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A bstract

This dissertation demonstrates the existense of a non-trivial phase change in adiabatic evo­
lutions of certain vortex configurations in 2-D incompressible, inviscid flows. The phase change 
is identified with the, by now well-documented, geometric phase (Berry’s phase, Hannay angle) 
occuring in various classical and quantum systems. The calculation of the phase is performed 
using multi-scale asymptotics. In the geometric interpretation, the phase is shown to be the 
holonomy of a connection on an appropriately defined fiber bundle. Three canonical point vortex 
configurations in which the phase appears are first discussed. The planar configurations are a 
three-vortex (and a canonically similar four-vortex) problem, a vortex in a circle problem, and 
a model of a  mixing layer flow in which an infinite number of vortices undergo subharmonic 
pairing. The phase appears as an 0(1) term in the angle variable of a  pair of vortices, one 
of which could be of zero strength i.e. a passive particle in the flow, a t the end of one long 
time period of an appropriately defined periodic ‘slow’ motion. The phase term  is of the form 
Og =  /(r*,C) cos 2 0 (0 ), where /  is a function of the vortex strengths T* and the periodic vortex 
orbit C, and 0(0) is the initial condition. W ith a view to applications, it is then shown that the 
length formula for the long time growth of a  passive interface in these flows inherits the geo­
metric phase effect and shows the characteristic splitting into a  ‘dynamic’ part and a  ‘geometric’ 
part. The geometric part depends on the geometric phase 6g for a particle in the flow and is 
given by Lg = — d(£6g), where £ parametrizes the interface curve joining particles A and
B  a t t =  0. Finally, the phase calculation for a  system of two elliptical vortex patches in the 
Melander, Zabusky and Styczek model is presented. The phase appears in the orientation angle 
of each elliptical patch and is of the form Bg =  f{Y k , A(0 )) cos2 0 (0 ), where /  depends on the 
patch strengths T* and initial aspect ratio A(0) of the patch.
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Chapter 1

Introduction to  geom etric phases

1.1 H istory

In 1984, Berry [11] investigated the evolution of a quantum  system whose Hamiltonian depends on 
external parameters which Me varied slowly in a closed loop. The adiabatic theorem in quantum 
mechanics [41] states that for (infinitely) slow changes the system wave function, whose evolution 
is described by the time-dependent Schrodinger equation is, instantaneously, in an eigenstate of 
the Hamiltonian (for the values of the external parameters at that instant). Hence, at the end 
of the cycle when the param eters return to their original values the wave function should return 
to the eigenstate it started in, except for a  possible change in phase. This phase factor was long 
thought of as being only a  dynamic phase factor describing the time effect o f the cycle. However, 
Berry showed that this was not the only phase contribution; there also is a  geometric part given 
by a circuit integral in param eter space and is, thus, independent of the dynamics along the 
circuit (provided that it is still slow enough for the adiabatic theorem to hold). This phase factor 
is now commonly referred to  as Berry’s phase and depends only on the geometry of the closed 
loop in parameter space.

Hannay [37] subsequently studied the classical analogue of Berry’s phase, now commonly re­
ferred to as Hannay’s angle, by considering the slow evolution of integrable Hamiltonian systems. 
For such systems there exist, in principle, a  set of canonical variables called action and angle vari­
ables [27]. The action variables are invariants of the system and in periodic systems represent the 
area of the closed trajectory of the system in phase space. The conjugate angle variables evolve 
linearly in time at the system frequencies. Hannay studied integrable systems whose Hamiltonian 
function depends on certain external parameters. If these parameters do not change in time the 
Hamiltonian is time-independent and is a conserved quantity along the solutions of the system. 
He then analysed ‘the fate of the angle variables’ in the case when the param eters change slowly 
in a  closed loop. Instantaneously, the system evolves at some frequency th a t depends on the 
parameter values at that instant. Intuitively, therefore, one would expect th a t the total angle 
change at the end of the cycle is just the time integral of the instantaneous evolution over the

1
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period of the cycle. Hannay showed, however, that this need not be true. There could be an 
extra angle change that, like in the quantum  case, depends solely on the circuit in parameter 
space of the closed loop.

Following this, Berry [12] obtained a  semi-classical relationship between his phase and Han- 
nay’s angle. Aharonov and Anandan [1] then showed that the geometric phase could be extracted 
from the total phase change for any general cyclic evolution, not necessarily adiabatic, of a quan­
tum system. Berry and Hannay [16] investigated the classical analogue and found a similar 
geometric phase for a general non-adiabatic cyclic change. Golin and co-workers wrote a series 
of papers dealing with different issues related to the Hannay angles in classical Hamiltonian 
systems—the existense of Hannay angles for smooth systems with one degree-of-freedom [28], 
Hannay angles in the presence of symmetries [32] and measurement of Hannay angles [33] (see 
also Golin [29], Golin, Knauf and Marmi [30, 31]).

In a more geometric vein, Simon [90], commenting on Berry’s earlier paper, showed that his 
phase can be interpreted as the holonomy associated with a connection on a  line bundle over 
the parameter space. The adiabatic evolution provides a path (the connection) along which 
the wave function’s initial eigenvector is transported. Anandan and Stodolsky [3] showed that 
the interpretation can be extended to the holonomy in a vector bundle by considering all the 
eigenspaces of the wave function. Marsden, Montgomery and Ratiu [52, 53], Marsden and Ratiu
[55], Montgomery [64] and Golin, K nauf and Marmi [30] develop these concepts further, especially 
in the classical case and their extensions to non-integrable systems. They show that averaging 
defines a connection which can be related to Ehresmann and Cartan connections on fiber bundles 
[20, 94] and that the Hannay angle is the holonomy of this connection. Non-integrable classical 
systems have also been examined by Robbins and Berry [78]. Levi [49] examines some simple 
rigid body motions which have geometric phases and their relation to parallel transport.

In other work, Montgomery examining the rotation of a free rigid body and the gravitational 
three-body problem [6 6 , 67] has shown how exact formulae for angle changes in these problems 
can be derived which show the characteristic splitting into a ‘dynamic phase’ and a ‘geometric 
phase.’ Alber and Marsden [2] have shown how the phase shift formula for soli ton interactions can 
be interpreted as a geometric phase. R. Newton [71] derived the Berry phase formula associated 
with Schrodinger operators with a continuous spectrum and relates it to the well known 5  matrix 
from scattering theory. In a series of papers [85, 95, 84], Shapere and Wilczek have shown how a 
geometric phase arises in the context of self-propulsion of micro-organisms a t very low Reynolds 
number regimes. This point of view is closely related to recent developments of the geometric 
phase in the context of control theory, which is discussed in [54]. Finally, Marsden and Scheurle
[56] use the geometric phase idea on mechanical systems with symmetries to show how symmetric 
patterns in the phase space of the system cam be brought out that would not otherwise be seen 
(see also [57]). By now, there are several sources where one can get an overview of the various 
interpretations and applications of the geometric phase in various contexts. A history of the phase

2
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is given by Berry in [15] where he talks about how his phase factor had been ‘anticipated’ in the 
works of other scientists—in particular that o f S. M. Ryotov, V. V. Vladimirskii, S. Pancharatnam , 
R. Y. Chiao, A. Tom ita and Y. S. Wu in the fields of geometric optics and polarization of light 
(see also Berry [14]). The collection of papers reprinted in [8 6 ] gives a nice introduction to the 
im portant papers on the subject before 1989, while [102] gives an overview with the focus on 
quantum  and chemical applications.

1.2 D escrip tion

An oft quoted example [12, 37, 53, 55, 28] o f a  classical system that exhibits a geometric phase is 
th a t of the ‘rotated ro tator’ or a particle on a  hoop (see Figure 1.1). A bead slides frictionlessly 
over a closed non-circular hoop of wire whose plane is perpendicular to the local gravitational 
field. The hoop is made to slowly rotate in its plane in an arbitrary fashion. At the end of one 
full rotation of the loop the bead is not where it would have been had the loop been stationary, 
but differs by an amount that cannot be m ade arbitrarily small by slower rotations of the hoop. 
Moreover, this change can be shown to depend only on the area enclosed by the hoop and its 
perimeter i.e. purely geometric quantities.

dq(s)/ds

ref. point
Figure 1.1: A particle sliding frictionlessly around a slowly rotating (horizontal) non-circular 
hoop of wire experiences a geometric shift in the distance variable s at the end of one period of 
rotation of the hoop.

To show how this phase arises, we give here a  brief version of the treatment by Marsden, 
Montgomery and Ratiu [55]. Fix a point on the hoop and let the distance of the bead from this 
point measured along the perimeter of the loop be s. When the hoop is not rotating,

s  =  0 .

3

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Now, rotate the hoop slowly around the vertical axis at a rate ui(t) which need not be a constant. 
Let q(s) = | q(s) |, then the equation of the bead (in an inertial frame) is:

s =  u 2qq'cos( a) — aiqsin(a)

(for details see the cited reference), where the prime denotes differentiation with respect to s. If 
the initial position and velocity of the bead are sq. s'o then integrating the above gives:

traverse by the hoop; hence, one can replace the s-dependent quantities by their averages around 
the hoop and get the approximate equation:

second integral has the value 2A  where A  is the area enclosed by the hoop. The tim e integral 
can then be integrated by parts from 0 to T, where T  is the time needed for the hoop to make 
one complete revolution, to give the fined result (where we have assumed w(0 ) =  0 ):

Recognizing the first two terms on the right hand side as the evolution if the hoop were not 
rotating, the third term is identified as the geometric phase for this problem . 1 Notice that it is 
independent of T  and that it depends on purely geometric quantities, the perim eter and the area 
enclosed by the hoop.

To understand most simply why the geometric phase, when it arises in the adiabatic limit of 
a slow change2 of external parameters, is ‘geometric,’ it is useful to view it in a general way as 
follows. Consider the parameter-dependent evolution of some (real) variable q(t, X(rf)) of any 
dynamical system, where X (d) denotes the (real) vector of external parameters. Here e measures 
the rate at which the parameters are varied. The change in the variable value a t the end of time

S tr ic t ly  speaking, the  term  phase should  be reserved for the shift in the  H am iltonian  angle variable corre­
sponding to  th e  above sh ift in s.

2 In the lim it o f an  infinitely slow change.

For small u  and ui, the bead goes around the hoop many times before there is a significant angular

j  (t - u ) | u 2( u ) j j ^  q(s)q'(s)cos(a(s))ds

—w(u)-^ J  g (s)sm (a (s))d s |c

where L is the perimeter of the hoop. The first integral within the braces vanishes and the

s(T ) w s0 +  s0T -----— . (1 .1)

4
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T  =  1/e in which one or more of the parameters are varied in a closed loop (X (l) =  X(0)) will 
be given by :

j T  ’ x (rt)) = [  ^  ~  <n>

The first integral measures the cumulative effect of ‘local’ changes due to the instantaneous 
evolution and is identified as the dynamic phase of the system .3  The second integral is over the 
closed loop in param eter space. If the integrand is bounded for all time then this integral is 
finite. In general, it will be a function of T  and hence e, and may converge to a non-zero limiting 
value as e —► 0. To see why the contour integral in param eter space, if it converges, can give rise 
to a  non-zero limit, we can rewrite it as a time integral i.e.

d q (t,X ) dg (t,X (e t))
aX(et) dt, (1.3)

where X(et) denotes the slow rate at which the parameters are changed. As e —> 0, X (rt) —> 0 
and T  — ► oo. If is bounded for all times then the integrand decreases as the range of
integration becomes larger. There is no reason, a  priori, to believe that in the lim it of vanishing c 
the integral is zero. These quantities can approach their limits in such a way as to give a non-zero 
result.

The geometric phase is this non-zero limit of the e dependent contour integral. In the adiabatic 
limit, the e dependency is removed and the integral becomes a function solely of the closed loop 
in parameter space, i.e. a purely geometric quantity. For small e, the integral can thus be viewed 
as an 0(1) term (the geometric phase), plus O(e) corrections. Assuming the limit and integration 
process can be interchanged, the geometric nature o f the phase is evident even more clearly by 
replacing the limit of the contour integral in (1 .2 ) with the contour integral of the integrand as 
€ -> 0. This limit, if it exists, then defines a mapping from the parameter space to the real 
line. The geometric phase can then be viewed as the contour integral of a 1-form defined on the 
parameter space. If the contour encloses a  region of the parameter manifold then the geometric 
phase, using Stokes theorem, can also be viewed as the integral of a 2-form defined over the 
region enclosed by the contour.

This argument is similar to the one given by Hannay in his paper [37] for integrable, parameter- 
dependent Hamiltonian systems. Hannay looked a t integrable Hamiltonians of the form H(p, q, R) 
where R  is a vector of external parameters. For a  fixed or ‘frozen’ value of the parameters, the 
phase space of the (n-dimensional) system is diffeomorphic to the n-torus. In principle, there 
then exists a set of canonical coordinates for this torus called action and angle coordinates: I (R)

3 We stick to the s tan d a rd  term inology and use ‘p h ase ’ though  for the  sake of our argum ent q could be any 
(real) variable not necessarily an angle variable.

5
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and 0{t, R), respectively, such that the Hamiltonian / / ( /(R ) , R) depends only on the actions. If 
the parameters are not varied, then the system equations are

f dH  «
7  =  - M = °
• dH0 — -7—  =  constant.

0 1

If the parameters R(t) are varied, then the actions are, in general, no longer invariant. The 
equations of motion are

7  -

* -  <L4>

Note that the first term  on the right hand side of (1.4) is the same as i.e. the instantaneous 
frequency due to the ‘frozen’ Hamiltonian. If R(<) is small, then one can make estimates of the 
long term behaviour of the solutions of the above system by considering the alternative system 
of averaged equations [9, 10, 81]. The solutions to the averaged system closely approximate the
solutions to the exact system. The averaged system is obtained by replacing the J ^ ,  terms
in the above equations by their averages around the torus of the ‘frozen’ Hamiltonian on which 
the system instantaneously lies. Denoting averages by < > , the averaged system is:

1  ■  “ • > • < ? & > •  ( L 5 >

*  =  < L 6 >

As a consequence o f the phase space volume conserving property of Hamiltonian systems, the 
right hand side of (1.5) vanishes. The single evolution is given by integrating the right hand side 
of (1.6) with respect to time. Denoting the contribution of the first term by A0d and of the 
second by A0g, we have:

A 0d = /  — dt, (1.7)

Ae^ £ ^ t ) < m ) >J , = f < m r ) > d R ’ (l-8>

where the circuit integral is over the closed loop in parameter space. Equation (1.7) gives the 
familiar dynamic phase. The essence of Hannay’s argument is that there is no reason to expect 
the circuit integral in (1.8) to vanish, even in the limit of infinitely slow change. This is the

6
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geometric phase of the system and, clearly, it depends only on the closed loop in parameter 
space.

These arguments while suggesting the existense of a  geometric drift term  do not provide 
insight into the reason for this drift. Further, such arguments cannot be invoked when considering 
geometric phases in non-adiabatic processes. It was Simon’s paper [90] that first explained the 
geometric phase as the holonomy associated with parallel transport.4  The concept of parallel 
transport has been known to mathematicians since the development of non-Euclidean geometry. 
It refers to the fact that in spaces different from Euclidean, such as the sphere, there is no 
concept of ‘globed parallelism.’ Tangent vectors a t different points lie in different tangent spaces 
and there is no canonical way of defining ‘parallelism’ between vectors. 5 One must be content 
with a local concept of parallelism defined with respect to the direction in which the tangent 
vector is transported on the sphere. Thus one talks of parallel transport of a tangent vector 
along a  curve. Intuitively this means transporting the vector along a curve such that its rate 
of change as it moves along the curve is zero. This reduces to the conventional idea of parallel 
transport when applied to  Euclidean space i.e. a  vector with constant coordinates as it moves 
along the curve. In general this local concept of parallelism does not give rise to a global concept 
of parallelism due to an im portant property of parallel transport: it can be curve dependent. This 
is illustrated in Figure 1.2 taken from the book by Schutz [83]. The vectors V $ and V" at point 
C  are both the result of parallel translating vector V  a t point A  but along different curves. They 
end up pointing in different directions and there is clearly no unambigous way of defining which 
of these vectors is parallel to the initial vector. This property is particularly remarkable when 
one considers a closed curve. The parallel transported vector returns to the same point but is 
no longer pointing in the same direction, see Figure 1.3 [35]. The rotation of this vector is an 
example of the holonomy associated with parallel transport.

Holonomy can therefore be intuitively described as ‘global change without local change.’ The 
parallel transported vector suffers no local change but yet there is a net change when it returns 
to its initial point. The net change depends on the topology of the underlying space and, in 
particular, on the closed curve of traverse. It is independent of the rate at which the curve is 
traversed. A well-known example of a classical system that exhibits such ‘global change without 
local change’ leading to a geometric phase is the Foucault pendulum [74, 14, 15, 93]. Consider 
a pendulum set into oscillations in a  plane at a point on some latitude of the earth (excluding 
the poles) as in Figure 1.4. Identify the orientation of the plane of oscillations with the (unit) 
vector along the line of intersection of the plane with the tangent plane to the earth ’s surface 
at that point. Neglecting forces due to the earth’s rotation the plane of oscillations is unaltered 
in a laboratory frame i.e. there is no local change. The vector is thus parallel transported as

4 Sim on’s work was in th e  ad iab a tic  se tting  of Berry’s phase.
s This is possible in E uclidean spaces since the  space itself can  be identified with the tan g en t space a t  any point.

T he vector can be translated  ‘freely’ between two points.
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Figure 1.2: Parallel tansport of a vector along two different great circles on the sphere results in 
different results.

Figure 1.3: The result of parallel transport around a  closed curve. The vector has rotated with 
respect to its initial direction.

8
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the earth rotates. After one complete rotation of the earth, it points in a different direction i.e. 
there is a shift in the orientation of the oscillating plane. This shift is approximately equal to the 
rotation of an  orthonormal frame when parallel translated along the latitude once around and is 
given by 2 rsin(/?), where /? is the degree of the latitude . 6

Y

XYZ 
Inertial frame

Latitude

Z

Figure 1.4: The Foucault pendulum: A pendulum at a point O on the earth’s surface oscillating 
in the plane described by O N T . The direction O T  is in the tangent plane at O and O N  is normal 
to it. At the end of one rotation of the earth about the V-axis the plane of the pendulum would 
have rotated by an amount that depends only on the latitude of O.

The geometric phase of Berry and Hannay measures this holonomy in the dynamical systems 
in which they occur. To understand this one must generalize the above simple picture of parallel 
transport of a  vector using ideas from differential geometry. Since the ideas involved form a 
vast m athem atical subject of their own, we do not go into details here but attempt to present 
only a heuristic explanation which may convey some intuitive understanding. Holonomy in the 
general case is defined for the parallel transport of a ‘fiber’ over a base ‘manifold.’ A ‘manifold’ 
is a m athem atical generalization of our intuitive concept of a surface or a space. It includes the 
familiar examples of Euclidean space, sphere, torus etc. and many more not obviously fitting 
into our notions of a surface or a space (such as, for example, the set of lines in R 3  passing 
through the origin). The ‘fiber’ can be any set—for our purposes we view it as another abstract 
manifold. For defining parallel transport in such a general context, one looks at the manifold 
obtained by ‘sticking’ a fiber at each point of the base manifold-in other words, ‘a fiber bundle,’ 
as depicted in Figure 1.5. For example, in the parameter dependent Hamiltonians considered by

8 For a  nice exposito ry  article and simple derivation o f th is result see Oprea[74].
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Hannay, the base manifold is the param eter space, P, and the fiber a t each point is the system 
phase space/configuration space for th a t value of the parameter, Mp(p 6  P). In Berry’s context, 
the base space is again the parameter space and the fiber a t each point is the eigenstate of the 
quantum Hamiltonian for that value of the parameter. A fiber bundle, E, is typically identified 
with the projection mapping n E  B , where B  is the base. The fiber at a point ft 6  S  is 
denoted by Ft,. A fiber bundle is locally like a  product manifold . 7  This means that any point 
e G E  can be represented as the pair ( / ,  b) where ?r(e) =  b and /  €  Ft- The tangent space of the 
bundle a t any point can thus be viewed as the product space of the tangent space of the fiber at 
that point and the tangent space of the base point. In mathematical notation, TeE  =  T jF t,xT t,B , 
where b =  rr(e).

Fb'. fiber at b

Dynamic
phase

Holonomy =
Geometric
phase

V, dD/dt

Figure 1.5: A conceptual illustration of a connection and holonomy in a fiber bundle. For 
explanation, see text.

