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Lori Jensen Jon Miller, Ph.D.

(Re)Discovering Fundamentalism in the Cultural Margins:
Calvary Chapel Congregations as Sites of Cultural Resistance
and Religious Transformation

This dissertation examines the changing face of the Calvary Chapel movement, a
religious “awakening” that began among the hippies of the 1960s and has continued to appeal to
a new generation of “alternative” youth involved in various subcultures. The focus of the study
is four Calvary Chapel congregations in the Southern California area, in which I conducted
participant observation and in-depth interviews for four years. I conclude that these churches are
sites of symbolic resistance and transformation, similar to the Gramscian model, where
resistance is mounted against the hegemonic religious and cultural establishment.

Such protest and resistance is accomplished through the charismatic leadership of the
pastors, which enters a ripe social context and leads those in the cultural margins into a
transformative religious faith. These transformed individuals are then empowered to live
purposeful lives in the name of something higher than themselves. This empowerment by the
churches is manifested through a conservative, straightforward ideology; charismatic worship
that transcends the mundane; close-knit and intimate community; flexible organization and loose
operational structure; and acceptance and appropriation of certain cultural forms, while rejecting
and replacing the cultural content. Indeed, these churches consider themselves to be in the center
of a cosmic battle waged on various fronts, with the churches providing specific locations for
spiritual, as well as cultural, resistance. Moreover, it is in this tension with the culture about
them that these churches exhibit certain sectarian qualities. However, they defy the previous

definitions of “sect” and “cult,” challenging the current classifications of religious movements,
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and appear to be a new type of religious form. Thus, these churches have (re)discovered (as this
type of protest has been present throughout the history of Christianity in various forms) a

fundamentalist strain of Protestantism in the most unlikely places—that of the cultural margins.
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Chapter 1

Introduction

1.1 Outline

In this thesis we study, through the use of Hamiltonian methods, some vortex dy-
namics problems, with particular emphasis on the two-layer geostrophic model.

We begin, in this chapter, by describing the geostrophic equations of the two-layer
model. We compute the streamfunctions and Hamiltonian for NV point vortices using
these equations. We conclude our introduction to the two-layer model by describing,
in detail the two-vortex problem and its solution, due to Gryanik [26], and present
our first result which is a derivation of the relative equations of three point vortices.
We end the first chapter by providing a review of some of the literature on vortex
dynamics, mentioning, in particular, work that has been done on the sphere, on
the plane, on domains with boundaries, and non-integrable problems as well as a
summary of the work that has been doné for two-layer geostrophic (baroclinic) vortex
dynamics. In Chapter 2 we formulate the geostrophic two-layer model as an infinite
dimensional Hamiltonian system. Analogously, the point (singular) vortex model is
written as a finite dimensional Hamiltonian system. In this framework, we obtain, by
virtue of symmetries, the conservation laws and invariants of the respective systems.
In the point vortex case it is shown that the three-vortex problem is integrable.
We also present other integrable four-vortex systems for the two-layer model. In
Chapter 3 we locate and characterize all the equilibrium solutions, for the three-
vortex two-layer problem, including both fixed and relative equilibria. We are also
able to locate the relative equilibria in the trilinear plane. We continue our discussion

of the two-layer model in Chapter 4 by describing some aspects of the finite-time

1
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collision problem as well as the alignment process for three vortices in the two-layer
problem. In our main results we show that for the three-vortex problem, two-vortices
in the same layer cannot collide in finite time if the third vortex is in the other layer.
We also demonstrate that the two-layer model admits non-self-similar collapse for
three vortices in the same layer. We end that chapter by explicitly constructing
vortex alignment solutions for the three-vortex problem. We conclude our study
of the two-layer model in Chapter 5, which is a numerical study of integrable two-
layer vortex dynamics. We present some numerical work on streamlines, integrable
four-vortex dynamics and a brief study of particle advection. ,

Chapter 6 contains some results on point vortex dynamics on the sphere. In our
first result we show that the only finite-time collapsing solutions for three vortices
on the sphere (or on the plane) are self-similar ones. This allows us to conclude that
the only self-similar solutions for the three-vortex problem on the sphere are either
equilibrium solutions or self-similar collisions. We also obtain a negative result on
the collapse of certain symmetrical paralleloid configurations of four vortices on the
sphere. We conclude Chapter 6 by presenting new solutions. Included amongst these
are relative equilibrium solutions of four vortices that are not great-circle equilibria.
Other solutions include two explicit quadratures of three vortex-configurations where
the orbits asymptotically approach equilibria. We end Chapter 6 with a result on
new integrable four-vortex systems possessing coaxial symmetry.

We conclude with Chapter 7, in which we study vortex dynamics in a circular
(planar) domain. We show that two vortices in a circular domain cannot collide (self

similarly or otherwise) in a finite time.

1.2 The Two-layer Model

The evolution equations for the f-plane 2-layer quasi geostrophic potential vortex

model are:
aw; .
- i) = =1,2
It + [‘-‘Jn djt] O: [ 17 <y
wy = Aty + (Y — 1), (1.1)
wy = Athy — (Y2 — ahy),
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where [,] is the Jacobian given by [a, b] := azb, — ayb., w; the geostrophic potential
vorticity in the i-th layer ¢; the corresponding streamfunction, p; the respective
fluid densities (p; < p2), H; the thicknesses of each layer, [ the Coriolis parameter
and g the constant of gravitational acceleration. The thicknesses of the layers H; is
are assumed to be much smaller than the horizontal scale L of the system so that

the fluid is always in hydrostatic equilibrium, as shown in Fig. 1.1. A free upper

A1

=

Figure 1.1: The quasi-geostrophic two-layer model.

boundary is assumed and the lower boundary is solid. Observe that the first of
these equations are evolution equations that describe the evolution of the vorticity
field. The second set of equations are Poisson-like equations with the vorticity on
the left hand side. These are nonlinearly coupled to the evolution equations. A nice

derivation of these equations can be found in [54].
We can write the two equations for the vector potentials v;, in operator form,

L =w,
L=A0+ M,
M= ( —aa ) , (1.2)
Qacy —€p
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S v S ' S
’ (p2 — p1)gH:

p2 (p2 —pr)gHL”

By introducing new dependent variables we may diagonalize the system of equations

(1.1):
T := 1,
,CT’J' = w,
T-ULT = T 'w,
so that
(& + D)y =T, (13).
where

-\ 2 0 H ~Ha—=V/d Hy—Hr+Vd
D= 1 , T = 2aH; 2aH .
0 —A? 1 1

It can be shown that A%, = %%[(’Ti_—g and d = (Hy, — H,)? + 4aH, H,. Thus by
a change of variables the streamfunctions % can be computed by solving a pair of

reduced wave equations given by:
— A2
(&= ) _ g, (1.4)
(& = A22)ihe

By standard techniques , one can write the solution of the reduced wave equation

in terms of the Green’s function for the reduced wave operator
Y = /G(:z: — 2)wi(z)dz, 1=1,2.

The velocity profiles in turn are obtained from the equations (1.12). In the singular

or point geostrophic vortex model we consider a vortex distribution of the form:
Ni ) )
wi = Y Tid(z —z.)8(y —wi) i=1,2. (1.5)

k=1
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where the superscript ¢z denotes the layer,the subscript &k indexes the vortices in that
layer and MV; is the number of vortices in that layer. The I are the strengths of
the vortices. The solution of (1.4) with the point vortex allocation (1.5) can be
expressed by the Green function for the reduced wave equation ;—KKQ()\,'T), where
Ko(z) is the modified zero-order Bessel function of the first kind. In the sequel
lr—re| == [(z — zo)* + (y — ya)2]1/2. Consider first a single vortex in the upper layer

labeled by its vortex strength I'},

_ [ Tz a8y — v
0 3

so that

Ty, — oL ( ~T}6(e —z})d(y — v}) ) _ ( (&= X%, )

Vd \ TH(z - 2h)s(y — o) (& = N2)d
or, upon solving for ¥, using the Green function and recalling that ¥ = T, we get

= alel —'[\,0(/\1|7‘ —_ T‘f‘l)
P = R .
2n/d Ko(Aalr — 1))

We finally obtain the contribution to the streamfunctions due to the vortex I'! as

+ 1) Ko(Mlr — ) +(H—‘JE—HZ + DEoQalr =), (L6)

¢ ale
2 = 97—\/—

We follow the same procedure for a single vortex in the lower layer labeled ' f to

I} H,— H;

Yr= (=5

= [Ko(Aelr —r¢]) = Ko(Mlr — i)l (L.7)

obtain the contribution of this vortex to the stream functions:

T2H,

¥ = L2 KoQulr = 73] + Ko(alr — 3], (L8)
2
'(,bg = #[A_Ko(/\llr - T?I) + A.*.[{o(/\gl‘r‘ -— rfl)], (1.9)
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where
A __HL_HZ'*‘\/Z A _=H2—H1+\/2
T 2Wd ’ * 2v/d )

By linear superposition, the stream functions in the two layers due to an ensemble

of point vortices with NV} of strength I'! in layer 1 and N, of strength [’ f in layer 2

is given by !

Wy = —Zrl [A4 Ko(Arlr — rH]) + A_Ko(Ag|r — ri|)] + (1.10)
“‘ =1
Ivz

S B ol 72 = KoOulr =31

1 Ny QH1

¥e = 5= 2 TH A Eolhalr — ) = Ko(ulr = i) + (111)
2T 1
1V2
Z F?[A_[\’o(/\l‘r —_ T‘?') _ A.*.I(o(/\gl'f‘ - T‘fl)].
i=1

Now the dynamics of the point vortices can be obtained by differentiating the stream-
functions as follows:

Oy ;O :
Tp = ———0 o= = =1,2 1.12
k ay H Yi 82: z 1<y ( )

r:rl' r=r"

where ¢ denotes the layer and k indexes a vortex in that layer. To this end we us

the recurrence relation,Ky(z) = ~K;(z), for the zero and first-order modified Bessel

functions, to obtain the equations for a vortex k in the first layer:

Ny
= g > =Bt - - - St U g, )
M ! 1 5 (z
R FU S PP RIvE S o LI INeRt)

INote that there is a disagreement with the computations in Gryanik [26].
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Here and throughout the ’ on the summation means omission of the singular term

t = k. A similar set of formulae hold for the dynamical equations of a vortex m in

the second layer:

. 1 & o (35 —yh)
2 _ = 1 m i 2 _ .1
Tm = 27_‘_‘ Fz \/‘ I rzn—rxllf(‘rm rtD
1 (v —y3) \
2‘/" Z Ffmh(lri - Tﬂ) (1.15)
j=1 F)
. 1 & aH (22, —z})
2 _ - 1 1 m z 2 _ .1
Yym = e Pt T \/— ’7’2 _ ;l f(lrm L D
o paEh =)
where for [ > 0 and A; > A2
A(l) = ~[A_MEKi(Oal) + ALK (Mal)],
f(l) = /\1 ,1(/\11) - /\2[{1(1\2[), (1 17 )
g(l) = ~[AAE(Al) + A-X K (A0)]

Extensive use will be made of these functions (1.17) in much of what follows. Sim-
ilarly, we will also make use of the functions appearing in the streamfunctions and

the Hamiltonian. These are defined as follows,

H() = A_ Ao(/\lz)+ A Ko (Azz) (1.18)
F(l) = Ko(Ml) — Ko(Al).

We now mention that there are other simpler two-layer models, that are often used
in the geophysical community. One that we will often consider shares many of the
features of the full two-layer model of (1.1). The evolution equations are the same,

but the equations for the potential vorticity are

wi = A + (1Y A "2 (by —1bp) 1 =1,2. (1.19)
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There is just one parameter A to consider here, which can be interpreted as the rigid-
ity of the interface separating the two-layers. The Green’s functions corresponding
to this system is a little different and the functions corresponding to f,g,h, and
F,G, H, take the form

- 1 1 l
g() -=% %\'I\I (i)
F() =In(l)— %Ao( )

G(l) =)+ lK (/\)

The two-vortex problem has been studied by Gryanik [26]. It is shown that as
a consequence of the conservation of energy the two vortices either rotate about
their common center of vorticity or if their center of vorticity is at infinity the pair

translates uniformly. The center of vorticity, given in general by

::1 piH; 21—1 F
1=1pl 221};1 F; ,

(X,Y) =

is invariant in view of the conservation of linear momentum and is located at X =
E’%ﬁ%ﬂ and Y = F‘f,’—';’_'gl& for two vortices in the same layer. For two vortices
in the top layer, for which 'y + ['; # 0, with the initial distance between them
r(t) = r(0) = a the periodic orbit is given by z = acoswt and y = asinwt where z
and y are relative coordinates, = z, — z, and y = y; — vy,. The angular frequency

is given by
Iy + T

27a

Q=

g(a),-

If 'y + I'; = 0 then the speed of translation is

g(a)
L.

v =

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Similar formulae hold for two vortices in the bottom layer with h(a) replacing
g(a). For two vortices in different layers, I'1, I'; in the top and bottom layers respec-

tively, say, the center of vorticity is

(X,Y) = (lellel + p2 T2z, pi Hiliyy +p2H2I‘2y2>
’ PlHl I +P2H2F2 ’ ,DLHL Iy +,02H2F2

For pyH, '} + poH,'2 # 0 the vortices rotate about the center of vorticity with

angular frequency:

_{(TyaH: + T2 H2) f(a)
- 2wavd

while if py H; [y + poH.[2 = 0 the vortices translate with speed:

Q

7

T2 H,
= ﬂf(a)l.

v =

In all cases the center of vorticity is invariant. These invariants will be described

thoroughly in Chapter 2.

1.3 Derivation of the relative equations.

In this section we derive the relative equations for the two-layer three vortex problem.
These equations are readily generalized to the N-vortex case. For the purpose of
illustration, we focus on the case of three vortices in the upper layer, with strengths

[, at positions (z;,y;), ¢ = 1,2,3. We have shown that

2z, = —I2 A= y29(7‘12) - I 2 ysg(ms)’
T12 T13
. I, —zI T, —z
2z = I - 29("12) + F3—1—3'9(7’13)7
T12 T13
2rz, = I 2= ylg(f‘u) — T3 Y2 y39(7'23)a
T12 T23
. Io—2Z T, — T
2ry, = I lg(rlz) + Fs—z——ag(rw)-
T12 T23

Subtracting these equations we obtain,

2n(2—22) = (=T2— F1)ylr;yzg(7’12) —I; ylr;ysg(rla) + F3y2r:3y39(7‘23),
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(i =g2) = (T2 + )™ —2g(r) + [s=—2g(ris) = [s="—2g(rss).
Now,
2 (o - ) (e — ) (v~ 1) — )
I (z1— xi)l(zyl - yz)g(m) _ Fs(rl - xzr)l(syx = ya) o(rs)
+r & Iiliyz ¥3) )
+(Ty + ) (y1 — y’lgl(:l - xz)g(rm) LT, (yr — yzgl(::l - 23)9(1,13)
—Ps(y‘ - yzgz(:z — z3) 9(r23)
= Do), )y —v) — (51— )01 - )]
+ 200 (a — )y = y2) + (1 = 22) (52— 0]

In the last equation the terms in the square parentheses are +=2A;53, where Ajo3 is
the area of the triangle enclosed by the three vortices I';, 7 = 1,2, 3, respectively.

We conclude that

ldrfg _ P30A123 [g(r13)  g(r23) (1.20)
2 dt 2% T13 T23 ’ -

where o is the orientation of the triangle, 1 for a cyclic permuation of 1,2,3 and
-1 otherwise. Similar equations are obtained for r 3 and r,3 as well as for various
allocation of vortices in different layers. One can generalize these relative equations
for N point vortices, however the notation becomes too cumbersome if one is to
consider general permutations of IV vortices between the two layers. The relevant

equations will be cited where these are needed.

1.4 Literature review

There is by now a vast literature on the N-body problem. The Hamiltonian frame-

work of these mechanical systems can be found in the books by [5, 6, 24].
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



excellent review article is that by Deift [14]. Literature on the N-vortex problem,
is extensive and can be found in many papers, many of which are referenced in the
upcoming book by Newton [46]. The geostrophic vortex models are described in
many geophysics texts including [51, 54]. There is alsc a body of review papers on
the Hamiltonian description of geostrophic fluid dynamics [45, 553]. There has been
some work done on two-layer point vortex dynamics. These include the works of
Young, and Hogg and Stommel [57, 29, 30], and, which have been primarily numer-
ical investigations. More analytic results can be found in the work of Gryanik [26]
and Zabusky and McWilliams [44]. Some experimental work has been done by Grif-
fiths and Hopfinger [25]. There is also a growing literature on baroclinic vortex
patches [18, 52, 53]. Since our work can be seen as an extension of [26], we describe
the results obtained there. Gryvanik systematically derives the equations of motion
for point vortices in the two-layer (baroclinic) model using the evolution equations
of potential vorticity. The uncoupling of the streamfunctions by the diagonalization
technique, described in Section 1.2 is due to him. He is also credited with formulat-
ing the dynamical equations for two-layer point vortices as a Hamiltonian system.
He also derives the motion integrals by appealing to Noether’s theorem. Although
mention is made of integrable four-vortex problems, these are not explicitly pre-
sented. The two-vortex problem is integrated by virtue of the integral invariants.
We extend these results by studying the three-vortez problem and begin by deriving
the relative equations and finding the equilibrium solutions. In addition the collapse
and alignment processes can occur only with a minimum of three vortices, since the
distance between two vortices is always invariant. Our work on these aspects of two-
layer point-vortex dynamics is therefore new, as is our application of the trilinear
plane reduction techniques in studying qualitative features of three-vortex two-layer
point-vortex dynamics.

