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Abstract 
 
 
The evolution, interaction, and scattering of 2N-point vortices grouped into equal and 
opposite pairs (N-dipoles) on a rotating unit sphere is studied. A new coordinate system 
made up of the centers-of-vorticity and centroids associated with each dipole is introduced. 
With these coordinates, the nonlinear equations for an isolated dipole diagonalize and one 
directly obtains the equation for geodesic motion on the sphere for the dipole centroid. When 
two or more dipoles interact, the equations are viewed as an interacting billiard system on 
the sphere — charged billiards — with long range interactions causing the centroid 
trajectories to deviate from their geodesic paths. Canonical interactions are studied both with 
and without rotation. For two dipoles, the four basic interactions are described as exchange 
scattering, non-exchange scattering, loop scattering (head-on) and loop scattering (chasing) 
interactions. For three or more dipoles, one obtains a richer variety of interactions, although 
the interactions identified in the two-dipole case remain fundamental. 
 

Keywords: N-vortex problem; Dipole scattering; Charged billiard equations. 
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Chapter 1 
 
 
Introduction to N-vortex problem 
 
 
 
In the last 20 years, there has been a resurgence of interest in the N-vortex problem. 

Motivated mostly by advances in dynamical systems and computational techniques, the 

focus has by and large been on the dynamics of point vortices in the plane, both integrable 

and non-integrable configurations. From a geophysical point of view, however, it is also 

important to study the motion of vortices on a sphere if one is interested in questions related 

to large scale motions and mixing in the atmosphere and oceans. When the scale of motion is 

on the order of the radius of the Earth, the topology of the sphere becomes important and one 

can no longer use a tangent plane approximation. In addition to curvature effects, rotational 

effects can also play an important role, particularly when one wants to track regions of 

concentrated vorticity (such as cyclones and hurricanes) on timescales comparable to or 

longer than a day. In general, of course, both the curvature of the sphere as well as its 

rotation will influence the dynamics. In this effort we bring the effects of the rotation into 

account and thus study both how geometry influences the vortex motion and how the 

rotation of will effect the path of the motion. Papers that address the effects of rotation on 

the full sphere include Bogomolov (1985), DiBattista & Polvani (1992), S.Friedlander 

(1975) Newton & Shokraneh (2004).  This effect, of course, introduces significant 

complications to the dynamics and, generally speaking, there has not been much analytical 

progress on this problem.  

 

There is, by now, a substantial and growing literature devoted to the N-vortex problem on 

the non-rotating sphere ( = 0) and much is known regarding integrability (see Borisov & 

Pavlov (1998), Borisov & Lebedev (1998), Kidambi & Newton (1998), Kidambi & Newton 

(2000)) non-integrability (see Bagrets & Bagrets (1997),Newton & Ross (2005)) collisions 

(see Kidambi & Newton (1998), Kidambi & Newton (1999)), fixed and relative equilibria 

(see Aref et al. (2003), Kidambi & Newton (1998), Laurent-Polz (2002), Lim et al. (2001), 

Jamaloodeen & Newton (2005)), and stability (see Polvani and Dritschel (1993), Cabral et 

Ω
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al. (2003), Kurakin (2004), Laurent-Polz et al. (2004), Pekarsky & Marsden (1998)). Monte-

Carlo methods have been developed which identify extremal states (see Lim et al. (2003a,b)) 

and special numerical techniques that retain accuracy on theoretically conserved quantities 

are being developed (Marsden et al. (1999), Newton & Khushalani (2002), Pullin & Saffman 

(1991), Rowley & Marsden (2000), Rowley et al. (2004), Zhang & Qin (1993)). An 

overview of many of these topics can be found in Newton (2001), while a recent 

comprehensive survey of equilibrium configurations can be found in Aref et al. (2003). 

What motivates most of these efforts are applications to atmospheric fows, traditionally 

treated under the β-plane approximation (see Gill (1982)). While β-plane models include 

Coriolis effects, they are local and only remain valid in a restricted latitudinal strip about 

which the tangent plane approximation is invoked. Thus, when one is interested in tracking 

vorticity over long distances, or when global velocity fields and streamline patterns are of 

interest (Kidambi & Newton (2000)) typically a full spherical treatment is required. The 

problem has spawned several Ph.D. theses, both from the geophysical fluid dynamics 

perspective (see Chern (1991), Nevin (1993), and DiBattista (1997)) as well as the nonlinear 

dynamics point of view (see Kidambi (1999), Jamaloodeen (2000), Laurent-Polz (2002), 

Nebus (2003), Khushalani (2004)). The papers of Bogomolov (1985), DiBattista & Polvani 

(1998), Klyatskin & Resnik (1989) treat the fully coupled ‘barotropic’ model on the sphere 

where the vortices influence the background rotation and in turn, the evolving background 

field influences the vortices. This two-way coupling allows for the generation of Rossby-

Haurwitz waves on the sphere which are known, for example, to trigger instabilities in the 

vortex configuration. However, because the background vorticity is not localized, 

Bogomolov’s (1985) equations are integro-differential equations which typically must be 

treated numerically. Likewise, Klyatskin & Resnik (1989) resort to using use a short time 

approximation (Taylor expansion) to show that an isolated point vortex, coupled to the 

background field, moves along a northwesterly curved trajectory on the sphere, in qualitative 

agreement with what is known about the trajectories of hurricane paths in the northern 

hemisphere. The numerical study in DiBattista & Polvani (1998) treats the interaction of a 

vortex dipole with a background distribution in the form of constant vorticity strips on the 

sphere which initially model solid body rotation, while Polvani & Dritschel (1993) treat both 

wave and vortex dynamics on the sphere using contour dynamics techniques. In the simpler 

model which will be studied in this thesis, since the vortex motion does not affect the 

background velocity field which remains in solid body form, the system retains its finite-
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dimensional structure, much like the models that focus on the non-rotating sphere and thus 

can be treated analytically. This model can be considered a limiting case of the two-way 

coupled model in the limit in which the background field is strong compared to the strength 

of the embedded vortices. The price we pay is that this one-way coupled system is not 

capable of generating Rossby-Haurwitz waves. 