To define parallel transport on a  fiber bundle one defines a  connection or a way of connecting 
different fibers. A connection specifies a  vector subspace He, called the horizontal space, of the 
tangent space TeE  a t each point e of the bundle such that TeE  = He @Ve. Ve, called the vertical 
space, denotes the vector subspace of TeE  which contains all vectors tangent to the fiber at 
that point. Defining the connection thus implies that at each point every vector in the tangent

7 A fiber bundle  th a t is globally like a  p ro d u c t m anifold is called a  triv ial bundle. T hus in H annay's case if the 
system  phase space/configuration space is independen t of the  param eter value then  th e  fiber bundle is triv ial and 
is simply th e  p roduct manifold P  x Af.
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space of the bundle can be uniquely expressed as the sum of a  horizontal vector and a  vertical 
vector. The definition of this distribution of horizontal subspaces determines a way of connecting 
neighbouring fibers. W ith any vector i] in the tangent space at a point b in the base we can 
associate a horizontal vector field on F&. Every element of this field is a horizontal vector. This 
vector field is called the horizontal lift of rj. Now consider any curve C  on the base, in particular 
a closed curve, as shown in Figure 1.5. A smooth distribution of horizontal lifts o f the tangent 
vectors to C  gives a collection of smooth curves on the bundle all starting from Ff>. Each smooth 
curve is called a horizontal lift of C. For C  closed a  horizontal lift of C  starts and ends on F& 
but with a possible shift of the final point with respect to the initial point. Conversely, a  given 
smooth curve on the bundle whose tangent vectors are horizontal a t every point and which starts 
and ends on the same fiber can be viewed as the horizontal lift of a closed curve on the base. The 
collection of horizontal lifts of C  defines a  mapping of the fiber onto itself. This defines parallel 
translation of the fiber around a closed curve on the base. The shift in the points of the fiber 
under this mapping is the holonomy associated with the parallel transport. Note th a t this shift 
is independent of the parametrization of the loop i.e. the rate at which the loop is traversed.

Returning to the context of Berry and Hannay, we now try  to understand how their phases 
can be interpreted in terms of the above holonomy. Any point on the fiber bundle represents 
their parameter dependent dynamical system at some instant. As time evolves this point traces 
out a curve D(t) on the bundle, as shown in Figure 1.5, representing the system evolution as 
the parameters are slowly varied. The tangent vector to  this curve a t any point represents the 
rate of evolution of the system. If there is a connection defined on the bundle, then one can 
split this vector at each point into its horizontal and vertical components (H  and V  respectively 
in Figure 1.5). The vertical component, since it is along the fiber, represents the rate  at which 
the system is evolving instantaneously. The path traced by the horizontal vectors with time is 
the horizontal lift of the closed loop on the base space i.e. the parameter space. This defines 
parallel translation of the fiber which is the phase space or the eigenstate in this context. Note 
that the system evolution curve is different from the horizontal lift curve due to the presence of 
the vertical vectors a t each point. At the end of the closed loop, the system curve returns to 
the same fiber and the shift in the fiber coordinates 8  between the initial and end points is the 
sum of two parts. The first part is the shift due to the vertical components alone and is the 
dynamic phase. The second part is the shift due to parallel translation and is the holonomy or 
the geometric phase. 9

W hat defines the connection on the bundle? The adiabatic evolution of the parameters. This 
corresponds to our intuitive understanding of parallel transport since in an adiabatic evolution of 
the parameters one expects the infinitely slow variation of the parameters at any instant to have

8 T he angle variables in H annay’s context and  the  phase o f th e  wave function in Berry’s contex t.
9 Note th a t the first p a r t does depend on the m agnitude o f th e  tangen t vector and  hence on th e  param etriza tion

of th e  curve, i.e. the  ra te  o f  evolution of the system , unlike th e  second p a rt.
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no effect on the system dynamics. In other words, such an evolution implies no local change. 
The dynamical system is thus parallel transported by the adiabatic evolution and the geometric 
phase is the holonomy due to  this parallel transport. From the fiber bundle construction it is 
obvious that the phase is independent of the slow rate a t which the parameters are varied and is 
a function of the closed curve on the parameter manifold and the manifold’s topology.

This differential geometric viewpoint as mentioned before, allows us to understand the ge­
ometric phase in non-adiabatic processes as well, where in general there is no slow tim e scale. 
Many of these phases can be described as changes in the configuration of a system brought about 
by manipulation of interned variables. Thus Shapere and Wilczek’s micro-organism [85, 95, 84] 
achieves locomotion by a continuous deformation of its body shape. The system of hinged rods 
in Figure 1.6 [55] considered by [46, 98]10 achieves a net rotation of 7r by a sequence of rotations 
a t each hinge. Another simple example is shown in Figure 1.7 [54]. At the end of the arm 
movement cycle the arm  has rotated by manipulation of the shoulder joint. In the problem of 
the motion of three point masses first considered by Guichardet [36] and then later by Iwai [39] 
and Montgomery [67, 65] the triangle defined by the three points undergoes a rigid body rotation 
about its center of mass at the end of a cycle in which the triangle returns to its original shape.

To understand the phase in terms of holonomy in these problems, one looks at the configura­
tion manifold of the system. Since the phase usually manifests itself as a rotation or translation 
(or both) of the configuration, one constructs the fiber bundle by ‘factoring’ the above mani­
fold by the Lie group11 of these motions. The quotient manifold (or the ‘reduced’ manifold) is 
then viewed as the base manifold of the bundle and is usually called the shape space. This is 
the space of all possible shapes the system could take during a given dynamical evolution. All 
configurations of the system that have the same shape but differ from each other only by a rigid 
body rotation o r/and  translation are represented by the same point in the shape space. A closed 
loop in the base space thus represents a cycle in which the configuration returns to its original 
shape but could be rotated or translated. The fibers are the Lie groups and such a  bundle is 
termed a principal fiber bundle. Parallel translation in such problems is usually determined by 
some dynamical constraint, such as the conservation of angular momentum in the motion of three 
point masses. The connection is defined by a splitting of the tangent space at each point that is 
orthogonal in the kinectic energy metric (inner product) on the bundle. Physically the horizon­
tal subspaces correspond to (total) zero angular momentum motions of the three bodies [36, 65]. 
The vertical directions (which are the group directions) correspond to instantaneous rigid body 
rotations of the triangle. In other words, the connection implies tha t at every instant the three 
body motion can be decoupled into a rigid body rotation with a rotation rate corresponding to 
the constant initial angular momentum of the configuration and a ‘rearranging’ m otion of zero 
angular momentum. The shift in the coordinates of the fiber a t the end of the closed loop is thus

10For more references please see [55].
11 Also a  m anifold.
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Figure 1.6: The system of hinged rods achieves an overall rotation by a manipulation of its 
internal hinge singles.

J

Figure 1.7: An overall rotation in the configuration of the arm without performing a local rotation 
is achieved by the above sequence.
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a rotation angle composed of two parts: the dynamic phase due to the instantaneous rotations 
and the geometric phase which is the holonomy due to parallel transport. Note again that this 
result is an example of ‘global change without local change.’ Indeed, Guichardet’s paper sought 
to answer the following question posed about molecular motions: can rotational motions be sep­
arated from vibrational motions ? In the above point mass model where the horizontal directions 
represent vibrational motions, we see tha t it cannot. For a thorough mathematical treatm ent of 
geometric phases in both adiabatic and non-adiabatic processes and their relation to  reduction 
theory we refer the reader to Marsden, Montgomery and Ratiu [53].

1.3 Techniques

In most systems of mathematical and engineering interest, the variable q with the geometric 
phase shift typically represents the unknown integral curve of some dynamical system. The 
problem then is to extract the phase in such systems without knowing exact solutions, or even 
the action-angle form. The use of elementary techniques as in the particle-in-a-hoop problem is 
exceptional. The fiber bundle construction yields a set of nonlinear ordinary differential equations 
for the parallel transport provided a connection can be defined. Integration of these equations 
will then yield the geometric phase, but obtaining an explicit expression is in general not feasible. 
In the adiabatic problems, the slow evolution of the parameters introduces a second timescale 
in the problem. This feature can be exploited to directly calculate the phase by traditional 
perturbation techniques without resorting to the fiber bundle formalism. For example, in the 
Hamiltonian systems of the type considered by Hannay, the method of averaging in principle 
yields the phase. However, as is clear from (1.8) the particular method used by Hannay and 
Berry [37, 12] requires knowledge of the dependence of the canonical coordinates on the external 
parameters. In particular one needs to know the particil derivative vector in (1.8) which is the 
quantity averaged to obtain the integrand. This may not be known a priori for most systems. In 
the absence of such information, it seems natural to ask whether one can calculate the geometric 
phase by constructing an asymptotic series solution in e for the differential equations governing 
q. Such a solution would also give information on the c dependency of the total phase. We may 
mention that asymptotic series solutions have been considered before by Bhattacharjee and Sen 
[17]. Berry [13] himself has suggested an iterative scheme for calculating the phase, although his 
procedure is not an asymptotic one.

To construct such a solution, one could use either the method of averaging in its more general 
form [81] or use the multi-scale technique [42]. In this paper we develop the latter owing to the 
relative computational ease of calculating the higher order terms in the series. In this technique, 
one introduces an independent slow time variable r  =  et on which the parameters X (r)  vary. We
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then view the variable q(t, r)  as a function of these two independent time variables. The formula 
for the total phase change then reads:

,i-9 ,
Jq{ o) Jo dr Jo d r

where the second integral on the right hand side is the same as the contour integral in ( 1 -2 ). 
The geometric phase, if it exists, should arise from this integral. The multi-scale technique gives 
asymptotic series representations for q(t, r)  and the second integral in the following forms:

q(t,T ) = ? o ( t , r )+ e? i (< ,r )+ e 2?2(<,J’) +  — >

jf*■* ■ jffc— j f * - -
The 0 (1 )  terms in series (1.10) are then identified as the geometric phase terms.
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Chapter 2

A sym ptotic construction  o f  th e geom etric phase

In this chapter we give a general formulation for the calculations to be carried out for obtaining the 
phase in an adiabatic setting in three canonical point vortex configurations. In §2.1 we describe 
the basic set-up and highlight the main results for the three canonical configurations to be treated. 
Since the form of the equations are similar for each configuration, we describe the general form 
of the equations in §2 . 2  and show how the multi-scale method leads to the identification of the 
geometric phase term. §2.3, §2.4, and §2.5 contain the details of the calculations for each of the 
three canonical configurations that we analyse. The problem described in §2.3 appears to be the 
simplest point vortex configuration giving rise to a non-trivial phase factor. The configuration 
analysed in §2.4 shows that a geometric phase can be induced by a solid boundary in the flow. 
The corresponding problem, without boundaries achieved by using image vortices is related to  the 
three vortex problem discussed in §2.3, although cannot be directly derived from it as a  special 
case. The shear layer model described in §2.5 is the most complex of the three configurations. 
It is related to the first as well and can be thought of as a restricted three vortex problem in a 
periodic strip. The geometric interpretation of the phases is given in the next chapter.

2.1 M odus operandi

In this section, we formulate our approach to identifying and computing the ‘geometric’ or 
‘Hannay-Berry’ phase in three problems in planar, incompressible, inviscid fluid flows involv­
ing point vortices. In each of our problems, we track the position of a ‘phase object’ which for 
our purposes could be a fluid particle, a passive tracer particle or a point vortex of arbitrary 
strength. Typically, we are interested in the limiting case where the phase object is close to 
another point vortex, which we refer to as the ‘parent vortex.’ The phase object moves under 
the influence of the parent vortex as well as from the influence o f an additional vortex or vortices 
placed further away, which we refer to as the ‘farfield vortices.’ Since it is nearby, the parent vor­
tex causes rapid revolution of the phase object with a time period that we denote Ts. It is clear 
since the velocity field of a  planar point vortex scales like 1 / r  th a t T, ~  r 2 (0), where r(0) denotes
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the initial distance between the phase object and its parent vortex. The additional dynamics 
due to the farfield vortices are such tha t they induce a periodic motion of the vortices, so that 
we can define a longer period 7] ~  Z)2(0) »  T , , where D(0) is the initial distance between the 
farfield vortex and the parent vortex. We thus have a natural small parameter at our disposal, 
which we define as e2 =  T,/T[ ~  r 2(0 )/D 2(0). We then non-dimensionalize the problem so that 
T, — 0(1), hence 7} =  0 ( l / e 2). The time varying periodic coefficients that appear (due to the 
periodic vortex motion) in the equations of motion of the phase object can then be viewed as 
varying on the slow timescale r  ~  e2t and we have an adiabatic process as e -> 0.

The angle change (relative to the parent vortex) of the phase object is then computed at the 
end of time 7}. In the adiabatic limit, this angle change is shown to split naturally into two parts: 
a ‘fast’ part and a ‘slow’ part. The fast part, which comes from the dynamic phase, is what would 
be present if the phase object rotated only around the parent vortex, with no farfield vorticity 
present. We call this the ‘e =  0,’ or ‘unperturbed’ problem. The slow part is the geometric 
phase 0g. As described in Chapter 1, 0g arises from the limiting adiabatic procedure e —> 0 in 
the following way.

We view the contribution 9g as arising from the product of two terms: 6g =  SO ■ N .  The first 
term, SO, is defined as the angle difference between the unperturbed and perturbed phase object 
a t any given fixed tim e t '  (see Figure 2.5), hence:

SO =  Oe { f ) - e 0 {tm).

Since the perturbed and unperturbed equations approach each other smoothly as e —► 0, we know 
that SO —► 0 as e —► 0. In all point vortex problems, seeding requires that SO ~  C it2. The second 
term, N, is defined to be the number of complete orbits o f the phase object during one complete 
cycle of the farfield vortices. Since the phase object has period Ts and the farfield vortices have 
period 7), we have:

N  ~  Ti/T,  ~  C2/c2.

The geometric phase contribution then becomes:

0g =  SO • N  =  (Ci<r) • (C2/e2) =  C iC 2 -  0(1).

It arises from the limiting procedure e —► 0 as the balance between one term going to zero, the 
other to infinity. Notice that in this interpretation the limiting procedure e —> 0 is distinct from 
the limit e =  0. Such an asymptotic balance is achieved in all of the vortex problems we treat. 
We now introduce the three problems.
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Problem  1: Three point vortices in  the plane.
This is the simplest vortex configuration in which a geometric phase occurs and is shown in 

Figure 2.1. All the point vortex strengths are of the same sign, but can be of arbitrary magnitude 
(Ti, To, r3). Without loss of generality, we take Tj as the parent vortex,1 r2 as the phase object, 
and r 3 as the farfield vortex. Our result for the geometric phase induced on the phase object 

(F2) is:

r3

63 h  + r2 + r3
•2jt cos(20f),

where 0,- is the initial condition for the phase object.

r ,
1

Figure 2.1: Three point vortices (filled circles) of positive strengths in an unbounded plane. The 
geometric phase is calculated for the variable 9.

P roblem  la: Four point vortices in  the plane.
As an extension of Problem 1 we place another vortex T4 (>  0) in the vicinity of r 3. This 

leads to two phase object-parent vortex pairs, r i , r 2 (with angle 0) and r 3,T 4  (with angle u), 
respectively, as shown in Figure 2.2. Each pair also acts as farfield vortices for the other pair. 
Our result for the geometric phase induced in each pair is:

r3 + r 4 

Ti + r2 + r3 + r4
9g =  —— — — — — ■ 2tt ■ cos (20, ),

1 Here and  elsewhere we refer to  vortices by their strengths. We assum e positive s tren g th s  everywhere. The 
effect of changing the sign of th e  s treng ths in each problem is to m erely  change the sign o f  th e  geom etric phase.
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Figure 2.2: Four point vortices (filled circles) of positive strengths in an unbounded plane. The 
geometric phase is calculated for the variables 9 and u. The Xs mark the centers of vorticity of 
each pair respectively.

Problem  2: A po in t vortex  and  particle in  a  circle.
In this problem, we show that a geometric phase contribution arises as a  result of a boundary 

effect. Here, the phase object is a passive particle orbiting the parent vortex T as shown in Figure
2.3. The parent vortex in any eccentric position moves in a closed circular pa th  with radius Ri 
and with constant frequency. The farfield vorticity is due to the circular boundary of radius 
f?2  >  Ri. Equivalently, we can think of the farfield vortex as an image vortex —r  placed at its 
image point RZ/Ri  outside the circle [99, 100]. The geometric phase contribution on the phase 
object is:

9ir

Note it is independent of the vortex strength.

Problem  3: Pairing in  an in fin ite  row o f  p o in t vortices.
Here, we show that a geometric phase contribution arises during the ‘vortex pairing’ stage 

of nonlinear shear layer evolution in a  simple two dimensional model for the process thought to 
be fundamental for the generation of small scale motion and enhanced mixing in a wide range 
of more complicated real flows [96, 21]. In the model, an infinite row of evenly spaced, equal 
strength vortices is given a subharmonic perturbation so that neighboring vortices pair up and 
undergo periodic motion as shown in Figure 2.4. The phase object is a tracer particle near
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Figure 2.3: A point vortex (filled circle) and a  fluid particle (unfilled circle) in a circular domain. 
Orbit of the vortex is shown by the dashed circle. The cartesian frame X - Y  is centered at the 
center of the circular domain.

Y

-.5-1.5

Figure 2.4: The positions of the vortices (filled circles) immediately after the subharmonic pertur­
bations (of magnitude D and direction shown by arrows along X-axis). The subsequent motion 
of the vortices is shown in the central window. This motion is identical in every other window. 
The windows are divided by the vertical dashed lines which mark the initial positions of the 
vortices (here, a =  1).
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any parent vortex, while the farfield flow is due to the infinite number of other point vortices 
periodically spaced. O ur result for this configuration is:

91l i
0ff =  ( - ± £ ) . t f . c o s ( 20 , ) .

Here K is the complete Jacobi elliptic integral of the first kind with modulus k  [19] arising from
the exact solution of the closed vortex orbit.

2.2 A sym p totic  procedure.

The three problems we treat, when prepared appropriately, all have the same general form. In 
this section we outline our asymptotic procedure, based on multi-scale theory [42], for computing 
the geometric phase 9g.

Let (r, 6) denote the non-dimensional polar coordinates of the phase object with respect to 
the parent vortex. The form of the general equations of motion we encounter are:

varying coefficients in the above equations, with the angle variable <j> occuring in the argument 
of some periodic function:

Here, e is a small dimensionless parameter, /  and g are the components of the vector field due to 
the farfield vortices, and D  and <f>, defined appropriately in each problem, are non-dimensional 
polar variables representing the periodic vortex motion. These variables provide the periodic time

D(Ti) — D(0) =  0,

m ) - m  =  2 jr.

Notice that in the lim it e =  0, the equations reduce to those governing a passive particle around 
an isolated point vortex in an unbounded plane.

Since 7) =  0 (  1/e2), there exists a slow timescale r  =  e~t in the superimposed field. By the 
usual multi-scale ‘ansatz’, the two timescales ( t ,  t )  are viewed as independent variables. The 
ordinary differential equations then split into partial differential equations as ^

(2.3)

(2.4)
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where the ~  overhead denotes dependency on the slow time alone.2 In order to calculate the 
geometric phase for such a  system, therfore, we seek a two time scale series solution asymptotic 
in e for given initial conditions r(0) =  1 and 0(0) =  0, . Thus,

r{ t ,r )  =  r0( t , r ) + e r 1( t,r )  +  c2r2(t,i-) + ...,

0( t ,r )  =  0o(t, r)  + e 0 !( t,r )  + e202(t,r) +  ...,

with ro(0) =  I, 0o(O) =  0< and ry(0) =  0y(0) =  0 for j  =  1 ,2 ,.... Substituting in (2.3) and (2.4),
we Taylor expand the functions / ,  g and 1 /r2 about e =  0, assuming they possess e—derivatives
of all orders in a neighborhood of that point. Thus, for example,

/  ( r , 9, D . l t )  = h  +  c ( f  +  J  + ..........

where /o =  /  ( r 0,0O, D, 4>, o j and

( ± \  -  ( * 1 \  + ( 0 f £ \  + ( U .* L \
\ d e j t=0 \ d e j e=0 \ d r d e ) e=0 \ d 0 de ) e=0 ’

■ (* )_ ■
and the higher derivatives in the Taylor expansion are similarly computed. Note that at e =  0, 
r  =  ro and 0 =  0O. Equating like powers o f e gives a pair of first order PDEs a t every order and 
these are solved sequentially from 0(1). The solutions contain arbitrary functions of slow time 
which are determined uniquely by identifying terms that can cause growth on the fast time at 
higher orders and eliminating them i.e. imposing the so-called ‘solvability conditions.’

Consider the first three orders in e:

o t—» »
l> II 0,

50o Q
dt ~ f 2 ’ ro

0(«) = &  - 0,

(Xh 2fifi
dt ~ f3 ’ ro

dfn
: =

1Cl
CO 50o ^ Q 3r?

ro 'odt ~

2This notation is used th roughou t the thesis.
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Solving the (9(1) equation gives:

r0 =  r 0(r) fo(0) =  1,

80 = d f  + =  Sif/rg +  0o(r),

where 0o(O) =  0,, with 0 <  0,- <  2jt. Notice:

1. At leading order there is a decompostion of the angle variable into a fast term dp = Qt/r$, 
and a  slow term  0 s  =  Oq( t ) .