In addition, Gryanik also studies point vortices in a flow with the simplest regular
current, namely constant potential vorticity. Again, the study is restricted to the
case of two vortices. The work also contains a study of non-conservative effects, and
contains ideas which have not been fully exploited. We have not pursued either of
these directions in our study.

Our numerical work in Chapter 5 is in the spirit of [57]. In that work Young

studies various interactions between two and four baroclinic point vortices. The

11
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study focuses on the qualitative changes in behavior which occur as the size of the
Rossby deformation radius is varied. He also investigates the transport of passive
fluid by a translating baroclinic pair. He found that a pair of vorices in the top layer
transports no lower layer fluid if the distance between the vortices is less than 1.72
deformation radii. Qur study is very similar; whereas he studied coaxial four-vortex
configurations, we show that collinear four-vortex configurations are also integrable,
and study the various interactions of these four-vortex stystems, by demonstrat-
ing the various types of motions including direct scattering, exchange scattering,
and (quasi-) periodic behavior. We extend his study of the advection problem for
translating vortex pairs to rotating vortex pairs.

We compare many of our results, for both the geostrophic two-layer model as

“well as the model on the sphere, with analogous results on the plane. There is a vast
body of literature for point vortex dynamics on the plane. Our work is compared
with some of the results obtained by Aref [2] and Synge [56]. The work of Aref, is
the first systematic study of three vortices of arbitrary strengths on the plane, and
so extends the work of Novikov [47]. Aref’s work contains a thorough qualitative
analysis of the three-vortex problem. Using trilinear plane techniques the regimes
of motion are classified according to the signs of the arithmetic, geometric, and
harmonic means of the three vortex strengths. For the special case where the vortex
strengths take the values (4T, +I', —I'), the motion has an interpretation in terms
of the scattering of a neutral pair by a single vortex. Quantitative details, including
explicit integration in terms of elliptic integrals, are presented for this special case.
A systematic study of the finite-time collapse process is also studied. He obtains
necessary and sufficient conditions for three vortices to collide in finite time. He
also provides a method for explicitly constructing initial conditions which lead to
finite-time collapse of the three vortices.

We study the collapse process for the two-layer model as well as the sphere.
On the plane explicit collapsing solutions can be found in the works of Aref [2]
and Kimura [35]. Four- and five-vortex collapsing solutions have been obtained by
Novikov [49]. On the sphere vortex collision has been studied extensively, for the
three-vortex problem, by Kidambi and Newton [31, 33]. In Chapter 4 we investigate
the alignment process for point vortices in the two-layer model. Work,in this area

has been done for vortex patches. It has been studied in detail by Polvani [52].

12
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Numerical simulations have also been performed by McWilliams [43]. A general
discussion of the mechanism of vortex alignment can be found in the article by
Salmon [53]. There is also an extensive literature on equilibria of vortex dynamics.
Our work for the two-layer model follows, fairly closely, that of Synge [56] The papers
by Lewis and Ratiu [38] and Marsden and Pekarsky [42], contain ideas that may
apply to relative equilibria for the two-layer model.
Nonintegrable vortex dynamics have been studied in the work of Ziglin [58],
Aref [3, 4] and Novikov [48]. Detailed presentations can be found in [11, 12, 13].
Our primary reference for our work on the sphere is [31]. In their study, Kidambi
and Newton, present a thorough analysis of the three-vortex problem on the sphere,
in the spirit of Aref’s work on the plane [2]. Instead of using spherical coordinates,
" they use cartesian coordinates. They present the Poisson-bracket formalism and
prove that the three-vortex problem on the sphere is integrable, as well as describe
integrable four-vortex systems. In our work we present new integrable four-vortex
configurations. In addition to obtaining all the motion integrals, they use the in-
variance of the center of vorticity vector ¢, to geometrically classify the motions into
five distinct families. They then fully characterize all fixed and relative equlibria on
the sphere. They show that for fixed equilibria the vortices must lie on great circles.
The relative equlibria are classified as either degenerate, c= 0, or non-degenerate
otherwise. For each type the shape of the vortex triangle is described and the fre-
quency of rotation is computed. As in the planar problem the trilinear plane is
introduced to study the motion in the phase plane. All equilibrium solutions are
located in the trilinear phase plane, and more complex relative dynamics are also
characterized in terms of these coordinates. As on the plane, they state necessary
and sufficient conditions for self-similar collapse of three vortices, computing the col-
lapse times and vortex trajectories on the route to collapse. The collapse formualas
on the plane and on the sphere are also compared asymptotically. In our work we
show that the only (finite-time) collapse of three-vortices on the sphere (or on the
plane) is self-similar. We show that the only self-similar solutions of the three-vortex
problem on the sphere (or on the plane) are equilibria or self-similar collapsing solu-
tions. We then study the collapse of a four-vortex problem on the sphere. Qur work

also includes four-vortex relative equilibria that are not trivial great-circle (geodesic)

13
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configurations. We present the explicit integration of special three-vortex solutions,
analogous to a periodic one computed in [31].

Systematic derivations for the equations of motion for point vortices on the sphere
can be found in [7, 34]. The paper [8] contains a study of the motion of three identical
point vortices on the sphere and generalizes the planar results of [47]. Papers that
address the effects of rotation include [9, 16, 22, 37, 15]. The recent and ongoing
work of Lim [39] uses symplectic reduction and symmetry techniques for the general
N-body problem on the sphere, with applications to vortex dynamics. The work
of Hally [28] and Kirwan [36] contains interesting and general ideas that have not
been fully exploited.There are several papers, including [10, 17], that address the
importance of vortex triples and their emergence in physical systems.

In Chapter 7 we study the collision process for two vortices in a circular domain.
Flucher and Gustafsson have studied the collapse for a more general class of domains
in [19]. Other references for vortex dynamics in regions with boundaries include [40],
where the existence of the Kirchoff-Routh function was established. Other explicit
solutions and proofs of non-integrability for specific domains can be found in [11, 21].
Recently Kidambi and Newton have worked on the problem of vortex dynamics on

the sphere with solid boundaries [32].

14
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Chapter 2

Symmetries and conservation laws for the

two-layer model

2.1 Outline

It is well known that many of the equations of geophysical fluid dynamics have
Hamiltonian formulations. In this chapter we present the Hamiltonian formalism
for the two-layer quasi-geostrophic equations. Our presentation is in the spirit of
the review papers [45, 55]. We first present the infinite-dimensional Hamiltonian for-
malism, by introducing the Poisson bracket and then showing that it is well-defined.
We then derive conservation laws for the infinite-dimensional Hamiltonian system
by invoking Noether’s theorem. Likewise, we present the analogous Hamiltonian for-
malism, for the discrete (point-vortex) geophysical model. In the point-vortex case,
we obtain the integral invariants and show that for the three-vortex problem (in the
unbounded plane) there are sufficiently many integrals in involution to make the
problem integrable. We also present some symmetrical four-vortex problems that
are integrable. We conclude with a description of the discrete symmetries present in

the equations for point vortices.

2.2 Infinite-dimensional Hamiltonian Formalism

As in the 2D Euler equations the energy of the system (1.1) is given by

/D v’ de .

15
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Integrating by parts and substituting for v by «; and ;,
1
H(w) = —3/(/’1[‘[1![’1‘-01 + p2 Hythow, )dzdy. (2.1)

For simplicity we assume that #; — 0 as » — oco. Substituting into (2.1) the

equations for w; from (1.1), and integrating by parts, we obtain:

1 p2
H = —= Hiu [ Ay + ——L=  (1hy —
2/()01 11,)1[ Y1 ng(pz _pl)(vz 1111)]
e Hapal Dpr =~ (—2 iy — PN drdy
gHs p2 —p1 p2 — p1

1
= ;/{mle/)lez/al? + pa Hatho | Vo |?

12 . ,
+— [ fafr D1(W1 — o) + patha( —E2—ipy — L1 %)J }dzdy.
g [P2—p1 P2 — /) P21

Rearranging yields:

1
H = 3/{p1H1¢1|V¢‘1[2 + p2 Hatha| Vipo|?

2

i {puf)f By, "—lz/zl)?] }dzdy.
g P2 — P1 P2

Introduce the standard inner product (-,-) for F,G : R? — R2:
F,.G)= | F-Gdzdy.
(F,G) = [ F-Gdady
where F, G € L?*(R?)?). We work in the function space:
A= {F e L*(R*?*F -0, as r — oo}.

Using this and the definition of #(w) in (2.1), one can show that the vorticity

formulation and integration by parts leads to the following variational derivatives:

dH oH

o —p1H14, Som —p2Hotbs.
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Recall that the variational derivative of a functional F with respect to u is given by
§F = F(u+du) — Flu) = (5, du) + O(év’),

for admissible but otherwise arbitrary variations. More details can be found in the
article of Shepherd [55] or in Olver [50] (Sec 4.1). Note that a functional derivative

is itself a function (possibly nonlocal) of wu.

2.2.1 The infinite-dimensional Poisson bracket

Introduce the Poisson bracket between two functionals, for a linear operator J acting

_on functions belonging to A,

Sw '’ bw

[F.G]:= (g— Jég) i

Definition 2.1 J will be called Hamiltonian if its Poisson bracket satisfies the con-
ditions of

(i) Skew-symmetry
[P, L] = -[L,P],
(ii) and the Jacobi-identity,
[P, L], R] + [[R.P], £] + [[£,R], P] = 0.

for all functionals P, L and R for which (2.2) is well-defined.

To verify these we use the language of functional multi-vectors and the exposition
in Olver [50] (Chapter 7.1). We shall make use of the following theorem [50].

Theorem 2.2 Let D be a skew-adjoint g X ¢ matriz differential operator and © =
3 J{0 AD8}dx, the corresponding functional bi-vector, then D is Hamiltonian if and

only if

pr V'Da(@) = 0. (23)

17
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Here pr vpg(©) is the action of the prolongation of the “vector field” vpg, on the
functional bi-vector © and is given by (2.4) for the particular case of the two-layer

model. In addition, for the two-layer model,

_I_l“lé'

. —— pLIT

D=J= Cfwnd |
p2H>

Ji = _[(w;)sz ~ (wi)y Ds] — (wi)y Dz — (wi)zDy i=1,2,

piH; pi H; ’
where, following the notation of Chapter 1, {a,b] := a;b, — a,b,. The adjoint of Jy;
-is

1

T = SgpleD ), + (D)) )]
1
= T[(_(wl)w — (w1)y Dz + (w1)zy + (w1)2Dy)
Prily
1
= pl—ﬁl‘[((wl)sz = (w1)y D] = —Ju1.
Likewise J}, = —J,2, thereby verifying that J is skew-adjoint. We now apply the

1 and w? denote the

theorem to verify the Jacobi identity. To ease notation, let w
vorticity fields in layer 1 and layer 2 respectively. In this framework the functional

bi-vector becomes:

© = %/‘9 N Dbdzdy = %/[91 A D16 + 6% A Dyn6%|dzdy
— 1 1pl 1 ipl 1 212 2 2092 2
= o / (w0 A 6} —wi6" A GJdzdy + 5 / (w262 A 02 — w262 A 2]dzdy.

Here, the prolongation of the “vector field” vpg is given by

3} d
pr Vpg = ; Dr(Duel)a—w}- + D[(D2262)8_w}’ (2.4)

where Dy is the total derivative given by the multi-index 7.
In this framework, we can state the fundamental theorem of this chapter.

18
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Theorem 2.3 The two-layer geostrophic vorticity equations, (1.1), form an infinite-

dimensional Hamiltonian system.

Proof: According to the Theorem 2.2 it remains to show that
pr V-Dg(@) = 0.

The argument is a straightforward generalization of the one in Olver [50], (Example

7.10). Integrating by parts,

12 1 .. .. . . .. . . .
vpg(©) = 5 Z ﬁl_- /{Dy[w;G; — w;e;] NG NG~ D:[wgo; - w;a;] A Gt A 9;}dxdy.
<=1 Ath

Consider t = 1, and define:

A = /{[w;y@ +wy by, — w0, — wg6,, ] A0 A6
—[w} 0z + w6, — w;ﬁ; — w0, ] A 6" A6, }dzdy.

But,
1 gl 1 1 _n0~.,,1 pt 1 1
w0 AN ANO, =0=w_ 0, N0 AG,,

by the skew-linearity of the wedge-product, i.e:
6z N6;=6, N6, =0.
Moreover,

—wg Oy N0 NG = —wl 6, NOT NG, = —w 0" AL AL = wl 65 A0 A B

Hence the third and fourth terms cancel, giving

A = /{w;[(;;_,, NN NN
+wy[fz, NG A, — 6. A6 A B} }dzdy.
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Integrating the second and fourth terms,
—/G;y A(wp A6 AGL)dzdy = /0; Awi, ANOYA O+ w6, AGL+ 6" A6.)]dzdy
= / Wl 05 A 6% A 6L + wh6) A 6* A 6L dzdy,
since 8; A 8, = 0. Likewise,
— [0 AL A8 AGdrdy = [[wh,8E A 0" A0} +wl6l A6 A O dzdy.

Substituting these last two into A, and using the anti-commutative property of the

wedge product gives, finally,
A = [{wl(6, A0 NGy +05 A0 AOL) + L, 6L A 6" A6
1
+wi(6r, AO NG+ 0 NG AOL) +wi 0L A G NG }dady.

This completes the proof, since z = 2 is similar. a.
Now that we have established that J is Hamiltonian, we express the Poisson

bracket in a more familiar form:

§F 8G\ [ (S6F &F 20
[F.G] = (E’JJ_L.)) —/(le,E>J( Sé_gi dxdy
w2
wl,‘;
_o(eE eEy (-2
=/ G0 ban ) | _2adly | 9T
P H2

1 SF &G 1 §F &G
= /[PlHldla (5&)1’ le) + sznga ('J_wz'a 5_w2)]d:vdy,

where the last follows after an integration by parts.
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2.2.2 Conservation laws

In this section we present the conservation laws for the two-layer model in infinite-

dimensional Hamiltonian form. First, recall that for any functional F, the dynamics

can be expressed by

dF
— =F.H].

The invariants are summarized in the following proposition, and are derived

essentially by appeal to Noether’s theorem.

Theorem 2.4 The quasi-geostrophic two-layer model in the unbounded plane, has

- as integral motion invariants, H, linear momentum M., and, My, and, angular

momentum Mag.

Proof: The invariance of H is immediate since & = [#,H] = 0, by the skew-
linearity of the Poisson bracket. Since H and J have no explicit dependence on z or
y, H is invariant with respect to spatial displacements. Applying Noether’s theorem

with respect to z we seek a function M for which:

JM = —wg, Or

(wi)z (%g—)y — (wi)y (%53: = piHi(wi)z.

By inspection,
M o
Sw; pittiy,

is a candidate, so that the linear momentum in the x-direction,
Mz = / (o1 Hiw: + p2 Hyws|ydzdy,
is an integral invariant and similarly so is the linear momentum in the y-direction,

M, = /[p1H1w1 + p2 Hows|zdzdy.
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We now consider rotational symmetry. In polar coordinates, £ = r cos, y = rsin4,

the Hamiltonian is expressed as:
H(w) = [l Hibreor + p2 Hytbseor]rdrdo. (2.5)
Using the chain-rule, we have, in polar coordinates,
1
la,b] := azby — ayb, = ;(arbg — agh,). (2.6)

From (2.5) and (2.6) it is clear that H and J do not depend explicitly on 8 so

applying Noether’s theorem, we seek a functional M for which:

oM

Sw

. oM oM
(wi)r (57)6, — (wi)s (E)r = piHir(wi)e-

J

= —yg, Or

By inspection,
oM r?

dw; = piHi_2_’

so that the angular momentum,
1 H H. 2
J\/[g = ;/[p]_ 1«1 +p2 2&)2]7‘ d.‘l:dy,

is also an integral invariant. a
We remark that these conservation laws are the natural generalizations of the

planar or one-layer model. An alternative derivation of these invariants can be found

in the article by Young [57].

2.2.3 The Casimir invariants

In addition to the conservation laws arising from the Hamiltonian symmetries, there
are also “distinguished functionals,” arising from the degeneracies of the Poisson

bracket itself. These Casimir invariants are solutions of

éC
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To see that C indeed determines a conservation law observe that

dc iC dH 0C dH
@ =leH= (a’fa—w) =" (sz;) '

Now the solutions of (2.7) are given by

sC

ty ¢ =0 .=1723
&'.:J,'] :

[w

which implies that

8C _ 3C(wr,ws)

dw; Ow; (2.8)

bl

for some sufficiently smooth function C(wi,ws), of w = (wi,w2), Necessary and

sufficient conditions on C and C for solutions of (2.8) are:
C(w) = / C(wr, w2)dzdy.

Observe, in particular, the following invariants which are conservation of cirulation

and enstrophy respectively:

G = /(,01H1w1 + p2 Hywy)dzdy,
C, = /(lelwf + po Hyw?)dzdy.
Other conservation laws can be obtained from manipulation of the invariants

H, Mg, My, M,, C,, C2. We mention two important ones in the following corollary.

