom inverted pendulum model with two point
masses mounted on two rigid rods. Two modes of vibration shown on graph: Mode 1(left)
and Mode 2(right).

_x1 = x3;

_x2 = x4;

_x3 =
�
g + "!2u

�
(�11 sinx1 + �12 sinx2)�

�
�13x

2
3 + �14x

2
4

�
;

_x4 =
�
g + "!2u

�
(�21 sinx1 + �22 sinx2)�

�
�23x

2
3 + �24x

2
4

�
;

_u = u(1� u2 � v2)� !v;

_v = v(1� u2 � v2) + !u: (4.50)

All coe¢ cients inside (4:50) are the same de�nitions as in equations from (4:37) to (4:45).

We may apply numerical integration technique through parameter continuation code using

4th order Runge-Kutta scheme to (4:50). Two simulation results are shown in Figure 4.3
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and Figure 4.4. Both simulation results were obtained from applying the same system

parameters: m1 = 0:0038;m2 = 0:0019; l1 = 0:0537; l2 = 0:0251. Figure 4.3 shows that

system is under mode 1 vibration where the �rst pendulum is swinging at the same direction

as the second pendulum. Figure 4.4 shows that system is under mode 2 vibration where the

�rst pendulum is swinging at opposite directions compare to the second pendulum. Both

simulation results came from the same vertical periodic forcing to the pendulum base which

has periodic forcing amplitude " = 0:00593 and forcing frequency ! = 250 rad= s. The only

di¤erence in getting these two distinct responses from the same equation of motion sets are

applying di¤erent initial conditions to (4:50). Mode 1 response or Figure 4.3 has initial

conditions �10 = 0:05; _�10 = 0 and �20 = 0:1; _�20 = 0; Mode 2 response or Figure 4.4 has

initial conditions �10 = 0:1; _�10 = 0 and �20 = �0:101; _�20 = 0.

As shown in Figure 4.3, the inverted pendulum has bounded response. It�s time

trace represents near periodic behavior and the �rst pendulum swings at the same direction

as the second pendulum which indicated mode 1 vibration. Both of its phase portraits show

bounded orbits which we may conclude as quasiperiodic behavior. Unlike single degree of

freedom inverted pendulum case whose phase portrait has zero nullclines in both vertical

and horizontal directions, the 2DOF inverted pendulum has non-zero vertical nullcline if it

starts from non-zero initial conditions. The starting vertical nullcline location in �1 � _�1

plane depends on the initial condition of the second pendulum while the starting vertical

nullcline location in �2� _�2 plane depends on the initial conditions of the �rst pendulum. In

fact, those vertical nullclines obtained from the nonlinear model were not perfectly straight,

their curvatures depended on the coe¢ cients �13;�14;�23;�24. The 3D phase portrait in
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Figure 4.3: 2DOF inverted pendulum under mode 1 vibration with vertical periodic forcing
amplitude " = 0:00593 and forcing frequency ! = 250 rad= s. Initial conditions are �10 =
0:05; _�10 = 0 and �20 = 0:1; _�20 = 0 .
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Figure 4.3 shown that their orbits were close to 4 : 1 periodic ratio. The power spectral

density graph shown that the system response had already past period-doubling bifurcation,

there were multiple harmonic components higher than the forcing frequency which was

! = 250 rad= s � 39:8Hz. Compare to Figure 4.3, when applying di¤erent initial conditions

to the same 2DOF inverted pendulum model with the same forcing as in (4:50) we can

get totally di¤erent pendulum response as in Figure 4.4 which indicates the 2DOF inverted

pendulum is now under mode 2 vibration. In Figure 4.4 the pendulum response can only

be concluded as bounded, the periodic e¤ect is not obvious. It�s time trace shown the

�rst pendulum swings at di¤erent directions compare with the second pendulum which

indicated mode 2 vibration. Both of its phase portraits and its 3D phase portrait shown

bounded behavior. Notice that although two power spectral density graphs in Figure 4.3

and Figure 4.4 showed similar patterns. However, in Figure 4.3 it showed the dominated

harmonic component located at around 10Hz; while in Figure 4.4 the dominated harmonic

component had been shifted to lower frequency at around 2Hz.

None of our simulation results shown clear periodic behavior in 2DOF inverted

pendulum using full nonlinear model as described in (4:50). This can be explained as the

induced kinetic terms a¤ected the steadiness of their phase portrait orbits and caused them

to �uctuate regardless that their coe¢ cients �13;�14;�23;�24 are always small.
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Figure 4.4: When applying di¤erent initial conditions to the same 2DOF inverted pendulum
model we can get mode 2 vibration with the same vertical periodic forcing amplitude " =
0:00593 and forcing frequency ! = 250 rad= s. Initial conditions are �10 = 0:1; _�10 = 0 and
�20 = �0:101; _�20 = 0.
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4.6 Small Angle Assumption to Obtain Linear 2DOF In-

verted Pendulum Model

To obtain clear periodic orbits in a 2DOF case, we may linearize its nonlinear

model by applying small angle assumptions to pendulum angles. Under the condition of

small �1 and �2 angles as �1 ! 0 and �2 ! 0, we may get the following approximations:

sin �1 ! �1;

sin �2 ! �2;

cos �1 ! 1;

cos �2 ! 1; (4.51)

and

sin (�1 � �2) ! (�1 � �2) ;

cos (�1 � �2) ! 1;

cos2 (�1 � �2) ! 1: (4.52)