2. It turns out, as will be shown below, tha t ro =  const, and hence the fast term Op is the 
exact angle variable evolution in the e =  0 problem i.e.where the phase object moves about 
an isolated point vortex with no external slow field. Evaluated at the end of period Ti this 
gives, as noted earlier, the contribution of the dynamic phase a t this order to the single 
change.

3. The slow term 0s =  ^o(r) evaluated a t the end of period 7} gives rise to the geometric phase, 
0g. It is not present in the e =  0 problem. Our goal is to evaluate 8q{t) by computing its 
solvability condition at higher order. We call the equation for 0q the ‘slow phase’ equation.

Proceeding to next order, we have:

0(e) .T i =  r x(r),

?i(0) =  0,

^  =  - i Q n / f l

In order th a t  81 remain bounded on the fast timescale, we impose the solvability condition: 
r x =  0. This then gives: 0\ =  0 i(r) with 0X(O) =  0. Then at 0 (e 2) we get:

dr-> _  d f0
~dt ~  +
dOn 90q , 2firo
~dt =  - a 7 + 5 o - ~

Assuming th a t the terms f a  and g o  do not lead to secular growth (which we will verify in our
dfn
d rexamples), the solvability condition for ro is: =  0 => r0(r) =  fo(0) =  1 and, therefore we can

solve for ro and 0 n :

r o  = J  f 0 d t  +  f o ( r ) ,  f , ( 0 )  =  -  J  f o d t \ t= Q ,
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and 02 =  /  (go —2Q f  fod t)  dt+ 02(r). The functions fo and go now read fo =  / ( l ,  Slt+9o, D, 0) 
and go =  g(l,Q t + 9q, D,<fr,Q). The solvability condition for 9q then gives the ‘slow phase’ 
equation:

=  —2fir2,

which is fundamental in deriving our formula for the Hannay-Berry phase. Notice a t this stage:

1. To solve the phase equation for 9q, we need to derive the governing equation for f 2 by
imposing the solvability condition at 0 (e4). Therefore to derive the ‘slow phase’ system
for (0o, f2) we need to  go to 0 (e4). This also shows that the leading order phase implicitly 
depends on higher order amplitude contributions.

2 .  In all of the examples we treat, it turns out that the equation governing f o  is:

^ 7 = 0  => f 2(r) =  f2(0) =  -  j  f 0dt\t=o-

3. W ith the above assumptions, the solution for the slow phase is:

9s = 0 o(t)  -  2Qt j  fodt[t=0 + 0i, (2.5)

=  2 Sle~t(j fodt\t=o) +  9\-

We now have the solutions (r, 0 )  through 0 (« 2):

r(t,r) = l + e 2r2( t ,r )  + ..., (2.6)

0(t, r)  =  fit +  2 fir  J  / 0<ft|t=o +  »< +  c#i(r) +  e202(t, r )  +  ..., (2.7)

where r2(t, r) and 02(t, r )  are as derived earlier.
The Hannay-Berry phase can now be calculated by forming the asymptotic series represen­

tation of the integral (1.10) using (2.7). It takes the form:
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where we have assumed the long period 7] =  /?/e2. In the limit c —> 0 only the first term  of 
the series remains. Due to the decomposition of 0q into a fast term and a slow term, we get the 
Hannay-Berry phase as:

6g =  2 Q/3 J  f 0dt[t=0, (2.8)

*  dOs
L
, (2.9)

This is the general formula for the Hannay-Berry phase. An im portant observation to make 
about the final formula for 9g is th a t it does not depend on the function g in equation (2.2).

2.3 A  three-vortex problem

In this problem there are 3 point vortices of the same sign in an unbounded plane,3 two of them 
close to each other (Ti and To) and the third (Fa) farther away as shown in Figure 2.1. We 
analyse the angle holonomy for To (the phase object) as it moves primarily under the influence 
of the field of Ti (the parent vortex), with T3  (the farfield vortex) providing the superimposed 
field.

The equations governing the point vortex motion can be compactly written in complex form 
as [6, 5]:

/?=i

where za = x a +  iya , a  =  1,2,3 and x a,y a are the Cartesian coordinates of the vortices. These 
equations can be written in real form as:

(2.10) 

(2.11)

with Hamiltonian H =  ^ log \za — zp\. For more on point vortex motions refer to
[72, 7, 101, 43].

For calculating the phase, we use intervortex distances and angles as the vortex variables as 
shown in Figure 6. r  and D denote the distances of To and T3  from T i , respectively, and 6 and 
<j> denote the angles the lines joining To and T3  to Ti, respectively, make with the horizontal 
axis. The angles are measured clockwise from the negative x-axis and clockwise circulations

3 We consider like-signed vortices to  p reven t th e  possibility of unbounded m otion , see [92].

r a i a — q i oya
„  • dH
la ya  ~  ~ d x '
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are assumed to  have positive signs.4 This change of variables from the Cartesian coordinates of 
the original three degree-of-freedom Hamiltonian system (equations (2.10) and (2.11)) is of the 
form:5

2/2 -  2/1 =  rsin(0), x n - x x = -fco s(0 ),

2/3 -  2/i =  £>sin(<£), x3 -  x i  = - D c os(d),

2/3 — 2/2 =  £)sin(^) — rsin(0), x3 — x2 =  — Z)cos(<£) +  rcos(0).

The resulting equations are then non-dimensionalised as follows:

Here, Ri and £>, are the initial distances of To and r 3, respectively, from IV  ui is taken as being 
proportional to the frequency of Ti and To orbiting each other in the absence of r 3 i.e. to !//??. 
The ratio of the initial distances is the perturbation parameter:

e =
Dt

The system of non-dimensional equations for r, 6, D, <f> is :

dr  _  —o:3c 
dt 2 ttD

dd _  a t +  ct2 a 3c
dt 2irr2 2irrD

sin(^ — 0) 

cos(<£ — 6)

1
[ 1 - 3 - cos(4, - 6) + ' - #  

1

-  1

1 -

+ a 3e

dD  a 2e . , „

2jtD2 

1 -

1 - ^ c o s  ( 4 - 9 )  + %  

1
[ l - ^ c o s  +

c3r 3________TJT-_________
1 _  ^ c o s (« i -  0) +

d<£ _  (a! +  a 3)e2 a 2e ± m
S i ~  2xD2 2wrD ^  ~ 1 1 -

l_ 2 -C O S (d -5 )  +  ^ J

+
a 2e-‘

2 ttD2

(2.12)

(2.13)

(2.14)

(2.15)

4 We follow these conventions in all th e  problems in th is  chapter.
5 H ats denote dim ensional variables th a t  will be non-dimensionalized. This no tation  is followed th roughout the 

thesis. T he ha ts a re  not m arked in the figures.
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with initial conditions r(0) =  1,0(0) =  &i,D(0) =  1,0(0) =  0 and where a* =  r* /( iifw )  are the 
non-dimensionalised vortex strengths.

56

Figure 2.5: A schematic sketch showing the effect of the flow field of r 3 on the motion of r 3 
and IV  In the absence of r 3, the constant frequency-constant separation motion of To and Ti 
(about their center of vorticity) is shown by the dashed circles. The presence of r 3 distorts these 
circular orbits in the m anner shown (relative to the perturbed center of vorticity of the pair). 
This causes an angular perturbation of 69 per time period of the unperturbed motion. These 
perturbations accumulate over r 3’s time period to give the geometric phase.

We make here several remarks about this system of equations:

1. The equations for (D , 0) are coupled to those for (r, 0). In the general formulation described 
in §2.2, we have made the simplifying assumption that (D, 0) are known and thus show 
up as coefficients in the (r, 6) equations. Here, we derive their evolution in tim e in an 
asymptotic form simultaneously from the above equations along with r  and 9.

2. For e =  0, the equations reduce to a system in which the farfield vortex is infinitely far 
away and the two vortices T i and rotate around their center of vorticity.

3. When 0 < e «  1, the farfield vortex T3 is almost equidistant from the other two. The 
motion of Ti and T2 can be thought of as a small perturbation of the e =  0 problem, 
see Figure 2.5. As discussed later, the motion of T3 approaches the motion it would have 
if it were co-orbiting a vortex of strength Ti -I- IV

4. We define a (dimensioned) time period as the time taken by T3 for an angular change of 
2jt in 0. As a consequence of the previous remark, it is easy to see that for small ( this 
time period varies as jjj-. Hence, the nondimensionalised tim e period T  is 0{~^) and we 
can assume the slow time scale r  =  e2t
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5. Note that with ao =  0 the last two equations decouple from the rest, D  is a  constant and <j> 
varies linearly with r . This solution gives the familiar result of two point vortices rotating 
uniformly about a common (fixed) point. The first two equations then represent the motion 
of a fluid particle in such a flow (a ‘restricted’ three-vortex problem) and are of the form 
represented by (2.1) and (2.2).

Using the multi-scale ‘ansatz,’ we get a system of four PDEs (with the above initial conditions) 
and we seek an asymptotic series solution to this system in powers of e:

r  =  E£L0e 'ry (f, r),

0 = '2 g sOe>eJ {t,T),

D = 2 J L 0 e ’'D j ( t , T ) ,

<t> =  i : j L 0 €j 4 > j( t ,  t ) ,  

r o ( 0 ) =  l , 0 o(O) =  O i , D 0 (  0 ) =  l , t f o( 0 ) = 0 ,

where:

and r7(0) =  0,0/(0) =  0, D j(0) =  0, <f>j(0) =  0 for all other j.
Following the method outlined in §2.2 we arrive a t the solutions until 0 ( e 2) as listed below:

ro =  1,
a _  f_\

— ---- 2 jr-----‘ +  M r ),
Do =  1,

( c * i  +  O r j  +  0 - 3 )
<f> 0

2 jr

ri =  0,

01 =  M r ) ,

D\ =  — ^ — cos(<fo - 60) +  D i( t) ,
cn +  0 2

Qf*> -
<t> 1 = ------ f — sin(0 o — 6 0 ) +  <^i(r),

Qi ■+■ ao

r2  =  9  ) “ s P W o  -  # o )]  +  r 2 ( r ) ,1 (ai +  0 2 )
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( a i  +  q 2)

~^2 (ai°+  Q, ) i2cos(2^ °  ~ g°)) +  ^ 2 (r),

. a 2 l2sin(2(0o - 0 o ) )  . <*2 /=, • a ,
0 2  =  [7---- ------rj"— ------ — + 7 --------  r/?isin(0 o - 0 O)( a 1 + a 2) J 2  ( a i + a 2)

- 7— x — 7 ( ^ 1  ~  ^1 ) cos(0o -  &o) +(q i +  a 2)

The solution for 60 displays the characteristic decomposition into a fast term and a slow term . 
The slow phase equation for #o(f)(=  #s) comes from imposing the solvability condition in the 02 
equation. Thus,

So  =  So(0) =  D,.
aT 7T

The solutions listed above give all the information necessary6 to solve for r2(r) by imposing the 
solvability condition in the 0 (e4) equation in r . Before doing that however we make the following 
important point.

The leading order terms of D  and <j> do not depend on the fast time. It is clear looking a t 
Do and <j>0 th a t 1̂ 3 , to leading order, moves as if co-orbiting a vortex of strength T1 +  T2. It 
is only this circular motion of the farfield vortex that is relevant to the geometric phase. As is 
shown below the phase is determined by the time period of this 2-vortex motion. The higher 
order terms in D  and <f> (which do depend on the fast time) do not play a role. Indeed, if 
one were to solve (2.12) and (2.13) with D =  Do, <f> — <j>0 for the time period of this 2-vortex 
motion then one would get the same solutions for r,-,0 ,- (*=0 ,1 ,2 ) leading to the same value for 
the geometric phase. Making the further observation that (2.12) and (2.13) represent, in such a 
case, the nondimensional equations of motion for a fluid particle in the flow field of two vortices 
of strengths Ti +  T2 and T3  leads us to the following:
P ro p o s itio n  1: The geometric phase in this 3-vortex problem is the same as the geometric 
phase in a ‘restricted’ 3-vortex problem obtained by replacing T1 with I \  -(- T2 and T2 with a fluid  
particle/passive tracer particle.

Proceeding with the computations, the equation we finally get for r2(r) is:

5 Note th a t th e  explicit form of the o th er slow functions, for ex. § i , 4>\ e tc ., need no t be known.
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Hence, the slow phase for this problem is:

6s  = 0o = ^ -  cos(2 9i) +  Oi. (2.16)
Ziz

Next, we estimate the long tim e period T  as defined in remark 4. Since this is not known 
exactly, we derive it as an asymptotic series using the asymptotic series solution for <j> obtained 
from the above analysis. We are interested in only the leading term7 for T . Hence, assuming 
T  ~  To/e2 (To is a constant) we do a leading order balance in the equation 2jt =  <f>o(To/e2) +  

e<t>i (?o A 2) +  -  This gives:

„  4rr2
(Oi +  02 +  03)c2 ’

which is the time period of the 2-vortex motion mentioned above. The Hannay-Berry phase is 
then obtained from (2.9). Thus,

03
= j f  (217)

We can consider some special cases of the above formula:

Case (i):

If T3  =  0 then there exists only one time scale in the problem, there is no slowly varying 
background flow and hence, there is no geometric phase.

Case (ii):

If rt = r2 = r3 then one gets the phase for vortex 2 as

Og =  cos 20,".
O

Case (iii):

If To =  0 then one gets the phase for a fluid particle in the flow field of Ti and as

9J =  F T T 2,rcos2(’'- (2-18)1 1  + 1 3

The special case where T3  =  Ti was analysed by Newton [69].

7 H igher o rder term s in T  do not con tribu te  to  the phase.
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2.3.1 A four-vortex problem

The three-vortex configuration can be extended to a  four-vortex configuration by placing a  fourth 
vortex r 4(>  0) in the vicinity of r 3 as shown in Figure 2.2. There are now two phase object- 
parent vortex pairs with each pair playing the role of farfield vortices for the other pair. When 
these two pairs are well separated we expect their slow motion to approach that of two vortices 
of strengths Ti +To and r 3  +  r 4 respectively. We therefore have an asymptotically defined closed 
orbit as in the three-vortex problem and we try to see if each pair experiences a geometric phase 
a t the end of one period of this two-vortex motion.

To characterize the slow motion of each pair and to set up the equations of motion of the 
system we use the following system of variables used by Khanin [43] although in a different 
context. The equations of motion in Cartesian coordinates follow from (2.10) and (2.11) for 
N  =  4. We change to intervortex polar variables as before, (f, 6) and (t>, u) for the pairs Ti, To 
and I 3 , r 4 respectively. For the slowly varying variables, following Khanin [43], we choose the 
distance and angle (with the horizontal) of the line joining the centers of vorticity of each pair 
respectively. Thus,

1/2 — Vi =  rsin(0), x 2 — xi =  — rcos(0),

1/4 -  2/3 = tisin(i/), x 4 — x3  =  — vcos(u), 

r 3y3 +  r 4t/4 Tij/i +  rayo
r 3 +  r 4 Tj +  r 2

F3 £3 +  r 4x4 +  r 2x2
r 3 +  r 4 r 4 +  r 2

=  Dsin(<t>), 

=  —£>cos(^).

Instead of deriving the equations of motion in these polar variables directly from (2.10) and (2.11) 
we do a further transformation to Khanin’s canonical variables:

• ■ SCiSffe)-
2 U a  +  r J  ’ 

p  d 2 ( r 1 +  r 2 ) ( r 3  +  r 4)
2  r 4 +  r 2 +  r 3  +  r 4

the angle variables remaining unchanged. The Hamiltonian in these variables becomes:

H(R,e,v,v,p,4 ) = ~ ^ [ r Lr 2 tog +  r 3 r 4 log | 2 (r-̂ 4) j

- i- r^ s  log (/1 3 ) +  r  4r 4  log (/i4) +  r 2 r 3  log (/23) +  r 2 r 4  log (/24)],
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where:

/13 =  A 2P + B 2 V + C2R -  2ABy/T&cos(<f>-v) + 2AC\/Pkcos{<l>-6)

- 2 B c W k c o s ( u - 0 ) ,  

/14 =  A2P  +  B2 ^ j  V + C 2R  + 2A B  V P V  castf  -  v)

+2 A C  ' / p H  c o s  (<t> -  9) +  2B C  W h c  os(z/ -  9), 

/ 23  =  A 2P  + B 2V + C2 R - 2AB\/l>Vcos(<t>-v)

- 2AC y/FRcos{<t> -  9) +  2B C  \ /V h c o s ( v  -  9),

l24 = A2P + fl2 Q ^  ^ + C2 ( £ )  R + 2 A b (j ^ V P $ cob( 4 - i,)

- 2 AC V P A cos(<t> - 0 ) -  2B C  ' /& k c o s (v  -  0),

and A, B , C  are the following functions of the vortex strengths:

m rt + r2 + r3 + r4) / 2r4 / 2 r2
V  ( r 3  + r 4 ) ( f i  + r2) ’ °  y  r3 (r3 + r4) ’ °  Vr^rx +  r,)'

The equations of motion in these variables are then easily obtained from the canonical struc­
ture:

dR  _  dH dV  _  dH  dP dH
dt d6 ’ dt dv ' dt d<j>'
d0 _  8H dv _  d H  d<j> dH
dt ~  d R ' dt ~  d V ' dt ~  d P '

We now proceed to nondimensionalize these equations as before:

R V  P
r = « 7' ■’'= « ■  p = / v

where the subscript i  denotes initial values, u  is again chosen to be proportional to the unper­
turbed phase object-parent vortex frequency, but since there are two such pairs we arbitrarily 
choose the pair r x , r 2. Thus u oc 1 /R i .  We pick the same pair for defining the perturbation 
parameter:

•> Ri
e = iv
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For notational convenience we also define:

A’ =  % = =  ( i =  i . 2 ; t  =  ».4).

This gives the following system of non-dimensional equations:

d /i
dt

€ A  ajkM jl
-  4 [  ' 

j = 1 fc=3

d0
dt

_ 1 
4ff

°12 ajkM°k 
R  2Ls2^i

j=lk=3 J

dV
dt

c
4ffA

2 4 »rv
Y "  Y "  Qj* j*
j = l fe=3 ‘jfc

du
dt

II

a w  +  ‘S £i=i fc=3 0*

dP
dt

_ f3 y '  y  ajkOjk

j = lfc=3 ■7*
d<j>
dt

_ e2 ajkOjk

j=lfc=3 J*

where Ijk =  ljk/Pi  and:

M jl  = f j^y /R P  sin(0 — 0) +  A cgfk y/RV  sin(t» — 0),

=  efjk + 9% y /P /R c os(0 -  0) +  At \/W S c o s(i/ -  0),

A ^  =  fJ k tW P V  sin(<f> — v)  +  AegJk'/RVsin(t/ -  0),

^  =  e//* +  ( # * /A )SpJvcos{4> - „ )  +  ( e / A ) & y * -  0),

=  Af?ky/~PVsin(<A -  i/) + g fky /R P sin(0 — 0),

+ <Aff?k\AVPcostf - u ) +  ch%jR/Pcos{4>  -  0),

where:

—fl 3  =  — / 1 4  =  2 <7i 3 =  2 < 7 ® 4  =  513  =  014  =  2 h f 3  =  2 h ^ 4  =  2 / t C ,

/ »  =  f l \  =  -2023 =  “ 2(7*4 =  023 =  024 =  -2A&, =  -2A&  =  2 A C (r i/r a), 

/l3  =  /23 =  —2013 =  “ 2023 =  ~ f l 3  =  “ /m =  ~ “̂ 9 l3  =  “ 2023 =  2A5,

“ /m  =  “ /&  =  2014 =  20^4 =  / £  =  /&  =  20f4 =  2^24 =  2 A S ( r 3 / r 4),

013 =  —2h*3 =  —013 =  —2/ii3 =  2BC,
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-9 1 4  = 2A?4 = 9X4 = 2Ak = 25C(r3/r4),
= 2A5s = <72K3 = 2«3 = 2BC(r1/r2),

= —2A24 = -<& = -2 « 4 = 25C[r3r i/( r4r2)],
/?3 = f U  =  c 2 ,

/ |3 = /?4 = c 2{t 1/ t 2) \

f i a = f i 3 = B 3,

f U  =  /«  = fl2(r3/r4)2,
f P  _  _  ftp _  f<P _  j 2/13 — /l4 — J23 ~  J24 ~ ^ •

We compare this system of equations to the three-vortex system (2.12), (2.13), (2.14) and (2.15).
All the remarks made there apply in an analogous manner here. Note that in addition, dP/dt
and d<j>/dt are of higher order terms in e than dD/dt  and d<f>/dt in the three-vortex system.