Corollary 2.5 The center of vorticity

Mz [ z{p1 Hiw;y + p1 Hyw,)ldzdy

G [(prHiwr + p2 Hyws)dzdy ’
My [ylpiHiwi + p1 Hyw,]dzdy

G J(prHwy + p2Hywo)dzdy '’

X =

Y =

is tnvariant as is the vorticity distribution about its center of vorticity:

D? .= Sz = X)? + (y = Y)?I(p1 Hywr + szgwg)a':z:dy.
. J(prHywn + szgwg)dzdy
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2.3 Hamiltonian formalism for point vortices

2.3.1 Point symmetries

We now present the Hamiltonian formalism for the point vortices introduced in
Chapter 1. Using the formula for the energy (2.1) and the singular (point) vortices

from Chapter 1, one obtains the following finite-dimensional Hamiltonian system:

1 & )
H = — Z (pr H1)TET[A+ Ro(Alir) + A_Ko(A2lir)]

"o iRl
1 1V2 212 " .
+"‘: Z (ngz)Fijr[A.i.[\o(/\lli[) +‘4_[\.0()\2[,‘[)]
N idaET

+— —_TIT3[Ko(A2li) — Ko(Ails;)]
2w 0 Vd ’

1 Ny 1 N
= = 3 (pH)LITIF(lin) + = 3 (e H)TIT5G(lis)
LRl N gTiET
Ny ,N2
PRI R () (2.9)

dr 4= d

where /i, denotes the distance between the vortices labeled & and m, and where
all constants and functions were defined in Chapter 1. With this, the dynamical

equations can be put in the following Hamiltonian form:

oOH . _ _oH

ol = Ty o = —'_.‘, 2-10
qx | P}c. Pr ,aq’l‘ ‘ ( )
g =z, pi:=DipiHiyp i=12andk=1,---,N;. (2.11)
The Poisson bracket then becomes the canonical one:
: N 9FOH OF 3H>
F: H}= : T 5 R 2.12
[F H] g ; (3% dp,  Opi 9q; (212)

and the conservation of H is immediate. The other invariants are obtained by
appealing to Noether’s theorem, since the Hamiltonian (2.9) is seen to be invariant

with respect to arbitrary spatial displacements as well as rotations. Alternatively,
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and more tediously, they can be verified by substituting into the Poisson bracket

(2.12). These invariants are linear and angular momentum,

2 Ne
Me:=Q =) piH; )y Tz,
=1

t=1

2 N; o
My =P =73 p:H;y Ty,
=1

=1

2 N
M, =T=3p:H;Y T,

=1 j=1

where

) ;2 ;2 ;2
3 t 2

[V = z; + Yi -

J
Now, by the conservation of P, @, and I, it is clear that
H,P] = [H,Q] = [H, 1] = 0. (2.13)
It is straightforward, if laborious, to compute that

@Q,I1=2P, [P,I]=2Q.

Using the Leibnitz rule and these last two we obtain,

Hence we see that
[P+ Q% I]=0. (2-14)

These calculations allow us to conclude the following theorem.

Theorem 2.6 The three-vorter two-layer problem on the unbounded plane is

integrable.
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Proof: The invariance of H, I, and P?+ Q?, either by appeal to Noether’s theorem
or through the use of the Poisson bracket, has already been established. The calcu-
lations leading to (2.13) and (2.14) show that there are three analytic integrals in
involution, namely H, I, and P?+4@?. For the three-vortex problem this is sufficient
to conclude integrability. a

As in the one-layer model, since I, P, Q and I'; are all conserved quantities, so

is the following:

2 N; . Y
[Zp;H; Z F;-][ —Q*—P* = (pH)? Z F:-‘F}l,-jz + (p2H,)? Z F?F?l,-jz
j=t

=1 i<j <y

H H lV[,N2
+PLPZ 1412 Z F}F?l{jz- (2.15)
7

3
The invariance of the left-hand side is evident, the equality however is straightfor-
ward if tedious to verify. As in the one-layer case (or as on the sphere) we will make
use of this invariant, in much of what follows, particularly in reducing the three-
vortex problem through the use of the trilinear plane in Chapter 3. This will be
achieved ,for the three-vortex problem, by regarding this invariant as a parameter
to characterize the dynamical regimes of motion. We remark, also, that the center

of vorticity given by

(@, P)

(X7 Y) = 2 N >3
i piH: TN T

is invariant. This together with the invariants M, M, M, show that the distribu-

tion of the vorticity about its center of vorticity,

2 S = X + (g - Y)Y
L piH T, T ’

7=1

(2.16)

is also invariant. We conclude by considering integrable four-vortex two-layer prob-

lems, and prove the following result.

Theorem 2.7 If P=Q =0 and

2 Ni
> p:iH:> Ti =0, (2.17)

=1 =1
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holds, then the four-vorter two-layer problem on the unbounded plane is integrable.

Proof: An easy computation shows that

2 N;

i=1 1=1
and since
[Q,I]=2P, [P, I] = -2Q,

if we have P = @ = 0, then there are four integrals in involution, namely (H, P, Q, I).
.But since P = Q = 0 and (2.18) holds it is clearly necessary that (2.17) holds. We
conclude that if P = @ = 0 and (2.17) holds then the four-vortex two-layer problem
is integrable. a

We remark that this is similar to the one-layer model on the plane, but differs
from the situation on the sphere, for example, where the corresponding requirement,
(2.17) is not necessary, as shown in [31]. This is also discussed in Chapter 6. Other
integrable four-vortex configurations possessing other symmetries such as axial or

collinear symmetry, are also discussed in Chapter 5.

2.3.2 Discrete symmetries

The dynamical equations of Chapter 1, or the equations (2.10-2.11), explicitly ex-

panded, possess certain discrete symmetries. In particular, it is not difficult to prove

the following result:

Theorem 2.8 IfI'1,[a,..., n;x1, X2, ..., Xn; t satisfy the equations of motion, then

so do:

(a) —Fl, —Pg, ey —'Fu; —X1, —X2y...,—Xpn; t,
(b) —'Fla —'F27~'-7_Fn;xlax21--°axn; ""t7

(¢) 1,02 ..., Cas—X1, —X2,. .., —Xp; —t.
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In addition, for the case of two vortices in the same layer (labeled 1 and 2) and
the third vortez (labeled 3) in the other, the equations of motion are invariant with

respect to tnterchanging the indices 1 and 2.

These symmetries mean that in the study of the three vortex problem, it will be
sufficient to consider only the three cases (1)['y, 2,3 > 0, (ii)[';, T2 < 0,3 > 0, and
(iii) 'y > 0,2 < 0,3 > 0. Observe that the two-layer model gives rise to one more
case than the planar model, where it suffices to consider only (i) and (ii). Naturally,
for all three vortices in the same layer there are additional discrete symmetries,
namely cyclically and anticyclically permuting the indices of the vortices, in which
case, as in the planar model, one need only consider (i) and (ii).

Note also that the dynamical equations for the planar model are invariant with

respect to the scale transformation [49]:
x> Ax = A

The presence ot the two length scales A[3, (the inner and outer Rossby radii of
deformation), in the two layer model leads to a breakdown in this symmetry. It
is conceivable that this may have implications for the existence of self-similar (ho-

mogenous) collapsing solutions in the two-layer model. See for instance some of the

results in Chapter 4, in particular Fig. 4.1.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 3

Equilibrium solutions for the 2-layer

quasi-geostrophic model

In this chapter we locate all the equilibria for the three-vortex two-layer problem.
These are the simplest solutions of the dynamical equations, and are useful, for
instance, in studying particle advection, due to the motion of these point vortices in
relative equilibrium. They are also typically the solutions about which pertubations
are made to study non-integrable vortex dynamics, as well as the reduced four-vortex
problem. We define equilibria as vortex motions in which the inter-vortical distances
stay fixed. Relative equilibria are the fixed points of the relative equations (1.20),
and for which the vortices form rigid configurations either rotating about the center
of vorticity, or rigidly translating. Fixed equilibria are the fixed points of the system
(1.13-1.16). Our analysis, in this chapter, follows the methods used by Synge [56]
and Aref [2]. To this end we will make extensive use of functions defined in (1.17)

and (1.18) as well as some of their properties.

3.1 Location of fixed equilibria

In our first result we locate all fixed three-vortex equilibria, where the vortices may

be arbitrarily permuted between the two layers.

Theorem 3.1 (Fixed equilibria) Necessary and sufficient conditions for fized equi-

libria are:

29
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1. For three vortices in the top layer,

(a) The vortices are collinear with,

_ [39(li3) b2
Er==) = 070 )

(2 - (£9)

(6) T1T2g(l12)li2 + T Lag(l13)l13 + [3Tag(ls32)l32 = 0.

(1!3 - ml)a and}

2. For three vortices in the lower layer the above conditions hold with h(l) replac-

ing g(1).

3. For two vortices in the upper layer (labeled 1 and 2) and a third (labeled 3) in
the bottom layer,

(a) The vortices are collinear with

_ Lo H; flln) b
Em=) = 07 e o™

B - (i)

(b) T1T2g(li2)liz + F1F3%f(113)113 + F3F2%f(132)132 = 0.

— &), and,

4. For I vortez in the upper layer (labeled 1) and two vortices in the lower layer
(labeled 2 and 3),

(a) The vortices are collinear with

s f(L {
(z1 —2) = —EML(%—Q), and,

Ty hLs f(la)
2 2
®) - (53)

(b) F1P2%f(l12)112 + F1F3‘f/£§f(113)113 + [32h(l32)l32 = 0.

30
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Proof. We prove (3); the other statements have similar proofs. Using the Hamilto-

nian, obtain the following dynamical equations:

) 1 [ T3 H. [
s = o Ll -S4 BRG]
) 1 [ ;A l
§i = 2_7‘: [Fz(zl _ xz)g(lll2) \3/_2( L — 3)f§l;3) (3'2)
. 1 [y 3 H. l .
£y = __‘E [Fl(y2 yl)g( 2) + :3/32 (y2 _ )f( 23)] (3‘3)
. 1 g(l [ H. fl
y2 = - [F (z2 — 1) (11122) . \3/—2( 2 — Z3) 5223)} ) (3.4)
. aHl Ci(ys — y1) f(lia) La(ys — y2) f(l23) =
= + ) 3.
T3 9 [ N N (3:5)
. Li(zs —z1) f(ls) | Ta(zs — z2) f(l2a)
BT o [ Vvd i3 ¥ Vd s |- (3:8)
Setting £} = y; = 0, it is clear that
9(112) _ ['3H, f(113) ’
[a(zy wz)——"lm = vd s (z3 — 1),
-so that the vortices are collinear. Taking dot products on the left with
l
[a(zy — zz)-i(i_l_ﬂ’
12
and on the right with,
[3H, f(la) (@5 — 1)
N
yields,
l12)?  TIHZL o\ 2 H, F(lis) 2
2z, g(l2)® _ 13 I1s)?, (__) _ (H2 /(L .
i KRR Vd 9(0)
We now establish (b) by taking “dot-products,” as follows (recall Z; = y; = 0):
. . . . . L3y L3z3
-z Ty + Tz — Z2l2y2 + y2llez2 — 23 of +y3 ST = 0. (3.7)
1 1
31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



This establishes necessity, since
LHS = ['1Tag(li2)liz + 4T lis)lia + TaTa 22 f(ly)ia, = 0.
1L2g(l12)l12 1 3\/—f( 13)l13 3 2\/2}’(32) 32

To establish sufficiency, begin by assuming:

U3 Hy f(liz) 2
(zl — 32) = [‘z \/_fgls )9(112)( a:l)7 (38)
[2\* _ ([ Hz flis)
<F_3) N (ﬁg(@) » ead .

H. H
[1T2g(l12)l12 + Flfaja-f(lm)hs + F3F2—\/—:_lf(132)l32 = 0.(3.10)

We show that this is a fixed equilibrium configuration. Substitute (3.8) into (3.1-3.2)
to conclude that z; = y; = 0. For (3.3-3.4) observe that it suffices to show that:

112 FS 2 23
) Shn

Without loss of generality in (3.9) assume that

Fl(fcz - 331)

Fzg(lu) = Fj/-fgz f(ll3)

With this, (3.8), becomes

li3
l12

[
(@y— @y) = —(x; — x3), sothat (€3 —@2) = (1 + —

113 )(‘cl - 332)

and hence
l§2 = (l12 + 113)2-

Taking l3; = [;2 + {13, and considering the right-hand side of (3.11),

_ TsH, f(lzs) [3H, f(lzs) li3
RHS = —(ms—al Bl DBl 4 e, —ay)
s H, 112 + 113 PaHz

= \/-f(123)l23(wl z2)( )= Vd fll2a)lia(r — 2)-
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Next use (3.10) and recall from (3.9) that, [yg(l12) = E%f;&i)-, so that (3.10)

becomes
H,
[iT2g(li2)li2 + Til2g(li2)lis + Fzrsﬁf(lzs)lza =0.

Hence I'1g(l12) = —%f(lg;;), because {15 + {13 = l23, so that the RHS of (3.11)

becomes

rHS =122 4, _ 2y = LHS,

liz

leading us to conclude that £, = y» = 0. Similarly we can show that £3 =y3 = 0.0

Remark: Notice that the conditions (b) involve the distances [;; between the
vortices. This is different from the one-layer case [56] where the criterion is simply
2 i<; [il'; = 0 and is independent of the vortex positions z; The two-layer model is

similar in this regard to the situation on the sphere, where the condition is [31]
D Ti(Tj+Th)e: =0, i # j #k,

and which clearly depends on the initial positions, z;.

3.2 Location of relative equilibria

We now locate the relative equilibria for the three-vortex problem for the two-layer
model. These equilibria are determined by the functions A({), f({) and g(/) defined in
Chapter 1, (1.17). Typical graphs of these functions as well as the functions @, &(;D-,
and # are shown in Fig. 3.1. Observe that while A(/) and g({) are monotonic,
f(0) is not. Notice however that all of the functions %ﬂ, 9—59- and ﬁ(,D-, do appear
to be monotonically decreasing. We will show that this property will be critical,
particularly in locating relative equilibria for vortices in different layers. We begin
by considering three vortices in the same layer, the upper layer say, for which the

relative equations are:

B ll3 123

_‘ﬁg _ 20AI3 9(113)_9(123)
dt T ’
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g

1 2.

0.8l |\ =

0.6 1.

0.4l/7

0.2 0. |
T3 3 4 5 ° i 3 3 4 5t

(2) (b)
Figure 3.1: Typical graphs of the functions (2) f, g, k; (b) f—gll, 1((.‘1’ ﬂl—Q (I>0)

diz, 20AT, [g(li2)  g(li3)

33 _ _ 12
dt T [ lia ha |’ (3-12)
dlfs _ 2040 [g(hs) _ g(he)
dt T l23 Lo |’

where o is the orientation of the triangle formed by the three vortices and A(t) is
the area enclosed by it. As mentioned in Chapter 1, the equations for three vortices
in the lower layer are similar with g(!) replacing ~({). Now the relative equilibria
are the fixed points of the vector field (3.12). These occur where either A(t) =0 or

terms of the form [9—(,%31 — 5—(;[1‘%)] = 0. Now since K;(!) is decreasing so is the linear
combination given by —g(l), (or —A({}). We conclude that since } is decreasing so
is _Q(IJ (or _1(71)_)_ We can now locate all relative equilibria given by the equations,

(3.12) and summarize this result in the following theorem:

Theorem 3.2 (Location of relative equlibria: vortices in the same layer) For
the two-layer model the only relative equlibria, for which all three vortices are in the

same layer are:
1. Equilateral triangle configurations, and

2. Collinear states for which necessary and sufficient conditions are given by

A(0) = A(0) = 0.

34
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Assuming that 3°T; # 0, we compute that the vortices rotate about the center of

vorticity with rotation frequency
s
Q = ( )(PITP2+F3),

for three vortices in the upper layer and,

h(

l

Q= s) (I‘1+F2+I‘3)

for three vortices in the lower layer. In either case if 3 I'; = 0, the center of vorticity

is at infinity and the triangles move parallel to themselves with speeds

1 7 g(s
v = [_(r§+r§+r§)] sz(ﬂ),
7 h(s)
27’

<

o

v = [; (r2 +r§+r§)]

respectively. By repeated differentiation and induction we can show that collinear
configurations, A = 0 can form relative equilibria if and only if A(0) = A(0) = 0.
By Heron’s formula for the area of a triangle this becomes, upon using the relative

equations (3.12),

=

A0) = [r(r —las)(r — la1)(r —l2)]? = (3.13)
A(0) = = lzaigz;zf;ﬁir ) > T1{liag(l12) — l12g(lis)]
+ Z{ —T'1[l29(ls) + l13g(l12)] + T1[l129(li3) + l139(l12)]

47'112112123
4+ [l129(l3) + Liag(li2)]}(r — la1)(r — l12), (3.14)

where )
r= ;(112 + li3 + l23).

In the last equation, (for A(0) = 0), both summations are over cyclic permutations
of the indices, 1,2,3. Again, for three vortices in the lower layer, the same formula

hold with g(!), replaced by A(l).
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There is a similar analysis for vortices lying in different layers. We will need
to use properties of the modified Bessel functions K,(z). These can be found in
Abramowitz and Stegun [1]. To locate these equilibria we make use, in particular,

of the following lemma.

Lemma 3.3 Let f(I) := A A1 (Ml) — A2 K1 (A2l) where [ > 0, and Ay > A > 0,
and where R (l) is the modified first-order Bessel function, then !_([ﬂ is a monotonic

function

Proof. We begin by defining the function ¢(z),

f(l') = /\1[\’1(/\11?) - /\2[(1(/\2$)
T - T

o(z) = , for A\ > X2 >0, and, z > 0.

Differentiating, gives,

sy = L2 =1

We show that the numerator, f'(z)z — f(z), is of one sign where,
F(z) = XK (Az) — X KI(\2).