Therefore, we may obtain the simpli�ed system equation of motion as

��1 �
�
g + "!2 cos!t

�
(�11�1 + �12�2) + �13 _�

2
1 + �14

_�
2
2 = 0; (4.53)

��2 �
�
g + "!2 cos!t

�
(�21�1 + �22�2) + �23 _�

2
1 + �24

_�
2
2 = 0: (4.54)

where the new coe¢ cients can be simpli�ed as
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�11 ! m1 +m2

m1l1
; (4.55)

�12 ! m2

m1l1
; (4.56)

�13 ! m2

m1
(�1 � �2) ; (4.57)

�14 ! m2l2
m1l1

(�1 � �2) ; (4.58)

and

�21 ! m1 +m2

m1l2
; (4.59)

�22 ! m1 +m2

m1l2
; (4.60)

�23 ! �(m1 +m2) l1
m1l2

(�1 � �2) ; (4.61)

�24 ! �m2

m1
(�1 � �2) : (4.62)

Since �1 and �2 are both small, the coe¢ cients �13;�14;�23;�24 are also small.

We may then neglect those induced kinetic terms due to �13;�14;�23;�24 ! 0 to obtain

linear system equation of motion as:

��1 �
�
g + "!2 cos!t

�
(�11�1 + �12�2) = 0 (4.63)

��2 �
�
g + "!2 cos!t

�
(�21�1 + �22�2) = 0 (4.64)

with new system coe¢ cients
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�11 =
m1 +m2

m1l1
; (4.65)

�12 =
m2

m1l1
; (4.66)

�21 =
m1 +m2

m1l2
; (4.67)

�22 =
m1 +m2

m1l2
: (4.68)

Apply change of variables of x1 = �1, x2 = �2, x2 = _�1, x4 = _�2 , the linear system equation

of motion can be described in matrix form as266666666664

_x1

_x2

_x3

_x4

377777777775
=

266666666664

0 0 1 0

0 0 0 1

�(t)�11 �(t)�12 0 0

�(t)�21 �(t)�22 0 0

377777777775

266666666664

x1

x2

x3

x4

377777777775
: (4.69)

Equation (4:69) takes the form _X = A (t)X which is a �rst order ordinary di¤erential

equation with time-periodic coe¢ cient. The time-periodic property is coming from the

vertical periodic forcing �h (t) = "!2 cos!t which is included inside �(t) as �(t) = g +

"!2 cos!t . Equation (4:69) is similar to (2:50) which indicates that Floquet theory and

Hill�s equation can be applied to check the stability of this 2DOF linear time-periodic

system. It is possible to obtain clear periodic orbits from simulating the linear 2DOF

inverted pendulum model in (4:69) since one of the e¤ect of causing �uctuations in nonlinear

model has been removed from making the coe¢ cients of _�
2
1 and _�

2
2 equal to zero.

Since there are two modes of vibration in the 2DOF inverted pendulum response,

we may apply the same technique as in solving the nonlinear model (4:50) numerically which

requires to assign two di¤erent types of initial conditions: assign �10 and �20 the same sign
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and _�10 = _�20 = 0 to get mode 1 vibration; assign �20 reverse sign to �10 and _�10 = _�20 = 0

to get mode 2 vibration. Notice that in mode 2 case when we reverse sign of two initial

angles, it also requires that coe¢ cients �21;�22 in second set of equation of motion (4:64)

reverse their signs as shown in (4:70) and (4:71).

�21 = �m1 +m2

m1l2
; (4.70)

�22 = �m1 +m2

m1l2
: (4.71)

Our goal in numerical simulation on 2DOF linear inverted pendulum model is to

characterize the type of periodic solutions similarly to the single degree of freedom case

presented in earlier chapter of this paper. We applied the same parameter continuation

simulation code as being used in sDOF case by integrating the ordinary di¤erential equations

numerically through 4th order Runge-Kutta scheme. The simulation results of two modes

of vibration on 2DOF linear inverted pendulum under periodic forcing is presented in the

following sections. Similar to sDOF case, four di¤erent kinds of geometric realization of

system response are being used to present our data: system time traces, system phase

portrait, three dimensional view of system phase portrait compare to input forcing, and

system�s power spectral density diagram.

Simulation Results on Linear 2DOF Inverted PendulumModel underMode

1 Vibration

Since our goal in numerical simulation is to characterize di¤erent types of periodic

solutions due to di¤erent periodic forcing, we applied a set of generic coe¢ cients as �11 =
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1:5;�12 = 0:6;�21 = 0:6;�22 = 0:6 to our 2DOF linear model as described in (4:63) and

(4:64). All simulations were under the same initial conditions as �10 = 0:1; _�10 = 0 and

�20 = 0:3; _�20 = 0. Two periodic solution results are shown in Figure 4.5 and Figure 4.6.