 

In order to narrowly focus on a subject, I started with Kidambi & Newton (2000) and the 

streamline topologies for integrable vortex motion on a sphere. They have described the 

instantaneous streamline patterns that occur on the surface of a two-dimensional sphere in 

the presence of point vortices of general strength. They have categorized all possible 

instantaneous streamline patterns and described their stagnation point structure for the cases 

of two and three vortices. It is found that for the case of two vortices, the only non-

degenerate topologies that arise are a figure eight (lemniscate) or a limacon, which are 

homotopically equivalent. 

 

 
Figure.1. Continous deformation of a lemniscate to a limacon. In four steps (a)-(d), the sphere is pushed through 
the left top. 
 
For the case of three vortices, there are 12 topologically distinct primitives, from which an 

additional 23 patterns can be produced via continuous deformations on the sphere 

 3



(homotopies). All possible streamline patterns that arise from three vortex motion can be 

obtained via linear superposition of the primitive topologies and their homotopic 

equivalents. In this sense, the primitives can be viewed as the ‘building blocks’ for the 

general flow patterns. The classification into 12 primitive topologies is shown in fig.2(a). the 

left column lists the number of saddle points occurring in the figure. The numbers along the 

bottom of each figure indicate the number of homoclinic-hetroclinic – trihedroclinic loops in 

each figure. Hence, the upper left figure is the ‘least complex’, while that on the bottom right 

is the ‘most complex’.  

 

 

 
Figure.2(a). Three vortex primitive chart showing the 12 primitive topologies. Number down left denotes the 
number of saddle points. The three numbers under each figure refer to the number of homoclinic–heteroclinic–
triheteroclinic loops. 
 
 

It is important to understand that each primitive can be continuously deformed on the surface 

of the sphere to a visually distinct but topologically equivalent pattern as was shown, for 

example, in Fig.1. Hence, each of the 12 figures represents a homotopy equivalence class. 
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They have shown as in Fig.2(b). the primitives and their topologically equivalent   figures, of 

which there are 23. They have mentioned that any given streamline configuration associated 

with the three vortex problem will be made up of a general combination of the primitives 

and their topological equivalents. Such streamline patterns are shown in Fig.3. which is a 

combination of lemniscate and limacon. 

 
 

 
Figure.2(b). Twenty three homotopic equivalent figures obtained by continuously deforming each of the 12 
primitives shown in Fig. 2(a). 
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Figure.3. Typical three vortex streamline pattern. Shown is a combination of a lemniscate and limacon formed by 
a three vortex cluster: (a) front of sphere; (b) back of sphere; (c) stereographic projection 

 

 

The question remains as to how the streamline topologies evolve dynamically? In particular, 

can one identify the bifurcations that take place from one pattern to another as the vortices 

evolve? That is what I am going to study in this thesis and my ultimate goal would be to 

compare my results for simulated streamline evolution on the sphere with real data I have 

collected from NOAA website. (Appendix I.) 

 

In order to study the bifurcation of topologies, we need first to know how the point vortices 

dynamically evolve on the sphere. High accuracy in the computation is needed so 

we typically use a variable time-step 7th-8th order Runge-Kutta solver. The dynamics, of 

course, may result in chaotic motions which we study by starting with simplest case of 

dipoles and then expand to more complex cases.  
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1.1   Cartesian coordinate formulation in the plane 
 

We briefly review the main equations we treat in this study. The system of N-point vortices 

in the plane can be expressed conveniently as 

 

( )
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Where βααβ XXl −=  are the intervortical distances. The system is more compactly 

expressed in complex notation Zα (t) = Xα (t) + i Yα (t), 
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1.2  Vortex dynamics on sphere 
 

( ) ( )
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Using standard spherical coordinates, and where  

 

( ) ( ) ( ) ( ) ( )βαβαβααβ φφθθθθγ −−= cossincoscossin  

 

 

 

(1.1)
(1.2)
(1.3)
(1.4)
(1.5)
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1.3  Unifying planar and spherical formulas 
 

We can unify the planar and spherical formulas by writing the velocity field at an arbitrary 

point X due to point vortex of strength Γα located at position αX
r

as  

 

22
α
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→→→
•
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−
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Where nα is the unit normal vector to the surface at the vortex location αX
r

 . The velocity 

due to a collection of N such vortices is then  
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Which gives the equations for a collection of N-vortices 
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Where β =1, ….. , N  . The characteristic feature of the surface enters only through 

specifying the normal vector at each vortex location. For planar problem nα = ez   , and 

equation become 
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(1.7)
the 
(1.9)
(1.8)
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On the sphere with radius R, nα = αX
r

 / R and the equations are   
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One, of course, has the additional constraint on the sphere that || αX
r

|| = R, Hence we can 

modify above equation as follow: 
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Now for substituting  if we consider a vector 2
αβl βα XX

rr
−  and multiply it by itself we 

will have: 
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In many respects, this is the most convenient way of writing the system on a sphere with no 

rotation. 
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1.4  Summary of Ph.D thesis 
 

The thesis will be organized into four chapters and two appendices. Chapter 1 introduces the 

history and background associated with the problem. Chapter 2 describes the effects of 

alignment and rotation on the problem of N-vortices on a unit sphere and introduces simple 

linear transformations which help to decompose it into simpler interactions. Chapter 3 

describes how we can rewrite our formula to be suitable for simulations via a high order 

Runga-Kutta method. Chapter 4 explores the fundamental interactions of two and three 

dipoles and then a general case of larger number of dipoles with different strengths. The two 

appendices contain preliminary work on streamline patterns which occour both in real data 

and in our models. Details follow below. 

 

2- Equilibria: relative equilibria, One-frequency and multi frequency 

The problem of N-point vortices moving on a rotating unit sphere is considered. Through a 

sequence of linear coordinate transformations which takes into account the orientation of the 

center of vorticity vector with respect to the axis of rotation, we show how to reduce the 

problem to that on a non-rotating sphere, where the center of vorticity vector is aligned with 

the z-axis. As a consequence, we prove that integrability on the rotating sphere is the same 

as on the non-rotating sphere, namely, the three-vortex problem on the rotating sphere is 

integrable for all vortex strengths, while the four-vortex problem is integrable in the special 

case where the center of vorticity is zero. Rigid multi-frequency configurations that retain 

their shape while rotating about two independent axes with two independent frequencies are 

obtained, and necessary conditions for one-frequency and two-frequency motion are derived. 