We do this by making use of the following recurrence relation for modified Bessel

functions [1]:
/ v -
L(2) = Lua() = ZL(2), (3.15)
where
L,(2) := ™K, (2).
Thus, for instance, —K(z) = K(z) — 1Ki(z), from which we may obtain

1
/\2.’1,'

Fllz) = X2 [,\I%Kl(’\l‘”)] —x2 [

’1(/\233)] )
so that,
@)z — flz) = MEi1(Aiz) — AlzKo(\z) — A K (Nez)
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A2 Ko(oz)
MK (Mz) + K1 (Aaz)
= MzKi(A2z) — Mz Ky(A2z)
- % [(ha2)?Ka(Miz) — (M) Ka(Aaz)] -

Since A\; > A2, and z > 0, this is clearly of one sign, since 22 K,(z) is 2 monotonically
decreasing function, as shown in Figure 3.2. To rigorously prove this we begin by
defining g(z) := z?K,(z)- Then,

g(z) = 21‘[\"‘2({1:) + 22K} (z) '
= 2z [%I{I(x) + Ko(z)] + z° [—Kl(x) - %Kz(z)]
= 2% E—I{l(z) + Ko(:r)] g [—-Kl(z) - % (%KI (z) + [{o(x))]
= 4K(z) + 2zKo(z) — 2’ K1(z) — 4K, (z) — 2z Ko(z)

= —'$2Kl($),

where we have made repeated use of the recurrence relation (3.15). O

We mention that Lemma 3.3 is used in an essential way to locate all relative
equilibria for three vortices lying in different layers. However it does not apply
to the simplified model given by (1.19) and used for example in [57]. There the

interaction terms for point vortices is a little different. A Hamiltonian formulation

of that model leads to the Hamiltonian
™ - ll2 - 113
H = ——Z 2, I, 111([12) — Ky T + 25 ].n(ll3) — Ky T
, [l
+ 2F3F2 ].Il(l:;'z) - I\O T 3 (3.16)

where vortices 1 and 2 are in the upper layer, and vortex 3 is in the lower. The

relative equations take the form .

dlfz pd p
_‘-i-t— = F3U;4. [g(l23) - 9(113)] bl
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where,
. 1 1 [
a(l) :== Z H[\]_ (X) » LA>0.
Similar dvnamical equations are obtained for /%;, and /%, with terms that also involve

the function f(/),
I

It is clear that f({) is monotonic. As for §(!), we use the recurence relation —K(z) =

K3(z) — 1K;(=). Differentiating, yields,

70 = <25k (5) -5k (5)

= "1- [‘1 <,\ +,\21{ 2(2) - l(é)}
s () s ()]

We now use the fact that z2R%(z) is monotonically decreasing and bounded by 2

since (see Fig. 3.2),
sup z2Ky(z) = hm :1:2112(:1:) =2.

>0
Conclude that §'({) is negative, so that g(!) is a monotonically decreasing function.
The preceding analysis shows that all of the qualitative conclusions arising due to

Lemma 3.3 for the full two-layer model, apply to the simplified two-layer model

given by (1.19).

o el
U = U N

22 K3 (x)

2 4 6 8 107
Figure 3.2: Graph of the function z2K>(z).
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We begin by considering (for the full two-layer model), two vortices in the upper
layer (labeled 1 and 2), and a third vortex (labeled 3) in the lower layer (Case I).

The relative dynamical equations in this case are :

diz, Hy 20AT3 [f(lls) _ f(lzs)]

dt vd 7 li3 l23
gl_%g —_ 20'_4.[‘1 [9(113) _ CtH]_ f(ll:;)} (3 17)
dt ™ l12 vd Lz |’ ’

d_l'fi 20 AT, [aHI f(l23) _ g(llg)]
dt T vd s ha |~

In order to locate the relative equilibria we see that finding the zeros of the first

equation in (3.17) gives,

flls) _ f(l23)
113 123 )

The monotonicity of the function —f—g—ll implies that this can occur only when [;3 =

lo3 := s. We now use the second and third equations to obtain that /;2 is given by

the solution of
g(l12) _ aH; f(s)

l12 \/E S

Such a solution, [;2 := t(s) exists and is unique, by virtue of the fact that both

g(#, and @ are monotonically decreasing and, moreover, assume all positive values
as seen in Fig 3.1. In general though, l12 7# {;3 = [23. We conclude that relative
equilibria are given by isosceles triangles. Note, however that these are not arbitrary
isosceles triangles. (Recall that in the planar (one-layer) model as on the sphere,
arbitrary equilateral triangles form relative equilibria.) For the two-layer model,
given any s > 0 there exists an isosceles triangle relative equilibria, for which [;3 =
l;3 = s. The shape of this isosceles, for a given s is obtained from {;2 := ¢(s), which

is uniquely determined by the solution of

g(lie)  g(t)  aH; f(lis)  aH; f(s)
e ~ t  Vd Ls T Vd s
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The solution of these implicit equations depends, in general, on many parameters.
It is clear that they define a whole family of isosceles triangles. We illustrate this

with the simplified model mentioned earlier, (3.16), where the implicit equations are
3(s) = f(1).

The only parameter appearing in this equation is the Rossby radius of deformation,
A. Solutions of () as a function of s for various A are shown in Fig. 3.3. Notice that
for each fixed s there is a unique ¢ as seen from the monotonicity of the function

t(s). Observe also in Fig. 3.3(b), that for large s, regardless of A, there is only

one isosceles triangle equilibrium, since for large s the ratio £ is one (an equilateral

‘triangle). It is also seen, in Fig. 3.3 (b), that for every )\, the ratio @, takes all

values in the range (1,00), i.e. for any A, given any a € (1, oc), there is an isosceles

triangle relative equilbrium with t—(sﬂ =a.

A=2

t(s) , i(s)

A=1.5 s

> >
[
© o
[\ t
(¥}
W

[N

T

(%

0.05 0.1 0.15 0.2 0.25 1 2 3

(a) (b)

S 6

Figure 3.3: Families of relative equilibria for different Rossby radii of deformation,
A. (s is one length of the isosceles triangle, and ¢(s) the other, (a) ¢ against s, (b)
The ratio § against s. (A = 0.5, 1, 2, 3, with A = 0.5, the bottom curve and A =3
the topmost curve.)
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Assuming p; Hy(T; + [2) + p2HoT's # 0, it is straightforward to show that the

vortices rotate around the center of vorticity with rotation frequency

QH]_ H2
ri+r

The analysis for one vortex in the upper layer (labeled 1) and two vortices (labeled

2 and 3) in the lower layer is similar. In that case (case II), the relative equations

ORI

are

dt T Vd i3 ls |7
d2,  Hy2%AT: [f(ln)  f(ls)]
_dt_ ﬁ ™ [ li2 B li13 ]
dE,  204T [h(lgg,) | H (i)
dt T la3 Vd L2 |

We summarize these results on relative equilibria in the following proposition.

d?, _ 20AT; [_H_2 flliz)  A(lss)]

Theorem 3.4 (Location of relative equilibria:vortices in different layers) The
relative equilibria for the three-vortez problem, with vortices lying in different layers

are:’

1. Case I: For two vortices in the top layer (labeled 1 and 2), and, vortez 3 in the
bottom layer, the relative equilibria are isosceles triangles, with l13 = 3 := s,

and l12 = t(s) = t, given by the unique solution of

g(?) _ aH; f(s)
r T Jd s (3-18)

When py Hi(C1 + C2) + p2 H2T's # 0, the vortices rotate about the center of

vorticity with rotation frequency

Q= 2fE;)— [aHl([‘l -+ I‘z) + P3H2] .
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If, prHi(Ty + [2) + p2 H2T's = 0, the triangle translates parallel to itself with

speed
v = sz;;ﬂ. [aﬁHf (1 +; (2)2) (02 + T2) + HE (2 -3 G)z) r2
202 H? (1 - (i-) 2) rlrz] . (3.19)
When 9%1 = °‘7Ha#~f—£’l, or :gf—% = %, so that s = t, corresponding to equilateral

triangle configurations, this formula (3.19), stmplifies to

f(s) 1 2 3
v= oo = o HI(T] + T3) + H3T3.

Case II: For vortez I in the top layer and vortices 2 and 3 in the bottom, the
relative equilibria are isosceles triangles with l13 = l12 1= s and ly3 = t(s) := ¢,

given by the unique solution of

H, f(s) _ h(2)

Vd s t

When p; HiT'y +p2 Ho(T'2T's) # 0, the vortices rotate about the center of vorticity

with rotation frequency

Q= 27{%8 = [HZ(FC" + FZ) + F10H1H2] .

If, prH\T| + poHo(L2 + I'3) = 0, the triangle translates parallel to itself with
speed

v = Q_J_CEZ_d [azgf (2 - % (-:-)2> 2+ H2 (1 + % (2)2) (2 +T2)
+2H? (1 - (9 2) 1‘21“3] | (3.20)
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When ﬁi—"l %@, or 1}8 713-, so that s = t, corresponding to equilateral

triangle configurations, this formula (3.20), simplifies to

=

_ f(s) — [~2 722 2
v= = [@? HZT? + HE(T2 + 3)]

1S

In both cases there are also collinear relative equilibria for which necessary and
sufficient conditions are A(0) = A(O) = 0, which ezplicitly take the form

N~

AQ) = [r(r —la)(r —la1)(r — 12)]7 =0,

where r = %(112 = o3 + [31), and,

A(0)=0 = (r = laa)(r — l31)(r — l12) S Fihs

4mlialialas
> '[C1d2s + Tadia + Ladual(r — lay) (r — L12)-

r

+
7-'112113123

Here both summations, denoted by ', are over cyclic permutations of the

indices and where the ¢, are given by

¢23 = g([12)113 Cf—lf(llii)ll% 523 = —[9(112)113 + (i/—H'lf(lll’t)llz]
P13 := aj[_l [f(l2a)li2 — g(l12)l2a], @13 := [O:/}E f(l23)liz + g(hi2) 23],
, H, H,

bra 1= \/_[ (Lia)las — f(las)lisl,  ro = — \/—[ (l13)l2s + f(l23)l1a],

for case I, and for case II, by

C!HI

s — Fla)lal,  Bas = — f[f(zlz)zls+f(zla)zlz]

$23 1= 72
&13 := h(laz)l12 — \/—f(lm)lza] &13 := —[h(l23)l12 + \/—f(112)123]

P12 = %[f(ll3)l23 — h(l23)li3], 512 = ‘[%f(IIB)l% + h(l23)l13].
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3.2.1 Relafive equilibria and the energy-momentum mapping

It would be interesting to study the nonlinear stability of these relative equilibria.
A systematic study would be fairly involved since there are many parameters to
consider in the full two-layer model, as well as more possible cases to consider as
regards to vortex strength and sign allocations of the three vortices. There is a
further complication regarding the isosceles triangle equilibria, which are defined
only implicitly as for example in (3.18).

Nevertheless, a nonlinear stability analysis involves the use of the energy-momentum
mapping. The relative equilibria have an interesting description in terms of the
energy-momentum mapping which we now present. We follow Arnold’s treatment [3,
6].

In Chapter 2 we saw that the Hamiltonian for the two-layer model is invariant
with respect to abritrary displacements in z and y as well as arbitrary rotations.
Call G the connected Lie group of these symmetries acting (as symplectic diffeomor-
phisms) on the phase space (M?",w?) and G, its Lie algebra. Then, to every element
a € G, there corresponds a one-parameter group of symplectic diffeomorphisms of
M?®* with a single-valued Hamiltonian, H,. In addition G is a Poisson action on
M2,

Hiap, = [Ha, Hy],

where the first brackets denote vector multiplication in the Lie algebra G, and the
second the Poisson bracket in phase space (M?",w?). In other words the Poisson
action of the group G defines a homomorphism from its Lie algebra G, to the Lie
algebra of hamiltonian functions on (M*",w?). We are now in a position to define the
momentum mapping. The Poisson action of the group G on the symplectic manifold
(M?*,w?) defines a mapping of M?" into the dual space of the Lie algebra G

P:M -G,
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i.e. choose a point z in M and consider the function on the Lie algebra which
associates to an element a € G, the value of the Hamiltonian H, at the chosen point
z

pz(a) = H.(z)-

It is well known that a phase curve of a system with a G-invariant hamiltonian

function is a relative equilibrium if and only if it is the orbit of a one-parameter

subgroup of G in the original phase space.
Another theorem from mechanics states the the critical points of the momentum

and energy mapping

PxH:M—G xR,

on a regular momentum level set are exactly the relative equilibria.

3.3 Trilinear formulation and location of equilibria
in the trilinear plane

In this section we formulate the equations of relative motion in the phase plane and
locate the relative equilibria. The dynamical system given by the relative equations
(3.12) for example, has a 3D phase space. However this can be reduced to a 2D
‘phase plane’ by making use of the invariant C, (2.15), as a parameter or time-scale
in the problem. We follow the methods introduced by Synge [56] for the planar

problem. To this end we begin by considering case I for which the invariant C, is,
Ci = (p1 H1)’T1T2l3, + (o1 Hi)(p2 H2 )(T1Talis + F2Tal3s),
and the parameter C is defined by
p2 HyTolsl2s + pr Hi(T1Dol3, + T Tsl?;) = 30 DL a0,

with trilinear coordinates (for C # 0),

2 2
113 112

H,, b;3:=
F20P1 1, 03 T.C

2
123

- T.C

p1Hi.

by : p2H>, by :=
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Similarly, for case II, the invariant C} is
Cy = (p2 H2)*T2T3l2; + (p1 Hy )(p2 Hz ) (D1 282, + T Tsldy),
and the parameter C is defined by
paHaTaTal2, + py Hi (T Tal2, + T Tal?,) = 30 T2 50,

with trilinear coordinates (for C # 0),

2 2 2

;3 5
Fcszz, by 1= CPLHl, by = TsC

b, := PIHJ.

Tt is then clear that by + b2 + b3 = 0. Using Heron’s formula (3.13), it is easy to
verify that the physical region is

I1y + U5 + 133 < 201515 + By35 + [5513,). (3.21)

In the trilinear plane, only parts of the phase space correspond to configurations
of three vortices. The reason is that the lengths, {;2, l23, {13, must form sides of a

triangle, and therefore satisfy the triangle inequalities,
Lo <loz+lia, las<lis+bha, Lz <liz+los. (3.22)

The regions of the phase space where these inequalities hold will be called physical
regions. It is easy to show that (3.22), is equivalent to (3.21). Assuming that C; # 0

IA

the physical region becomes
( [3bs )"’ N (szz )2 N (rlbl )2 0 [bsra 5T b3[3 5Ty | byl bl ]
prHy p2H, p2H> prHyp2Hy,  p1Hyp2Hy  paH, poH,

(I‘363)2+ (rlb1>2+ (P2b2>2 <o [bara b, . b3 5,07 by bger
p2Ho prHy) = |poHipoHy  p1Hip2H:  p2Hop1H;

for cases I and II respectively. The case where C = 0, is relevant to vortex collapse
and we defer a discussion of it to Chapter 4. The trilinear plane and physical region

are shown in Fig 3.4, for three vortices in the same layer, with I' = ', =3 = 1.
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0.5 b3

!
-1.5 -1 -0.5 0 0.5 1 1.5

Figure 3.4: The trilinear plane and physical region: three vortices in the same layer
with '} = [ = 3 = 1. The arrows indicate the positive directions of b;. (Negative
values are possible and correspond to vortices not restricted to being positive.)

We malke several observations regarding these trilinear coordinates. Firstly, these
differ slightly from the one-layer case due to the appearance of the densities and
thicknesses of the two layers. Secondly, for three vortices, all in the same layer,
or when p,H; = pyH,, the physical region and trilinear coordinates are identical
to those of the one-layer model. Finally, observe that the non-homogeneity of the
Bessel functions, means that the trilinear plane is not as useful for the two-layer
model as on the plane. Indeéd, to plot the phase-curves of (3.16), for example, one
substitutes by for [;;. However these are related via the invariant C; which cannot
be eliminated, as on the plane, due to the homogeneity of the logarithm function.
This means that in the two-layer model, the trilinear plane, phase curves are drawn
for different energy levels, H, but for fixed momentum C;.

In the z-y plane these trilinear coordinates are

bl = =Y,
1
b2 = :)'(3-21_\/5),

b= 5G-y+Va).
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One can use these to show that the relative equations assume the following Hamil-

tonian formulation. In case I, C # 0,

16AP2H2 BH . 16.4p2H2 8H

) = — - 3 = 3 3.23
YT T AN I,C? 0z° VAT T,l5C? Oy (3.23)
and in case II,
y, — _ 16AP1H1 8H’ 7= 16Ap1H1 BH’ (3.24)
\/§F1F2P3CZ Jz \/§F1F2F302 ay

where A(z,y) is the area of the triangle formed by the three vortices. Notice that
the presence of this term means that (3.23) and (3.24) are in non-canonical Hamil-
-tonian form. It is interesting to note that the Hamiltonian structure of the relative
equations (as in (3.17) for example) remains hidden in the original form but be-
comes transparent when the cartesian variables in the trilinear plane are used, in
the manner described above. A general discussion can be found in [41].

Using (3.23) and (3.24), we can conclude that A = 0 at points where A? =
constant and the phase curve H = constant, are tangent. In particular, in (3.23)

for example, we have using the chain-rule,

4 oo 94, 94 164p: H, [aAaH 6ABH]

5z T 5V T ALL.CE Yoz oy 2y oz
SpLH, [8/12 OH A2 aHJ

V3T T,0.C? | 0z 0y Oy oz

Using the definitions of the trilinear coordinates and the location of relative equilibria

in Proposition 2, it is straightforward to prove the following:

Theorem 3.5 (Location of relative equilibria in the trilinear plane) Relative

equilibria are represented by points S or @, where,

1. S are points at which the physical region boundary A = 0 and the phase curve

H = constant are tangent,
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2. Q are points representing isosceles triangle configurations with trilinear coor-

dinates given by,

0 = 1 (p2Hy p2Hy p H\B or
T AR\NT, T Ty T4 T
Q0 = 1 (p2H2B piH, piH\B
T h L, 7Ty’ I ’

for cases I and II respectively and where h is the “modified harmonic mean”,

3

h = 3 - > 0T
P].HLI-? + p2H, (ﬁ + ﬁ)

3
PLHx(éﬁ-%)-l-szzfa;’

h =

for cases I and II respectively, and B := () is the ratio of the lengths of

the sides of the isosceles triangle relative equilibrium, and must belong to the

admissible set,

- _s g(t) _ af f(s)
A = {ﬂl,@—t—z, where, A

h_igz E\/-Z:f—gs—)—, for case [[}.