The system responses indicate that both system were under mode 1 vibration. We used

the same four geometric representations: time trace, phase portrait, 3D phase portrait, and

power spectral density graph, to present our simulation results. The left hand side graph

set indicates the �rst degree of freedom pendulum�s response while right hand side graph set

indicates the second degree of freedom pendulum�s response. In Figure 4.5, with periodic

input forcing amplitude " = 0:2138 and forcing frequency ! = 200 it shows that pendulum

was under 4 : 1 frequency ratio. It�s phase portraits represent symmetric periodic orbits

with their vertical nullclines located in non-zero positions. The power spectral density graph

extracts multiple peaks in various frequencies locations and the largest peak happened in

the lowest frequency at around 10Hz.

In Figure 4.6, with periodic input forcing amplitude " = 0:03025 and forcing

frequency ! = 200 it shows that pendulum was under 35 : 1 frequency ratio. It�s phase

portraits have asymmetric periodic orbits and their vertical nullclines located in non-zero

positions. The power spectral density graph extracts 3 clear peaks with the dominated

harmonic component located below 1Hz denotes as system slow time and second peak

corresponding to the periodic forcing around 32Hz denotes as system fast time. The third

peak has frequency about twice as large as the second peak which located within the range

of 60Hz s 70Hz:

Compare with periodic response as shown in Figure 4.6, under slightly di¤erent
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Figure 4.5: 2DOF inverted pendulum under mode 1 vibration. The periodic input forcing
amplitude was " = 0:2138 and the forcing frequency was ! = 200.
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Figure 4.6: 2DOF inverted pendulum under mode 1 vibration. The periodic input forcing
amplitude was " = 0:03025 and the forcing frequency was ! = 200.
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periodic input forcing amplitude " = 0:03023, the pendulum�s response doesn�t repeat itself

exactly as in previous periodic case. Instead, the system showed quasiperiodic behavior as

in Figure 4.7. In part (a) of Figure 4.7, we presented time trace to a longer period of 10

seconds in order to see long term signal drift. It�s phase portraits show that the system

response still remain bounded but the orbits in the phase portrait occupy more area inside.

Their 3D phase portraits also occupy more area in the graph. The power spectral density

graph is almost identical to the previous case as shown in Figure 4.6 which extracts 3 clear

peaks with the dominated low frequency harmonic component located below 1Hz denotes

as system slow time and second peak corresponding to the periodic forcing around 32Hz

denotes as system fast time. The third peak has frequency about twice as large as the

second peak which located within the range of 60Hz s 70Hz:

Simulation Results on Linear 2DOF Inverted PendulumModel underMode

2 Vibration

Similar to the simulation results on linear 2DOF inverted pendulum model under

mode 1 vibration, we applied a set of generic coe¢ cients to simulate mode 2 vibration as

�11 = 1:5;�12 = 0:6;�21 = �0:6;�22 = �0:6 to our 2DOF linear model as described in

(4:63) and (4:64). All simulations were under the same initial conditions as �10 = 0:1; _�10 = 0

and �20 = �0:05; _�20 = 0. Four periodic solution results are shown in Figure 4.8 , Figure

4.9, Figure 4.9, and Figure 4.11. The system responses indicate that they were under mode

2 vibration. We used the same four geometric representations: time trace, phase portrait,

3D phase portrait, and power spectral density graph, to present our simulation results. The

left hand side graph set indicates the �rst degree of freedom pendulum�s response while
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Figure 4.7: 2DOF inverted pendulum under mode 1 vibration. The periodic input forcing
amplitude was " = 0:03023 and the forcing frequency was ! = 200. The inverted pendulum
shows quasiperiodic response.
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right hand side graph set indicates the second degree of freedom pendulum�s response. In

Figure 4.8, with periodic input forcing amplitude " = 0:2138 and forcing frequency ! = 200

it shows that pendulum was under 4 : 1 frequency ratio. This is the same result as shown

in mode 1 case as in Figure 4.5. It�s phase portraits represent symmetric periodic orbits

with their vertical nullclines located in non-zero positions. Notice that the second degree of

freedom phase portrait has its non-zero nullcline moved to the opposite location compare

to mode 1 case as in Figure 4.5. The power spectral density graph extracts multiple peaks

in various frequencies locations and the largest peak happened in the lowest frequency at

around 10Hz.

In Figure 4.9, with periodic input forcing amplitude " = 0:1514 and forcing fre-

quency ! = 200 it shows that pendulum was under 6 : 1 frequency ratio. It�s phase portraits

have symmetric periodic orbits and their vertical nullclines located in non-zero positions.

The power spectral density graph extracts multiple peaks with the dominated low frequency

harmonic component located around 6Hz denotes as system slow time.