Choosing the slow time r  =  e~t, we perform a multi-scale analysis as before and evaluate the
changes in 0 and v  in the time that <f> changes through 2?r. This time period to  leading order
is the time period of the two-vortex motion of Ti +  To and T3 +  T4. The initial conditions are 
/£(0) =  1, 0(0) =  0,-, K(0) =  1, i/(0) =  i/i, P (0) =  1 and <ji(0) =  0. At leading order we get:

Ro == 1>
Ctxot . . .

0o =  ~ ^ -  + ds (T)t
Vq =  1,

“34* , , ,

=  S a *  +  ,/sW - 
Po =  1,

<t>0
_  f  £*13 +  £*14 +  £*23 +  <*24\

V 47T J  T'

indicating the characteristic decomposition into a fast and a slow term in 0 and v .  As before the 
slow phase terms 0s and vs  are determined by 0(e2) term s in R  and V respectively:

dOs  a i 2 - di/s  _  a 34 ^  .
j T  -  ■ j T  -  - 5Sa= (2' 191

with initial conditions 0s (0) =  0,- and t/s(0) =  1 Proceeding to 0(e4) we get

C 2R 2(r) = R2( 0) =  -  

V2 (r) =  V2(0) =  -

£*12-A2

B ~ \ 2
a 34A2

£*13 +  £*14 +  ( a 23 +  a 24) j cos 20,-,

£*13 +  < * 2 3  +  ( a i 4  +  a 24) j cos 2i/,-,
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From the tj>o equation we get T  ~  87r / ( a 13 +  a i 4  +  0 3 3  4- 0 3 4 ) and this leads to the geometric 
phase in 6 and v:

r3 + r 4 
Ti + r 2 + r 3 + r 4

Ti +  Ta
ri + r2 + r 3 + r4

6g =  ——— —— — —— 27rcos20,-,

27rcos2i

For r 4  =  0, 0g gives the geometric phase derived in §2.3 and ug gives the geometric phase for a 
passive particle in the vicinity of T3  in the three-vortex problem.

2.4  A  point vortex  in  a circle

In this problem we consider the influence of a rigid boundary in a simple problem. We track a 
fluid particle orbiting a  point vortex in a circle as in Figure 2.3. The vortex is stationary when 
at the center of the circle and moves in a concentric circular orbit with constant speed when 
displaced from the center. See [99, 100] for some interesting recent work on this flowfield.

The circular motion of the vortex is governed by the Hamiltonian 
Hv{p,q) =  logf/?? — (p2 +  <?2)], where p, q are the (canonical) coordinates of the vortex of 
strength F in a Cartesian frame centred at the origin of the circle and /?a is the radius of the 
circle. If /J i(=  \ fp 2 + q2) denotes the radius of the vortex motion then its speed along its orbit 
is given b y F r o m  this it follows that the tim e period of the vortex motion is given by 

T  =  ^y~(R2 — R\). The motion of the fluid particle is also governed by a  Hamiltonian system 
of equations. For R\ =  0, the vortex remains stationary at the center of the circle and the 
particle motion is not affected by the boundary since the boundary is a streamline for the time
independent flow. It orbits the vortex in circular motion just as in an unbounded flow. If Ri 0,
for (canonical) coordinates x, y  in the same frame as above, the Hamiltonian is:

11 < 4\ _  r  1 r ( « - P)2 +  (y ~  g)2 1 _  ,^ 2 ,a
( r ,y ’ ) 4 k  ° S  [ ( x  — ap)2 +  (y — a?)2 J ’ “

where the explicit time dependency of the Hamiltonian is due to the motion of the vortex. It is 
clear from the form of the Hamiltonian that the equivalent flow without boundary can be achieved 
by placing an image vortex (the farfield vortex) of strength —r  at radius R \ / R \ .  The distance 
between the given vortex and the image vortex is, therefore, (a — l)i? t =  D  a t all times. The 
time period of the vortex motion can be rewritten in terms of this distance a s T  =  ^p-(a — l) f l2.

For the phase calculation, we convert to the relative coordinates r, 6 as in the previous prob­
lem:

x —p =  —f  cos0, x  — ap = Dcos4> — fcosfl,

y  — q =  fsinfl, y — aq = — Dsin<j> + rsinfl,
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where 4> =  ^  (r i Lr 7) =  5F(a ~i)R7 *s t îe angular velocity of the vortex. The small parameter 
for the adiabatic problem is chosen, as before, as being proportional to the ratio of the initial 
particle-vortex distance, Ri, to  the distance between the parent vortex and farfield vortex D. 
Specifically,

Ri
£ = d -

The scheme for non-dimensionalising the variables is the same as before i.e. f  by Ri and t 
by u> where u  is proportioned to the frequency of the particle about an isolated vortex in the 
absence of the boundary i.e. to  ^y. This defines the nondimensional constant a  as before. The 
nondimensioned time period o f the vortex motion becomes:

a(a  — l)e2 ”  e2’

and the slowly varying angle coefficient <f> =  The nondimensional equations of motion
for the particle are:

dr a  T • esin(d — 0)
dt 2k r m 1 — 2er cos(<f> — 9) + e2r 2 ’
d9 _  a T 1 ^ cos(d — 9) — e2 ecos(<f> — 9)
dt 2k  [ r 2 1 — 2ercos(<f> — 9) + e2r2 r

with initial conditons r(0) =  1,0(0) =  0,-.
These equations have the general structure of equations (2.1) and (2.2) discussed in §2.2. We 

choose the slow time scale r  =  e2<, verify that the assumptions made in that section hold here 
and make a direct comparison of terms. We have:

Q er2sin(0 — 0) — rsin ^2{4> — #)]

2?r 1 — 2ercos(0 — 0) +  e2r 2
a 
2k

Hence,

fo =  /  ( r  =  1,0 =  ft* +0o,0 , e =  0^ ,

= £ -* > ) ] •

Hence,

,  _  c o s 2 0 iI fo<R\t=o — ------2 — ’
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and the slow phase term  from (2.5) is:

6s =  0o(f) =  — ̂ -rcos25f +0,-. (2.20)27T

Therefore, the Hannay-Berry phase in this problem using (2.9) is:

r0
9a

=  ~ ( ^ 1 )  ° " i W ‘ =  ~ ( f r y  -  1 c o s 2 g "  ( 2 ' 2 I )

2.5 A  m ixing layer m odel

2.5.1 The m odel

Consider an infinite number of equally spaced point vortices of the same strength and sign. 
The vortices in this configuration are all stationary due to the symmetry of the flow field about 
horizontal and vertical axes passing through any point vortex. If the strength of each vortex is 
T and the spacing between vortices is a, then the complex potential of the flow is given by (see 
[48], p. 224) :8

“’(-') = - S lossinK LT ^ ) ] '
where ;  =  x-biy  is an arbitrary point in the flowfield and zvor = x vor + iyvor denotes the position 
of any one vortex in the row in some chosen x-y  coordinate system. (The row is assumed to be 
parallel to the x-axis). The flow field is given by:

= £ _________ sinh[27r ( * ^ ) ] _________
dt 2a cosh [2tt ( !4—̂E2t)] — cos [2v  ( £—§““ )] '
dy  =  _  £ _________ Sin [27r ( £ = f ^ ) ] _________
dt 2a cosh [2rr — cos [2;r ( ^ - f 1̂ ) ]

Note that the equations of motion are invariant with respect to any transformation zvor —► 
zvor ±  na, n = 1 ,2 ,.... If the symmetry about the vertical axis is broken by a perturbation that 
pushes every adjacent pair of vortices towards each other by an amount A, as shown in Figure
2.4, then the vortices sta rt moving in pairs. They move such that each vortex in a pair orbits 
the other in a closed path. This motion is the same for every pair. The flowfield can be viewed

8The complex po ten tia l is obtained by add ing  th e  complex po tential due to  each vortex, ignoring co n stan t 

term s and using the re la tion  sin z — nr., (■ -  to  simplify.
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as the superposition of two infinite evenly spaced rows [59], each with inter-vortex spacing 2a. 
The motion of a  vortex in row 1 is influenced only by the vortices in row 2 and vice-versa.

We choose an x-y  coordinate system in which the x-axis coincides with the direction of the 
original unperturbed row. Then if (xvor,yVOr) are the coordinates of any one vortex in a row, 
the coordinates of any vortex in the opposite row are of the form:

(2n a -  x vor, - y vor), n = 0, ± 1 , ± 2 ,.... (2.24)

Since a point vortex moves like a fluid particle in its place, the equations of motion of any vortex 
in either row are given by (2.22) and (2.23) with a replaced by 2a. Thus, the equations of motion 
for the perturbed vortices are:

dxvor = T sinh [Sag™]
dt 4a cosh [—^-°r ] — cos [2?*l“ir] ’

dyvor _  r  sin [*=*“ *]
dt 4a cosh [2iry■'<”•] — cos [2’r*lf‘ir]

It is easily checked that the above system (2.25), (2.26) is Hamiltonian with:

(2.25)

(2.26)

, /27ryt;0r 2irxvor .cosh( ) -  cos( ) , (2.27)

which is an invariant of the motion. Using this fact, an exact solution can be obtained for initial 
conditions xuor(0) =  a /2  — A ,t/uor(0) =  0 in terms of the Jacobi elliptic functions:

t a n ( ^ ^ )  =  c o t ( ^ | c n [ j 0 , t ) ,  (2.28)

,2 ,2 ,

where k =  cos2( )  is the modulus of the associated (incomplete) elliptic integrals of the first 
kind [19]. Note th a t when A  is small, k is close to 1 and when A  is near a/2  i.e. when the vortices 
in each pair eire close to each other, k is close to 0. The tim e period of the vortex motion, T, is 
related in a simple manner to the complete elliptic integral, K ,  as:

r = i ^ A r .
Trr

Since K  has infinite series representations in terms of the modulus k , [19] the time period T  can
also be represented exactly by an infinite series. We choose the following representation for K :

ts _  v  V " (|)m( )̂m 1.2m mi
A - 2  V  m!m! * ’ (230)m = 0
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where ( j)o  =  1, (x)m =  ? (b +  1) (x +  m — 1) for m =  1 ,2 ,... and ml represents factorial of
m. Hence:

T  =
16Ara2

*T
°° (£)m(£) 

2 mlml

OU

m=0

m ĵ 2m

8a2
r

£  ( iW iO m fe2m+1

,m=0 mlml

The equations of motion, in x-y  coordinates, for the particle in the perturbed field are shown 
below. These equations are obtained from (2.22) and (2.23) using relation (2.24):

dx
dt

sinh [x ( a- ^ ) ]
4a cosh [x (gr^-= )] — cos [x ( £- f “ t )]

_ T ________ sin h [7 r(g ± g ^)]________
4a cosh [x ( v°--.)] _  cos ^  (£±£sac.)J ’ (2.31)

dy _  _ T _ ________ Sin [ ^ ( £ = £ ^ ) ] ________
dt 4a cosh [x (£ :%?■?';)] — cos [x ( r-~^°r )]

T sin [x (£±§““ -)]
4a cosh [x (K±yv?r)J _  cos [„• (£±£iuir.)j ’

where (x vor,yvor) refer to the coordinates of any one vortex in either row.

(2.32)

2.5.2 The geom etric phase in the m odel

For the geometric phase calculation in this model we focus on a pair of nearest vortices from 
opposite rows as shown in Figure 2.6. We use, as before, r  for the particle-parent vortex distance9 
and D  for the parent vortex-farfield vortex distance, and 9 and <f> for their respective angles with 
the horizontal axis. The origin of the x-y  coordinate system (chosen earlier so that the x-axis 
coincided with the original unperturbed row) is now fixed midway between the two vortices. We 
thus obtain the transformations:

x  — x VOr =  —rcosfl, 2x vor = Dcostj),

y  — yvor =  rsinfl, 2yvor = — Dsia<j>.

9 T he paren t vortex could be chosen to  be either vortex of th e  pair.
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Figure 2.6: An orbiting pair of vortices (filled circles) and a fluid particle (unfilled circle) in the
mixing layer model. The cartesian X -Y  frame is centered at the midpoint o f the line joining the
vortices

It follows that

Z  +  X vo r  =  D c O S < f)  —  f c O S 0 ,  

y + Uvor = -Dsm<fr + r s in 0.

Denoting initial distances by r,- and £), respectively (note that Di =  a — 2A), we introduce 
non-dimensional variables as before:

D  =
D_
Di

For notational convenience, we introduce the nondimensional parameter 6 =  Thus, k  =
sin2(<f/2). The small parameter e is defined as:

X 1 € =  0 — .
Di

The tim e is non-dimensionalised as

t = Ujt,
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where w, for fixed is a  frequency proportional to that of a particle around an isolated vortex 
in unbounded flow. We define it as:

U “  Airkrf'
*T 1 

Akar e2

The arguments of the elliptic functions in (2.28) and (2.29), thus, transform as:

irTt

(2.33)

4*«> =  e>“ ‘ =  A '

which is the slow time scale of the motion of the vortices. The nondimensional time period is:

- f -
Note that this nondimensional time period depends on S through K.

With these transformations the nondimensional equations of motion for the particle in (r, 0) 
become:

dr
T t = kt

Sh cosh(ersin0) cos 0 — Ch sinh(ersin 0) cos0 — St cos(ercosfl) sin 0 + C t sin(ercos 0) sin0
—Sh sinh(ersin0) +  Ch cosh(ersin0) — St sin(ercos0) — Ct cos(er cos 0)

sin (er cos 0) sin0 — sinh(ersin0)cos 0 St sin0 — Sh cos 0 
H---------------------------------:-------- 77-------- Fcosh(ersin0) — cos(ercos0) C h - C t

(2.34)

d6_
dt

*e
r

—Sh cosh(ersin0)sin0 +  Ch sinh(ersinfl) sin 0 — St cos (er cos 0) cos 0 +  Ct sin(ercos<?) cosO
—Sh sinh(ers:n0) +  Ch cosh(er sin 0) — St sin(er cos 0) — Ct cos(er cos 0)

^sin (er cos 0) cos 9 +  sinh(er sin 0) sin 0 ^  St cos 0 + Sh sin 0
cosh(er sin 0) — cos(er cos 0) Ch Ct

(2.35)

where

S*(e20

Ch(t2t)

St (e2t)

Ct ((2t)

sinh(<f£>(e2t) sin0(e2t)), 

cosh(<f£)(e2<) sin 4>{e2t )), 

sin(SD{e~t) cos<£(e2<)), 

cos(«fD(e2f) cos^(e2/)),
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are functions of the vortex motion and C* — Ct =  L is an invariant. For the chosen initial 
conditions of the vortex (D(0) =  1,0(0) =  0), L =  1 — cosd =  2k. The initial conditions for the 
particle are r(0) =  1,0(0) =  0,-.

The equations of motion as written above can be brought in the form of (2.1) and (2.2) by 
expanding (for small e) the trigonometric and hyperbolic functions tha t appear in them. This 
enables us to rewrite them as:

%  =  e2/ ( r ,0 .0 ,0 ,c ) ,  
00 2k

where /  and g sire infinite series obtained from the expansions. The series for /  is of the following 
form:

r ShSt/ ( r ,  0, D, 0, e) =  kr  cos 20 +  ^ ^ 2" c -  x ) sin 20f S l - S 2 2 \  . 
\  2L* 3 ) +  f / i ( r ,0 ,  £>,0) +

Denoting the slow time by r  =  e2t we apply the multi-scale method as outlined in §2.2. As per 
our notation we denote functions of r  alone by overhead ~ . We verify tha t the assumptions made
in that section hold here and by a direct comparision of terms we get:

Q = 2k,

fo =  f ( r  = l,0  =  fit +  0o,£>,0,e =  O),

=  k [2 ( 2kt  +  0O) ]  +  ^ - <2£2^t ~  sin [2 ( 2** +  *0) ]

Hence,

f  r ^  1 r 5 fc(0)5t (0) . n<1 /5 2 (0 ) — 5^(0) 2 \J  fodt\t=o =  -  | — sin 20,- -  I -  -  j  cos 20,-

= ( l i r ) ” 525''

The slow phase term from (2.5) is:

0s  =  0o(r) =  rcos2 «̂ +  0i• (2.36)

Hence, the Hannay-Berry phase in this problem as given by (2.9) is:

r4K 

10

o _  r K  des ,
3 -  Jo ■* ’
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where K  is given by (2.30). Note th a t K  depends on S. As J  —> 0 i.e. as A -*■ a /2 , we get k -»  0 
and K  —> k/2  and the above phase approaches the value obtained by Newton [69] as a  special 
case of the 3-vortex problem, i.e. 7 t c o s 2 0,-.
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Chapter 3

T he geom etric interpretation

In this chapter we give a geometric interpretation of the phases calculated in the previous point 
vortex configurations. In §3.1 we present a simple interpretation which shows that the phase 
can be expressed as an integral in the plane around a closed vortex orbit. In §3.2 we present an 
interpretation in terms of holonomy and connections. At the end of the section we make some 
comments on the geometric phase in a non-adiabatic three vortex problem.

3.1 T he phase as a contour integral

To develop a geometric interpretation of the Hannay-Berry phase, we seek to express the phase 
as an integral around a closed path of a 1-form defined on the parameter space. We identify the 
parameter space with some open subset U of the physical plane on which the point vortices move. 
We define U appropriately in each problem later. The closed path is a smooth vortex orbit in 
U coordinatized by r . In the second and third problems, such orbits naturally exist in U due to 
the periodicity of the vortex motion in the physical plane and its dependency on the slow time 
alone. In the three-vortex and four-vortex problems, such curves do not exist, but as was shown 
in these problems the geometric phase is determined by the asymptotically defined two-vortex 
motion in each. This motion is periodic and depends on the slow time alone, we therefore look 
at their closed orbits in U. The orbits for different initial conditions are non-intersecting1 and 
have a well-defined common center. We then make use of the fact that the geometric phase is 
the integral of a term that depends on the slow time r  alone as given by (2.9). Our goal then is 
to rewrite this integral, which is in terms of the orbit coordinate r , in terms of orbit coordinates 
in U, which transforms the time integral into a contour integral in U. We then show that the 
integrand defines a I-form on U and we have our desired result. The details of this procedure 
are described below.

1 Each being the unique solution for the  given initial conditions o f the  ODEs governing the vortex m otion.
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Choose a point in the  plane as the origin of a Cartesian X -Y  frame. In each case, this 
point is the common center of the set of dosed vortex orbits mentioned above. Note that the 
parameter space U is not simply connected as it is the union of these concentric closed orbits. 
We then change the coordinate of our closed orbit from r  to <j> which, as before, is the angle with 
the negative X-axis (measured in the clockwise direction). Introduce the real-valued function 
u i(4 > )  =  d<i>/dT which can be viewed as the angular velocity of the vortex in its orbit. Since the 
motion of the vortex along the closed path is well-defined at all points so is «*(<£), and it can, in 
principle, be obtained from the equations of motion of the vortex. We indicate its dependency 
on tj> to show that it can in general vary along the orbit. In all problems is one-signed for 
all <j> G [0,27r]. We then rewrite (2.9) as:

Bg =  f ^ Q d r ,  
Jo
f2ir

= / '  (3.1)Jo W/(0)

where C/ =  dOs/dr (=  2fi f  fodt\t=Q) is a constant along the closed orbit. The subscript I denotes 
the orbit-dependency of these quantities. The next step is to note that <j> =  tan ~ l (—Y /X )  which 
gives:

= _ ( Y d X - X d Y \
J u , ( X , Y ) \  X 2 +  Y 2 J  ^

Hence, the geometric phase is expressed as a contour integral in the param eter space. The 
integrand of (3.2) does not as yet define a 1-form on U since C/ and ui are orbit-specific. However 
since U is the union of such concentric, closed orbits and Ct, u)t are defined on each orbit, it is 
possible to define a 1-form on U by smoothly extending Ct and wj in (3.2) to all of U. This 
defines the following 1-form on U:

__ C (X ,Y ) ( Y d X - X d Y \
7u v  (X, Y) V X 2 +  Y 2 ) '  ( ’

where we have now removed the subscript I. Therefore,

Bg = j> In-

We now apply this procedure in each of our problems.