These coordinates simplify when t = s, corresponding to equilateral triangle

, for, case I, and

configurations, and they become

Q=_1_<P2H2 p2H> lel) h— 3
R R e )
Q___l_<P2H2 p1H, leI) h— 3

AADT DT T o (& + ) +

for cases I and II, respectively.
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We have not as yet been able to locate the fixed equilibria of Proposion 4 in the
trilinear plane. This is a difficult problem because in the two-layer model the lengths

l;; are related only implicitly; for three vortices in the top layer we have for example,

(&) - ()
s 9(112) ’
[C1Tag(li2)li2 + TiT3g(li3)liz + Talag(la2)ls2 = 0,

with a similar relationship for {23. These implicit relations do not allow us to elimi-
nate the lengths [;;, from both the trilinear coordinates b; and the invariant C,. This
is different from the situation on the plane or the sphere. Indeed, on the plane the

-fixed equilibria lead to the following explicit relations between the lengths [;;, [56],

I

512
3

2 2, =
137 23 = Tat13-
%

lfz =
On the sphere a necessary and sufficient condition for fixed equilibria is
Y L+ Tr)x: =0, i # 5 #k,
from which one obtains the explicit relations between the lengths /;;, [31],

(Cr+ )3, = (Ty + Ts)lf,, (T2 + T3)l3, = (Ty + T2)l3,.
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Chapter 4

Vortex collapse and vortex alignment for the

3-vortex quasi-geostrophic model

In this chapter we study collision of three vortices in the two-layer model. It is seen
that although collapse for three vortices in the same layer is possible, the collision
process, in general, is not self-similar (homogenous). We also find that if two vortices
are in one layer and the third in the other, the two vortices in the same layer cannot
collide. Our methods are based on the properties of the invariants, and are in this
sense elementary. We also investigate some aspects of a process know as vortex

alignment, in which vortices in different layers can merge.

4.1 Vortex collapse in the two-layer model

If we consider simultaneous vortex collapse, it is clear that /;; = 0 at the instance

of collapse. Thus using the invariants of Chapter 2 necessary conditions for collapse

are:

i) the vortices are not in equilibrium,

if)

2 Ni
0=C1 = D pHi(Q_THI ~Q*—P?

i=1 j..l
= (PlH1)2 Z FIPI ll 1)2 + (P2H2) Z F2F2 12 2)2
i<j
N;,N2
(p1H1)(p2H2) Z T2 (it (4.1)
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It is necessary that C; = 0 since [;; — 0, for collapse. We begin by looking at

self-similar collapse for three vortices all in the same layer. Recall the definitions of

the following functions:

G(l) = A+[i'0(/\11) + A_Ko(/\gl),
H(l) . A._I(Q(A]_l) + A+KQ(/\21),
F(l) = Ko(Xal) ~ Ko(A1l).

Without loss of generality we consider three vortices in the upper layer for which

the Hamiltonian is:

—H,p:
A

it

F1F2G(112) + f1[‘3G(113) + 306G (123).

(The Hamiltonian for three vortices in the lower layer is the same except that H(!)
replaces G(l)). These two functions have the same qualitative behavior. We make
use of the fact that H is invariant to deduce a necessary condition for self-similar

collapse to occur. We make the ansatz:
L;(t) = A(#);(0), A(t) =0, as t—=t"<oo
We make use of the property:
Ko(z) ~~lnzas z =0

Thus near collapse {;; — 0 and,

IR Py (A ln sl + A= Indolyo)

+F1F3(A+ In A lys + A_1n Aaly3)
+03T2(Ax ln Aoz + A In Aolog)]  [as l;; — 0]
~ [[hT2(Ay + A-) In A(2)
4T Ta(A4 + AZ)ln A(2)
+0al2(Ay + AZ)In A(t)] [using the ansatz]
Hlp‘ 1o A(£)[T1Ts + T2Ts + Ty Ts]

..a

HN
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It is now apparent that in order that H remain invariant as A(¢) — 0, that ;2 +
'3+ T3 =0, or, 1
h = Z T = 0. (4.2)

We conclude tht although (4.1) is a more general necessary condition for collapse
it implies, in particular, (4.2), for self-similar collapse of three vortices in the same
layer. Although this is the one-layer case with logarithmic singular vortices, this is
not immediate from (4.1) because the two-layer geophysical model contains Bessel
function type singular vortices. In addition (4.2) is a relation only on the vortex
strengths and unlike (4.1) is independent of the relative distances or coordinates
of the vortices themselves. Before we discuss collapse of vortices in different layers
there is one other comment we can make regarding the collapse of three vortices in
the same layer. Plots of the phase curves in the b,-b, plane for A < 0 reveal them to
be closed through the origin O, but are intercepted by the physical region boundary
V' = 0 before they can reach O. Likewise the phase curves for A > 0 are open and
do not pass through the origin. These curves are qualitatively similar to those for
vortex motion on the sphere, as shown in Fig. 6.1, and are therefore omitted. We
shall prove that A = 0 is necessary for any triple-collapse of three-vortices in one
layer, regardless of self-similarity. In fact phase plots for A = 0 reveal collapsing
configurations which are clearly not self-similar. This is explained by the presence
of the Bessel function singularities, Bessel functions, unlike logarithmic functions
being non-homogenous. For example if we plot the phase curves for the simplified
two-layer model as used by Young [57], and given by equation (1.19), with three

vortices in the upper layer the Hamiltonian is:

!
H = —4%[&[‘2 (Inlu — Ko (%)) + Il (lnlls— Ko (%"))

+I5T, (ln lo3 — K (%))] (4.3)

This differs from the usual one-layer case only by the presence of the modified Bessel
functions. Phase curves are shown for 'y =Ty =1, I3 =-0.5, A=1(h=0)in

Fig. 4.1, in which the non-self-similar collapsing configurations are clear, since the
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15

10

b2

0 1 2 3 4 Sbl.

Figure 4.1: Phase diagram for C, =0: (a) I';, = ', = 1, '3 = 0.5, for three vortices
in the same layer, using the two-layer model, showing non-self-similar collapsing
configurations.

phase curves are not straight lines through the origin. We summarize this important

‘observation in the following propostion.

Proposition 4.1 The two-layer model admits finite-time, non-self-similar collapse
for three vortices in the same layer. Necessary conditions for all collapsing configu-

rations of three vortices in the same layer are C; = h = 0.

Proof: The existence has been demonstrated by the phase curves in Fig. 4.1. In our
comments following (4.1), we argued why C; must vanish. It is also clear from Fig.
4.1 that the phase curves for collapsing configurations reach the origin with finite
non-zero slopes. This means that near collision the collapse is asymptotically self-
similar, but our calculations leading to (4.2) show that A must vanish for self-similar
collapse. mi

We conclude by remarking that closed form expressions for these collapsing con-
figurations are difficult to obtain, because the non-homogeneity of the Bessel terms
makes the equations difficult to integrate explicitly, unlike the three-vortex problem
on the plane or the sphere.

We now consider the case of three vortices lying in different layers. We have the

following proposition for three vortices in the 2-layer quasi-geostrophic model:

Theorem 4.2 Suppose that vortices I and 2 are in layer 1 (or 2) and vortez 3 is

in layer 2 (respectively 1)}, then vortices 1 and 2 cannot collide in finite time.
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Proof: Without loss of generality, we consider two vortices in the upper layer and
the third in the lower. Now since we are considering vortices and not markers,

IT:| > 0. Suppose now that {; — 0 so that necessarily, {;3 — {3. We then have:

p]_H1 H2

Vd

{F Fg[(A+ -+ A )].Ill]_g] + \%(Fl

H {F1F2G(112) + [P[F;;F(lls + P2F3F(123)]}

p1H1

s+ Fng)F(llg)}, (4.4)

112 —r 0, and, 113 — 123.

We consider three cases:

.(a.) l13 — 0 (triple collapse),
(b) liz = co,

(c) liz = I, where 0 < [ < o0.
(a) If {13 — O then,

F(ll3) ~ ln/\2113—lnl\1[13
~ Inll3—ln113+lnx\2—Ln)\1.

This gives,

p H
H p1L 1{r‘u}(m +A_)lnl;,
+W(F1F2 + P2F3)(1n Ao —1In /\1)}, (45)
as-
112 — 0.

The invariance of H implies I'; ' = 0, a contradiction.
(b) If ;3 — oo then:

F(li3) = Ko(A2hi3) — Ko(Ali3) — 0, (4.6)
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because Ko(z) — 0 as  — co.
(c) Finally, if 0 < [ < oo we see that the second term on the RHS of (4.4) is bounded
vielding (4.5). This concludes the proof. a
We remark that the inability of the two vortices in the same layer to collide,
indeed, precludes triple collision as seen in the proof. It is also interesting to note
that this case, (two vortices in the same layer and the third in the other), is similar
in this regard to the two vortex (l-laver) problem on the plane. It is not possible
for two vortices to collide, there being a minimum positive distance between the two
vortices. In conclusion, given a two vortex configuration in a given layer, introducing
a third in the other will not admit the original two vortices to collide. On the other
hand, this is very different from the three vortex case on the plane (or on the sphere,

see Chapter 6), where for instance three vortices can self-similarly collide.

4.2 Vortex alignment in the two-layer model

We have already seen that for the quasi-geostrophic two-layer point vortex model,
configurations for which ther are two vortices in the same layer (labeled 1 and 2)
and a third vortex (vortex 3) in the other, do not admit collision of the two vortices
in the same layer. This is due essentially to the nature of the Bessel-type singularity
associated with the point vortices. We now demonstrate, however, that the distance
in the x-y plane between vortex 3 in the second layer and one of the vortices (either
1 or 2) in the first layer can go to zero. In the literature such an event has been
termed vortex alignment, because the vortices align in the x-y plane while remaining
in their respective layers. This phenomenon has been studied in detail for vortex
patches in the two-layer model by Polvani [52], and numerically by McWilliams [43].
Aspects of this phenomenon have also been mentioned by Polvani et al in [18]. It has
been noted that this process, whereby vortices from different layers coalesce, is the
fundamental mechanism for the cascade from baroclinic (two-layer) to barotropic
(one-layer) modes, in the same way that the well-known collapse process mediates
the reverse-energy cascade of two-dimensional turbulence. Before we illustrate this
process for the two-layer point vortex model, we mention that a minimum of three-
vortices are required, since as shown in Chapter 1 for the two-vortex problem, the

distance between any two vortices is invariant. In the three-vortex two-layer problem,
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Figure 4.2: Typical graphs of the functions, F'({) and G(!). The function H(!) is
qualitatively similar to F'({), and is not shown. In plotting F({), one may take
A1 > A,, without loss of generality

two vortices from different layers can merge, while there is a minimum positive
distance between the two vortices in the same layer (Proposition 4.2). In the one-
layer case (as on the sphere) it is impossible for the three-vortex problem for two

vortices to collapse and the third not. This is easily seen by considering the invariants

H = ITyln(3,) + TiTsln(%) + DsTs In(l2,),
C, = Flelfz + I, F3lf3 + F3F21§2.

Now suppose l;, — 0, then [;3 — [23 and there is a logarithmic divergence in the
Hamiltonian as {,, — 0, which means that either {;3 — 0, which is triple collapse, or
l13, la3 = oo, which is inconsistent with the invariance of C; for {;2 — 0. In fact for
the three vortex problem on the plane (as on the sphere) the only collisions possible
are self-similar triple collisions. We prove these results in Chapter 6.

One can see why vortex alignment solutions may be possible by examining the
proof of Proposition 4.2. It was seen there that two vortices in the same layer
could not collide due to the unbalanced singular logarithmic term coming from the
interaction term G(!), for vortices in the same layer. However, the interaction term
for vortices in different layers F'(!) does not have a singularity at 0 as seen in Fig.
(4.2). This means that the distance between two vortices may go to zero without
an unbalanced logarithmic divergence. We now demonstrate the existence of vortex
alignment solutions, by considering the case I';,I'; > 0, '3 < 0 for a configuration
where vortices 1 and 2 are in the upper layer and vortex 3 in the lower. To reduce the

problem we will again make extensive use of trilinear phase-plane analysis. Perhaps
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the simplest case where vortex alignment occurs is by supposing that the following

invariant vanishes
01 = lelfll"glfz + (lel)(ngg)[Fngl'fa + F3F21§2] = 0. (4,7)

Introducing the trilinear coordinates,

[2 12 l2
by = -2, by=-, b3=12 where
T T2 T3
_ I S B
’Yl—szza T2 szz, 73—"01H17
obtain
by + b2+ b3=0. (4.8)
Now the physical region is
(7161)% + (7262)% + (73b3)? < 2(117261b2 + Y173b1b37273b2b3) (4.9)

Using (4.8) and (4.9), and taking v, = —v3 the physical region boundary is
b3 (71 +73) 4 4b1b2(m173) = bu(m + 73)%b; + 4ba1 73] =0

Assuming «; + 3 # 0, then the physical region is the wedge bounded by b; = 0 and
the line
(71 + 73)?

by = ————%b,, , 0).
2 47173 1 (’71 V3 F )

Now assuming Iy, and I'; have opposite signs, the slope of this line is positive, so
that, the physical region is as shown in Figure (4.3). In particular it is a wedge lying
in the first quadrant, one of whose boundaries is the line 4, = 0. It is interesting
to note that the aligning vortices, 2 and 3, in this example have opposite signs. We
will now demonstrate the existence of phase curves going through the points (b, 0),
for b, > 0. These phase curves correspond to vortex alignment solutions since

they lie locally in the physical region. In order to obtain the phase curves recall the
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definition of the functions F({) and G({), and notice that for the configuration under

consideration the Hamiltonian takes the form

H 1

Vd

H, H.
I {P1H1F1F2G(112) + 2p1_u[[‘1[’3p(113) + F2F3F(123)]}

1 e H, H.
= Z: {lelPlf‘gG( ’}’363) -+ QFL\/_;dz[FLIBF(\/‘th) + F2F3F(1/’Ylbl)]} .

It remains to show phase-curves in the b;-b,, lying in the physical region going
through b; = 0, (so that b, > 0). Begin by observing that as by — 0, l,3 — 0, and
that [;» — [;3. Recall further that Ap(z) ~ In(z) as z —+ 0. When vortices 2 and 3

align, we then have /12 = {3 so that,

L HH
H = oL HiT1 TG (lha) + 222222 [0 Ty F () + DT F(laa)] b
4/! \/Z
47 H H2
~ [3F(l
o H, {P1 F2G(l3) + vd [[1 T3 F(l3) + F2F3F([23)]}
...Hz _H2

~ I1T2G(ls) + —TI1 T3 F(lLs) +

Ao
T4l
vd «z””(Al)

lg3 — 0.

We, therefore, have

47 H 2F2 F3H2 /\2 2H2
— Inl=] ~ I['/T2G(3) + L [3F(l
ol _ 2k (A) {12G(la) + 22 T2 F (1)

[2b, 2H,

= I['[.G
1F2G( p2H2)+\/Z

T T3 F(

szg
Psz

). (4.10)

It is now simply a matter of prescribing b2 > 0, and then choosing the particular H to

force equality in (4.10). For given b, > 0, there exists an energy level H, that achieves
this, and hence a phase curve passing through (b;,5;) = (0, b2), corresponding to a
vortex alignment configuration as shown in Fig. (4.3), for which % is regarded as
a parameter and taken to be 0.5, and for which piH; = p.Hy = 1, Ay > A > 2
We have demonstrated vortex alignment solutions for the case I';, [, > 0,3 < 0,

and in particular for the case C; = 0 and -1t- = —p—}{— It would be interesting to

p2H2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

59



——The physical region

Figure 4.3: Phase curves of vortex alignment. C; =0; I';, =0.25, [, = -3 =1.

classify the regimes that admit vertex alignment solutions, by finding necessary and
sufficient conditions for their existence. In our example it was seen that in order for
vortex alignment to occur the dynamics had to take place in the physical region,
so that the aligning vortices were chosen to have opposite sign. It is easy to show
that this is necessary for the case C; = 0. Begin by considering the invariant (4.7)

and suppose without loss of generality that vortices 2 and3 align. This means that

lo3 = 0, so that [;2 — [13, and at vortex alignment,
0=C =~ (lelFlf‘g +p2H2F1P3)l§2.

Now since [;2 7 0 (Proposition 4.2) conclude that p; HiT'; + p2 H2I'3 = 0, so that in
particular ', and ['z, the strengths of the aligning vortices, must be off opposite
signs. We conclude with a few remarks. Suppose, first, that l;3 — 0, [12,{13 = oo,
then since G(l), F'({) — 0 as { = oo, we have in (4.10)

471’H _ 2F2F3H2 ln (/\_2) _ 0
pr1H, Vd ’

A1
so that such a vortex alignment can occur only with Hamiltonian or energy level,

_ 20 T3p1 H1 Hy In (ﬁ)
Vd Az )

H
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Secondly, we showed that for C; = 0, the aligning vortices had to have opposite
signs. Recall in Chapter 2 we showed that we need only consider the cases, (i)
[y, T2, T3>0, (1) Iy, 2 >0, '3 <0,and (iii) T; >0, 2 <0, I's >0. So
alignment solutions for C; = 0 can occur only for the cases (ii) and (iii). Now, since

C} is invariant, if [,3 = 0, near vortex alignment
Ci = py H\Ti(p1 HiT2l3, + p2 HoT3l%,).