In Figure 4.10, with periodic input forcing amplitude " = 0:11637 and forcing

frequency ! = 200 it shows that pendulum was under 8 : 1 frequency ratio. It�s phase

portraits have symmetric periodic orbits and their vertical nullclines located in non-zero

positions. The power spectral density graph extracts multiple peaks similar to 6 : 1 case

with the dominated low frequency harmonic component moved to even lower frequency

around 4Hz denotes as system slow time.

In Figure 4.11, with periodic input forcing amplitude " = 0:05037 and forcing

frequency ! = 200 it shows that pendulum was under 18 : 1 frequency ratio. It�s phase
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Figure 4.8: 2DOF inverted pendulum under mode 2 vibration. The periodic input forcing
amplitude was " = 0:2138 and the forcing frequency was ! = 200.
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Figure 4.9: 2DOF inverted pendulum under mode 2 vibration. The periodic input forcing
amplitude was " = 0:1514 and the forcing frequency was ! = 200.
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Figure 4.10: 2DOF inverted pendulum under mode 2 vibration. The periodic input forcing
amplitude was " = 0:11637 and the forcing frequency was ! = 200.
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portraits have symmetric periodic orbits and their vertical nullclines located in non-zero

positions. The power spectral density graph extracts 3 clear peaks with the dominated low

frequency harmonic component moved to even lower frequency around 1:5Hz denotes as

system slow time. The second peaks located at around 32Hz corresponding to periodic

forcing frequency and the system fast time. The third peak has frequency about twice as

large as the second peak which located within the range of 60Hz s 70Hz:

Compare with periodic response as shown in Figure 4.11, under slightly di¤erent

periodic input forcing amplitude " = 0:0500, the pendulum�s response doesn�t repeat itself

exactly as in previous periodic case. Instead, the system showed quasiperiodic behavior as

in Figure 4.12. In part (a) of Figure 4.12, we presented time trace to a longer period of

10 seconds in order to see long term signal drift. It�s phase portraits show that the system

response still remain bounded but the orbits in the phase portrait occupy more area inside.

Their 3D phase portraits also occupy more area in the graph. The power spectral density

graph is almost identical to the previous case as shown in Figure 4.11 which extracts 3

clear peaks with the dominated low frequency harmonic component located around 1:5Hz

denotes as system slow time and second peak corresponding to the periodic forcing around

32Hz denotes as system fast time. The third peak has frequency about twice as large as

the second peak which located within the range of 60Hz s 70Hz:

Compare with periodic response as shown in Figure 4.8, under di¤erent periodic

input forcing amplitude " = 0:2600, the pendulum�s response still performed near periodic

behavior as in Figure 4.13. In order to see long term signal drift we presented time trace

to a longer period of 20 seconds as shown in part (a) of Figure 4.13. It�s phase portraits
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Figure 4.11: 2DOF inverted pendulum under mode 2 vibration. The periodic input forcing
amplitude was " = 0:05037 and the forcing frequency was ! = 200.
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Figure 4.12: 2DOF inverted pendulum under mode 2 vibration. The periodic input forcing
amplitude was " = 0:05 and the forcing frequency was ! = 200. The inverted pendulum
shows quasiperiodic response.
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showed wider periodic orbits in 4 : 1 frequency ratio as in part (c),(d) of Figure 4.13 and the

phase portrait orbits were symmetric with non-zero vertical nullclines. The power spectral

density graphs are almost identical to the previous case as shown in Figure 4.8 which extract

multiple peaks in various frequencies locations and the largest peak happened in the lowest

frequency at around 10Hz.

Numerical simulation result comparison

From analyzing the response of linear 2DOF inverted pendulum model we found

two modes of vibration from di¤erent initial conditions. However, in searching for periodic

solutions inside the stable region around pendulum�s inverted state, our simulation results

showed similar patterns from comparing these two modes. Therefore we choose only one

mode of simulation results in presenting graph comparison from di¤erent forcing amplitude

while keeping forcing frequency �xed. Figure 4.14 presents the periodic solutions of system

phase portrait comparison of the same 2DOF linear model under increasing forcing am-

plitudes. Notice that in Figure 4.14 we applied the same periodic forcing frequency ! =

200 rad= s which is equivalent to about 32Hz throughout. From upper left to lower right

of Figure 4.14, we applied ascending input periodic forcing amplitudes from " = 0:04015 to

" = 0:259. Their phase portraits show di¤erent periodic orbits and their frequency ratios

have descending orders from increasing ". Notice that we don�t list all of the periodic solu-

tions, only 9 graphs being chosen that we can display them in a systematic way. The lowest

frequency ratio that we got from simulation results is 4 : 1.

Corresponding to the phase portrait comparison graphs as in Figure 4.14, in Figure

4.15 we show their power spectral density graphs in relative graph locations according to



111

Figure 4.13: 2DOF inverted pendulum under mode 2 vibration. The periodic input forcing
amplitude was " = 0:26 and the forcing frequency was ! = 200. The inverted pendulum
shows near periodic response.
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Figure 4.14: Phase portrait comparison of periodic solutions on numerical simulation using
linear 2DOF inverted pendulum model. From upper left to lower right, the forcing amplitude
has ascending values which result in descending frequency ratio.
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the same ascending order of periodic forcing amplitudes from " = 0:04015 to " = 0:259.