T he three-vortex problem :
It is clear from the observations made in §2.3 that there exists well-defined closed paths in the 

plane associated with the geometric phase in this problem. These closed paths are the concentric 
circular orbits of T3  and Ti +  To in a two-vortex motion as shown in Figure 3.1. We define
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U =  R 2 — {o}, where o is the center of vorticity of the two vortices and is the common center 
of the orbits of both vortices. The motion of each vortex in the Cartesian frame is defined by 
<£(r) =  fa  =  ( o r i  + 0 2 + 0 3 ) r / 2 ;r. Hence u/j =  u> =  (a i+ a 2 + a 3 )/2 7 r  is a constant and is the same 
for all vortex orbits. Noting that C/ =  C  =  (0 3 / 2 ^) cos20,- from (2.16), we can then rewrite the 
geometric phase in this problem using (3.2) as:

* “ /  (jPTy*« - x f a " )  fTTTTTr;-2'’-
where X, Y  are the Cartesian coordinates of either of the two vortices and the contour is its 
closed orbit. This defines the 1-form on U:

*  = -  x ^ d Y )  r. + S  + r ,” ” "

Let the radius of the circular vortex orbit in V  be denoted by R. Since X 2 -f- Y 2 = R 2 and 
f  (Y d X  — X d Y )  =  2A v (using Stokes’ Theorem) where A v = nR- is the area swept out by the 
orbit of the vortex, we get another expression for the geometric phase in this problem which is 
reminiscent of the geometric phase in the particle on a  hoop problem (eqn. ( 1 -1 )):

where L is the circumference of the

L3 a
W  r .  +  ^  +  r , '” 5211'-
8 k 2a v r3 - cos 29i ,

l 2 rx + r2 + r3
circle swept ou t by the vortex, i.e. L =  2kR.

T he four-vortex problem :
Analogous to the three-vortex problem, o is the center of vorticity of the two-vortex motion of 

r !  +  r 2 and r3 +  r 4 and U =  R 2 —{o}. The closed paths are the concentric circular orbits of these 
two vortices and they have a common angular velocity about o, w/ =  u  =  (q i + 0 2  +  0 3  +  0 4 ) / 27r. 
Noting the two values o fC j(=  C) from (2.19), the geometric phases can be written as (using (3.2)):

dg = /  ( x 2 + k2^y “ x 2 + y2</r)  r! + r 2 + r3 + r4 cos 2 d i '

Ug = /  ( x 2 + y 2<i x  ~  x 2 + y 2<fy)  r x + r 2 + r3 + r4 003 2t/”

and the respective 1-forms on U are:

7“° = ( x 2 + y 2<fX ~ x 2 + y 2<iy)  r! + r 2 + r3 + r4cos2^ ’ 

7“1/> = ^ x 2 +  y n- d X  ~  x 2 + y2<fy)  ri + r 2 + r3 + r4 cos2l/i'
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r,+r

Figure 3.1: For the geometric interpretation in the three-vortex (four-vortex) problem we look 
at the circular orbits of the two-vortex motion of Ti +  To and r3(r3 +  r4). The common center 
of all orbits is the center of vorticity of this two-vortex motion (denoted by o).

In terms of the area and the circumference of the circular vortex orbit, we get:

_ 2A V r3 + r4_ oa

3 ” r ?  rt + r2 + r3 + r4 cos
-  8,rM “ r3  +  r4  cos 26 i,

l 2 ri + r2 + r3 -i- r4 
a v r ! - t - r 2 
s2 rr + r2 + r3 +

8n2A v f i  +  r 2

_ 2a v r i -h r2___
1,3 ~  r 2 rr + r2 + r3 + r4 cos Vi'

COS 2 Vi,
l 2 Ti + r2 + r3 + r4

where .4„, R  and L are the same quantities defined in the three-vortex problem.

The vortex  in  a  c ircle problem:
Here, the closed paths are the circular vortex orbits with common center a t o the center of 

the physical domain, i.e. the circle. We define U = (JP S (r) : 0 <  r  < R 2, where S(r)  is the circle 
of radius r  centered at o. The vortex motion is defined by <p(r) =  (a/2n){a — l ) r .  Hence ut =  
(a/2x)(a  — 1) is again a  constant but varies with the orbits. Referring to §2.4, a = R \ / (p2 +  q2) 
where p, q are the coordinates of the vortex in its circular orbit. We write X  =  p //J 2, Y  =  q /R 2, 
hence u  =  (a /2 ir )(X 2 +  Y 2)/[  1 -  (X 2 -f-V2)]. Noting th a t C{ = C  = ~ (a /2 jr) cos 29{ from (2.20) 
we can rewrite the geometric phase in this problem using (3.2) as:

■ - -  /  ^  ( x ^ dx -  x ^ dY)  ■
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where the contour is the closed vortex orbit. The 1-form on U becomes:

Tu =  { Y d x  ~  X dY )  ‘

Another expression for the phase is obtained in a similiar way as in the 3-vortex problem (using 
Stokes’ Theorem):

2 A v 
(a ~  l ) R i

8 A„jt2

Qg =  — --------~-n 2 cos 20,,

cos 20,-
(a -  1)£2

where A u =  x R \  is the area of the vortex circle, with circumference L =  2 x R i .

T h e  m ixing layer p ro b lem :
As in the previous chapter we focus on a periodic window of adjacent vortices. The vortex 

orbits are obtained by varying the subharmonic perturbation A in the open interval 0 <  A < a /2 . 
These orbits fill a deleted neighbourhood U of their common center o which lies midway between 
the vortices as shown in Figure 3.2. In other words, U = 1JA O(A) : 0 <  A <  a/2, where 
0(A) is the orbit corresponding to A. Note that O(A) is the same for both vortices. To obtain 
ui(<t>) =  d<p/dr, we rewrite (2.25) and (2.26) in D  and <f> coordinates:

2k
ui{<j>) =d<j>/dr= -j j j  [sinh(Osin d) sin <t> + sin(Dcos0) cos 0],

where, with reference to the variables used in (2.25) and (2.26), X  =  2nxvor/a  =  — Dcos <f>, Y  =  
2nyvor/a =  O sin</>, r  =  (nT<)/(4A:a2) and I  is the invariant exp(8rr/f/r), where H  is given 
by (2.27). For the initial conditions xUOr(0) =  a /2  — A, yUOr(0) =  0 we can write I  = 2k since 
k = cos2(rrA/a). Hence u  =  wj. Noting tha t Ci = (k + 3)cos20,/6 from (2.36) we can then 
rewrite the geometric phase in this problem using (3.2) as:

r{k-(-3) cos 20{ YdX -  XdY 
9 ~ J  6 [FsinhK  +  X sinX ]'

Noting that k =  (cosh Y  — cos X )/2 ,  we get the 1-form on U as:

(cosh Y -  cos X +  6) (YdX -  XdY) cos 20,- 
7u “  12 (F  sinh F  +  X  sin A')

In the limiting case in which A —> a/2  the vortices pair in (approximately) circular orbits. The
orbit size becomes smaller and we have X, Y  —► 0. Noting that k —► 0 in this limit we get

/  cos 20, YdX -  XdY 
e9 =  f —  y 2 +  * 2
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confirming the result obtained by Newton [69].

^ ^

a

Figure 3.2: For the geometric interpretation in the mixing layer problem we look at the closed 
orbits of the vortex pair (in a periodic window). These orbits are defined for all values of the 
subharmonic perturbation D  lying between zero and a/2 . The common center of these orbits, 
corresponding to D = a /2 , is denoted by o. The position of the vortices in the unperturbed 
configuration is shown by the vertical dashed lines

3.2 T h e phase as the holonom y o f  a  connection

In this section we show how the geometric phases of the previous chapter can also be viewed as 
the holonomy of appropriately defined connections on a principal fiber bundle. In each problem 
the connection which defines the parallel translation is determined by the ratio of two angular 
velocities: the slow phase term angular velocity dB s/dr  induced on the phase object by the 
farfield vortices, and the angular velocity, of the periodic vortex in its closed orbit, as
defined in the last section. The principal fiber bundle is a family of ‘unperturbed’ systems (the 
fibers) over the domain U (the base space) defined in the previous section. The unperturbed 
system is the product of the configuration spaces of each phase object-parent vortex system in 
the absence of the farfield vortices. In all problems, except the four-vortex problem, this space, 
for any initial condition, is diffeomorphic to  the unit circle S 1. In the four-vortex problem, since 
there are two phase object-parent vortex pairs, this space is diffeomorphic to S l x S 1. The base 
space in all problems can be viewed as the open domain U C R 2 defined in the previous section as 
the union of non-intersecting, concentric closed vortex orbits. However since each of these orbits 
is again diffeomorphic to the unit circle and since our attention is focussed only on such closed 
loops in U, we can also identify the base space with S 1. We therefore formulate T h e o re m  1
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for the trivial principal bundle tt : S 1 x S 1 —► S 1. We then extend this to T heo rem  l a  for the 
bundle ir : (5 1 x S 1) x S 1 -*• S 1 in the four-vortex problem and then finally to T h eo rem  2  for 
the bundle n : S 1 x U —»• U.

First consider the trivial principal fiber bundle ir : £  =  S 1 x  S 1 S 1. Since £  is a product 
space, any point e E £  can be represented by e =  (f , b ), where 6  =  7r(e), /  E £&, and £&(= 5 1) 
is the fiber at 6 . Choose coordinates (9 , <f>) on £ , with ir(0 , <f>) =  <f>, and denote the tangent space 
at e E E  as TeE. Note that TeE  =  Te(S l x  S 1) — T /S 1 x 7^5 1 S  R  x R , where =  denotes 
vector space isomorphism, TbS1 is the tangent space to the base a t b and T jS 1 is the tangent 
space to Fb at / .  Choosing the naturally defined coordinate basis on TeE  we can identify any 
vector T) €  TeE  by its components (779, t]#) €  R  x R .

To show the existense of a  connection, recall th a t in the previous section we showed that 
there is defined a 1-form on U in each problem. However the fact that we could express the 
geometric phase as an integral around each closed vortex orbit implies that there is also defined 
a 1-form on each orbit and hence on S l . Indeed going back to equation (3.1), which defines the 
following equation between differentials:

dOs =  Ci —~rn< (3-4)ui(<p)

we see that the right hand side of the above equation defines a 1-form 7  on the base manifold 
S 1:

< 3 - 5 >

(where, to simplify notation, we have removed the subscript I in v(<f>)). In other words, 7  defines 
a real-valued linear m ap on TbS1 at each point b (with coordinate <j>) of the base. 2 Thus, if 
r)4> €  TbS1, then 7 (77$) =  However since T / S 1 = R  for all /  6  F>, we can view the form
as associating a vector field on the fiber Fb at each 6  G TbS1. Thus v{<j>)Tĵ  E T /S 1 for each 
/  G Fb. This vector field can be trivially extended to  a vector field on £  as E T’e£  at
each /  E £ft. The elements of this vector field are still tangent to Fb. Recall that we said in §1.2 
that the horizontal lift associates a vector field on E  along (but not necessarily tangent to) the 
fiber at b. To extend our vector field to such a vector field and thereby obtain a horizontal lift, 
we add the base vector (viewed as an element of TeE) at each point. This gives the vector field 
along Fb whose elements are 0) +  (0 ,77̂ ) =  77̂ ) E TeE . Such a construction can
be done at every 6 on the base. It is trivial to show th a t this defines a  horizontal lift. Associated

2 In general a  1-form on a  m anifold defines a  m ulti-linear skew -sym m etric m ap  on th e  tangent space a t  each
poin t on the  manifold. O n a  1-dimensional manifold this reduces to  a  linear m ap on the  tangent space a t  each
point.
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with this horizontal lift is a direct sum decomposition of TeE. Any vector (jj$, *?$>) £ T eE  can be 
written uniquely as:

(Ve, Vt) = {f)e -  n ,  0) +  (v(0)t?<>, ^ ) ,  (3.6)

where (t]g — v(4>)t]$, 0) £  T j S 1 =  Ve is the vertical part and (t>(0)»/ ,̂ ij$) £  H e is the horizontal 
part. He (the span of all vectors t]#)) is a 1-dimensional subspace of TeE  at each e.
Thus TeE  =  He ® Ve and this construction defines a connection on E.

If we now look at the constant-frequency constant-separation motion of the unperturbed 
phase object-parent vortex pair then it is represented by a  circular orbit on E  with coordinates 

=constant). The leading order perturbation term due to the farfield vortices is 6s 
(remember that there is no leading order change in the separation). This perturbation causes 
the circular orbit on E  to drift and thus wind around the torus. It is now defined by

(*(t) =  M O  +  M O .  *(<))• (3-7)

The tangent vector to this orbit lies in TeE  at each e. According to (3.6) we can write it as:

(dO d<j>\ _  (dO d<j> \  (  d4> d<t>\

Using (3.4) and (3.7), we can rewrite this as:

(d 6  d 0 \  _  fd 6  dds  \  ( d6s d £ \
\ d t ’ dt J  ~  \  dt dt ’ )  ^  \  dt ' d t )  '

_  / dOp n\  , ( d6s dtj>\
-  V dt ' J  \ d t  ’ dt J  •

This clearly shows, as discussed in §1.2, that the vertical part of the tangent vector is the rate of 
evolution at the unperturbed frequency leading to the dynamic phase and the vertical drift due 
to the horizontal part gives the geometric phase at the end of one circuit around the base cir­
cle representing the closed vortex orbit in U. The geometric interpretation can be summarized as:

T h e o re m  1: The geometric phase in each o f the three point vortex configurations can be viewed 
as the holonomy o f a flat connection3 on the trivial principal bundle rr : E  =  S l x S 1 —* S 1. E  
(the 2-torus) is diffeomorphic to the product space of the unperturbed phase object-parent vortex

3 For the  definition of a  flat connection, see rem ark  a t  the  end of th is section.
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configuration space and the closed vortex orbit in U, the fiber at each point being diffeomorphic 
to the configuration space. The connection l-form is given by

5 = dO — v(<j>)d<j>, (3.8)

where (0, <j>) are the torus coordinates and v(<f>) is the ratio o f the constant slow phase ‘angular 
velocity’, dd s/dr, induced by the farfield vortices, and the angular velocity o f the vortex in the 
closed orbit, wi(<j>).

For the four-vortex problem, we consider the trivial principal bundle jt : E  =  S 1 x S 1 x S 1 —► 
S 1. In coordinates tt(0, u, <j>) =  <j>, we have two 1-forms defined on the base manifold S l associated 
with the geometric phase of each pair:

7 9  =  ^ Ŝ d<j> =  v{4>)d<t>, “fu =  = w(4>)dd>. (3.9)

Thus 7 9 (^0 ) =  v(4>)t)4, and iv iv t)  =  w{4>)r)$ for t)$ 6  TbS1. Now define the vector-valued 1-form

V
l i 1!*) =  (79(»7«).7AV*)) =  (w(0)»7*.»0(0)>fa),

which again due to the isomorphism Tf (S 1 x 5 1) 55 R x  R  V / e  f t  can be viewed as the linear 
map 7  : TbS1 —> X Fb, where X Fh is the space of vector fields on the fiber F&. Proceeding in the 
same way as before leads to the definition of a  horizontal lift and a direct sum decomposition of 
TeE:

(r]e,Vu,V<t>) =  (ve  -  u(<£)»?*, r)„ -  w [< j> )^ ,  0) +  (u(<£)t?*, w(<f>)ij^, 17*),

for (t)s , t)v , t]#) 6  TeE. The first component on the right clearly belongs to the 2-dimensional 
vertical space and the span of the second component defines a 1-dimensional horizontal subspace 
He C TeE  a t each e. This again defines a connection on E .

Again we look at the orbit on E  which represents the leading order perturbed motion of both 
pairs. It is defined by coordinates:

(0(t) =  0F(t) +  8s (t),v{t) =  uF (t) +  1/s (t),d>(t)).

The tangent vector to this orbit at each e £  E  can be written as:

/ dO dv d<j>\ f  d9 d<j> du d<j> \  (  ,,.d<j> . ,.d<j> d<f>\

showing that the vertical part represents the evolution of the two pairs at their unperturbed 
frequencies leading to the dynamic phase for each and the geometric phase for each is due to the
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vertical drift of the horizontal part. We thus have:

T heorem  la :  The geometric phase in the four-vortex configuration can be viewed as the holon­
omy o f a flat connection on the trivial principal bundle it : E  =  S l x S l x S l —► S 1. E  (the 
3-torus)  is diffeomorphic to the product space o f each unperturbed phase object-parent vortex 
configuration space and the closed vortex orbit (for a given initial condition) in V, the fiber at 
each point being diffeomorphic to the product o f the two configuration spaces. The vector-valued 
connection 1-form is given by

S = (d0 — v(4>)d<f>,di/ — w(<j>)d<j>), (3.10)

where {0,u,<f>) are the torus coordinates and v(<j>), w(<j>) are the ratios o f the constant slow phase 
‘angular velocities’, dOs/dr, dus/dr, induced by the farfield vortices on each pair, and the angular 
velocity of the vortex in the closed orbit, respectively.

We now extend T h eo rem  1 by considering the domain U  of all the closed vortex orbits. 
Consider the trivial principal fiber bundle ir : E  = S 1 x U U. Choose coordinates (0 ,X ,Y ), 
where X, Y  were defined for each problem in the last section. Thus k(0 , X , Y )  =  (A', V'). We 
again have the identification TeE  =  T ^ S 1 x U) =  T jS 1 x TbU =  R  x R  x R , where 6  6  U and 
/  6  Fb- Choosing the naturally defined coordinate basis on TeE  identify any vector T) G TeE  by 
its components (rjg, tjx , tjy) E R x R x R .  Now pick the 1-form 7 „ defined on U from the last 
section. As in the previous two theorems, due to the isomorphism T jS 1 =  R  V / G Fb, ~fu can 
be viewed as associating a vector field tangent to Fb at each b €  U. Thus, we have the linear 
map 7 „ : TbU —> X p b, where X is the space of vector fields on Fb. In coordinates, from (3.3), 
7 u(('?x, Vy)) = {C /u)(Yr]x — Xt j y ) / [ X2 +  V2). Extending the image to a vector field on E  and 
adding the field (0, t)x,Vy) defines a connection as before. Thus any vector (t}9,t)x ,t jy ) € TeE  
can be written uniquely as the sum of a vertical part and a horizontal part:

(!»,»IX ,w )  =  (ps - v ( X , Y ) Vx̂ 2 ~ ^ 2X ,0 ,0 ^  + ( v ( X , Y ) r?y) , (3.11)

where v(X,Y) =  C /u .  The horizontal subspace Ht C Te is the span of all vectors of the form 
(u(X, Y){t]xY  — T fy X /X 2 + Y 2), rix, tjy) (for {t)x, tjy) G TbU) and this is clearly a 2-dimensional 
vector space.

The leading order perturbed motion of the phase object-parent vortex pair can be represented 
on E  by the orbit:

(0(o =  M o + M « ) , m > m

53

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



According to (3.11) the tangent vector to  this orbit a t any point can be written as: 

( § . £ , £ )  =
^  d t  d t  d t  J  ^  d t  A  x  * \  d t  d t  J  J

( v (X ,Y )  (  dX  _  d Y \  d X  d Y \
+ \ x 2 + y2 \  dt d t  ) '  d t '  d t  ) '

Clearly, the vertical component gives rise to the dynamic phase and the vertical drift of the 
horizontal component gives the geometric phase at the end of one closed loop in the base space
representing the closed vortex orbit in U. Thus, T heorem  1 with U as the base space becomes:

Theorem  2: The geometric phase in each o f  the three point vortex configurations can be viewed 
as the holonomy of a connection on the trivial principal bundle tt : E  = S l x  U U. E  is 
diffeomorphic to the product space o f  the unperturbed phase object-parent vortex configuration 
space and U . The connection 1-form is given by:

r / Y d X - X d Y \
8 = d 0 -  v (X ,  y )  X 2 +  y z  )  ’ (3-12)

where (0 , X , Y ) are the bundle coordinates, X, Y  being coordinates on U. The function v(X , Y )  
is the ratio o f the two functions C { X ,Y )  and u>(X,Y) defined in obtaining (3.3). These two 
functions are the smooth extensions to U o f  the orbit-specific functions dO s/dr and oji(X , Y )  
(respectively) o f the previous two theorems.

The analogous extension of T heorem  l a  is obvious and we do not state it here.

Com m ents:

1. The word ‘flat’ describing the connection in Theorem  1 and T heorem  l a  refers to the 
fact that the connection has zero curvature. The curvature of a connection 8 is defined [53] 
as a 2-form on E, Q(if,C) =  d8(r)hor X hcr), where tj, £ € TeE, the superscript hor refers 
to the horizontal components of these vectors, and d denotes the exterior derivative. In 
both (3.8) and (3.10) we get d8 =  0. This is not true in general for the connection in 
Theorem  2.