If l15, l13 — oo, it is therfore necessary, by the invariance of C;, that I';, and [;
be of opposite signs, again ruling out such a vortex alignment for all vortices of the
same sign, (case (i)). At this point, we also do not know, for instance, if C; = 0
is necessary for vortex alignment, (as it is for the simultaneous collapse of three

vortices of three vortices in the same layer).
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Chapter 5

Numerical investigation of integrable 2-layer

quasi-geostrophic vortex dynamics

In this chapter we study some numerical aspects of integrable twb—layer vortex dy-
namics. We focus exclusively on the simplified two-layer given by (1.19). We present
a brief study of the streamlines for rotating two-vortex sysi:ems. We then perform
some simulations of collinear, and therefore integrable, four-vortex dynamics. We
conclude with some observations on the advection problem for the two-layer model.

Our study is similar to that of Young [57] and Gurzhi et al [27].

5.1 Onstreamline patterns for rotating two vortex
configurations

In [57], Young studied the effect of the Rossby radius of deformation, A, on the
streamlines and the advection problem for two translating vortices in the two-layer
model. For translating vortices the vortex strengths must sum to zero so that they
are of equal magnitude but of opposite sign. He showed that a pair of translating
vortices in the top layer transports no lower layer fluid if the distance between the
vortices is less than 1.72 deformation radii. In contrast, the size of the trapped
region for translating vortices in different layers (termed a heton) increases without
bound as the spacing between the vortices increases. We present a similar analysis
for rotating vortices. We focus on the representative case I'} = I';. In this section

we study the change in the streamline patterns as the ratio of the vortex separation
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against deformation radius, £, is varied. We begin with the two vortices in the top

layer.

5.1.1 Two rotating vortices in the same layer

Suppose that the two vortices are in the upper layer. Then the distance between
them, d = 2a, remains constant. If 'y = [';, then ['; + I['; 5% 0, and the vortices

rotate about the center of vorticity with angular velocity,

L

d
w = ?ﬁG+(_,\_)’ GT(z) =14 zK;(2).

-To visualize the flow associated with this pair we use a coordinate system translating

with the vortices. In this frame the motion is steady and the streamfunctions are:

1 1 1 , T . T
o = (e +y)+ 5Tla(nr) — 5T [Ka(3) + Ko(32)]

P~ 1

1 1 L, T P
¢2 = -2—&.)(32 + y2) + ;F ].H(T]_'I‘g) + §F [[&Q(—XI-) <+ [\0(;2')]

s

where

N
N~

Ty = [a:2 + (y — a)z] , To 1= [11:2 + (y + a)z] ,

are the distances from the two vortices at (0, a) and I’} = I’y = I'. The streamline

patterns as the ratio, %, is varied are shown in Figure 5.1.

5.1.2 Two rotating vortices in different layers

We next examine the interaction of two rotating vortices in different layers. Once
again, because of the integral invariants, d = 2a is constant. If I’y = I3, then

' + T, # 0, and the vortices rotate about the center of vorticity with angular

velocity,

r d
w = ?G-(:\-)’ G*(2) :=1—-zK;(z).
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In a frame of reference rotating with the pair the motion is steady and the stream-

functions are

<

1 1 R - - (T2
b = (e +y?)+ 3T la(rr) + 5T [Ko(2) - Ko(R)]

1 1 1 , T ., T
¢2 = 5&)(1'2 +y2) + 5[’ In(T'lT'g) _— §F [ 0(;2) — o(f)]

where

LM

ro= e+ (y—a?]?, m=[ot+(y+ a)z]% :

are the distances from the two vortices at (0,%a) and I'; = 'y = I'. The vortex
located at (0,a) is in the upper layer. The streamline patterns as the ratio, %,
is varied are shown in Figure 5.2. We observe that in both cases—vortices in the
same layer or vortices in different layers—our results are similar to those obtained by
Young [57] for rigidly translating vortices (again either in the same layer or different
layers). It is noticed that there is a critical value of % at which there is a qualitative
change in the streamline patterns. Young found that for a pair of vortices in the top
layer, there is no lower layer fluid transport if the distance between the vortices is
less than 1.72 deformation radii, and that by contrast the size of the trapped region

increases without bound as the spacing between the vortices increases.

5.2 Numerical simulation of integrable four-vortex

dynamics

5.2.1 On integrable four-vortex coaxial configurations

In Chapter 2 we presented four-vortex configurations, for the two-layer model, that
are integrable. For the full two-layer model these are systems where P = Q = 0
and Y2, p:H; ngl I%. Clearly this holds also for the simplified two-layer model,
and examples include the collinear configurations shown in Figure 5.3(b). These are
four vortex systems where there is a vortex of strength I'; at (z;,y:) and an image
vortex of the same strength, (and sign), at (—z;, —y:). Following the convention

of Young [57] if a vortex and its image are in the same layer that pair will be

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



()

Figure 5.2: Streamline patterns (¢;): two rotating vortices in different layers, (a)
£=2,(b)£=4,(c) £=5,(d) $=5128,(e) §=38
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called strongly symmetric. Image vortices in different layers will be termed weakly

symmetric pairs. In this chapter we will investigate numerically the dynamics of

such integrable configurations.

Y3 Y A k?/ 4L, f+5)

) 3(L, d)
\J / ¢3(zﬁf—b)
I ‘
Ny X O/ | X
TN oV T s

2(0, -b) (L =) / L

1(0, b) L
J

;

m}

[}

O

v_

<
L 2(~-L.— F-b)

Figure 5.3: Integrable 4 vortex configurations, showing initial positions of vortices.
(a) Two coaxial vortex pairs 12 and 34; (b) two collinear vortex pairs.

Other four-vortex systems that are integrable, for the simplified two-layer model,
are the coaxial configurations shown in Figure 5.3(a). This was observed by Young [57].
We present a formal proof from a Hamiltonian standpoint. Our purpose is to illus-
trate that the proof does not carry over to such configurations for the full two-layer
model. We conjecture, therefore, that the full two-layer model does not, in general,

admit integrable four-vortex coaxial configurations

Theorem 5.1 The simplified point vortez two-layer model of (1.19) admits inte-

grable four-vorter coazial configurations, where image vortices of strengths £I'; are

located at (z;, +y;).-

Proof: We prove it for the weakly symmetric configuration of a vortex of strength I,
at €3 = (z1,¥1) in layer one and an image vortex of strength —I'; at 3 = (z1, —y1),
and a third vortex of strength Iz, in the first layer, at 2 = (z2,¥2), with image
vortex of strength ' at €4 = (T2, —¥2). It suffices to show that the liney = 0, is
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an axis of symmetry. (See the proof of Theorem 6.6). The streamfunctions in layer

one and two are

2y = FL(LHTL"'IXO( ))+[’2(lnr2—-fx( ))

—I'l(lnrg, + IXQ( )) -_ Fg(lnT‘.; -+ I\o( )) (5.1)
2y = —Ti(lnrs - AO(T)) + —I2(lnry — (—))
4+T:(lnry +1{0(’:\—1)) Ta(lnrs + Ko ( 2y), (5.2)

where

rer=[(z—z&)? + (y — yk)z]é-

We now show that z, = 3. Well,

o Ya—Wn1 T12 —
2 = 2= ==+ LK (=
Ty By . -y + Do K ( ) /\7‘12
Ys— Y1 ~ ,T13 — %
-4 r —
7'13 +1; 1( ) /\7‘13
r
~T, Ya— Y1 + LK, ( 14 yl
14 /\7'14,
O, Y1 —Ys Tz Y1 — Y3
283 = 2 =T — IR (=
Fy4 yB—I‘I{(rM Ya — Ys
r3, CArig
+P2-y2 Ys ~ LK (7‘23)y2 Y3
7'23 /\7'23,
Now using
T3 = T14, T34 = T12, Y2 = —Y4, and, Yz = —VYi,
it is clear that £; = z3.
Similar calculations show that §; = —y;. Again,
oy T — Ti2 T
=2y = 2 4 =T O K, (—=
. ax r=ry ’ 12 + 2 ‘.1( ) /\T12
I3 — 13 I
- + I K (—
1 7']2.3 1 1( ) /\7'13
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Ty — T3 Tia\ Ty — T
—-I‘g—z—- + FzKl(—/\—)/\—-.
T4 T14,
o o Ot I S . T13,Z1 — T3
“2%s = 257 =D - =
r=r3 i3 13
Ty — T3 - T34, T4 — I3
D TR
T34 T13
T2 — I3 T23 T2 — I3
+F2_2—’ - F2[{1(T T~ .
T23 ATa3,
Now using
T3 = T14, T34 = T12, T2 = T4, and, T3 = Ty,
it is clear that y; = —ys. a

To see why this proof does not apply to the full two-layver model, observe, that

in the streamfunctions, (5.1-5.2), there are only two types of interaction terms,
LT
Inr — AO(X)’
for vortices in the same layer, and
r
lnr 4+ Kg(;‘-),

for vortices in different layers. For the full two-layer model, the interaction terms are
given by the functions defined in (1.18). The interaction term for vortices in different
layers is given by F'({), while there are two interaction terms for vortices in the same
layer; G({) for vortices in the upper layer, and, H({), for vortices in the lower. It is
easy to show that these different interaction terms for the full two-layer model , G({),
and H(!), together with the nonhomogeneity of the modified Bessel functions do not
yield the type of cancellations seen in the proof above for the simplified two-layer
model.

A numerical study of integrable coaxial four-vortex two-layer problems was done

by Young [57]. We conduct similar work for collinear four-vortex configurations.
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5.2.2 Numerical simulation of collinear four-vortex configurations

We present some numerical experiments for four-vortex collinear integrable vortex
systems. Our study is similar to the coaxial four-vortex integrable work performed
by Young [57]. We study strongly symmetric systems where a vortex and its image
are in the same layer, but the pairs are in different layers, as well as weakly symmetric
systems. We have not studied collinear systems where all vortices are in the same
layer. We suspect that such systems share many of the qualitative features of the
one-laver four-vortex collinear systems. We remark that the possible motions of

four-vortex collinear dynamics has been completely classified. The classification is

according to the following parameters [27]:

h B 52_{7_ L2+f2

1L+ (F+ 072 + (f — )7
o = VBTG AL+ (f )]
° = 2(f1b ’

where all lengths are as shown in Figure 5.3(b). Such a complete characterization
for the two-layer problem is beyond the scope of our work. We present numerical
experiments for special initial conditions and compare the strongly and weakly sym-
metric cases. Throughout our work all four vortices of unit strength I' = 1 and the

Rossby radius of deformation is taken to be A = 1.

5.2.2.1 Example 1: coupling and scattering

In this experiment we consider initial conditions of the following type:

(i) Strongly symmetric configurations with initial positions of the paired vortices
in the top layer, (£a, 4=b), where both a and b are positive, and initial positions

of the pair in the bottom layer at (+a, Fb), for the same a and b.

(ii) Weakly symmetric configurations with one pair with vortex in the top layer at
(a,b), image vortex in the bottom layer at (—a, —b), and second vortex pair
with vortex in the top layer at (a, —b) and image vortex in the bottom layer

at (—a,b), again for a and b positive.
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Our results are shown in Figure 5.4. This qualitative behavior was observed for a

large set of initial values. However it is seen that although the initial positions of

the vortices in case (i) and (ii) are the same, the terminal distances are not. This is

an effect due to the different layer allocations of the vortices. One other difference

is that if we put one of the vortices at say (1,d) for b6 > 0 and a vortex from the

other pair at (1, —b) and let b6 — 0, the qualitative behavior for case (i) changes at

some critical value, (for 6 = b~ = 0.6 but does not for case (ii). This is shown in

Figure 5.5.

0.5p [ X7 2
of 0
-0.5 -0.5

2 - 2 -
S S | _
) [ ) [E— :
—15} , -1.5f ‘
: 2 :

-2
-40 -20 [+} 20 40 -40 =20 0

40

Figure 5.4: Numerical integration of collinear vortices showing a scattering of vor-
tices. (a) Strongly symmetric configuration (b) Weakly symmetric configuration.
Initial positions are:(a)Top layer (1,2) and (—1,—2) and bottom layer (1,—2), and
(—1,2), and for (b)Vortices in top layer at (1,2), and (1, —2) with image vortices at

(—1,-2), and (-1, 2) respectively.

5.2.2.2 Example 2: periodic and quasiperiodic behavior

The second numerical experiment we present is the following:

(i) For the strongly symmetric case the initial positions of the pair in the top layer
are fixed at (£0.5,£0.5) while the initial positions of the pair in the bottom

layer are (%z,0), where z is allowed to vary.

ii) For the weakly symmetric case the initial position of one pair is fixed at
p
(0.5, 40.5) and the other pair is located at (4=z,0) where z is allowed to

vary.
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Figure 5.5: Numerical integration of scattering for b = bx = 0.6 for a strongly
symmetric system
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Figure 5.6: Strongly symmetric simulation for Example 2: z = 4. (Image vortices
not shown)

The results for the stronly symmetric simulation are shown in Figures 5.6-5.8. For
large = the motion is quasiperiodic, and is more periodic the larger z is. There is
a critical value of £ = z* = 1.03, where the behavior changes. This is probably an
equilibrium solution. _

For the sake of completeness, we present the simulations for z < z*. It is seen
that the motion is again quasiperiodic except that the time-scale is smaller for both
pairs of vortices.

The results for the weakly symmetric simulations are shown in Figures 5.9-5.10.
It is seen that for large =z (z > 4), the motion is quasi-periodic, becoming more
periodic the larger z is. However as z is decreased below = = 4, there is a transition
in the behavior near a critical z* = 3.48. This critical value of « is larger than that

for the strongly symmetric case. This is, again, probably an equilibrium solution.
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Figure 5.7: Strongly symmetricsimulation for Example 2: z* = 1.03. (Image vortices
not shown)
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Figure 5.8: Strongly symmetric simulation for Example 2: z = 0.5. (Image vortices
not shown)

5.2.2.3 Example 3: From (quasi-)periodic to scattering behavior
The third simulation we performed is the following:

(i) For the strongly symmetric case the initial positions of the pair in the top layer
are fixed at (£1,0) while the initial positions of the pair in the bottom layer

are (fz,+z), where z is allowed to vary.

(ii) For the weakly symmetric case the initial position of one pair is fixed at (%1, 0)
and the other pair is located at (£z,£z0) where z is allowed to vary.

For the strongly symmetric case for large z the motion is quasiperiodic as shown
in Figure 5.11. However as z is decreased the motion changes at a critical value of

about z = z* = 2.1 and becomes a scattering as shown in Figure 5.12. The results
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Figure 5.9: Weakly symmetric simulation for Example 2: x=4. (Image vortices not

shown)

-t4 1
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Figure 5.10: Weakly symmetric simulation for Example 2: z= = 3.48. (Image

vortices not shown)

for the weakly symmetric case are similar and are shown in Figures 5.13-5.14. The

only important difference from the strongly symmetric case is that the critical value
of z for which the behavior changes from quasiperiodic to scattering is z = z~ = 3.
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Figure 5.11: Strongly symmetric simulation for Example 3: quasiperiodic behavior,
z = 3. (Image vortices not shown)

Figure 5.12: Strongly symmetric simulation for Example 3: scattering. (a)z =z~ =
21, (b)Jz=1<z".

-1

-13
-t5 ~t 0.5 L] os ' 1.5 -4 - -2 0 2 4 L]

Figure 5.13: Weakly symmetric simulation for Example 3: quasiperiodic behavior,
z = 4. (Image vortices not shown)
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=

Figure 5.14: Weakly symmetric simulation for Example 3: scattering. (a)z =z~ =
(b)z=2<z".
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Chapter 6

On the motion of point vortices on the sphere

In this chapter we present some results for integrable point-vortex motion on the
sphere. Our point of departure is the work of Kidambi and Newton [31], where
the Poisson-bracket formalism is carried out and all invariants are computed, as
well as the derivation of the relative equations for NV point vortices. In our first
result we show that the only collapsing configurations for the three-vortex problem
are self-similar or homogenous ones. We also conclude from this that the only
self-similar solutions for the three-vortex problem are equilibria, and the collapsing
solutions. We also study the simplest and most symmetrical four-vortex problem on
the sphere that is analogous to that on the plane (for which self-similar collapse is
possible) and show that on the sphere, however, these configurations do not admit
self-similar collapse. Our study of the relative equations, also yields non-great-
circle four vortex equilibria. We then present the explicit integration of some three-
vortex configurations. Finally, we comment on the four-vortex integrable problem

by pointing out new symmetrical configurations.

6.1 Equations of motion and geometrical formulation

In vector form the system of N equations governing the motion of N vortices on the
sphere of radius E is given by

1 X, Ti(zj x x;
= oyl ). (6.1)

2
lij

z;
=1
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z; = (z;, Y, 2:) represents the vector from the center of the sphere to the ith vortex,
with strength [;, and ' means the summation excludes 7 = i.

Although the cartesian representaion of the equations makes the analysis more
transparent, one can also write the equations in spherical coordinates. The equation

for the 7th vortex is given by

6, = L i [; sin(;) sin($: — 4;)
4r R? i 1 — cos(7is)

sin(0:)d: = 4,1.132 i I';(sin(6;) cos(8;) — cos(8;) sin(8;) cos(¢; — ¢;))

i=1 1 — cos(v;;)

b

3

where cos(ij) := cos(8;) cos(8;) + sin(8;) sin(d;) cos(¢; — @;). Derivations of these
‘equations can be found in (7, 34].
The equations for the relative dynamics can be derived from the original system

(6.1) and is done in [31]:

. 1 X 1 1]
i3 ”"

— == "TVij { =1 >

dt TR Z " l%xJ

where the ” means the summation excludes & =i and k = j. V is the volume of the

parallelopiped formed by the vectors z;, x;, &:
V= ;- (:Bj X $k).