From upper left graph of Figure 4.15, the system is under low periodic forcing amplitude

at " = 0:04015 and its power spectral density graph shows 3 clear peaks. The largest peak

happened at the lowest frequency location around 3Hz which is referred as slow time of the

system. The second peak has frequency around 30Hz which follows the periodic forcing

frequency which is also referred as fast time of system. The third peak has about double

frequency compare to the second one. As we increased the periodic forcing amplitude ",

the slow time response moved to slightly higher frequencies and the second and third peaks

eventually split into two new frequencies in their neighborhood. Also notice that there were

higher frequency peaks (the fourth peak) grew in higher periodic forcing amplitude case as

in " = 0:09476. This fourth peak has frequency about 3 times larger than the second peak

located at around 100Hz. In Figure 4.15, we can also see that the fourth peak split into

two frequencies in the higher forcing amplitude cases.
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Figure 4.15: Power spectral density comparison of periodic solutions on numerical simu-
lation using linear 2DOF inverted pendulum model. From upper left to lower right, the
forcing amplitude has ascending values which result in descending frequency ratio.
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Chapter 5

Experiments on the 2DOF Inverted

Pendulum

5.1 Material and Methods for 2DOF Experimentations

As described in our 2DOF model as in Figure 4.2, two degree of freedom inverted

pendulum experimental results also showed two modes of vibration. Figure 5.1 shows the

snap shots of our experimental setup while the 2DOF pendulum was stabilized in a swinging

motion around its upright vertical position under periodic forcing. On the left graph of

Figure 5.1 the 2DOF inverted pendulum was under mode 1 vibration; on the right graph of

Figure 5.1 the 2DOF inverted pendulum was under mode 2 vibration. Similar to our sDOF

experimental setup, our 2DOF apparatus has its base mounted to a stand which is �rmly

mounted on the center cone of the speaker. In Figure 5.1, the base of the pendulum is

labelled as �Joint 1�, in which the attachment is a ball-bearing made of stainless steel. The
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�rst pendulum rod labelled as L1 , which is the same sDOF pendulum rod as in Figure 3.1.

The �rst pendulum rod L1 measured as L1 = 80:0� 0:1mm. On top of the �rst pendulum

rod L1 we added another pendulum rod L2 using another ball-bearing joint labelled as �Joint

2�to make 2DOF setup. The second pendulum rod L2 measured as L2 = 40:0�0:1mm. All

ball-bearing used in our experimental setup are free to rotate on the pendulum XY plane.

Each stainless steel made ball-bearing has heavier weight compare with pendulum rods in

order to ful�ll our theoretical model as described in Figure 4.2. Proper lubrication was used

on all ball-bearings before we ran each experiment to ensure that the damping e¤ect due to

pendulum joint friction was minimized. We used the same speaker, function generator and

ampli�er setup as in sDOF experimentations as shown in Figure 3.3 to our 2DOF apparatus.

During experiment the speaker cone was in a sinusoidal vertical motion u(t) = " cos!t to

move the pendulum base where its forcing amplitude " and forcing frequency ! can be

controlled by the function generator and the ampli�er.

Similar to sDOF experiments, we applied a systematic way to drive the 2DOF

pendulum base to appropriate forcing amplitude " and forcing frequency ! while released

the pendulum from some initial conditions. All pendulum�s swinging motion on the XY

plane was captured using high speed camera with frame rate 500 frames per second. A

ruler with 10mm space tick marks on it was located at a �xed location on the right side

of the background which we used to calibrate the pendulum physical size from the images

captured from high speed camera. We mounted this ruler carefully to ensure that the ruler�s

straight line was aligned to the vertical direction as close as possible. For convenience, we
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Figure 5.1: Two degree of freedom inverted pendulum experimental setup. (a)Mode1 vi-
bration. (b)Mode2 vibration.
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rotated the high speed camera with 90 � angle which the images�wide aspect ratio could �t

in more pendulum�s swinging motion in camera view even when the pendulum was swinging

in large angle motion. With new image aspect ratio on 2DOF setup, single image takes

860 � 604 pixels of image resolution which is enough for a 1G byte of computer memory

to capture up to 1:7 seconds of data. After we captured a sequence of images taking from

high speed camera we used the same image processing tools, NI Vision Builder, as in sDOF

case to measure 2DOF inverted pendulum�s motion in a precise way. Figure 5.2 shows a

screen shot of the NI Vision Builder used on a PC. Instead of vertical motion as in real

experiments, the 2DOF inverted pendulum graph in Figure 5.2 shows horizontal motion due

to 90 � rotation of the camera where the gravitational acceleration g is now on a horizontal

position pointing to the right. There were many regions of interest shown in Figure 5.2

in a red-color or green-color boxes which indicate the pendulum motion was measured

from following the motion of the pendulum shape in the sequence of images captured from

high speed camera. Individual pendulum angles can be measured from comparing the the

di¤erence of the pendulum�s straight edge to the straight edge of the ruler mounted on

the background. The pendulum�s response can then be obtained from the evolution of

pendulum angles change in di¤erent frame sequences of images. This pendulum response

measurements were in high precision since the high speed camera was capturing in a high

frame rate as 500 frames per second which resulted in high resolution time traces.
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Figure 5.2: NI Vision Builder on two degree of freedom experimental setup.