2. The 1-forms in (3.3) and (3.5) are examples of forms that are closed but not exact [23].

3. Analogous to the geometric phase in the planar three-body problem [67], [36], [39] it is of 
interest to ask if there is a geometric phase in a non-adiabatic th ree-vortex  problem  
when all vortices have the same signs. To be precise: In the evolution o f the vortex triangle,
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if  at any instant the triangle returns to its original shape4 then can the angle by which the 
final triangle may have possibly rotated with respect to the initial triangle be decomposed 
into a ‘dynamic ’ part and a ‘geometric ’ part ? Our attem pt to answer this question will be 
primarily through a comparision with the three-body problem. This suggests that the same 
geometric construction leading to a geometric phase can be applied here simply by replacing 
the masses m* with the vortex strengths r* (>  0). Thus following the procedure in the cited 
references we choose an orthogonal frame (£ R 2) centered at the fixed center of vorticity of 
the system. Let q =  (?i, ?2 . 9 3 ) be position vectors, in this frame, of the three point vortices 
f i .  T2 , r 3 respectively, where <7* =  (x k, yjt) G R 2. Since Tfc9 fe =  0. the span of all such 
vectors q is a four-dimensional linear subspace Q C R 6. Let Qm =  Q — {<7,- =  qj}, where 
{g,- =  qj} is the set of all collisions of the configuration. Qm is a manifold and we denote the 
four-dimensional tangent space at each q 6  Q“ by TqQ“. Consider now the action of the 
circle group 5 0 (2 ) or 5 1 on Qm. The action of any element 0 £ 5 0 (2 )  on Q ' is a rigid body 
rotation of the triangle about its center of vorticity (origin of the position vectors). Since 
the action is free and proper, the quotient space Q’/SO(2) is also a manifold. It can then be 
shown that on the principal fiber bundle it : Qm -*■ Qm/S O (2) a connection can be defined as 
follows. Define the vortex kinetic energy inner product on Q ": K q(r), £) =  r* <  r]k,Ck > 
where r7fe,Cfc G R 2, rj =  (rji, g?, Tfe) and C =  (CiiCziCb) G TqQ ' and <  > is the standard inner 
product on R 2. Then the horizontal space at each point can be defined to be the subspace 
Hq C TqQ m which is the orthogonal complement, in the above inner product, to the vertical 
space Vq (the subspace of vectors tangent to  the fiber =  group). Since a vector subspace (of 
an inner product space) and its orthogonal complement define a direct sum decomposition 
it follows th a t TqQ“ = Hq @Vq. The to ta l angle change by which the vortex triangle has 
rotated at the end of the cyclic shape change is then the sum of a dynamic phase and a 
geometric phase. The geometric phase is the holonomy of this connection. Note the purely 
geometric nature of the above construction where the form of the Hamiltonian function 
plays no explicit role. Physically, the horizontal directions represent the evolution of a 
configuration with a  zero value of J  =  Y li  f k{xkdyk/dt — ykdxk/d t). J  is the analogue of 
the angular momentum in the point mass problem and is an invariant of (N) point vortex 
motion . 5 A heuristic comparision of this nature thus leads us to infer the existense of a 
geometric phase in the three vortex problem analogous to the phase in the planar three 
body problem. One way in which the geometric construction in the vortex problem does 
differ from th a t in the mass problem is in the existense of the invariant I  =  r*(x£ -f-y|).
This implies that the orbits in Qm (for a specified value of this invariant) are restricted to

4 The existense o f  such dynam ical evolutions for like-signed vortices has been shown by [92, 4]. T here  also 
exists a  subset o f such  evolutions which do not pass th rough  collinear sta tes.

5It can be shown [47] th a t  J  =  ( rx T j + r j r 3 -t-Ti r s ) /2 j r  which implies th a t J  is also independent of th e  in itial 
positions.
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lie on the smooth compact surface Tfc(x  ̂+  y%) =  constant, which is diffeomorphic to 
S3.

4. Writing the invariant J  in the variables of Figure 2.1 gives:

It seems tempting to try to derive (3.4) from the above relation and thereby derive the 
adiabatic phase in the three vortex problem in a different way. If possible this would also 
suggest a  relation between the adiabatic and the non-adiabatic phase and thereby show 
the role of the invariant J  in the generation of the adiabatic phases. However, it should 
be noted that when comparing the adiabatic and non-adiabatic phases, one is comparing 
the geometric drifts in different quantities. In the adiabatic problem the quantity is the 
configuration space variable of the unperturbed two-vortex (Fi and r 2) motion whereas in 
the non-adiabatic problem the quantity is the three-vortex-triangle rotation angle. In the 
absence of any canonical or natural way in which these quantities could be related it would 
seem reasonable to expect no such relation between their geometric phases.
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Chapter 4

A n  application to  slow ly varying spiral structures

In this chapter, with a view to applications, we derive formulas for the long tim e evolution of 
passive interfaces in the three canonical point vortex configurations of Chapter 2. We show how 
the formula for the evolution of the interface driven by the dynamics of the vortices inherits the 
geometric phase effect. We begin by a brief literature survey, in §4.1, of work done on spiral 
structures and evolving interfaces in a general fluid mechanics context. In §4.2 we define the 
interface problem and describe it for the three vortex configurations of Chapter 2. §4.3 contains 
a description of our asymptotic procedure for the general equations of motion. The calculation is 
divided into three main steps whose details are outlined. In §4.4 we implement the procedure on 
the first two of our vortex configurations: (a) a restricted three-vortex setup and (b) the vortex 
in a circular domain. In §4.5 we perform the calculations on the mixing layer model.

4.1 Introduction

A frequently recurring theme in the fluid dynamics literature is the focus on ‘spiral structures’ as 
important dynamical states in both two-dimensional and three-dimensional flows. These struc­
tures are especially prominent in vortex dominated flows [24] where they appear in the evolution 
of vorticity regions or interfaces of passive scalars (ex. concentration, temperature). They form 
for several reasons, depending on the flow configuration in question. Coherent vortices can ac­
quire spiral-like structures near their vorticity maximum due to the winding up of variations in 
the initial vorticity distribution. As the flow evolves, further spirals are created through insta­
bilities or collisions. This idea has been used more than once as the basis for phenomenological 
models for turbulent flows—see, for example, Lundgren [50], Gilbert [26], Moffat [63].

In an influential paper by Lundgren [50] a three-dimensional spiral vortex model is introduced 
in which vorticity is not axially symmetric as in the Burger’s vortex (see Marcu, Meiburg and 
Newton [51]), but has a characteristic spiral structure. In this model, these structures arise 
dynamically from the interaction of two regions of constant vorticity. As the vortices coalesce 
into a single vortex core, spiral arms are thrown out in an effort to conserve energy and angular
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momentum. Because of the differential rotation caused by the dominant vortex core, the spiral 
arms stretch and deform into thin vortex sheets which then dissipate out due to viscous diffusion. 
In Gilbert [26], the focus is on the winding up of a  weak vortex patch by a  strong vortex core, in 
two dimensions, where the patch is so weak that it can be treated as being passively advected. 
The winding is due to the differential rotation rates inherent to the vortex structures. Essentially, 
the model considered by Gilbert [26] is kinematic as opposed to dynamic.

In a different context, the nonlinear evolution of an incompressible shear layer has been 
extensively studied. In Corcos and Sherman [21] and in Pozrikidis and Higdon [77], one goal 
is to determine the growth rate of interfacial area between two separated fluid regions. This 
quantity is of great interest to chemical engineers who study reacting streams. If the reaction 
rate is fast, hence diffusion limited, the generation of products is proportional to the growth rate 
of the interfacial area. In Pozrikidis and Higdon [77] a  vortex dynamics (inviscid) simulation of 
a 2-D shear layer is carried out. One of the conclusions of this work is th a t the growth rate of 
interfacial area approaches a constant value for all shear layers they consider, a fact consistent 
with the experiments of Breidenthal [18] who found constant reaction rates as long as the mixing 
layer maintains its two-dimensional structure. This paper should be read in conjunction with 
Corcos and Sherman [21] who perform a finite difference calculation on the corresponding viscous 
problem. In their relatively low Reynolds number simulation, there is a rapid diffusion of vorticity 
in contrast to the inviscid calculation of Pozrikidis and Higdon [77]. On the one hand, the inviscid 
calculations are capable of showing fine details (small-scales) of the flow that are obscured by 
viscous effects. On the other hand, the inviscid calculations are more difficult to compare with 
experiment since they represent an idealised limit. The work of Corcos and Sherman [21] goes 
further in identifying clearly the two distinct stages o f the nonlinear evolution of a 2-D shear 
layer. The first stage is the roll-up of the interface around a local vorticity maximum. The 
interface evolves into a spiral formation where the m arker particles migrate inward along the 
arms and accumulate near their center. The second stage is the by now well documented [96] 
vortex pairing process in which, due to a dominant subharmonic instability, neighbouring vortices 
pair and orbit each other as the spiral arms continue to wrap locally and evolve globally (see 
for example figure 4 of Corcos and Sherman [21]). In general, the process is complex and well 
studied—see for example the review of Ho and Huerre [38].

It is not our intention in this thesis to comment on the merits of the spiral vortex models 
as far as their relevance to turbulence theory is concerned. Rather we focus more narrowly on 
a particular dynamical question associated with the evolution of spiral structures in flowfields 
populated with point vortices. We are interested in the long time growth of a passively advected 
interface in such flows under the influence of two processes. On the one hand, there is a ‘fast’ 
wrapping of the interface into a spiral mound a  nearby vorticity maximum (point vortex). On 
the other hand, there is a slow evolution of the spiral interface due to the farfield vorticity. We
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thus have two widely separated timescales in the dynamics of the interface and we consider the 
evolution of such a slowly varying spiral structure.

The flowfields th a t we consider were introduced in Chapter 2. We examine a passively evolv­
ing, smooth interface in these flows in a similar adiabatic setting i.e. in the vicinity of the parent 
vortex. We find th a t the effect of the slowly moving farfield vortices on the dynamics of the 
interface, though weak, accumulates over long times, and at the end o f one farfield time period 
T  gives an 0(1) contribution. In particular, we show th a t a simple form ula emerges for the long 
time growth of the interface length. The formula shows that the growth decomposes into two 
distinct parts. The first, due to the rapid local wrapping about the parent vortex, is the growth 
in the absence of the farfield vortices, while the second is the 0 (1 ) contribution of the slowly 
moving farfield vortices. The main result of this analysis is to show th a t this 0(1) term can be 
written in terms of the appropriate geometric phase for a  passive particle in the flow.

4.2 T he interface problem

B

A

Figure 4.1: A passive interface between two particles labelled A  and B  in the flowfield of an 
isolated point vortex (filled circle) at time t =  0 .

We view the passive interface as a smooth C 1 curve drawn in the flow domain each point of 
which represents a passive particle at that location. Consider such an interface in the flowfield 
of an isolated point vortex of strength T at time t =  0, as shown in Figure 4.1. Let the interface 
connect two arbitrary particles, labelled A  and B. Assume that the interface is transversal at 
every point to the circular streamlines of the point vortex flow. 1 We choose a coordinate frame 
centered at the vortex location and parametrize the interface by £, the distance from the vortex, 
as shown in the figure. Consider now the evolution of an arbitrary particle (ro(t),0o(t)) on the

1 We show in th e  nex t section th a t  relaxing th is assum ption  does no t change o u r  final result.
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B

Figure 4.2: W ith time the interface stretches and wraps around the vortex.

interface with r 0 (0 ) =  ; 0 (0 ) =  0 ,-(£). We know that the time evolution of such a
particle is governed by:

ro(t) =

9o(t) =
Tt

This implies tha t with time the interface stretches and wraps around the vortex in a spiral as 
shown in Figure 4.2.

The arclength £ 0 (i)> °f interface is given by2:

L0(t) =  j

-  i f m *

(4.1)

■ C M G S ) '  ‘

Note that because of our transversality assumption d9i/d£ is finite at all points of the curve. It is 
then straightforward to expand the above expression for long times (/ > >  I) to get the formula:

Lo(t)
' ( a

r€s

| i  + itdffj/dz)2
o \ 2T t / x &  (Tt / r&)

-  n g f —

dt, (4.2)

2 We assum e positive square roots everywhere.
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In the special case where the initial interface lies on a  ray, d0{/ d£ = 0, the above formula gives:

r  ,  x | F U  (  1 1 \

Now consider what happens to such an interface when subjected to an additional slowly
varying background field, hence allow the coordinates (r(f, r), 0(t, r))  to depend on some slow 
timescale r  = e2t (0 < e «  1 ). In addition, suppose the background field is periodic with period 
T  ~  1/e2. In such a  field, the ‘perturbed’ interface length is given by:

At any given time, we can compute the difference between the ‘unperturbed’ length Lo(t) and 
the ‘perturbed’ length Le(t):

We now ask the question: what is A L (T )  in the limit as £ - f  0 or, equivalently, as T  —> oo ? It 
is not difficult to see that, in general, the interfacial growth in the presence of the background 
field is due to two distinct but highly coupled effects:

(i) a ‘fast’ wrapping of the interface in a spiral around the vortex,

(ii) a ‘slow’ evolution of the spiral due to the background field.

The interaction and balance of these two effects is, of course, what determines A L(T).

In this paper we answer the above question for the three canonical point vortex configurations 
of Chapter 2. Recall that in each of these configurations we tracked a phase object in the vicinity 
of a parent vortex. The slowly varying background field is provided by the farfield vortices. We 
showed that the phase object exhibits a geometric phase 9g in its angle variable at the end of 
one time period T  of the background field. In this chapter we take the phase object as a passive

(4.4)

A L(t) = Le(t) -  L0(t).

From this, we can derive a formula for A L{t =  T  ~  1/e2):

A  L(T) = L e(T) — Lq(T). (4.5)
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particle and show that in all three problems for a passive interface in the vicinity of the parent 
vortex:

AL := lim A L (T) = lim {Le(T) -  L0(T)) = 0 (1 ).
e - * 0

( T - > o o )
e - > 0  e - + 0

(4.6)
(T-*oo)

This result is due to the fact th a t in the three problems, as e —► 0 the background flow gets slower 
and weaker. This means th a t there is a balance between two compensating effects—the vanishing 
of the perturbation due to  the background flow versus the increasing tim e period over which it
acts. We will show that th is balance can be directly related to  the geometric or Hannay-Berry 
phase 9g for a passive particle in these flows by the following simple formula:

This formula shows two things:

(i) A L depends only on geometric quantities, in particular on the geometric phase for the 
appropriate vortex configuration. It is independent of the frequency of revolution of the 
vortices.

(ii) A L  is a path independent quantity and hence depends only on the endpoints (A, B), not 
on the shape of the (transversal) interface connecting A  and B.

We briefly describe the point vortex configurations with the interface and summarize the 
results we obtain for A L below. In all formulas, <?,• refers to the initial angle of the phase object.

C o n fig u ra tio n  1: A r e s t r ic te d  th re e  v o rtex  p ro b lem .
In Chapter 2 we considered three point vortices in an unbounded plane. Their strengths are 

of the same sign, but can be of arbitrary magnitude ( r i , r 2 , r 3 ). W ithout loss of generality, 
we took r i  as the parent vortex, Ta as the phase object, and T3  as the farfield vortex. The 
geometric phase induced on the phase object is given by (2.17). For the purpose of this paper 
we take T2 =  0  and the geometric phase on the passive particle is then given by:

The appropriate configuration with interface is shown in Figure 4.3. We will show that for 
this flow:

A  L = ~  d W g ).

93 =  p I n 2 fl-cos2 0 t-. 1 1 +  I 3

A L
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t= 0

\  t> 0  
N B

Figure 4.3: Two like-signed point vortices (filled circles) and a  passive interface between two 
particles labelled A  and B  close to IV  As the vortices rotate uniformly about the center of 
vorticity O the interface stretches and wraps around Ti .

Configuration 2: A vortex  and a particle in  a circle.
In this configuration we considered a point vortex inside a circular domain. The vortex in any 

eccentric position moves in a  closed circular path with radius R i  and with constant frequency. 
We consider a passive particle orbiting this parent vortex T. The farfield vorticity is due to the 
circular boundary of radius R 2 > Ri- Equivalently, we can think of the farfield vortex as an 
image vortex —T placed at its image point R%/Ri outside the circle. The flow configuration with 
interface is shown in Figure 4.4. The geometric phase for the particle was shown to be:

a  _  2 7 t c o s 2 9{

9 ~ ~ ( R 2/ R l y - - i '

We will show that for this flow:

r €a 

'fx

/■€a
A L = -  d(Z6g),
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Figure 4.4: A point vortex (filled circle) in a  circular domain (solid circle) and a passive inter 
face between two particles labelled A  and B  close to it. As the vortex moves in a circular orbit 
(dashed circle) about the center of the domain, the interface stretches and wraps around it.

(  4jt \  f*B (  . ddi cos20, \
=  (  5------- I /  ( —£ s m 2 0 i —  H--------—  ) d£.

\{ R 2 /R i )~— I J  \  d£ 2  /

Configuration 3: A particle  in  a m ixing layer m odel.
In this configuration, an infinite row of evenly spaced, equal strength vortices is given a 

subharmonic perturbation so that neighboring vortices pair up and undergo periodic motion. In 
Chapter 2 we considered a passive particle near any parent vortex, The farfield flow is due to the 
infinite number of other point vortices periodically spaced. For this flow the geometric phase for 
the particle was calculated as:

9g =  ^ ! L ± 1 ^ K  c o s  2 0 i ,

where k  is the modulus of the elliptic function solutions of the periodic vortex motion and K  is 
the complete elliptic integral associated with these solutions and related to the time period of 
the vortex motion. The flow configuration with interface is shown in Figure 4.5. Here, we will 
prove that:
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Y

r>0

Figure 4.5: As the vortices move in closed orbits in the mixing layer model, a passive interface 
between two particles labelled A and B  near one of the vortices gets stretched and wrapped 
around the vortex.

4.3 A sym ptotic procedure

In this section we outline the method to compute the interface formulae for the general equations 
introduced in §2.2. We also highlight and summarize the main steps in the computation and 
mention the specific assumptions made on the behaviour of higher order terms in deriving our 
final result. The general form of the equations we consider are given by:

^  =  e2f{ r ,6 ,D {e 2t ) :<t>(e2t),e ),

7 j  = %  + e2g(r,6 ,D (e2t),<t>(e2t) ,e ), 
at H

with initial conditions r(0 ) =  1 and 0 (0 ) =  0 ,-.

Here (r, 0) denote the non-dimensional polar coordinates of the phase object with respect to 
the parent vortex, (D , <j>) are non-dimensional polar variables representing the periodic vortex 
motion, f ,g  are the components of the vector field due to the farfield vortices and e is the 
perturbation parameter. For small e we introduce a slow time scale r  =  e2t  and use a multi­
scale method to obtain asymptotic solutions. Subject to certain conditions on /  and g we have 
non-dimensional asymptotic solutions of the form (see (2.6) , (2.7)):

r ( t , r ;0 f) =  1 +  e2r2(t, r ;  0.) +  0 (e3), (4.7)
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9 ( t ,  t ;  0{)  =  Q t  +  ^ 2 f i r  J  f o d t \ t = o +  ( t ;  0 , )

+ € % ( t , T ; 0 i ) +  O(e3), ( 4 . 8 )

where /o is the leading term in the Taylor-expansion of /  about e =  0, the integration is with 
respect to the fast time t and Q is a  non-dimensional constant. We have emphasized the depen­
dence of the variables on 0,(£), which need not be constant along the interface. We assume, for 
the present, that d6i/d£  <  oo at ail points o f the interface i.e. the initial interface is transversal 
a t ail points to the circular streamlines of the  parent vortex flow. We relax this transversality 
assumption a t the end of the section and show th a t it does not alter our result.

To evaluate A L  from the above solutions we proceed in three steps as follows:

1. Write the asymptotic expansions for r(t, r ;  <?,•), 0(t, r ;  0,) in dimensional form.

2. Compute Lt (T) and formulate the difference:

A L(T ) = L e(T) -  L0{T).

3. Take the limit e —► 0 to derive the expression A L.

S te p  1 : The nondimensional variables in (4.7) and (4.8) are:

r =  ^, t =  u t , t  =  €2t =  e2uit. (4.9)

This gives:

^ ( < ' , 0  =  S [l +  e2r2(u t, e2u i,  0 ,-(£)) +  0 (e3)] ,

0 ( t,O  =  Qut +  ^2Que2t  J  fodt\t- Q + 0 ^  +  e§i(e2u i, ${(£))

+€262 (ud,e2wf,0 ,-(£)) + 0 (e3),

where a; oc l / ^ 2 and e =  a\£ /D  (at constant). The limit e —► 0 can obviously be interpreted in 
two different ways: (i) £ fixed, D —► oo or (ii) D  fixed, £ —> 0. For calculating A L, however, 
these two limits are not equivalent. Indeed, the second limit process does not give a well-defined 
interface problem. We therefore perform our calculation using the first limit process. This cor­
responds to keeping the initial position of the interface fixed with respect to the parent vortex 
(i.e. £ fixed) while increasing the initial separation distance between the parent vortex and the 
farfield vortex (i.e. D  —► oo).