Notice that the sign of V can be positive or negative depending on whether the
vectors form a right- or left-handed coordinate. On the plane [2, 56] or in the
geostrophic two-layer model, this is addressed by introducing o:jx which indicates

the orientation of the triangle spanned by the three vortices.

6.2 On the collapse of three vortices on the sphere

We begin this chapter with a result about self-similar collapse for the three vortex
problem on the sphere. In [31] Kidambi and Newton demonstrate self-similar col-
lapsing solutions for the three vortex problem on the sphere, and in [33] they show

that these solutions are not self-similar on the projective plane. We show that the
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three vortex problem on the sphere as on the plane admits only collapsing states
that are self-similar. Recall that on the sphere [31], C; = i IiT JlzJ is an invariant
so that for collapse, since {;; — 0, it is necessary that C; = 0. The proof that only

self-similar collapse is possible is based on the other assertion that the harmonic

mean of the vortices vanishes, h = ; #- = 0.

Theorem 6.1 The only finite-time collapsing configurations of the three vortez prob-

lem on the sphere are self-similar ones.

Proof. We make use of the following invariants:

C, = > Lk = (6.2)
i<y

H = ;r‘r InlZ, (6.3)
2]

and the fact that necessarily A = Y_; FL' = 0. Note that (6.3) can be written as :

(13)1152(13)74 2 (135)"*™ = constant. (6.4)

Making the self-similar ansatz, we may, without loss of generality, assume (since

l;j(t) > 0) that:

l12(2)? = o(t)l1a(2),
laa(t)? = B(t)l13(2), (6.5)

for a(t), B(t) > 0. Substituting (6.5) into (6.4) yields:
[113(t)2]F1F2+F1F3+I‘21"3 [a(t)2][‘;r2 [‘B(t)Z]Fzrs = constant.

Now since h = 0, conclude that [/;3(¢)?]F1F2+T1ls+2ls[o(£)2]01l2 = constant. This

implies that [a(2)?]"1T2[B(¢)?) 2% = constant. Hence write:

C
az = W (6.6)
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Also substituting (6.5) in (6.2) gives
Li3(t)*[[1['s + 1 T2a? + o367 = 0.
But {,3(¢)2 > 0, on the route to collapse, so that:
[ T3+ TiTe? + Tls8% = 0. (6.7)

Substituting (6.7) in (6.6) ylelds:

rr,C
[B2]Cs/Ts

-Denoting z := (32, this is an algebraic equation of the form Az® + Bz = C, which

P1F3+ +P2F3,62=0.

has only finitely many solutions in z for fixed A, B,a,b,C € R. We conclude that
since z = B(¢)? is both continuous and assumes only finitely many values, that it
must therefore be constant. But a(t), and [(t) constant corresponds to the case of

self-similar collapse. O

It now remains to show that A = 3; —FI— = 0 is necessary for a collapsing configu-

ration of the three vortex problem on the sphere.

Lemma 6.2 On the sphere, as on the plane, h = 3°; & = 0 is necessary for any

collapsing configuration of the three vortez problem.

Proof. We shall make extensive use of the trilinear plane. Recall that for collapse

it is necessary that:
C,= F1F2l§2 +I4 Fslfs + I‘21131233 =0,

or b; + by + b3 = 0 where

2 [2 12
bl N 23 — 13 — 12
T ATLR? 2T 4ATL,R? % 4TLR?’

and without loss of generality I';,I'; > 0 and I'3; < 0. The phase curves, H =

constant, then become

BITbIZ (b, + by)Ts = constant. (6.8)
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Now the point of collapse in the b;-b; plane is the origin O. Notice also that b; >
0, b, > 0 because I'}, ', > 0. We consider first the case A > 0, for which:

1 1 1
'[T;' + '[Tz' > —-F—a'. (6.9)

1L
Let 5y = 0, b, — 0 (by > 0,b; > 0), then (6.9) implies that b;*b,* is of smaller
order than (b; + bg)'fl:?. Hence for A > 0, it is inconsistent that as 6; — 0,6, — 0,
that,

bITBTZ (by + b) T3,

-remain invariant. We next consider the case A < 0. To this end we examine the
proof for the three-vortex problem on the plane, for A < 0. We first show that A <0
on the plane implies that the physical region is a wedge with apex at the origin O,
lying entirely in the first quadrant of the b;-b, plane. Now on the plane, as on the
sphere, for collapse, C; = > _ F{Fjl?j = 0, and introducing the trilinear variables:

1<j
12 12 12
by =8 pp:=23 py.=12
1 [\1 2 F2 3 F3 ’
yields b; + b5 + 53 = 0.
Now the physical region boundary is given by:
(T161)2 + (C2b2)? + (Tabs)? = 2(T'1 L2b1b2 + [aTabobs + [y T3bybs). (6.10)

Substituting for b3 using the invariant C; = 0 in (6.10) results in an equation ho-
mogenous in b; and b,, so that the conic section it describes is degenerate. Thus we

may substitute b, = mb; to get the following relation for m:
T2 +m?l2 +T3%(1 +m)? = 2[[ 1 Tom — Tolam(l +m) — [y Ts(m + 1)), (6.11)
After a little algebra we obtain:

(Fz + I‘3)2m2 -+ 2[F3(P3 + Fz) + F],(Fs — Pg)]m + (Fl —+ F3)2 = 0. (612)
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Observe that for the case h < 0, that both, (I's + I's) > 0 and (I} +T3) > 0, as
follows from the fact that I'; > 0,2 > 0, I'3 < 0 and:

1
h= ot ot o <0,

Rewriting (6.12) gives am? + b + ¢ = 0 where:

a = (F2+F3)2>0,
b = 2[F3(F3+P2)+P1(F3—[‘2)]<0,
c = (F3+F1)2 > 0.

-Hence

from which it is clear that m; 2 > 0 and that the physical region is a wedge in the
first quadrant with apex at the origin, O. We now consider the physical region for
the three-vortex problem on the sphere of radius R. We will need the formula for

the volume of the parallelopiped formed by the three vortices on the sphere:
v%=gmmA%4y;@,

where A is the area of the triangle formed by the three vortices and using Heron'’s

formula this is given by:
1
A= :i:Z(Qlleg;, + 25,05, + 25 — Uy — 155 — 1)

Since C; = ¥;; I'iT'jl%; = 0 we may introduce the trilinear coordinates:

12 B g
T 4T Rz ° 4T,R?  ® T 4lsR?

Using these coordinates the equation for the physical region boundary V = 0 then

becomes :

2(F1F3blb3 + ' [3b1 b3 + F1P361b3) =
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(F161)2 + (ngz)2 + (F3b3)2 + 4F1F2F3blbzb3. (613)

Note that this differs from (6.10) only in the second term on the right-hand side;
4T [a3b1bybs. For C; = 0 this term becomes —4I; 236, b2(b;y + b2). Consider the
physical region boundary (6.13) near the origin, O, of the b,-6; plane, and realize
that the term —4@;[335162(by + b2), is of smaller order than terms of the form b;:b;
for 0 < by « 1 and 0 < b2 <« 1. In other words the physical region boundary
at the origin O, for the three vortex problem on the plane (for A < 0, C; = 0)
is asymptotic to the physical region boundary for the three-vortex problem on the
sphere (for A < 0, C; = 0). This completes the case ~ < 0 and the proof. a

In summary A = 3 Fl— = 0, is necessary for any collapsing configuration on the
sphere, because although the physical region boundary V' = 0, passes through the
origin, the phase curves either do not pass the origin (h > 0) or they are intercepted
by the V' = 0 curve before they can reach the origin (A < 0). Typical phase curves
for these cases are shown in Fig. 6.1(a) (['y = I'; = —I'5 (A > 0)) and Fig. 6.1(b)
([, =T; =13 =131 (h <0)). Physically, this result can be explained by the
fact that the scales near collapse for the three-vortex problem on the sphere are
asymptotically those for three-vortex collapse on the plane. This means that the
spherical geometry near collapse is asymptotic in some sense to the planar case. A
more formal and rigorous discussion can be found in [31].

By making us of the the invariants C; and
Cr = (Ba)"¥0 ()45 ()T,

we arrive at the following simple corollary.

Corollary 6.3 The only self-similar solutions of the three-vortez problem on the

sphere are equilibrium solutions or collapsing solutions.

Proof: Making the self-similar ansatz (6.5), the invariance of C :

Ce= (lfs)zrirjarlrzﬁrzra,
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Figure 6.1: Phase diagram for C; = 0: (a) 'y =T'; = -3 =1 (A > 0), phase curves

are open and do not pass through the origin; (b) [y = 2, =1 T3

—% (R < 0)

phase curves are closed through the origin but are intercepted by V' = 0 before

reaching it.

implies that either 3"I;['; = 0 or %; is constant. The latter corresponds to an

equilibrium solution. For the case 3 I[';['; = 0, we obtain:

Cy = S_DiTjl% = (2(Ti o + [alof + I Ts)

7
i<j

Now the invariance of C; implies that either (%, is constant (an equilibrium solution)

or ['1[2a + [3l8 + I T3 = 0. In summary, assuming a non-equilibruim solution,

the self-similar ansatz leads to :
i)h=0
i) C; =0

iil) a non-equilibrium solution

Kidambi and Newton [33] show that these are necessary and sufficient condi-

tions for self-similar collapse of three vortices on the sphere. This together with

Proposition 6.1 proves the corollary.

O

We continue this section by investigating the existence of self-similar collapsing

configurations for four point vortices on the sphere. Novikov [49] demonstrates

particular symmetrical four- and five-vortex collapsing configurations on the plane.

We investigate the analogs of these on the sphere. Begin with the relative equations.
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Self-similar solutions preserve the orientations of the vortex configurations, so that

without loss of generality we may consider the relative equations in the following

“frozen” form where Vi > 0:

dgz = [3Vi23 --1-2% - %; + Iy Viag _% - Z%—z R
L P Vi %— 2‘%; 4+ T4Vase % - g ,
L o Vi % é; + TaViss é: - %J ,
% = [y Vioa :% — é; + T3Visg é - é ;
% = [, Vi2a ’%4- - %2- + [3Vi2s Fl—;; - é 3
%}:Fz%& [é—l_;;] + T1Viag [ll%—l—%:] .

Here the volumes of the parallelopipeds formed by #:, x;, @« is given by:

Viik = 2(16 R? Ay — I503502,),

and A;ji is the area of the triangle formed by #;, @, i and is given by

(6.14)
(6.15)
(6.16)
(6.17)
(6.18)

(6.19)

Now, symmetrical configurations which will greatly simplify these equations are
those for which {15 = la4, and lo3 = [14, so that Vjsqy = Vi34, and Vio3 = Vjay. These

are “paralleloid” configurations on the sphere analogous to the parallelogram ones

considered on the plane by Novikov [49] and shown in Figure 6.2.

Under these assumptions it is clear by inspection of the relative equations (6.14-

6.19) that the most symmetrical configurations ensuring both:

dli’2 _ dl§4 aflf3 _ dlf4
dt — dt dt — dt’

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

85



Figure 6.2: Four-vortex collapsing systems on the plane.

are those for which I'; = 'z and ['2 = [y, which is exactly the vortex allocation that

Novikov makes. We then have the following negative result.

Theorem 6.4 On the sphere there are no finite-time collapsing configurations for

which 112 = 134, lz3 = 114 with Fl == F3, Fz == F4.

Proof: Begin by making the self-similar ansatz, namely,

132 = ’\1133:
133 = ’\2133,
134 = ’\31337

where A; > 0, : =1,---,3. With these the relative equations simplify to:

2
2 —
%l% _ rllxgza [1 _1/\1] LT 2{‘%/:34 [;_1_ %3] (6.23)
86
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Comparing (6.20) and (6.21) self-similarity dictates that for all times:

—rl ‘/124

As = FZ%ZS-

Using the formula for the volumes of the parallelopipeds this is equivalent to:

L2\? .,
/\1/\2)\3 = (ﬁ‘) /\3/\1)\2,

As(RA A2 + 22 + 202 = A2 — A2 — 1) = 20 A+ 2X A5 + 2h3hp — A2 — A2 — A2,

Henceforth, and, without loss of generality, we assume that the radius of the sphere

R = 1. After some cancelations these last equations become, for Az # 1,

A2 A2 _2X0 A — A3 = O,
—F1%23

Vi = —
124 T,

from which, incidentally, I'; and I, must be of opposite sign. Further simplification

leads to:

diz, rlvm[z 1
7 ) E“(I“L—)]'

Comparing this with % we see that 202(A2 — A1) = T2 — A (1 = %)] The
self-similar assumption together with the invariance of the Hamiltonian (6.3) imply
that the harmonic mean of the vortex strengths vanishes, that is 3 I';I'; = 0. We
summarize all of these constraints:
(i) T2 +4TiT2 + T2 =0or B = —2£/53,
(i) da = (B)" = (-2 £ v3)2,
(ii1) A + A2 — 2A10, — A3 = 0 (for A3 # 1),
(iv) 202(A2 — Ay) = T4[2 — Ao (1 + 1))

A solution of (i)-(iv) will yield a self-similar collapsing configuration. The case
A3 = 1 is clearly not possible by (ii). For the case A3 # 1 we solve the quadratic,

(iii), for A, to obtain A, = A; £+/As. Substituting in (iv), using % = —24++/3 gives
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2%(/\2 —AM)=2-X(i+ ) or2(-2%£ V3)(EVAZ) =2 - A (1 + %) Rearranging
we get:

2 — 2(=2 £ V3)(Fvs)

Ay =
2 1+%

It is easily verified that for Az = (—2 £ v/3)?, that this last is zero, violating the
self-similar assumption that A\; > 0. We conclude that self-similar solutions for the
4-vortex problem of this kind do not exist on the sphere. O

Remark: This illustrates another difference between -vortex dynamics on the
sphere and the plane. We remark that obtaining self-similar solutions for more than
‘three vortices on the sphere is particularly difficult in view of the volume terms Vjj
that appear in the relative equations. Observe that on the plane all the terms in
the area formula A;jr are of the same order (namely quadratic) so that under the
self-similar ansatz these area terms become, for instance A;;x = C(A)l%;, with the

12
is readily integrated. Naturally a system of algebraic equations must be solved to

[2, term cancelling with terms of the form [z- — -] to give %?— = Cia(N), which
13

ensure compatibility of these constants. On the sphere however the Vj;; contains a
term of the form R2A;; which involves quadratic terms of the form 1312, as well as
the cubic terms (%{%%. Under the self-similar ansatz we obtain terms of the form

wiy/1 — B:l%; in the vector field for [%,. In the case of three vortices the differential

equation for (%, is:

dl? >
_d;—3 = Fwi(A)/1 - Bl

which again is readily integrated. The system of algebraic equations needed to
ensure compatibility of the self-similar assumption involves the w;. For the four-

vortex problem, the vector field becomes:

a2
=2 = Wl = BN +wi(N)1 - BH(N) s,

so that the compatibility equations now involve w! and ﬁ,{ which is a more compli-

cated system of algebraic equations and in any case the differential equation for {2,

is difficult to solve by quadrature.
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We conclude our discussion of vortex collapse on the sphere with the following
observation. If the center of vorticity of four vortices is ¢= 0, then the four vortex
problem is integrable [31]. This means that this integrable problem does not admit
simultaneous collapse, self-similar or otherwise, since necessarily the vortices collapse

at the center of vorticity. This is clearly not possible on the sphere if c= 0.

6.3 Further solutions of integrable point vortex

dynamics on the sphere

6.3.1 Non-great-circle four-vortex relative equilibria

From the relative equations (6.14-6.19) it is evident that [;5 = 13 = --- = oy, is a
relative equilibrium solution (independent of the vortex strengths). Clearly on the
plane such a configuration is not possible. On the sphere however it corresponds to
a tetrahedron. Observe that for a given sphere of radius R a tetrahedron of edge
length V3R can be inscribed in it. It is also easy to show that another non-great-
circle relative equilibrium admitted on the sphere is the four-vortex configuration
shown in Fig. 6.3. It would be interesting to study the non-linear stability properties
of these equilibria. Another open problem is the study of relative equilibria for the
general N-vortex problem on the sphere. Such a study would, perhaps, entail the

use of a symmetry group analysis.

6.3.2 Explicit integration of three-vortex configurations on

the sphere

In this section we explicitly perform the quadrature of some symmetrical three-vortex

problems on the sphere.

6.3.2.1 Examplel

We begin by considering the case:
Cl = E 1'\{1'\]12 = 3R2, Fl = Fz = F3 = 1.

]

&9
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(-1.0.0)

Figure 6.3: Non-great-circle 4-vortex relative equilibria. (a) l12 = {13 = {14 = l33 = l4
where 'y is at (0,0,1), ['; isat (0, —1,0) and '3 and [y are at (—1,0,0) and (1,0,0),
(b) A tetrahedral configuration.

Making use of the trilinear coordinates,
2, =b3R? [2, =bR? 2, = b R?,
the Hg.miltonian takes the form,
2,12,02, = uRS or bibabs = p,
from which using Cartesian coordinates,

bl = U
1
bg = ;(3 —Yy— \/g:z:),

1
by = >(3—y+V3a),

we obtain,

L, |B=y)* 4u
x——:f:\/ 3 3y'
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-1.5 -1 -0.5 © 0.5 1 1.5

Figure 6.4: Phase curves for '} = ['; = I's = 1 and C; = 3R?, showing a family of
periodic solutions (¢ < i), 2 saddle connection,where the phase plane and the phys-
ical region boundary V' = 0 are tangential (z = z) , which we explicitly integrate,
and a family of solutions where the physical region boundary is reached,(u > i)
transversally.