120

5.2 2DOF System Experimental Results

Our 2DOF experimentations also showed two modes of vibration. Figure 5.3, 5.4

and 5.5 present our experimental results of 2DOF inverted pendulum under mode 1 vibra-

tion; Figure 5.6, 5.7 and 5.8 present our experimental results of 2DOF inverted pendulum

under mode 2 vibration. Notice that there always exist the upright vertical mode when the

pendulum doesn�t not swing as in Figure 5.9, 5.10 and 5.11. We didn�t discuss the upright

vertical mode much since our research interest was in searching for multiple frequency pe-

riodic responses of an inverted pendulum under periodic forcing. However, from stability

point of view, the upright vertical mode is the asymptotic solution for the two modes of

vibration in a stable condition when the system encounter damping e¤ect.

Experimental Results on 2DOF Mode 1 Vibration

In Figure 5.3, part (a) shows the input periodic forcing which we present the raw

data on top graph and the �ltered data at the bottom. We applied the same Butterworth

low pass �lter as described in sDOF case. The periodic forcing amplitude was " = 0:0085�

0:0005m while the periodic forcing frequency was ! = 30:0� 0:1Hz. We started from some

initial conditions away from upright vertical position and this 2DOF pendulum was swinging

under mode 1 vibration around its inverted position. In part (b) graph, we also measured

the horizontal motion of the pendulum base in order to make sure that there is little e¤ect

from the horizontal direction to ful�ll our assumption. The horizontal motion measured as

y = 0:0� 0:2mm which is negligible compare the amplitude of vertical forcing. In part (c)

graph, two inverted pendulum rods�response present in time traces with comparison of the
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input periodic forcing. This shows that two pendulum rods are in mode 1 vibration where

their motions are in the same directions. Notice that the damping e¤ect can also be seen

from graph in part (c) where two pendulum�s maximum swinging amplitude decreased in

later timing. Graph in part (d) shows the angular velocity of two pendulum rods, their

motions also show in a synchronize directions and a detail zoom-in view can be seen from

part (f) graph. Part (e) graph shows a zoom-in view of part (c) which indicates that fast

time response of two pendulum rods synchronize with the input periodic forcing frequency

at ! = 30:0� 0:1Hz.

Figure 5.4 presents the same 2DOF experimental results as in Figure 5.3 in a

di¤erent manner. We separated Figure 5.4 in left and right portions where left graphs

present the response of the �rst pendulum rod while right graphs present the response of

the second pendulum rod. All graphs were shown in comparison of its raw data points(top)

to �ltered data(bottom). Notice that in part (e) and (f), the phase portrait generated from

raw data points were not recognizable without data �ltering. We measured this 2DOF

inverted pendulum response as 36 : 1 frequency ratio. Mode 1 pendulum response is very

much alike the sDOF case. This can be seen from adding sti¤ness to joint 2 of our 2DOF

model to become a sDOF model. The power spectral density graphs of 2DOF inverted

pendulum in Figure 5.5 also show similar results as in sDOF case. Top portion of graphs

indicate raw experimental data while the bottom graphs are �ltered data. There are two

clear peaks in our PSD graph in Figure 5.5, the largest peak happened at low frequency

around 1Hz which corresponds to the system slow time, the second peak located at around

30Hz which corresponds to periodic forcing frequency.
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Figure 5.3: Experimental result on 2DOF inverted pendulum under periodic forcing ampli-
tude " = 0:0085 � 0:0005m and periodic forcing frequency ! = 30:0 � 0:1Hz. System is
under mode 1 vibration. (a)periodic forcing (b)pendulum base horizontal movement (c)time
traces of system response (d)time traces of system angular velocity (e)time traces zoom-in
view of system response (f)time traces zoom-in view of system angular velocity.
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Figure 5.4: Experimental result on 2DOF inverted pendulum under periodic forcing ampli-
tude " = 0:0085 � 0:0005m and periodic forcing frequency ! = 30:0 � 0:1Hz. System is
under mode 1 vibration. Left graphs indicate the system response of the �rst pendulum;
right graphs indicate the system response of the second pendulum.
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Figure 5.5: Power spectral density graphs of 2DOF inverted pendulum under periodic
forcing amplitude " = 0:0085� 0:0005m and periodic forcing frequency ! = 30:0� 0:1Hz.
System is under mode 1 vibration. (a)PSD for the �rst pendulum (b)PSD for the second
pendulum.