66

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



S tep  2: We rewrite the above series at the end of the tim e period T  of the farfield vortices. 
Since T  =  a^D2 (a2  constant), this implies that all terms involving the slow time (e2ujt) appear 
as constants. In particular, the second term  in the 9 series above gives the geometric phase 9g. 
The first term  in the series is the angle swept out in time T  of a  particle about an isolated parent 
vortex of strength T in an unbounded flow. Indeed in all three problems Qu =  r/(27r£2) which 
is the angular frequency of such a motion. Defining c =  a^a2, one then gets for large T:

f ( T ,0  =  s [ l  +  f ^ 2 (^ ,0 ,-(O ) +  O ( ^ ) ] ,  (4.10)

= ^ 2 + o g( m ) )  + m )  + ^ e l ((ei ( o )

+ ^ ( ^ . f t ( 0 ) + O ( ^ ) -  (4.11)

The functions ry, Oj are now viewed as functions of T / £ 2 and £. We assume that all these 
functions (with the exception of 0q) are bounded in T /£ 2 and hence 0(1) in T. This assumption 
implies and follows from the assumption of boundedness in t  of the formal expansions (4.7)
and (4.8). Denoting T /£ 2 by p we differentiate 3  the above series with respect to £ to get the
representations:

|  (T .{) =  1 - 2c^  +  0 ( - ^ ) ,  (4.12)

|  (T.«) =  +  +  (4.13)

We assume th a t these derivatives are also bounded in T /£ 2 and hence 0(1) in T. We then obtain 
the following representations:

where E  = £d(6g +  0,-)/d£ — 2c[d0nfdp). Hence:

3 Note th a t  differentiating  and integrating these  functions w ith respect to £ changes the ir o rd e r with 
respect to  T.
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r r i
|

1 +  l 3 z z I i L + 0 { J _
1 ^ }  T  T \ /T

_ |r |r rcr2|r|
+ 0 ( - j= ) .  (4.14)

The length integral (4.4) then assumes the form:

rfs r i n r
L*(T) s g n ( T ) E } + 0 { - ^ ) ^ <%.

Subtracting Lq(T) (as given by (4.2)) from this and writing out E  gives: 

r cb

The functions r 2 (f,r,  <?,-) and 6n(t, r, 0,) in all three problems are of the form r2 (t, r, 9,-) = 
r2F{t,T,9i) +  r 2 (0 ,) and 0 2 (t, t , 0 ,) =  92F{t,T,9i) +  0 2 (r , 0 i) where the subscript F  denotes 
the dependency on the fast time. This means that r2 (T /£2,£) =  T2f ( T /£2, £) +  r2(^) and 

f c C W . O  =  02f(T /£2,O  +  M O - Hence:

A L (T )=  f*B [ f l lE i  _  s5n(r) • £ 
J u  L *

dOg CT2F |r| 
d£ jt

+SJn( r ) ^ + 0 ( - L ) j rfe-

The first term in the integrand is related to the geometric phase in the problem by the following 
linear relation (2 .8 ) derived in §2 .2 :

9g =  -2 n/?f2,

where /3 is a constant related to the dimensional time period as T  = /3/we2. This implies that:

9g =  —2 fiwe2 T f2,

=  — 2Qw£2cfi,

V -TTf2
r .

=  cr2 .7T

Therefore:

AL(T) =  [ - . j n ( D  («» + f ^ ).,+{=£ ) + 5 «J£i 1
* + ^ » ( r ) - ^  +  o (-? f )J
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S te p  3: The first two terms in the integrand depend only on £ and are clearly the contribution 
of the geometric phase. The third and fourth terms in all three problems are the trignometric 
functions Sin or Cosine with arguments of the form C T /£ 2 +  u(0,-), where C  is a constant and 
u is a function of <?,•(£) alone. A simple application of the Riemann-Lebesgue lemma then shows 
that:

K b
lim I  exp [i (C T /£2 +  u(0,))] d£ =  0.

t ~¥°° Ju

Assuming that all higher order term s in the integrand series display this behaviour, we get:

A L =  Tlim A L(T) = -sgn(T ) j * *

Noting that the geometric phase changes sign with T in all three problems we observe that A L is 
independent of the sign of T. Therefore, without loss of generality we assume that sgn(r) =  +1 
and are left with the following simple expression for A L:

*B d(teg). (4.15)
A

Thus for an interface of arbitrary shape and orientation the geometric phase causes the above 
additional 0(1) term to appear in the length evolution. For an initially linear interface coincident 
with a ray from the point vortex, 0 ,- and hence 0g are independent of £ and the 0 (1 ) contribution 
takes on the simpler form:

=  - O g i t B  - Z a )-A L = - ’» /Je

A L  =  — /  
Je

C ircu m feren tia l in te rfaces:
We now analyse the change in length for an interface that initially coincides with a portion 

of a circular streamline of the parent vortex. We assume as before that the interface connects 
two points labelled A  and B . £ now assumes a constant value II along the interface. The 
parametrization with respect to  £ breaks down and we therefore parametrize the interface with 
respect to The length integral (4.4) assumes the form:
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where (0 {)a <  0 ,- < (0 , )b- It is trivial to see that in the absence of the background field the 
interface length remains constant (=  say) for all times. We evaluate this integral in the 
presence of the background field using (4.10) and (4.11) with £ =  II. It is straightforward to see 
that:

plies (4.15) in each portion appropriately. The length change for the whole interface being the 
sum of the length changes over all portions.

R e m a rk s  on th e  d e r iv a tio n  o f  (4 .15):

1. The expansions (4.10), (4.11) and (4.12), (4.13) are viewed as formal in the sense that

For a precise statem ent of the lemma see Sirovich [91].

We now give details of these calculations in each of the problems. We split the calculations 
into the three steps as outlined in this section. We assume that in all problems the vortex 
strengths are positive.

4 .4  M odel flows

4.4.1 Two vortices w ith  an interface

We perform the interface calculation first in a flow in the unbounded plane due to two like-signed 
vortices of strengths f i  and T3 separated by a distance D. The vortices rotate uniformly with

Hence:

which is an integral formula exactly like (4.15) except that here the upper limit of the integral 
is the lower bound of the param eter. To calculate the length change for an interface with both 
transversal and circumferential portions one partitions the interface into these portions and ap-

we have made assumptions about the boundedness of the higher order terms and their 
derivatives with respect to £.

2. In Step 3, use is made of the Riemann-Lebsegue lemma, which says that if a real-valued 
function f{x )  is Riemann-integrable on the real interval (a, 6 ) then:

A 6  R.
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constant D about the fixed center of vorticity of the configuration. As mentioned in §4.2 the 
geometric phase for a particle close to Ti in this flow is a special case of the geometric phase for 
the three-vortex problem and is given by 0g =  27rr3 cos 20,/(ri +  r3).

S te p  1: The asymptotic solutions for the particle motion are:

2 |o 3  ^ cos(2/?(*,r)) _  cos 2 0 , +
r(t, t,  0j) =  l  +  e:

9(t, r, 0.) =  + ^ rc o s2 0 ,-  +  0,- +  60i(r)

+6- — sin(2/?(t, r ) ) + 0 2(r)  + 0 ( e 3),
]

where:
0(t, r, 0.) =  [ai +  a 3 (1 -  cos 20,)] ^  -  0,-.

r  and t are defined as in (4.9) and:

' - £ • k = ‘ ' 3>-

S te p  2: The (dimensional) time period of the two vortices is given by T  = 4ir2D2/(T i +  T3) =  
cD2. Converting all quantities to their dimensional form the above series at the end of T  become:

where:

-i t  c\ c _i_ c ^ 3r(T,£) = £ -I- "jT~

r i t

|cos(2 /?(^ -,0 ) “  ^cos20,- Of
1

t V t
).

e{T' °  =  ^  + 6a + 6i + ^ m )

+^ [ r r sin(2/?(? ’0 )+ ^(0 + 0 iiT \ /T

=  [r1 + r3(i-c o s2 0 .)]  2ir

r. t
ri + r3 2n e  "

=  2 7 r - ^ - ( 0 ff +  0,-),

and 0,- in general can be a function of £. Differentiating with respect to £ we get the series:

dr cT3 . 1
— ( r , 0  =  1 ------ - s in 2  0  + O ( - = ) ,

> / f 7

=  - ^ T + £ ( e9 + 0i) + ^ r c ° s W  + o (-± = ).
* V r 7
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Therefore:

■  [ - ^ r + £ + ° ( ^ f

[If - o(i)'
where E — (cl^/7r) (3cos2/3/2 +  cos20,-/2) + £{d/d£)(9g + 0 ,). Hence:

■ I S I H A B 4

Using (4.2) and (4.4) and writing out E  we then get:

+o<^ j df. (4.16)

S tep  3: The second and third terms in the integrand depend on £ alone and will therefore give 
0(1) terms after integration. We now examine the order of the first term after integration:

j f fS cos2/?d£ =  j f f% os ( 2  { 2 * - | ^ - ( 0 S +  < ?,•)} )<

=  cos ( ^  +  2 (*, +  *,■))<£,

=  COS COS 2  (e9 + 9 i )dS

-  j * B sin ( ^ )  sin 2 (Og +  0,-) d£.

By the Riemann-Lebesgue lemma, each of the integrals in the last line vanishes in the limit 
T  —> 0 0 . Making the further assumption that all other (higher order) terms in the integrand 
of (4.16) are of the same form and hence have vanishing limits leads us to the result:

A i - J j r n A i m  =  - £ * ( < $ +  * * ! ! * ) * .
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In terms o f the initial angle 0,- and the vortex strengths the result is:

fC- 

'U
. 4 x r3 l*B ( c . d.0i cos20 , \

= fTTPJJf.

In the particular case of tin interface initially coincident with a  ray from the parent vortex (T i) 
we get:

j*€b
A  L

’ Ua 
=  - 9 9 (Z b  ~ S a ) ,

2k T3

= - 0 g f B dt,
Jf*

u ,

cos 2 0,-(£b- Z a )-Ti + r3

The result for this case can also be found in Newton and Shashikanth [70].

4.4.2 V ortex and interface in a circular domain

We next perform the interface computation in the flow due to a point vortex in a circular domain 
(in the plane) of radius R 3. The point vortex moves with constant speed in a circular orbit of 
radius R i (0 <  R \ < R?). The geometric phase for a fluid particle closer to the point vortex than 
to the circular boundary is given by 9g = —(27r/6) c o s  20,-, where 6 =  (R 2/ R 1)2 — 1.

S tep 1: The asymptotic solutions for the particle motion are:

r(t ,r,9i)  =  1 + e 2 j~ c o s (2 /? (f ,r ))  +  ico s2 0 ,j + 0 ( e 3),

rcos 20,) +  0,- +  £0i (r)

+e2 ^ -sin(2 /3(< ,r))+ 02(r) j  + 0 ( e 3),

0{t, r, 0.) =  £ - ( t  -  rcos 20,) +  0,- +  £0i(r)Z1T

where:
0{t, t , 0.) =  [(6 +  cos 20,-)r - 1] -  0,-.

It can be easily shown th a t D =  bR\ is the distance between the point vortex and its image 
vortex in an equivalent unbounded flow, r  and t are defined as in (4.9) and:

- J _ _  1  _ _ L

£ bRx ~  D ' a  u>? ’
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S tep  2: The (dimensional) time period is given by T  =  4ir2b R \/T  =  4x2D2/br  =  cD2. In 
dimensional form the above series at the end of T  are:

r ( T ,0  =  € +  ^ [ _ i c o 8 ( 2 / ? ( ^ l0 )  +  | c o s 2 « , - ] + O ( ^ ) f

* ( r .O  =  +  +  *  +

+ £ -  [ _ sin (2 /? (^ fO) +  02( o ]  + ° ( ^ ) -

where:

^  -  A  cos 2 0 , r  T  „
f t p * * )  ~  2 i r ^ l +  b J  2?r^2 fff,

= 2 » r - ~ - ( 0 ,  +  0l-),

and 0,- in general can be a function of £. Differentiating with respect to £ we get the series: 

| (r , «  =  i +  £ s i o 2 / 3 + 0 ( - L ) ,

% T . 0  = - ^ r  + 5 (9»+9' ) - ^ cos2,s + 0 (^ )'

Therefore:

=  [ - ^ T + £ + ° (^ > ]2'

[ I ] 2 -  ° ( 1 ) -

where E  =  (cT/ir) (—3 cos 2/?/2 — cos 20,-/2) -+- £(d/d£) (6g +  0,-). Hence:

r t  „  _  i ,

74

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Using (4.2) and (4.4) and writing out E  we then get:

ALtT) =  r [ ^ ( l cos2 0 + ^ r L) - (d̂ + o l 7 t \
d t. (4.17)

S tep  3: As in the previous problem the integral of the first term has a zero limit as T  —► oo. 
Making the further assumption that all other (higher order) terms in the integrand of (4.17) have 
a similiar form and hence vanishing limits leads us to the result:

= -  d ( Z O g ) .

Since the geometric phase in this problem is independent of the vortex strength so is A L. In 
terms of the initial single 0,- the result is:

. T 4ir /‘fs  (  .  . nn ddi cos 20 , \A t  =  -  J  ( - {  sin 2), ̂  +  - j - j  d(.

In the particular case of an interface initially coincident with a ray from the parent vortex we 
get:

/•«B
A L =  - 6 a /  d£,

J u
=  — &g[ZB ~ Z a ) ,

2tt
=  - y  COS 20,• (Zb ~  Z a)-

4.5 M ixing layer m odel

In our final problem we perform the interface computation for the mixing layer model of Chapter 2. 
As illustrated in Figure 4.5, vortex-pairing is induced in this configuration of initially stationary 
vortices by a subharmonic perturbation. The geometric phase for a fluid particle in this point 
vortex flow is given by 8g = [(2fc +  6)/3]/\T cos 20, (Jk and K  are defined below).

75

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



S te p  1: The asymptotic solutions for the particle motion are:

Sh(r)St {T) .
41 2

sin 20q 4- cos 20q

0(f, r, 9i) =  0o(f, r, 0.) +  e9l (r) +  e2

( 2  5 g ( r ) - 5 2( r ) \
\ 3  2LT- ]

- ( i i r ) c°s2l’,] +0(<3)-
5*(r)5 t (r)

2 L2
■ cos 20q

+ ( M i ) 4 ) 8in29o+9-!W + o(<3),

where 0o(f, r, 0,) =  2Art +  rcos 20,- 0,- and S/i,5t are functions of the vortex motion and
hence vary on the slow tim e alone. £ is an invariant of the vortex motion. These terms are 
therefore independent of both T /£ 2 and £ and do not play a role in our derivation. To simplify 
notation we define F  =  S ^ S t /^ L 2 and G =  (Sj; —5 2)/(4 £ 2) — 1/3. r  rind t are defined as in (4.9) 
and:

k =
4ttw£2 ’

where S = nD i/a , a is the inter-vortex spacing for the unperturbed configuration and A  is the 
initial inter-vortex spacing for the perturbed configuration (see §2.5). k  (which depends on 5) is 
the modulus of the elliptic integrals that appear in the vortex solutions.

S tep  2: The (dimensional) time period of the vortex motion is given by T  = (l6kK/TrT)a2 = 
(l6 irkK /T62)D f =  aoD2 where K (k) is the complete elliptic integral of the first kind. Defining 
c =  J 2a2 we write the above series in dimensional form at the end o f time T:

r(T, 0  =  Z + sin 20q — 2 G cos 20q \  24* J cos 20, + 0 (
T 'J r ),

= S F +9s+#,+w 9l({)
+ C ? ^2F cos 20q +  G  sin 20q +  02 J +  0 (  ̂

where:

Differentiating with respect to  £ we get the series:

dr 2cr 1
— (T.O  =  1 + ---- [—F  cos 20o — 2G sin 20o] +  0 (  —= ) ,

JT yJT
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7t£3 * ' d£
2cT 1

H—— [G cos 20o — 2Fsia 20o] +  0 { —p=).
V T ’

Therefore:

[ • $ ] '  ”  { - ^ r + £ + 0 ( ^ > } ! ’

[If - ™
where E  =  —(c r / ir )  [5Fsin 20q — AG cos 20q — {k +  3) cos20,/(241fc)] + £(d/d£)(6g + 0 ,) . Hence:

r <w
2 dr

l
T*

k ' J

“  1 ^ 1
r t  i
^ - E + ° { V f h

Using (4.2) and (4.4) and writing out E  we then get:

f€a 

'Ca
A L(T) = J  B |  ̂  |^5F sin 20o -  AG cos 20O -  (  T j j p )  cos 20,-

(4.18)

S tep  3: As in the previous problems it is easy to show that the integrals of the first and second 
terms vanish in the limit T  —► 0 0 . Making our assumption that all other (higher order) terms in 
the integrand of (4.18) have a similiar form and hence vanishing limits leads us to the result:

-  - O S H *

r(B
=  -  /  d(£0g).

J*A
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As in the previous problem, since 6g is independent of the vortex strength so is A L. In terms of 
the initial angle 0,- the result is:

f €a T {2 k  + 6 \  „  /4 *  +  12 \ d0,-l ^
A L = j  | “  y — 3 — J K cos20i +  y — ------J  s in 20,-—  d£.

For an interface initially coincident with a ray from the parent vortex, we get:

ffs 

'U
A  L r B

= - o g <*e,
j  u

=  - 0 g { t B  — £ a ),

=  - A ’ ( ^ ^ ) c o s 2 f l , • ( & - £ » ) •

Thus we have shown in this chapter that the geometric phase exhibited in the angle variable 
of a passive particle in the three ‘canonical’ vortex configurations considered in Chapter 2 also 
affects the evolution of an interface of passive particles in these flows. The interface wraps into 
a spiral structure around the parent vortex with a slowly varying component induced by the 
farfield vortices. An extra term appears in the length of the interface over long time periods 
which depends on the geometric phase and, like the phase, is also geometric. It is the integral 
over the initial interface of a perfect differential, or an exact form, of a function th a t is a weighted 
geometric phase term. We believe that from the fluid dynamics point of view this result, based on 
the results of Chapter 2, is a further step towards understanding the significance and implications 
of the geometric phase in fluid flows. From a more practical point of view, the results in these 
results may be useful as theoretical estimates allowing for future quantitative comparisons with 
numerical and experimental work.
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Chapter 5

T he geom etric phase in  an elliptical vortex  patch m odel

la  this chapter we calculate the geometric phase in a model of the motion of well-separated 
vortex patches in the plane. We introduce the concept of a  vortex patch briefly in §5.1, the 
specific model in §5.2, then describe the phase calculation in §5.3.

5.1 Introduction to  patches

A vortex patch is a desingularization of a point vortex in which the vorticity is a bounded function 
over a finite, non-zero area A  of the plane. It can thus be viewed as the perpendicular section 
of an infinitely long rectilinear vortex tube of area A whose vorticity distribution is invariant 
along the length of the tube. The induced velocity field is given by integrating the contribution 
due to each infinitesimal vorticity element over the area of the patch. For a patch with vorticity 
distribution w(x, y), the streamfunction is given by:

y) =  J  u{x ', y') log [(* -  x1)2 + ( y -  I/O2] dA’. (5.1)

The velocity components (u, u) at a point (x, y) are related to the streamfunction in the usual 
fashion u = dip/dy  and v =  —dip/dx.

A patch with u (x ,y )  = constant is termed a uniform patch. The simplest example of an 
isolated uniform vortex patch is the Rankine vortex. This is a  circular patch which rotates with 
constant angular velocity about its center. The velocity field outside the patch is identical to that 
of a point vortex at the center of the patch of strength uA  while the velocity field inside the patch 
is like that due to solid body rotation i.e. varies linearly with distance from the center of the 
patch. Another example, which is the basis for the model we consider, is the Kirchhoff elliptical 
vortex [48]. Here the uniform vorticity is distributed over an elliptical region with aspect ratio
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A = a/b (a major axis, b minor axis). The patch rotates about the center of the ellipse with 
constant angular velocity given by:

9  (1 +  A)2 A(1 4- A)2 ’
u  A TArA

(5.2)

where T =  u A  is the strength of the patch. As shown in Lamb (section 159) a fluid particle 
on the patch moves in a circular orb it with twice this frequency. Deem and Zabusky [22] have
conjectured, based on numerical computations, that the Kirchhoff vortex is a member (m =  2) of 
a class of rotating patches (constant frequency) with m-fold symmetry. Overman and Zabusky 
[75, 76] have computed interactions o f such m-fold ‘sta tes.’

A system of N  interacting patches is in general far more complicated than a  system of N  
interacting point vortices due to the internal structure associated with each patch. There is 
a large body of numerical work documenting various complex processes associated with vortex 
patches, such as merger and filamentation. A good overview of work done on patches can be 
found in chapter 9 of Saffman [80].