Examples including dipoles which exhibit global ‘wobbling’ and ‘tumbling’ dynamics, 

rings, and Platonic solid configurations are shown to undergo either periodic or quasi-

periodic evolution on the rotating sphere depending on the ratio of the solid body rotational 

frequency Ω to the rotational frequency ω associated with the rigid structure. 

 

3- Numerically solving the N-vortex problem on a sphere 

In chapter 1, formulas for calculating the effects of one vortex on another and the velocity 

vector for each vortex have been studied thoroughly. In this chapter, we will expand these 

formulas for the case of N-vortices and describe an accurate numerical solution, specifically 

for the case of N interacting dipoles. 
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4- Fundamental interactions of N-vortex on a unit sphere 

In this final chapter, we will study the fundamental interactions which occur between 

two and three dipoles. These interactions turn out to occur in more complicated 

settings, and allow us to interpret more general N-dipole interactions, between 

dipoles of different strengths. 
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Chapter 2 
 
 
Equilibria: relative equilibria, One-frequency and multi-
frequency 
 
 
 
In this chapter, the N-vortex problem on a rotating unit sphere is considered. It is convenient 

to formulate the problem in Cartesian coordinates, where the vector 3ℜ∈αX
r

 points from 

the center of the unit sphere to the point vortex with strength αΓ  lying in the surface of the 

sphere, as shown in figure .4. Each point vortex moves under the collective influence of all 

the others and rotation is introduced by adding a solid body rotational component to the 

velocity field. The dynamical system we consider is given by 

 

α
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The prime on the summation reminds us that the singular term β = α is omitted and initially, 

the vortices are located at the given positions , 3)0( ℜ∈
→

αX ),,1( NK=α . The denominator 

in(2.1) is the chord distance between vortex and  since αΓ βΓ

)1(2
2
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⋅−=− XXXX  . In what follows, the center of vorticity vector J (also 

known as the momentum map) defined as 
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plays a central role in our discussion. 
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Figure.4. N-vortex diagram on a unit rotating sphere, J rotates around  with frequency Ω zê

 

 

The goal in this chapter is to make a simple observation that seems to have been missed 

previously, namely, that the mis-alignment of the center of vorticity vector with the axis of 

rotation is an important ingredient in understanding the dynamics of the vortices, and on its 

own can account for features such as the ‘wobbling’ and ‘tumbling’ modes seen previously 

in β-plane models . The key to understanding the ramifications of the mis-alignment is to 

understand how a certain time-dependent unitary operator, , affects trajectories on 

the aligned non-rotating sphere. It is this feature that we will explore in this chapter.  

)(tJ
Ωℑ

 

In §2-1 we transform system (2.1) to the corresponding equations for N-vortices on a non-

rotating sphere. In §2-2 we align the J vector with the z-axis through two sequential linear 

transformations. We show that the general solution to (2.1) can be related, via a sequence of 

three linear mappings which define , to solutions on the non-rotating sphere where J 

is aligned with the z-axis. From this, we can conclude that, like the non-rotating sphere 

(Kidambi & Newton (1998)), the 3- vortex problem on the rotating sphere is integrable for 

all vortex strengths. This is described in §2-3. §2-4 focuses on the conditions necessary for 

the existence of rigidly rotating configurations which maintain the mutual distances between 

each pair of vortices on the rotating sphere. These solutions contain two inherent 

frequencies, 

)(tJ
Ωℑ

),( ωΩ  and hence represent either periodic orbits ( ω/Ω rational) or quasi-

periodic orbits ( ω/Ω  irrational) of the original system (2.1). We then describe the evolution 

of dipoles, rings, and Platonic solid configuration on the rotating sphere.  
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a)    Solid-body rotation 

 

Consider first just the solid-body term in (2.1), 

 

)0,,(ˆ xyz XeX ΩΩ−=×Ω=
→

•
→

 (2.3)

3ℜ∈
→

αX , 1=
→

αX  

 

This can be solved by transforming the coordinates to a rotating reference frame via the 

linear transformation , where 33 ℜ∈ℜ∈ wX a

 

(2.4)→

Ω

→

= wMX , 

 

and is the rotation matrix about the z-axis 
ΩM

 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
ΩΩ
Ω−Ω

=Ω

100
0cossin
0sincos

tt
tt

M  (2.5)

 

For future reference we note that Ι=Ω )0(M  and is unitary matrix, hence has the 

property  

ΩM

 

(2.6)1−
ΩΩ = MM T , 

 

Inserting this into (2.3) yields 

 

)(ˆ wMewMwMX z
r&rr&&r

ΩΩΩ ×Ω=+=  (2.7)
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A straight forward calculation shows that 

 

XewMewM zz

rrr& ×Ω=×Ω= ΩΩ ˆ)(ˆ . (2.8)

 

Thus (2.7) reduces to 

 
(2.9))0()0(0 XwwwM ==⇒=Ω & , 

 

and the solution to (2.3) then  becomes 

 

)0()( XMtX
rr

Ω= . (2.10)

 

 

b) The center of vorticity vector 

 

Central to our approach is the center of vorticity vector (2.2), in particular it’s orientation 

with respect to the axis of rotation. We first consider it’s evolution by multiplying (2.1) by 

 and summing over αΓ α  

 

∑∑∑∑
== ≠

→→

→→

=

Γ×Ω+
⋅−

×
⋅ΓΓ

Π
=Γ

N

z

N NN

Xe
XX

XXX
11 2

/

1

ˆ
14

1
α

αα
α αβ βα

αβ
βα

α
αα

r
& . (2.11)

 

In the right hand side of this equation, the first term is zero, hence what remains is 

 

∑∑
==

Γ×Ω=Γ
N

z

N

XeX
11

ˆ
α

αα
α

αα

r&r  (2.12)

 

Thus satisfies J

 

JeJ z

r&r ×Ω= ˆ , (2.13)
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the same equation as (2.3). Hence, as in (2.10) 

 

)0()( JMtJ
rr

×= Ω , (2.14)

 

from which we conclude that its length is constant since 

 
22

)0()0(),0()0(),0(, JJJMMJMJMJJJ T
rrrrrrrr

==== ΩΩΩΩ  (2.15)

 

The components satisfy 

 

(2.16).1
22 constCJJ yx ==+  

(2.17).2 constCJ z ==  

 

A general configuration is depicted in figure 4. As the N-vortices evolve under their mutual 

interaction, the J vector rotates with frequency Ω about the z-axis, maintaining a fixed angle 

γ with respect to the axis. 