Experimental Results on 2DOF Mode 2 Vibration

In Figure 5.6, part (a) shows the input periodic forcing which we present the raw

data on top graph and the �ltered data at the bottom. We applied the same Butterworth

low pass �lter as described in sDOF case. Notice that our input forcing shows periodic

pattern in part (a) graph, however, it is not a harmonic function as u(t) = " cos!t. There

were two forcing amplitudes appeared in the time traces. This phenomenon happened in

all our 2DOF mode 2 experimentations. One possible explanation on this phenomenon is

that it may exceed our speaker�s driving capability while the 2DOF inverted pendulum is

under mode 2 vibration. Due to this e¤ect we enlarge the measuring uncertainty on forcing

amplitude as " = 0:008� 0:003m with the periodic forcing frequency as ! = 30:0� 0:1Hz.

In part (b) graph, we also measured the horizontal motion of the pendulum base in order to

make sure that there is little e¤ect from the horizontal direction to ful�ll our assumption.
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The horizontal motion measured as y = 0:0 � 0:2mm which is negligible compare the

amplitude of vertical forcing. In part (c) graph, two inverted pendulum rods� response

present in time traces with comparison of the input periodic forcing. This shows that two

pendulum rods are in mode 2 vibration where their motions are in the opposite directions.

Unlike mode 1 case which has obvious damping e¤ect, mode 2 vibration only show little

damping e¤ect as can be seen from part (c) graph. Graph in part (d) shows the angular

velocity of two pendulum rods, their motions also show in opposite directions and a detail

zoom-in view can be seen from part (f) graph. Part (e) graph shows a zoom-in view of part

(c).

Figure 5.7 presents the same 2DOF experimental results as in Figure 5.6 in a

di¤erent manner. We separated Figure 5.7 in left and right portions where left graphs

present the response of the �rst pendulum rod while right graphs present the response of

the second pendulum rod. All graphs were shown in comparison of its raw data points(top)

to �ltered data(bottom). Notice that in part (e), the phase portrait generated from raw

data points were not recognizable without data �ltering. Our experimental results in 2DOF

mode 2 vibration case doesn�t match with our numerical simulation results due to di¤erent

forcing inputs. Under this usual forcing input, our experimental result showed frequency

ratio near 2 : 1 which we couldn�t �nd from any of our simulation result provided only

harmonic forcing input.

The power spectral density graphs of 2DOF inverted pendulum in Figure 5.8 show

multiple peaks in various frequency locations. Top portion of graphs indicate raw experi-

mental data while the bottom graphs are �ltered data.
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Figure 5.6: Experimental result on 2DOF inverted pendulum under periodic vertical forcing.
The forcing frequency was ! = 28:0 � 0:1Hz. System is under mode 2 vibration. Notice
that the input forcing was not harmonic which had two forcing amplitudes involved.
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Figure 5.7: Experimental result on 2DOF inverted pendulum under periodic vertical forcing.
The forcing frequency was ! = 28:0�0:1Hz. System is under mode 2 vibration. Left graphs
indicate the system response of the �rst pendulum; right graphs indicate the system response
of the second pendulum.
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Figure 5.8: Power spectral density graphs of 2DOF inverted pendulum under periodic
vertical forcing. The forcing frequency was ! = 28:0 � 0:1Hz. System is under mode 2
vibration. (a)PSD for the �rst pendulum (b)PSD for the second pendulum.

Experimental Results on 2DOF Upright Vertical Mode

Figure 5.9 presents the 2DOF pendulum stabilized in its upright vertical position.

This can be obtained from assigning the initial conditions as close to zero as possible at

start up. In part (a) shows the input periodic forcing which we present the raw data on

top graph and the �ltered data at the bottom. We applied the same Butterworth low pass

�lter as described in sDOF case. In part (b) graph, we measured the horizontal motion of

the pendulum base as y = 0:0 � 0:1mm. In part (c) graph, two inverted pendulum rods�

response present in time traces with comparison of the input periodic forcing. This graph

indicates that two pendulum rods were in near vertical position without swinging. Same

e¤ect can be seen from part (d) where two pendulum rods�angular velocity were small.

Same conclusions can be seen in zoom-in view in part (e) and (f).

Figure 5.10 presents the same 2DOF experimental results as in Figure 5.9 in a
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Figure 5.9: Experimental result on 2DOF inverted pendulum under periodic vertical forcing
with 0 initial condition. The forcing frequency was ! = 30:0�0:1Hz. Notice that the input
forcing was not harmonic which had two forcing amplitudes involved.
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di¤erent manner. We separated Figure 5.10 in left and right portions where left graphs

present the response of the �rst pendulum rod while right graphs present the response of

the second pendulum rod. All graphs were shown in comparison of its raw data points(top)

to �ltered data(bottom). Notice that in part (e) and (f), their phase portrait graphs indicate

that two pendulum rods stayed in their upright vertical position with very little movement.