It is well-known (see [68, 73, 58, 89] and references therein) that the Euler equations, and hence 
N  patch systems, posses a noncanonical Hamiltonian structure. The real-valued Hamiltonian is 
now a functional of the vorticity field u  of the domain. The dynamics of the vorticity field can 
be expressed in the form:

where F  is any functioned of u/, and { } are appropriately defined Poisson brackets. This rep­
resentation is equivalent to the dynamics represented by the Euler equations in the vorticity- 
streamfunction form. For N  patches in an unbounded domain, the Hamiltonian of the system is 
given by:

Invariants of the /V-patch system arise, as per Noether’s theorem, from the invariance of the 
Hamiltonian (itself an invariant) to continuous transformation groups. Thus invariance to trans­
lations and rotations lead, respectively, to the conservation of:

V ,  /  Uk(x,y)ipk (x,y)dA ,

where u/ is the vorticity field of the whole domain and:

i>k{x}y) = — - V '  f  wk{ x \y [ ) \o g [ ( x - x ') 2 + { y - x / ) 2]dA '

xu/kdA,
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where x  =  (x, y) and | x  |=  x 2 +  y2. The first invariant cam be used to define a global centroid 
analogous to the center of vorticity of N  point vortices, by dividing by the sum of the patch

jy _
strengths T =  2j*=i Ffc, where T* =  JA u/kdA is the strength of the kth  patch:

N  .  N
X G = j  xuikdA/T, Yg = ^ 2  f  yukdA/T.

fc=l^Afc k=

The centroid (Xk,Yk) of each patch is defined analogously.1 The centroid of each patch has the 
property that its velocity is affected only by the external velocity field (ue ,t;e). The external 
velocity field is the total velocity field minus the velocity field of the patch. Thus in the case 
of N  patches it is the sum of the velocity fields due to the  other N  — 1 patches. The centroid 
velocity is given by:

~  J  u,kU*dAl Tk' ~[j~ =  J  UkV*dA/Yk.

The noncanonical structure o f the Hamiltonian system implies th a t the following quantity, generi- 
cally termed Casimir, is also invariant though not explicitly arising from invariance under a group 
action:

r F{u>)dA,
I r/R3

where F  is any arbitrary functional of the vorticity.2

5.2 T he MZS m odel

Melander, Zabusky and Styczek [61, 60] derived a  system of equations (henceforth referred to as 
the MZS model) valid for N  uniform vortex patches as long as they satisfy the following:

1. The maximum diameter of any patch is much smaller than the minimum distance between 
any two patch centroids.

2. The centroid of any patch is within the patch itself.

The logarithmic integrands in the streamfunction are then expanded in an infinite series about 
the centroids of the respective patches. This leads to an infinite system of equations in the patch

1 Note th a t  all invariants are generalized to  the the invariants o f a  con tinuous vorticity d is tribu tion  by integrating 
over the  p lane.

2See [73, 89] for how such C asim irs arise. Note th a t in the  3-D E u le r eqations the C asim ir does no t take this
form bu t is equal to  the  helicity [62].
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Figure 5.1: A schematic representation of well-separated vortex patches in the MZS model. The 
local geometric moments for each patch tire measured with respect to a moving frame £-77 fixed 
to the centroid of the patch. Xk,Yk  are the coordinates of the centroid of the fcth patch in a fixed 
X - Y  frame.

centroids, measured with respect to a fixed frame, and the local geometric moments of all orders. 
The local geometric moment of order m  +  n (m, n =  0,1,2....) for a patch is defined as:

j ( m'n) =  J  ZmT)ndA,
where £ and tj are local coordinates in a moving frame whose origin is a t the centroid of the patch, 3 

as shown in Figure 5.1. On the basis of criterion 1, a small parameter can then be introduced: 
e =  maximum patch diameter /  minimum intercentroid distance. Defining the initial minimum 
intercentroid distance as a characteristic unit length it can then be seen that:

j(m ,n )  _  Q ( £m + n + 2y

The higher order moments are thus viewed as higher order perturbation terms. Note that the 
zeroth order geometric moment J^0,0) is just the  area of the patch which, as a consequence of 
Kelvin’s circulation theorem, is conserved.

For the lowest order model all the moments of order greater than one are om itted. The local 
geometric moments of order one represent the centroid of the patch in local coordinates. These

3 Such a  moving fram e is a tta c h e d  to  each patch.
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are zero by the choice of the local coordinate system. The truncated equations then show that 
the patch centroids move like a system of N  point vortices.

In the next order of truncation, the three moments of second order J (2,0\  and j ( 0,2)
are included. These moments, by their definition, can also be viewed as the moments of inertia 
of the geometric shape of the patch. The authors, noting that the isolated Kirchhoff elliptical 
vortex is an exact solution of the Euler equation, then give the following reason to show that the 
second order model is ‘mathematically consistent with an elliptical distribution of vorticity’ [60]. 
For an ellipse, the three moments of inertia satisfy the following geometric relation:

A4 =  j (2,0)j (0,2) _
16tt2

This geometric relation is satisfied a t all times by the second order model as can be verified 
by differentiating each side with respect to time. The time derivative of the left hand side is 
zero. Substituting the time derivatives of the moments as given by the model shows tha t the 
right hand side is also zero. Thus the assumption that an elliptical distribution of vorticity 
remains elliptical for all times does not introduce any apparent inconsistency with the  second 
order model. As further reasons to justify an elliptical distribution, the authors [61] cite Kida’s 
work [45] who showed that an elliptical vortex in a uniform shear flow maintains its elliptical 
shape, and numerical and experimented evidence of elliptical vortices (see references therein).

The second order model thus treats each patch as a  uniformly rotating Kirchhoff elliptical 
vortex perturbed by the presence of the other patches. The perturbation keeps the patch elliptical 
but changes its aspect ratio and rotation rate in general. The variables A := aspect ratio and 
9 :=  tilt of major axis, are introduced in place of the second order moments. For elliptical shapes 
they are related by:4

J{2'0) =  ^ ( A 2 + ( 1 - A 2)s in 2 0 ) ,

, / ( 0 ' 2) =  ^ X ( A 2 + ( 1 - A 2)cos20 ),

J t1-1) =  —̂ - ( 1  -  A2) sin 20.8ttA

Thus for each patch we get a system of four variables X , Y, A and 9, where X , Y  are the coordinates 
of the centroid of the patch. As shown in [61], the system of N  patches in the variables:

( y ^ X k, v /F T n , ~ ~  {Xk-̂ k 2 gfc) , k = l , . . . , N

then becomes a Hamiltonian system in the canonical sense.

4 T h e  apparen t inconsistency in transform ing from th ree  variables to  two is explained by th e  area-m om ents 
re la tion  above.
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5.3 T h e geom etric phase in  the second-order MZS m odel 
for tw o elliptical patches

5.3.1 A sym ptotic procedure

Consider a  system of two elliptical patches of arbitrary strengths but of the same sign, as shown in 
Figure 5.2. Each patch is a phase object while the background field is provided by the other patch. 
The relevant phase is the orientation of the patch as measured by the inclination of the major 
axis of the ellipse with respect to the horizontal axis. As in the point vortex problems the small 
parameter e in the MZS model defines a  ratio  of two time periods or frequencies in the following 
way. As e goes to zero the size of the patches goes to zero with respect to the intercentroid 
distance. The rotation and deformation of each patch would then be more influenced by its own 
velocity field than by the background field. We would thus expect the patch motion to approach 
the uniformly rotating, non-deforming motion of the Kirchhoff ellipse. If we assume that the 
strength of each patch and its initial aspect ratio is unaltered as e varies, we can then, from (5.2), 
associate a tim e period T, ~  A  with each patch.5 Simultaneously, we would expect the centroid 
motion to approach point vortex motion as discussed in the previous section. There is also a 
longer time period 2] ~  D2, where D  is the typical distance between the centroids. Assuming 
for simplicity that A \/A 2 = C  =constant for all e, we define the small parameter explicitly as

o A i +  Ao
e'  “  D f '

where D,- is the initial intercentroid distance. We then see that e2 ~  T,/T i. Therefore small 
values of e define an adiabatic process ju st as in the point vortex problems in which there exist 
two timescales, one associated with the rotation of the patch and the other with the (relatively) 
slow revolution of the centroids. Using scaling arguments as in §2.1, one would expect that, as 
e —► 0, there is an 0(1) contribution to the angle change of the patches at the end of the time 
period 7J.

Referring to  Figure 5.2, we denote by D  the distance between the centroids, by <f> the angle 
with the horizontal axis6 made by the line joining the centroids, by A* (k =  1,2) the aspect ratio 
of each patch and by Ok (k = 1,2) the angles made with the horizontal axis by the m ajor axis of 
each patch. The following equations are then obtained from the second order model:

5T his m eans, in particular, tha t if e is decreased by decreasing the area o f  th e  patches then the patches ro ta te  
faster and  faster.

6 In th is problem  we stick to the sign convention for angles and  circulations used by MZS, nam ely th a t  angles 
are m easured in a  counterclockwise direction from th e  positive X-axis and  th a t  counterclockwise circulations are  
assum ed to  be positive. This is different from ou r sign convention in the po in t vortex problems.
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Figure 5.2: The motion of two well-separated uniform elliptical vortex patches of the same sign 
in the MZS model. The patches have areas A i, A i  and like-signed strengths Ti, To. The motion 
of the centroids of the patches (small, filled circles) is, to leading order, the same as that of two 
point vortices of strengths Ti, T2 - This motion, shown by the concentric dashed circles, is about 
the center of vorticity of the point vortices marked O.
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dD =  / ' r i + T a ^  4 . I ^ l sin(2(«*-**))■
dt -

H  = 1 -A |
dt 2nD 2 \  8n2D* J  “  A*

I T  =  - « . ) ) ,

W1A1 /'l + A?̂  r2 ,  ,  „

JT = ^ T T o 5 + l > ^ ? i s 5 J ' os( W"  ,))’ 

i t  = -* » .
i h  =  “ aA" . f  +  f  1 + 4 )  - ^ r e o s ( 2 ( »  -  »,)).
dt (1 +  A2)2 \ l - * ? j 2 i r D 2 VV "

One checks that this system is Hamiltonian in the canonical variables:

(  r,r, \ d '- ivu(A» —i)2
IrTTTsJ T '  *' ~si "* (* = l 'J)

with the Hamiltonian:

r^a, - rir2 (i — a?) tn ti  „ „
" S "  8 + £  A t — z r ~  °“ (SW -  9‘ »-* = .8'

(1 +  A*)2
4A/t

We make the following remarks about this system of equations:

1. The first two equations give the centroid motion and are obtained from equations (3.24) in
[61] (for two patches) after introducing the polar variables D,4>:

X n  — X \  —  D  cos<f>, V2 — Vi =  £>sin0.

These equations clearly show that for large D  or small A \ , A ?  the centroids move like two 
point vortices of strengths r  \ and T2 respectively.

2. The Ak, Ok variables represent the patch deformation and rotation, respectively. Their 
equations are the same as equations (3.19) and (3.20) in [61]. They show th a t for large D  

or small A i, A n  (equivalently large u>\, w2) the patches rotate like Kirchhoff ellipses.

3. The Ak, 6k equations for a  patch are not explicitly dependent on the A*, Ok of the other
patch. The mutual interdependency comes only through the D and <j> variables. However,
there is a direct dependency on the strength of the other patch.

86

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



4. The 81, equations are not defined for A* =  1 i.e. circular patches. As pointed out in [61] 
this is because these variables are not defined for circles.

We now proceed to  non-dimensionalize these equations and calculate the adiabatic phase in the 
angle variables 6X and 02 a t the end of one long time period 7} of the centroid motion.

Introduce the non-dimensional variables:

D  =  t = fit,

where Q =  ( r i  +  r 2)/(A i +  A 2). fi is the mean strength over the mean area of the patches and 
represents the timescale of the ‘unperturbed’ frequency of the patches. This gives the following 
equations in the non-dimensional variables:

/  4 \  °

v '  fc=l

N '  x '  k = l

d6i au(A x) , j a 3A(Ai) „
I T  ~  ~ a T  +  ‘ - 2 J 5 5 - cos(2W - 9 , ) ) '

d62 a 2g { \2) , ,2aih(A 2)
n r  -  — i r + ^ D ^  o s m ~  2))'

where <rk =  Ak/ ( A X +  A 2), a k = r k/ ( T 1 + To), /(A) =  (1 -  A2)/A, g(A) =  A/(l +  A)2 and 
h(A) =  (1 +  A2) / ( l  — A2). The initial conditions for this system are:

£>(0) =  1, *(0) =  0, 0i(O), 02(O), A!(0), A2(0).

We now proceed to perform a multi-scale perturbation analysis on this sytem of equations. 
W ith slow timescale r  =  e2t, seek series solutions to the variables in the form:

D ( t ,T) = ^ 2 e 23D{2j)(t,T), 4>(t,r) =  ^ e 2j0 (2j)( t ,r ) ,
j =o j=o

m , T )  = (* =  1,2)
j=o
OO

*k(t,r) =  X V J’A / (* =  1,2). 
j=o
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Note that we consider only even powers of c in the series since only even powers of e appear in 
the coefficients of the equations.7 The leading order functions in the series (£)(0), etc.) have 
the same initial conditions as the variables. The initial conditions for all other functions are zero. 

At leading order we get:

0 (1):

~ d T
d<t>W

dt

0 => D w  =  O(0)(r), D(o)(0) =  1,

0  = >  <£(0 )  =  <£( 0 ) ( t ) ,  ^ ° > ( 0 )  =  <f>{Q) =  0 ,

= « »  4 ° ’ = j r M .  ir (o )= A » (o > , ( 4 = i , 2 )

=>

dt

dt <rk :
g W  =  ^ ( A W j t  +  g tV f r ) ,  ff™ (0) =  0k (0 ) , (k  =  l , 2 )

(?k

0(e2):

a o w dD™
dt 1 dr

rf*(0)
dt dr

d X ? d x f
+ —r—

=  0 ,

1
27r(£>(°))2

m  • dr -  „ ( * . ) F =™(2W(»>-« < » ') ) ,

W«2» a C  ok m  1-A<°> ,„,N
^ T  + S r  ~ ( l +l j » ) 3 2ir(D<»')2 ‘  )'1'

where k' =  1 if k =  2 and k' =  2 if it =  1. 
This gives the following solutions:

5<°>(r) =  D<">(0) =  1, D<=> =  D|!1(t), D<=)(0) =  0,

* '“)(r) =  ^ ,  *<=>=*<=>M, *P>(0) = 0 ,

= 0) =  A*(0),

‘ Indeed taking a  series w ith all (positive) integral powers of t  leads to  an incom patib ility  condition with the 
initial conditions in the equations for the A* s a t  O(e).
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AI„  ; r V C, (1. + X > m 2 cosC2(<t,p, _  ,< .)»  +  Am (r)t

a[2)(0) =  r *'°'fc(1 ~t~ M 0 ))2(0) = ---------— --cos 20* (0),2jiT*

= - w S S (0 )>  ( i T ^ W + «**<«>) si" m m  -  9‘ ’» +

The last equation is obtained by imposing the solvability condition which gives the equation for 
the adiabatic phase 0 ^ ( r ) .  Thus, corresponding to the ‘slow phase’ equation (in box, §2.2) in 
the point vortex problems, we have here:

1 - -M 0 )  A(=) 9(”>(0) =  (M0).
d r  dr ak ( l  +  A*(0))3

Note the similarity to the ‘slow phase’ equation in the point vortex problems. We find th a t here 
too the rate of change of the adiabatic phase depends linearly on the a second order ‘slow’ term  
of the conjugate variable. To solve for A ^  we proceed to the a£*  ̂ p.d.e. at 0 (e4):

n \  (4 ) Q \ ( 2 )

^ -  +  ^ -  =  ^ [ 2 A . ( 0 >  (*<=>-i f )  c o s ^ m - C ) )

+ ( a<2) -  2Afe(0)£>(2))  sin(2(^°> -  0<o)))] .

This gives the solvability condition:

fe"5 _  n \ ( 2 ) \  _  *(2)/m _ Tfe-O-fc (1 +  A*(0))*__ 0/1
^  —0, \ k ( r)  — Afc (0) —----------- 27iT* cos 20* (0).

Hence,

{ 9 s )k = e ^ ( r )  =  - | g |  +  ^jQ)) cos20*(o) - r  +  0*(Q), (5.3)

is the slow phase term. The change in 0 ^  is now evaluated a t the end of the time period T  (to 
leading order) of the centroid motion. This is obtained from the solution for <^°'(r) from the 
condition — <£(0) =  2x, giving T  =  4tt2. Hence, the geometric phase for each patch is:

(03)* =  0'1O)(T )-0 * (O ), 

t< 1 +  A*(0)
r*<  i  — a * ( o )

r i + r, i + (0)2” 1:03 29‘ *°*'
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P ro p o s it io n  2: The geometric phase fo r  a system o f two elliptical co-rotating vortex patches 
evolving according to the equations o f the second-order truncated MZS model is given by:

(«■ = ”  ( f r ^ T r )  ( iT m ? ) )  2’rcos2S'(°)' 

l e ’ h  =  -  ( r T T r l )  ( r r i f i )
where the Ts and As refer to the strengths and the aspect ratios o f the patches respectively. 

R em ark s :

1. Comparing with the results of §2.3.1, we find th a t the geometric phase for each of the 
two vortex patches is the geometric phase of a corresponding pair of point vortices in a 
four-vortex configuration, where the sum of the strengths of the two vortices in a pair is 
the patch strength, times the factor (1 — A*(0))/(1 +  A*(0)) {k =  1,2). This factor can be 
viewed as the contribution to the geometric phase o f the internal structure associated with 
each patch.

2. Note tha t to calculate the phase, the multi-scale analysis does not have to proceed to orders 
higher than e4 which is the order of truncation, in e, of the second order model.

5.3.2 G eom etric interpretation

The geometric interpretation of the phases in the patches is identical to the interpretation in the 
point vortex problems in Chapter 3. This is not surprising since the leading order behaviour of 
each patch again displays the characteristic splitting into a ‘fast’ term and a ‘slow’ term in the 
angle variable: 9o(t, r) =  9p(t) + &s{r), with no change in the conjugate aspect ratio variable. 
The geometric phase in each is unaffected by the higher order terms of the centroid evolution. 
Thus, analogous to the three- and four-vortex problems of Chapter 2, we can say th a t the same
geometric phase is obtained for each patch by approximating the centroid motion by its leading
order motion. This motion is that of two point vortices of the corresponding strengths and we 
thus have well defined closed orbits in the plane associated with the phases.

Thus, in antilogy with the interpretation of §3.1, U =  R 2 — {o}, where o is the center of 
vorticity of two point vortices of strengths T i(=  w iA i) and r s ( =  woAo) respectively. The 
motion of each point vortex is defined by 4>(r) =  <^°l(r) =  t /2 t  and hence the common angular 
velocity of these vortices is w/(tf>) =  d<j>/dr =  1/2x  for all orbits. Hence u>i = ui (referring to our 
notation in §3.1). Noting that (Cj)i =  d (9 s)i/d r  and (Cj) 2 =  d (9 sh /d r  are obtained from (5.3) 
the geometric phase for each patch can be rewritten using (3.2) as:

x r { Y d x - x d Y \  rv i - A fc(0)
f \  x 2 +  k 2 )  r !  +  r 2 i  +  Afe( 0 ) cos fc(
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where X , Y  are the Cartesian coordinates of either of the two point vortices and the contour is 
its closed orbit. This defines the 1-form 7 „ on U:

, i _  [ Y d X - X d Y \  IV 1 — Afc(O)
( 7 u ) f e -  ^  x * + y 2 J  r i  +  i ^ i  +  M O )

In terms of the area and the circumference of the circular point vortex orbit in U, we get: 

ra  \  _  2-Au IV  1 — Afc (0)_
(s)fc r?  r i  +  r 2 i  +  Afc(o)

8rr2A v IV 1-Afc(0)
-  -  £2 ■r1 + r2i + A,(o)cos20fc(o)’

where A V,R  and L are the quantities defined in 3.1.1.
In analogy with the interpretation in §3.2, the unperturbed configuration space for each patch 

(i.e. the configuration space for the Kirchhoff vortex) is diffeomorphic to S l and so also Me the 
closed point vortex orbits in U. The geometric interpretation in terms of connections is therefore 
again given by T heo rem  l a  in Chapter 3 for the four-vortex problem with some minor rephras­
ing:

T h e o re m  3: The geometric phase in the MZS elliptical vortex patch model fo r  two patches of 
arbitrary strengths but o f the same sign can be viewed as the holonomy o f a fla t connection on 
the trivial principal bundle rr : E  =  S 1 x S 1 x S 1 —> S 1. E  (the 3-torus) is diffeomorphic to 
the product space o f each unperturbed vortex patch configuration space (i.e. the Kirchhoff vortex 
configuration space)  and the closed orbit (for a given initial condition) in U corresponds to the 
two-point-vortex motion of the patch centroids. The fiber at each point is diffeomorphic to the 
product o f the two configuration spaces. The vector-valued connection 1-form is given by

5 =  (dB\ — vi(<j>)d<t>,d02 — vo(<f>)d<j>),

where { 0 are the torus coordinates and vk(4>) is the ratio of the constant slow phase ‘an­
gular velocity, ’ d(9s)k/dr, induced on patch k by the other patch, and the angular velocity, w(<j>), 
o f the point vortex in the closed orbit.

The extension of this to the bundle with base space U is obvious. As in the point vortex problems 
the connection on this bundle has non-zero curvature in general.
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