 

 
Figure.5. Alignment of J with  axis is obtained via a rotation through angle γzê z about the z-axis followed by a 
rotation γy about y-axis 
 

 

 

 16



2.1  Transformation to a non-rotating sphere 
 

To treat the full system (2.1), we first move to a rotating reference frame to absorb the solid 

body rotational term, Hence substitute (2.4) into (2.1), noting that 

 

βαβαβα wMwMXXXX rrrrrr
ΩΩ==⋅ ,,  (2.18)

therefore 

                                       βαβαβα wwwwMMXX T rrrrrr
⋅==⋅ ΩΩ , , (2.19)

 

and as is a pure rotation matrix, magnitude and the angle between  and remains 

constant therefore:   

ΩM αX
r

βX
r

)()()( βαβαβα wwMwMwMXX rrrrrr
×=×=× ΩΩΩ , (2.20)

we obtain  

)1(4
1

1

/

βα

αβ
β

β
α ww

ww
w

N

rr

rr
&r

⋅−

×
Γ

Π
= ∑

=

,   )0()0( αα Xw
rr

= ,   ),,1( NK=α . (2.21)

 

Hence transformation (2.4) takes solutions on the rotating sphere to solutions on the non-

rotating sphere. The center of vorticity vector transforms as 

 

∑ ∑ ∑
= = =

ΩΩΩ =Γ=Γ=Γ=
N N N

JMwMwMXJ
1 1 1

ˆ
α α α

αααααα
rrrr

, (2.22)

 

where 

 

.)0()ˆ,ˆ,ˆ(ˆ
1

constJJJJwJ
N

zyx ===Γ=∑
=α

αα  (2.23)

 

The initial configuration )0()0( αα Xw
rr

= , ),,1( NK=α  defines the constant vector J
r

. 
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2.2  Alignment 
 

We now rotate  so that it is aligned with the z- axis as shown in figure.5. First, we 

multiply by the matrix  which rotates  around the z-axis so that it lies in the (x, z) 

plane, then we multiply by  which rotates the vector around the y-axis. Hence 

Ĵ

zM Ĵ

yM

 

(2.24))ˆ,0,0(ˆˆ
zzy JJJMM =≡ , 

 

where 

 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ −
=

100
0cossin
0sincos

zz

zz

zM γγ
γγ

 (2.25)

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
=

yy

yy

yM
γγ

γγ

cos0sin
010

sin0cos
 (2.26)

 

Letting , gives the aligned system αα wMMZ zy≡ αα zMMw T
zy )(≡

 

∑
= ⋅−

×
Γ

Π
=

N

ZZ
ZZ

Z
1

/

)1(4
1

β βα

αβ
βα

& , )0()0( αα XMMZ zy=  (2.27)

                                         . ∑
=

=Γ=
N

zJZJ
1

)ˆ,0,0(ˆ
α

αα
(2.28)

 

Where 

 

.ˆ~ constJJJ zzz ===  
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Figure 6. Rigid configurations on the rotating sphere are made up of rotations around two independent axes, with 
two independent frequencies. The vortices are layered on constant latitudinal planes that are perpendicular to the 
J axis. 
 

2.3  Integrability 
 

The relation between solutions of the original rotating system, )(tXα

r
, and solutions of the 

aligned system  , and in some sense the key result of this chapter, is via the linear 

operator  

)(tZα

11)()( −−
ΩΩ =ℑ yz

J MMtMt

 

)()()( tZttX J
αα

rr
Ωℑ=  (2.29)

 

This operator is time-dependent, but more importantly contains information on the original 

alignment of the J vector with the axis of rotation. Central to the question of integrability is 

the rate of separation of the vortices as measured by 
2

βα XX
rr

−  on the rotating sphere and 

2

βα ZZ
rr

−  on the non-rotating aligned sphere. The two quantities are equal since 

( )βαβαβαβα XXXXXXXX
rrrrrrrr

,12,
2

−=−−=−  

                              ( )βα ZMMtMZMMtM yzyz

rr
1111 )(,)(12 −−

Ω
−−

Ω−=  

                              ( )βα ZZMMtMtMMM yzzy

rr
,)()(12 111 −−

Ω
−

Ω−=  

 ( ) 2
,12 βαβα ZZZZ

rrrr
−=−=  
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For the aligned non-rotating system, we know from Kidambi & Newton (1998) that the 

three-vortex problem is integrable for all vortex strengths. From this result and (2.29) 

follows: 

 

Proposition 2.1. (Integrability on the rotating sphere) The three-vortex problem on the 

rotating sphere (2.1) is integrable for all vortex strengths. The four-vortex problem is 

integrable if the center of vorticity vector J = 0. All solutions on the rotating sphere are 

mapped to solutions on the aligned non-rotating sphere via the linear transformation (2.29). 

 

 

 
 
Figure.7. one-frequency rigid Platonic solids on the rotating sphere oriented at angle γ with respect to the north 
pole. (a) Tetrahedron (4 equal vortices): One vortex is placed at the top, three are evenly spaced around the ring 
at the base; (b) Octahedron (6 equal vortices): Four vortices are evenly spaced around the middle ring, one is 
placed at the top and one is placed at the bottom; (c) Hexahedron (8 equal vortices): Four vortices are evenly 
spaced around the top ring, four are evenly spaced around the bottom ring which is aligned with the top ring ; (d) 
Icosahedron (12 equal vortices): Five vortices are evenly spaced around the top ring, five vortices are evenly 
spaced on the bottom ring which is staggered with respect to the top ring, one vortex is placed at the top and one 
is placed at the bottom; (e) Dodecahedron (20 vortices): Five equal strength vortices (  =1Γ 1sinθΓ ) are evenly 
spaced along the outer top ring, five equal strength vortices (

1Γ =
1sinθΓ ) are evenly spaced along the outer 

bottom ring staggered with respect to the outer top ring, five equal strength vortices (  =2Γ 2sinθΓ ) are evenly 
spaced along the inner top ring, five equal strength vortices ( 2Γ  =

2sinθΓ ) are evenly spaced along the inner 
bottom ring staggered with respect to the inner top ring. 
 