Under upright vertical mode of 2DOF inverted pendulum, it�s power spectral density graphs

as in Figure 5.11 cannot conclude any harmonic peak.
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Figure 5.10: Experimental result on 2DOF inverted pendulum under periodic vertical forc-
ing with 0 initial condition. The forcing frequency was ! = 30:0� 0:1Hz. Notice that the
input forcing was not harmonic which had two forcing amplitudes involved.
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Figure 5.11: Power spectral density graphs of 2DOF inverted pendulum under periodic
vertical forcing with 0 initial condition. The forcing frequency was ! = 30:0� 0:1Hz.
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Chapter 6

Summary and Future Work

Our research shows that under stable conditions near a pendulum�s inverted state,

as the number of degree of freedom increase, the maximum angle of the pendulum�s swing-

ing motion decreases. In this paper, we presented four ways to characterize the pendulum�s

periodic responses, allowing us to conclude that when the periodic forcing amplitude in-

creases, the frequency ratio decreases and the system slow time response will move to higher

frequency resulting in faster system response. The power spectral density graph has fewer

harmonic peaks when the periodic forcing amplitude is low. As we increase the periodic

forcing amplitude, those few harmonic peaks will split into multiple frequency peaks. These

statements are true for both sDOF case and 2DOF case.

In searching for the periodic solutions of an inverted pendulum under periodic

vertical forcing to its base, our research shows that our numerical simulation results match

reasonably well with our experimental results, quantitatively for the single degree of free-

dom case, and qualitatively for the multi-degree of freedom case. Although we carefully



134

constructed our 2DOF experimental setup in order to ful�ll our theoretical model as de-

scribed in Figure 4.2, each pendulum�s center of mass still has some o¤set location away

from the pivot point which contradicts our initial assumption of point-mass pendulum

model. This can be seen from Figure 5.1, in which we measured the combined center of

mass for the �rst pendulum located at R1 = 53:7 � 0:1mm with combined weight mea-

sured as m1 = 3:8� 0:1 g; the combined center of mass for the second pendulum located at

R2 = 25:1� 0:1mm with combined weight measured as m2 = 1:9� 0:1 g. We can construct

a modi�ed theoretical model as described in Figure 6.1 to further match our 2DOF experi-

mental setups. We leave this to our future work to tighten up the agreement between our

theoretical predictions and experiments.

Figure 6.1: Modi�ed 2DOF model has each pendulum�s center of mass o¤set to a new
location di¤erent than the pivot point.
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Appendix
Below are power series expansions for transition curves in Mathieu�s equation cal-

culated from solving Hill�s equation using harmonic balance in Rand [47]. Those transition

curves data shown in Figure 2.2, 2.3 and 2.4 were calculated using these power series ex-

pansions.

(n = 0)

� = �"
2

2
+
7"4

32
� 29"

6

144
+
68687"8

294912
� 123707"

10

409600
+
8022167579"12

19110297600
+ ::: (6.1)

(n = 1)

�1l =
1

4
� "

2

8
+
"3

32
� "4

384
� 11"5

4608
+
49"6

36864
� 55"7

294912
� 83"8

552960

+
12121"9

117964800
� 114299"10

6370099200
� 192151"11

15288238080
+

83513957"12

8561413324800
� :::

�1r =
1

4
+
"2

8
� "3

32
� "4

384
+
11"5

4608
+
49"6

36864
+

55"7

294912
� 83"8

552960

� 12121"9

117964800
� 114299"10

6370099200
+

192151"11

15288238080
+

83513957"12

8561413324800
+ ::: (6.2)

(n = 2)

�2l = 1� "2

12
+
5"4

3456
� 289"6

4976640
+

21391"8

7166361600

� 2499767"10

14447384985600
+

1046070973"12

97086427103232000
� :::

�2r = 1 +
5"2

12
� 763"

4

3456
+
1002401"6

4976640
� 1669068401"8

8=7166361600

+
4363384401463"10

14447384985600
� 40755179450909507"

12

97086427103232000
+ ::: (6.3)



141

(n = 3)

�3l =
9

4
+
"2

16
� "3

32
+
13"4

5120
+
5"5

2048
� 1961"6

1474560
+

609"7

3276800

+
4957199"8

33030144000
� 872713"9

8493465600
+

421511"10

23488102400

+
16738435813"11

1331775406080000
� 572669780189"12

58706834227200000
+ :::

�3r =
9

4
+
"2

16
+
"3

32
+
13"4

5120
� 5"5

2048
� 1961"6

1474560

� 609"7

3276800
+

4957199"8

33030144000
+

872713"9

8493465600

+
421511"10

23488102400
� 16738435813"11

1331775406080000
� 572669780189"12

58706834227200000
+ ::: (6.4)

(n = 4)

�4l = 4 +
"2

30
+
433"4

216000
� 5701"6

170100000

� 112236997"8

31352832000000
+

8417126443"10

123451776000000000

+
2887659548698709"12

265470699110400000000000
+ :::

�4r = 4 +
"2

30
� 317"4

216000
+

10049"6

170100000
� 93824197"8

31352832000000

+
21359366443"10

123451776000000000
� 2860119307587541"12

265470699110400000000000
+ ::: (6.5)