Substituting into the relative equations, and making use of the parameter yx, we

obtain after further simplification,

dy _dby 1 dl% v 1 1
dt ~ dt  R? dt

w3 133 l%z

sy B~y — ).

= £

Similarly the volume V of the paralellopiped can be simplified to,

RG[ 4p
V= —|12y—4y*+——pu—9|.
T |12 y H

With this the vector field for y is given by:

d 1
S

% = To- g V12¢% — 4y® 4+ 4p — py — 9y\/y(3 — y)? — 4u.

We integrate this for the saddle connection shown in Fig. (6.4) where 2 = 3(—39 +
41/96). By solving for V = 0, (the phase curve for the saddle connection is tangent

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



to the V' = 0 curve), in terms of y, it can be shown, with a little algebra, that the

dynamics on the saddle connection are governed by the differential equation:

Y _ :t;—l}-z;(y — )y — vV (v~ &)y — ).,

dt

where

i =

)73

B =

—6 + /96
,) ?

3(—39 + 4V/96),

-6 + \/96}
9 3

<

1
y2=§[3—

6 — y, + /15196 — 135
5 .

(6.24)

The sign is determined according to which side of the phase plane is under con-

sideration. Eq. (6.24) can be integrated by a separation of variables and several

trigonometric substitutions to obtain a parametrization of the saddle connection for

different initial conditions. For instance, if we take the positive sign in (6.24) then

the orbit is given by:

At —to) = tan(£) — a; _a tan(2) — az
61+1  |tan(§) +a1| G241 |tan(§) +a-
Or upon rearranging,
can(—g)—-a.l 's—fiT
A(t—tq) tan(§)+a1
€ =1 . T
tan(Z)—ay [ f2+1
tan(§)+a2
where,
A (y1 — y2)araz(a — G)
27 R? ’
+8
a2 1-6: b =Y 1o
z 1 +0i’ & 7~
atf
y— - _a—8
6 2 &=
cos(8) T 3
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Castilla et al [13] use the analog of this solution as a starting point for a Melnikov
analysis to prove non-integrability of the four-vortex problem on the plane. It is
conceivable that the above solution for the relative equations on the plane may serve
as the unperturbed configuration for a similar analysis on the sphere. The relative
equations on the trilinear plane may be the proper framework on the sphere, since

action-angle variables for the sphere have not as yet been identified. This is currently

being investigated.

6.3.2.2 Example 2

Other explicit solutions of this form can also be found. OQur second example is for

thecase '} =Ty = -3 =1.
Denoting by z = {%,, y = [2;, z = [2; the energy and momentum conservation

yield the relations:

yz = oz,

r—y—z = PR

where, a and  are the energy and momentum levels respectively (i.e C1 = SR?).

Using these. and working with the relative equations again, we obtain:

v
r = 2 __ )2 —
z iﬁRa:c \/(,BR z)? — 4oz
1 -
= t5—p—/taz - 2 — az?\/(BR? — )’ — 4oz (6.25)

We now consider three cases. To this end, recall that the center of vorticity has

length:

_a

lel® = B -

= R2—01 =R2(1—ﬁ)

where 0 < 8 <1 and ¢ = 3. I'; = 1. Without loss of generality (by rescaling if
necessary) we may take the radius of the sphere to be R = 1. The three cases that
we need to consider are then the following:

(i) If 8 =1 then ¢ = 0. Since, c.n= x.n, [31], the vortices lie on a great circle from
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we conclude that these are relative equilibria because V = 0.

(i) If 8 =0,

. (4a — az)(z — 4a) (4 — z)(z — 4)
c=* \/ 27 - :t\/ 27/a )

This is readily integrated (for z # 4, z # 4a, which correspond to equilibria) to
give the special periodic solution computed by Kidambi and Newton [31].

(iii) In general the quadrature of (6.25) for the case 0 < 8 < 1 leads to solutions
in terms of elliptic integrals. However if the quadratics p, := 4az — 82 — az and
p2 := (8 — z)? — 4ax have a common root the integration is similar to the saddle
_connection computed previously. Now p; and p2 have roots:

_ gy jle—p

Zi2 = o
T34 = (B+2a) £ 2a(f +2¢,

respectively. For exampleif 8 = 0.5 we calculate, numerically, z; = z3 = 0.2957, z, =

?

example above, z is governed by:

. emm)y (=) — =)
= 27 \/az |

The integration then becomes:

dt _ zdz
/ 27/ o / (z — zl)\F(a: —z3)(z — z4)

1
+ dz,
/ [\/—(x —za)z ~2s) (2= m)y~(z —z2)(z — “’4)J

from which we finally obtain a parametrization of the orbit as follows:

_ T2+ 4 £ 8
A@-m)=smfl(z 2 )-— oL mn'l(an2).

a ag(a;; - 1)($2 —_ :124) as
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Here,

o+
2 _ 2 442
ai = (——2—) — Z2Ty4,
2 1+a3 1221'-1‘4—2:31
a; = . az =
az3 —1 T2 — Ty

1 o[z_m

A 9=~ 2
= cost =

27.'\/5’ Ty — T4

The closed-form expression for these solutions may, for instance, be used in a nu-
merical study of particle advection on the sphere in the manner done on the plane
by Gurzhi et al [27].

~ We mention in closing the corresponding solution on the plane for case (ii),
which as far as we know has not appeared in the literature. On the plane with
[y =2 = —v3 = 1, with the convention z := [%,, y := (%, z := [2; the energy and

momentum satisfy,
yz=oz, z—y—z=0,

so that the dynamical equation for z is:

7 = %__JA”"’ _l__i
o l 2

¢ o« %3 13
0’A123 y Z O’A123 2
= = —z)¢ -4
(6713 T arT \/('B ) oz

Using Heron’s formula for the area this simplifies to:

a\/m\/(ﬂ —z)?2 —4az

darz

zr =

Now taking B = 0, gives z = #M-\/:z: — 4. With positive orientation, o = 1, this

is easily integrated to yield:

2(t) = (2\;& + c)2 + 4o,
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which is an explicit solution of the scattering example discussed in Aref [2]. The
difference between the planar case and the situation on the sphere for the case
B =0, Iy =, =—I3 =1 is clear; while on the plane the solution is a scattering,
on the sphere the solution is periodic. This is explained partly by the fact that
for this situation the phase space on the plane is unbounded bounded while on the

sphere it is evidently compact.

6.3.3 Remarks on integrable four-vortex problems on the
sphere

It was shown by Kidambi and Newton [31] that on the sphere the following are

‘Invariant:
]. N N
Q = = > Tz = > T;sin(8:) cos(e),
1 1
l N N
P = 5 Z Tiy;: = Z [y sin(6;) sin(¢:),
1 1
1Y a
S = = Z Tiz; = z I; COS(&,’).
R4 1

There are three integrals in involution
[#, P2+ Q% =0, [H,5]=0, [P2+@%5]=0,
and moreover,
[P,Q]=S, [@,5]=0, [S,P]=0.

Since P and @ are invariant, [H, P] = [H,Q] = 0, so that if one chooses the values
(@, P,W) = (0,0,0) then there are four integrals in involution, namely (H, P, @, S)
implying that this four-vortex problem is integrable. This is equivalent to a zero
center of vorticity, ¢ = 0. On the sphere, however, it is not necessary, as on the
plane, that 3"jI'; = 0. We now consider the analogs of the collinear vortices of
Fig. 5.3 on the sphere. These are integrable four-vortex configurations for which,
indeed, i '; = 0. Prim&y vortices of strengths +I' and —I" are placed at (z,yo +
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b, \/R2 — 22 — (yo + b)?) and (z,y0 — b, \/R2 — z2 — (yo — b)?). In the z-y plane the
primary vortices are reflected as on the plane, thereby ensuring that P = Q@ =
0. The z-coordinate has to be chosen in order to obtain § = 0. To this end
it is apparent that the reflected vortices of strengths +I' and —I' are located at
(=2, —yo — bo, —\/B2 — 22 — (yo + b)?) and (—z, —yo + b, —/R? — z* — (yo — b)?).
But then this is a planar configuration lying on a great-circle, and hence a relative

equilibrium. This illustrates yet again a difference between vortex dynamics on the
plane and on the sphere. It seems that to obtain more interesting integrable four-
vortex configurations of the type P = @ = S = 0 one really has to consider the case
for which "1 [; # 0.

We now consider the coaxial configurations of Fig. 5.3 on the sphere. On the
plane these are integrable four-vortex systems of the kind for which P =1 =0, Q
arbitrary, and for which the line y = 0 is an axis of symmetry. One can show that
on the sphere, these correspond to, for instance, @ = S = [ = 0, P arbitrary, with
the line y = 0 an axis of symmetry. Here [ = i [i|x;|? = R? il =0, so that
necessarily 1 ['; = 0, in which case the center of vorticity has magnitude, ||c|| = oco.

By inspection it is then clear that coaxial configurations on the sphere are of the

form:

Fl at (xla ylyiv R2 - ‘Z% - y%)v —Fl at (zh_yl’iv RZ - .’C% - y%):
F2 at (‘7"27 y2)i\/ R? — l'% - yg)a —F2 at (z21_y21i\/ R? — .’B% - yg)

Note that either sign can be taken for the z-coordinate with the proviso tht the
z-coordinate of the primary and the image vortices be of the same sign in order to

ensure that S = 0. For instance:

Pl at (zlayli_\/ R? —z% _yi?)v _Fl at (xlv—yly_ R? — .’B% _y%)v

is permissible. It is easy to show, using the equations

. 1 N ,I‘j(:cj X z,-)
T = 471‘Rz % ’

=1

(6.26)
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that the symmetry of the configuration is preserved, namely that the vortices remain

symmetrical about the plane y = 0, as seen in Fig. 6.5.

Figure 6.5: Co-axial four-vortex configurations on the sphere

For completeness, we present a rigorous justification of the integrability of this

four-vortex problem. For notational convenience we adopt the following definition.

Definition 6.5 A vortez configuration on the sphere will be called coazial if it has
an even number of vortices and for which a vortez of strength I';, located at (z;, yi, i),

has an image vortez of strength —I';, located at (z;, —y:, z:).
Is is clear, then, that @ =S = [ =0, and P is arbitrary.
Theorem 6.6 Coazial four-vortez configurations on the sphere are integrable.

Proof: Begin by realizing that the canonical Hamiltonian formulation of the N-

vortex problem on the sphere is given by [31]

1

- T; In(&%
H = 4WR2§P,FJIn(l,J)
oH . 0H

Pi-‘—‘g@, Q:‘:—Bﬁ

with canonical coordinates P; := /|[i|cos(6;) and Q; := /[[i|¢:. Here R?*(1 —
cos(7i;)) = U%;/2, and cos(v;;) := cos(8;) cos(8;) +sin(6;) sin(6;) cos(¢: —¢;)- Consider
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a coaxial configuration at @1, 2, 3, x4, With coordinates (z;,y;, z;), fori = 1,---,4.
Here x,, and x, are image vortices with strenghts +I'; and —TI'; respectively, so that
(z1,91,21) = (22, —Y2, 22), and likewise with &3 and x4, which have strengths +TI;

and —I;. Next, observe that initially {?, = [2; and [}; = [2,. Now using (6.26),

obtain

. Ty X1 3 X T3 Ty X Ty
12 13 114

. Ty X T2 T3 X To Ty X T2

T2 = [‘1 12 + P3 12 + P4 12 3
12 23 24

. o X 23 3z X T3 Tq X T

Bo= heg b b

. Ty X T2 4 X T2 L3 X Tp
12 13 14

Observe that the first terms on the RHS are equal. We now show that #; = z,.
Calling the common first term I, we obtain using the definition of cross-product

2 Y221 — 221 —Y221 — 221

It - 1, —

T, T, Z

T2 _ g _ %A —222(-‘?/1) 4 B2 —222(—3/1),
T, Its 13y

which are evidently equal. Clearly, by construction, we also have z; = :«':2.VIt remains
to show that §; = —y», and thereby conclude that y = 0 is an axis of symmetry. To
do this we first show that the y-component of [ is zero. The y-component of ¢; xXx»

IS z1T9 — T2, but by construction initially z; = 2, and z; = z,. This means that,

Y1 _ 2T —TZ1  ZT1 — T3
2 B35 Be 7
Y2 _ _ 22T1 T T22 22T1 — T221
I 123 P
from which it is clear that y; = —y2. In conclusion the Hamiltonian system of this

four-vortex problem is completely described by «; and #3 which have canonical
coordinates (P, Q) and (Ps,Q3). This is a two degree of freedom canonical Hamil-
tonian system with an invariant, @, not depending on the Hamiltonian, H, (recall
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P=S=I=0). It is a simple corollary of ‘the Arnold-Liouville-Jost theorem that this
is integrable [5]. O
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Chapter 7

On the collapse of two vortices in a circular

(planar) domain

In this chapter we study aspects of vortex collision for two vortices in a circular
(planar) domain. Our methods are similar to those used in Chapter 3. We begin
by computing the Hamiltonian for this system by using the method of images. We
compare our results with similar results in the literature, obtained by other tech-
niques.

References for vortex problems on the plane include the work of Lin [40] where
the existence of the Kirchoff-Routh function is established, and the work of Zannetti
and Franchessi [21] where a number of solutions in squares, rectangles and circles
are described. They have also worked on aspects of the advection problem in closed

domains [20]. Flucher and Gustafsson have studied, in detail, the collapse process,

for domains with boundaries [19].

7.1 Derivation of the Hamiltonian for the N-vortex
system in a circular domain

We begin by presenting a derivation of the equations of motion for vortices in a
circular domain. The starting point is to use the method of images [23] to determine

the advection of a point vortex and then use superposition. Consider two points £
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RN
\

Figure 7.1: Method of Images

and &£* inverse to each other with respect to the circle D of radius R centered at the

origin O:

_ B¥¢
= —?_
€]
Notice that the point inverse to the origin O is the point at infinity, and that points

&

on the boundary dD of the circle are their own inverses. To solve:

A = —w, in D,
¢'|aD = 0:

use the Green function obtained by the method of images:

1 o o
Y= —G(z,6) = —5-ln 2 = finfz — g — 1n E=ENE],

where z € D, € € D, = # £ as shown in Figure 7.1. It is easy to verify that
G(z,€) =0forz € 9D, £ € D. We consider the point vortex decomposition for two
vortices, w = I['16(z — &) + [28(z — &). The divergence theorem yields,

/Dlvl2c1=c =fDIv¢Izd=c =—/D¢A¢2dz+/w¢g%'dm.
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Ai,b = —w=—zr,’5($—§;), a.nd,

1 PiTi
- = - F,h:l .
d) 2 Z‘: RT‘;
By superposition ¥|,, = 0, so that

H:=/D[v[2da: =/Dz,/}wd:z:.

Substituting for ¥ and w we finally obtain:

?.H:—:)i‘— [—Flzlnjé;li—l—lﬂ—nglnl&;f;i@-{-?f‘l[‘gln]& —le

_FIFZ ln Igl —15%2‘”52| _ FQFgln lf2 _g--”gll] . (7'1)

Observe that the Hamiltonian is not invariant with respect to arbitrary displace-
ments in space. It is however invariant with respect to rotations about the origin.
Hence H and by Noether’s theorem, the angular momentum, [ := ¥; [';|&:]? are the

two integrals of motion.

7.2 Proof that two vortices in a circular domain

cannot collide

We are now in a position to state and prove our main result.

Theorem 7.1 The two-vortezx problem, in a circular domain, does not admit finite-

time collisions.

Proof: For collisions £ — &, and & — &5, so that near collision we have asymp-

totically:
1 e s
2H ~ —5- [_(]_“12 + I',?%) ]_n.l_é%llg_ll + 2Ty ln |6 — &| — 2T 1n 13! f{l [1€1] .

(7.2)
Suppose first that £ and & collide at some point in the interior not the origin O
(and not on 9D), then £ and & (being inverse to & and &) meet at some finite
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point ( # oo) which does not lie on @D i.e belonging to D°. This implies that both
{1 —¢&;| and |€;] are bounded away from 0 and co. Hence near collision there remains
in Eq. 7.2 the unbalanced singular term In [£; — &,7| and because H is invariant this
is clearly not possible. Suppose instead that &, and &; collide at the origin O, then

near collision:

anH ~ —r2mi&l _pep &l p 21:1'—52—'—r*221n'5—2'+21“1[‘21n[§1 — &

R R R R
~T1[;ln 'iﬁ' rrm'%' Flfgln-l-%l——f'l[‘gln%

~ (024 rf')an@l +ln %) + 20D ln |6 — &|

= —([\2+ T, )1nl€1”51l+91“11“21n[§1 &
= 2F1F21nl§1— I.

The last follows because &; and &7 are inverse points so that [£]]€]| = R?. Again
the unbounded term In [£; — &2| prevents this collision at the origin. Finally suppose
€, and &; collide at some point on the boundary, then since §; — & — & — &2, and

|&:],]67] — R, near collapse Eq. 7.2 becomes:

4nH ~ —[—([ 2+ 026 — &7+ 2Tl nj6 ~ &) =TT In (& — &7
—IColn (6 — &7
—(C 2+ %) & — &7,

leaving the unbounded term In |¢; — £]- =

Observe that the methods are very similar to those used to ‘prove our results for
the three-vortex two-layer problem. We remark that these results are proved in more
generality for a wider class of closed domains by Flucher and Gustafsson [19]using
other techniques. Our method is elementary and might possibly be used to prove

similar results for other closed domains through the use of conformal mapping.
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