 

 

The proof for the non-rotating sphere can be found in Kidambi and Newton (1998), Borisov 

& Pavlov (1998), Borisov & Lebedev (1998), with discussions in Newton (2001). At first 

glance, this result is somewhat surprising in view of Noether’s theorem and the fact that the 

rotating problem has one less conserved quantity than the non-rotating problem (e.g. 
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22
yx JJ + ,  compared with , ,  ). However, the proof of integrability for the non-

rotating problem relies solely on the conservation of the three independent and involutive 

quantities , , as well as the underlying Hamiltonian and never makes use of the 

fact that  and are each conserved. 

zJ xJ yJ zJ

22
yx JJ + zJ

xJ yJ

 

 

2.4   Rigid configurations 

 

We now examine the evolution of rigid configurations on the rotating sphere, which we 

define as those in which distances between each pair of vortices remain fixed,i.e. 
2

βα XX
rr

− = const. Note that since 

 

βααβα ZZwwXX b

rrrrrr
,,, == , (2.30)

 

configurations that are rigid on the non-rotating sphere (aligned or non-aligned) are also 

rigid on the rotating sphere, hence, in what follows, we will use equations (2.21) to draw 

conclusions regarding rigid configurations on the rotating sphere. In particular, taking the 

dot product of (2.23) with  along with the condition that 
αwr βα ww rr , = const. gives 

 

.ˆ constJw =⋅α
r

 (2.31)

 

i.e. the angle between each vortex and the center of vorticity vector remains fixed. Next, 

using system (2.21) along with the ansatz that each vortex moves with the same frequency 

around the same axis, i.e. αα ω ww rr&r ×≡ , we obtain 

 

∑
= ⋅−

×
Γ

Π
=×

N

ww
ww

w
1

/

)1(4
1

β βα

αβ
βαω rr

rr
rr

 (2.32)
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Then multiply by and summing over α gives the condition αΓ

 

  

0ˆ =× Jω
r

 (2.33)

 

Thus, on the non-rotating sphere, non-degenerate  rigid configurations that rotate 

around the J axis with frequency ω move on constant latitudinal planes perpendicular to J. 

Hence, on the rotating sphere we have: 

)0ˆ( ≠J

 

 

 

Proposition 2.2. (Rigid configurations) Rigid configurations on the rotating sphere that 

rotate around the J axis with frequency ω move on a constant latitudinal planes 

perpendicular to J. The center of vorticity vector J rotates around the z-axis with frequency 

 When ω = 0, the rigid configurations have one frequencyΩ Ω , but in general they are made 

up of two independent frequencies (Ω , ω). The general case is shown in figure 8. 

 

 

 

The one-frequency solutions are fixed equilibria on the non-rotating sphere, while the two-

frequency solutions are relative equilibria on the aligned non-rotating sphere in view of the 

relation (2.29). Note also that it is sufficient to consider only the orientation range 0 = γ = π, 

as trajectories in the range π < γ < 2π can be obtained by symmetry. In the region 0 = γ < 

π/2, the rigid body moves in the same direction as the solid-body rotation (eastward), 

whereas in the region π/2 < γ = π it moves in the opposite direction (westward). In what 

follows, we will look at the representative values γ = π/4, π/2, 3π/4. 
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2.4.1    One-frequency solution 

 

To obtain necessary conditions for the one-frequency solutions on the rotating sphere, let 

in (2.27), take the cross product with αα ω ZZ
rr&r ×= αα Z

r
Γ  and sum on α, 

 

∑
=

××Γ
N

ZZ
1

)(
α

ααα ω
rrr  = ∑∑

= = ⋅−

××
ΓΓ

Π

N N

ZZ
ZZZ

1 1

/

1
)(

4
1

α β βα

αβα
βα rr

rrr

 

                                                    = ∑∑
= = ⋅−

⋅−
ΓΓ

Π

N N

ZZ
ZZZZ

1 1

/

1
)(

4
1

α β βα

βααβ
βα rr

rrrr

 

                                                          = ∑∑
= =

ΓΓ
Π

N N

Z
1 1

/

4
1

α β
αβα

r
 

                                                          = ∑
=

Γ−
Π

N

ZJS
1

2 )~(
4
1

α
αα

r
 (2.34)

 

 

 
 

Figure.8. Dipole motion on a rotating sphere as a superposition of rotations about two axes with the two 
frequencies ω  and   Orientation angle is given by γ.  Ω
 

 

where is the total vorticity. Hence, a necessary condition for a fixed 

configuration (

α
α

Γ= ∑
=

N

S
1

ω  = 0) on the aligned non-rotating sphere, i.e. a one-frequency rigid 

configuration on the rotating sphere is 
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αα
α

ZJS
N r

2

1

~ Γ=∑
=

 (2.35)

 

 

It is interesting to note that the analogous condition for the existence of a fixed equilibrium 

configuration in the plane is given by 

 

α
α

2

1

2 Γ=∑
=

N

S  (2.36)

 
as described in Aref et al. (2003). We show in figure 7 a family of one-frequency solutions 

on the rotating sphere given by the Platonic solids oriented at angle γ with respect to the axis 

of rotation. The details are described in the figure captions. Existence of these solutions as 

equilibria on the non-rotating sphere are described in Aref et al. (2003) and are special cases 

of some of the configurations studied in Lim et al. (2001) and Laurent-Polz (2002).We note 

that a recent result of Kurakin (2004) shows that on the non-rotating sphere the tetrahedron, 

octahedron, and icosahedron are nonlinearly stable, while the cube and dodecahedron are 

unstable. It is not clear whether the stability characteristics of these configurations are 

influenced by the application of . )(tJ
Ωℑ

 

 

2.4.2    Two frequency solutions 

 

To obtain necessary conditions for two-frequency rigid rotations on the rotating sphere, take 

the scalar product of equation (2.34) with ω: 

 

∑
=

××⋅Γ
N

ZZ
1

))((
α

ααα ωω
rrrr

 = ⎟
⎠

⎞
⎜
⎝

⎛
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=

N

ZJS
1

2~
4
1

α
αα ωω

rrr  (2.37)
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Figure.9. Wobbling mode: (a) Local (β-plane) wobbling mode (after Hobson (1991)) associated with a vortex 
dipole; (b) Global wobbling mode associated with a vortex dipole moving eastward on the sphere with 
orientation γ=π/4. 

 

 
Figure.10. Tumbling mode: (a)Local (β-plane) tumbling mode (after Hobson (1991)) associated with a vortex 
dipole; (b) Global tumbling mode associated with a vortex dipole moving westward on the sphere with 
orientation γ=3π/4. 
 

 

Then use the fact that 

 

))(( αα ωω ZZ
rrrr

××⋅  = 2)())(( ααα ωωω ZZZ
rrrrrr

⋅−⋅⋅  (2.38)

 

Hence 

 

∑
=

−Γ
N

Z
1

2222
)cos(

α
ααα θωω

rrr
 = ⎟

⎠

⎞
⎜
⎝

⎛
Γ−⋅

Π ∑
=

N
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1

2 cos~
4
1

α
αα θωω

rr
 (2.39)
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Where αα θωω cos
rr

=⋅Z . This gives a formula for the rotational frequency 

 

∑
=

Γ
N

1

22 sin
α

αα θω
r

 =  ⎟
⎠

⎞
⎜
⎝

⎛
Γ−⋅

Π ∑
=

N

JS
1

2 cos~
4
1

α
αα θω

r  (2.40)

 

 

 
 

 
Figure 11. Dipole oriented at angle π/4, Northern and Southern hemispheres. Trajectory of J vector is shown in 
the Northern hemisphere (small dashed circle). (a) 1:1 frequency ratio; (b) 2:1 frequency ratio; (c) 3:1 frequency 
ratio. 
 

The analogous formula for rotating relative equilibria in the plane is 

 

∑
=

Γ
N

Z
1

2

α
ααω
rr

 = )(
4
1 2

1

2
α

α

Γ−
Π ∑

=

N

S  (2.41)

 

described in Aref et al. (2003). Several examples of two-frequency solutions on the rotating 

sphere are described next. 

 

 26



2.4.3    Dipole dynamics 

 

A vortex dipole, shown in figure 8, is made up of two equal and opposite strength vortices, 

,Γ=Γ1 Γ−=Γ2  , θθ =1 , θθ −Π=2 , S = 0. The convention in this figure and those that 

follow is that black point vortices are positive (i.e. counterclockwise circulation) while white 

ones are negative (i.e. clockwise circulation). Formula (2.40) then becomes 

 

θ
ω

cos8Π
Γ

=  (2.42)

 

It is a fundamental result that on a non-rotating sphere, a dipole follows the geodesic (i.e. 

great circle) that perpendicularly bisects the geodesic segment that connects the two vortices 

(Kimura (1999)). Motion of a dipole on the sphere for the two-way coupled model was 

carried out in DiBattista & Polvani (1998) as an initial value problem in which the 

background vorticity (i.e. all vorticity not associated with the dipole) 

 

 
 
Figure.12. Dipole oriented at angle π/2, Northern and Southern hemispheres. (a) 1:1 frequency ratio; (b) 2:1 
frequency ratio; (c) 3:1 frequency ratio. 
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is placed initially in constant latitudinal strips in order to model solid body rotation. Both 

point vortex dipoles and distributed vortex dipoles were tracked numerically, showing, 

among other things, that dipoles no longer follow geodesic paths, but move on more 

complicated trajectories and in some instances can lose stability and tear apart. Because they 

only consider the case in which the J vector is aligned with the axis of rotation, they cannot 

distinguish between the effects of mis-alignment and the effect of coupling to the 

background field. Dipole motion on the β-plane in a one-way coupled model was studied by 

Hobson (1991) where two modes of motion, ‘tumbling’ and ‘wobbling’, were identified. 

Similarly, a one-way coupled β-plane model and the related modon solution were studied in 

Matsuoka & Nozaki (1992). Our general configuration is shown in figure 8 and is governed 

by three key parameters. The orientation angle, γ, measures the angle between the J vector 

and the axis of rotation around the North Pole. The frequency Ω  is associated with the solid-

body rotation, while frequency ω is associated with the dipole motion in the absence of 

rotation, i.e. its frequency around a great circle as given by formula (2.42). This is 

determined by the choice of vortex strengths, which we take as 1Γ  = 1 and = -1 and the 

dipole separation (chord distance), which we take as d = 0.1 = sin θ. In all cases, we take the 

initial center point of the dipole to lie on the equator at the front of the sphere (defined as 

longitude φ = 0), as shown in the figure. Figure 9 shows the β-plane wobbling mode of 

Hobson (1991) (figure 9(a)) and the corresponding ‘global’ wobbling mode (figure 9(b)) on 

the full sphere. The tumbling modes are shown in figures 10(a),(b). What distinguishes the 

two cases is the orientation angle. When 0 < γ < π/2, the dipole moves in the same direction 

as the rotation (eastward) and produces a wobbling trajectory. When π/2 < γ < π, it moves 

initially opposite the direction of rotation (westward) and produces a tumbling trajectory. 

2Γ

 

Figures 11, 12, and 13 show the dipole trajectories on the rotating sphere with orientation 

angles π/4, π/2, and 3π/4 respectively. When the frequency ratio ω/Ω is rational, the motion 

is periodic. Cases with frequency ratios ω/Ω = 1, 2, 3 are shown in the Northern and 

Southern hemispheres, along with the trajectory of the J vector (dashed circle). Note that the 

cases γ = π/4 (figure 11) and γ = 3π/4 (figure 13) are not related to each other via 

symmetries. In the first case, the dipole moves initially in the same direction as the solid-

body rotation, while in the second case, it moves opposite to the direction of the solid-body 

rotation. When the frequency ratio is irrational, the long-time trajectory densely covers the 

available surface of the sphere allowed by the choice of the angle of orientation γ. 
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Figure.13. Dipole oriented at angle 3π/4, Northern and Southern hemispheres. Trajectory of J vector is shown in 
the Southern hemisphere (small dashed circle). (a) 1:1 frequency ratio; (b) 2:1 frequency ratio; (c) 3:1 frequency 
ratio. 
 

2.4.4 Rings 

 

In the case of an isolated ring in which N-vortices of equal strength are arranged around a 

constant latitude cap perpendicular to J as shown in figure 14, we have  , Γ=Γα θθα =  ,  

  Γ= NS

 
Figure.14. Equal strength vortices evenly spaced on a constant latitude cap perpendicular to the center of vorticity 
vector on the rotating sphere. 
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and θcos~
Γ= NJ z  and formula (2.40) reduces to 

 

θ
θω 2sin

cos
4

)1(
Π
−Γ

=
N

 (2.43)

 

The stability of such configurations on the non-rotating sphere (as well as ones with an 

additional polar vortex) have been studied in Dritschel & Polvani (1993), Cabral et al. 

(2003), and Laurent-Polz et al. (2004), and it is known that a single ring made up of N equal 

strength, evenly spaced point vortices is unstable for all co-latitudes if N = 7, whereas for N 

<7 there exist ranges of Lyapunov stability when the ring is near a pole. In general terms, an 

additional polar vortex can serve to stabilize or destabilize a ring, hence it stands to reason 

that the addition of solid-body rotation )0( ≠Ω may also alter the stability property of the 

ring, although this question has not been addressed. Figure 15 shows the vortex paths of a 

four-vortex ring with orientation angle π/4. The ring radius is r = 0.1 and the trajectory of the 

J vector is shown as the dashed circle. Frequency ratios of 1 : 1, 2 : 1, and 3 : 1 are shown in 

the Northern hemispheres as none of the vortices crosses the equator. Figure 13 shows the 

same ring oriented at angle γ = π/2. Trajectories corresponding to frequency ratios of 1 : 1, 2 

: 1, and 3 : 1 are shown from the perspective of the front of the sphere. Figure.17. shows the 

same ring oriented at angle γ = 3π/4. In this case, the ring’s motion is opposite to the 

direction of rotation and gives different trajectories than those shown in figure.15. Frequency 

ratios of 1 : 1, 2 : 1, and 3 : 1 are shown in the Southern hemispheres as none of the vortices 

crosses the equator. 

 

 

2.4.5   Stacked rings: The platonic solids 

 

More complex two-frequency rigid configurations on the rotating sphere are given by the 

Platonic solids shown in figure 18, where the vorticities have both positive and negative 

signs. Details are given in the figure captions. We show the evolution of a two-frequency 

tetrahedron in figures 19, 20, 21. In particular, figure 19 shows the trajectories of the four 

vortices making up a tetrahedral configuration oriented at angle γ = π/4. The dashed curve 

marks the trajectory of the top vortex, which in this case stays in the Northern hemisphere. 

Frequency ratios of 1 : 1, 2 : 1, and 3 : 1 are shown. Figure 20 shows the same configuration 

 30



oriented at angle γ = π/2 with frequency ratios of 1 : 1, 2 : 1, and 3 : 1. The top of the 

tetrahedron in this case stays along the equator. Finally, figure 18 shows the tetrahedral 

configuration oriented at angle γ =3π/4 with frequency ratios 1 : 1, 2 : 1, and 3 : 1. The top of 

the configuration now moves along the dashed circular curve shown in the Southern 

hemisphere. 

 

 
Figure.15. Four vortex ring oriented at angle π/4. Dashed circle shows the trajectory of the J vector. (a) 1:1 
frequency ratio; (b) 2:1 frequency ratio; (c) 3:1 frequency ratio. 

 

 

 

 

 
Figure.16. Four vortex ring oriented at angle π/2. Front of sphere is shown, dashed curve is the path of the J 
vector. (a) 1:1 frequency ratio; (b) 2:1 frequency ratio; (c) 3:1 frequency ratio. 
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Figure.17. Four vortex ring oriented at angle 3π/4, Southern hemisphere only. Dashed curve is the path of the J 
vector. (a) 1:1 frequency ratio; (b) 2:1 frequency ratio; (c) 3:1 frequency ratio. 

 

 

 

 

 

 
Figure.18. Some examples of vortices on relative equilibria configuration: (a) Tetrahedron:  is placed at the 
top,  are evenly spaced around the bottom ring; (b) Octahedron: 

Γ
Γ− Γ ’s are evenly spaced around the middle 

ring, another is placed at the top, Γ−  is placed at the bottom; (c) Hexahedron: Γ ’s are evenly spaced around the 
top ring, ’s are evenly spaced around the bottom ring; (d) Icosahedron: Γ− Γ ’s are evenly spaced on the top 
ring ’s are evenly spaced on the bottom ring, another Γ− Γ  is placed at the top and  is placed at the bottom; 
(e) Dodecahedron: 

Γ−
11 sinθΓ=Γ are evenly spaced along the outer top ring, 

11 sinθΓ−=Γ are evenly spaced along 
the outer bottom ring staggered with respect to the outer top ring, 

22 sinθΓ=Γ  are evenly spaced along the inner 
top ring, 

22 sinθΓ−=Γ are evenly spaced along the inner bottom ring staggered with respect to the inner top ring. 
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Figure.19. Two-frequency tetrahedron oriented at angle π/4, Northern and Southern hemispheres. Dashed circle 
in the Northern hemisphere marks the top of the configuration. (a) 1:1 frequency ratio; (b) 2:1 frequency ratio; (c) 
3:1 frequency ratio. 
 

 
Figure.20. Two-frequency tetrahedron oriented at angle π/2, Northern and Southern hemispheres. (a) 1:1 
frequency ratio; (b) 2:1 frequency ratio; (c) 3:1 frequency ratio. 
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Figure.21. Two-frequency tetrahedron oriented at angle 3π/4, Northern and Southern hemispheres. Dashed circle 
in the Southern hemisphere marks the top of the configuration. (a) 1:1 frequency ratio; (b) 2:1 frequency ratio; (c) 
3:1 frequency ratio. 
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Chapter 3 
 
 
Numerically solving the N-vortex problem on a sphere 
 
 
 
3-1 Numerical solution in Cartesian coordinates: 

 

In chapter 1, formulas for calculating the effects of one vortex on another and velocity vector 

for each vortex have been studied by thoroughly. Now it is time to expand these solutions to 

the N-vortex problem and find an accurate numerical solution specifically for the case of N 

interacting dipoles. As discussed in chapter 1, the effect of vortex α with strength αΓ on 

velocity field of vortex β when both of them are located on a sphere by radius R is as follow: 

 

βα

βαα
β

XXR
XX

R
X rr

rr

⋅−

×
⋅

Π
Γ

=
•

→

24
 

 

Now is time to expand this solution to the case that we want to calculate effects of n-vortex 

like α with strength on vortex β: αΓ

 

∑
≠

→→

→→•
→

⋅−

×
⋅Γ

Π
=

N

XXR

XX
R

X
αβ βα

βα
αβ

24
1

 (3.1)

 

α

→

X is a vector which shows position of vortex α at any point, as we are writing formulas in 

a Cartesian coordinate system each vector has three elements relate to basis of Cartesian 

coordinates (i,j,k). To calculate the solutions to (3.1) numerically, we revise the previous 

formulas as follows: 

 

kZjYiXXkZjYiXX ˆˆˆˆˆˆ
ααααααα &&&&rr

++=⇒++=  (3.2)
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Now if assume R=1 and we have N distinct vortices located on the unit sphere then: 
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( )
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−
⋅Γ⋅

Π
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N

ij ij

ijij
ji

XYYX
Z

γ4
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Where jijijiij ZZYYXX −−−=1γ  

 

We now consider the special case where 2N vortices are grouped into pairs of N dipoles. For 

N dipoles with different strengths there will be 2N vortices and if assume vortices i and i+N 

are pairs of a dipole then Nii +Γ−=Γ , and equations (3.7) thru (3.9) can be modified as 

follow: 
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3.2  Numerical solution in J-vector coordinates: 
 

In Cartesian coordinates for N dipoles, there are 2N equations which must be solved 

simultaneously. To follow each dipole’s trajectory directly, we introduce two new vectors 

iJ
r

and NiJ +

r
 instead of iX

r
and NiX +

r
. If assume that iX

r
, NiX +

r
 form a dipole with strength 

 then relation between J and X vectors can be defined as follow: iΓ

 

NiNiiii XXJ ++Γ+Γ=
rrr

 
(3.13)

NiNiiini XXJ +++ Γ−Γ=
rrr

 

 

iX
r

, NiX +

r
 form a dipole therefore Nii +Γ−=Γ  then: 

 

( )Niiii XXJ +−Γ=
rrr

 
(3.14)

( )Niiini XXJ ++ +Γ=
rrr

 

 

The vectors NNN JJJJJ 2121 ,;,
r

L
rr

L
rr

+  form a new coordinate system we call it Dipole 

Coordinate system. They are related to the Cartesian coordinates as follow: 
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Or in matrix form: XMJ
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Matrix with block-diagonal structure: 
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In the special case where the N dipoles are located on a unit sphere (R=1), iJ
r

and NiJ +

r
 are 

perpendicular to one another. 

 

( ) ( ) 0
22
=−⋅+⋅−=−⋅+=⋅ ++++++ NiiNiNiiiNiiNiiNii XXXXXXXXXXJJ

rrrrrrrrrrrr
 

 

Now iJ
r

and NiJ +

r
 are two perpendicular vectors originating at the center of the sphere, one 

of them ( iJ
r

) clearly shows the trajectory of dipoles and the other one ( NiJ +

r
) represent 

direction of rotation and the vector around which dipoles are rotating. 
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3.3   N-vortex problem in dipole coordinate (special case: N=1, one 

dipole on unit sphere) 
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Now we would like to transfer (3.1) to dipole coordinates for the special case N=1: 
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Now Equation (3.1) for the special case of N=1 yields: 

 39



 

⎟
⎠
⎞⎜

⎝
⎛ −+Γ

×
⋅

Π
Γ

=+
2

2

2

1
2

1

21
2

1
21

4 JJ

JJJJ rr

rr
&&  

(3.18)

⎟
⎠
⎞⎜

⎝
⎛ −+Γ

×
⋅

Π
Γ

−=−
2

2

2

1
2

1

21
2

1
21

4 JJ

JJJJ rr

rr
&&  

 

Which when added and subtracted together result the equations in dipole coordinates: 
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From (3.19) we conclude that 1J
r

 and 2J
r

 are constant and 2J
r

rotates around 1J
r

 with 

frequency 1J
r

≡Ω  so we have two uncoupled equation that each of them shows trajectory 

of a J vector independently. 

 

 

3.4   N-vortex problem in dipole coordinate (special case: N=2, two 

dipole on unit sphere) 
 

For simplicity if we define a new variable R as follow: 

 

)1(,
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Then we will have 
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As we now  and we can transfer XJ
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coordinate system as follow: 
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3.5  N-vortex problem in dipole coordinates (general case; N dipoles 

on unit sphere) 
 

The general case of N interacting dipoles can be written as follows: 
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Therefore (3.1) when R=1, can be re-written as: 
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Chapter 4 
 
 
Billiard interactions 
 
 
 
In this chapter, we study simple interactions and identify some fundamental ones which 

could be used to decompose more complex interactions with larger numbers of vortices. We 

start with the simplest case for two vortices which is a dipole. The only possible trajectory 

for a single dipole on a sphere is a great circle (figure.22.(a)) and the frequency for this 

motion as, in (2.42), would be 

 

θ
ω

cos8Π
Γ

=  

 

To add more complexity, we start by adding another dipole to our system and we locate both 

of them on opposite sides of a great circle (equator), we start analyze their trajectories with 

different initial conditions. 

 

For two or more dipoles, the interaction terms cause the centroid path of each to deviate 

from its underlying geodesic trajectory, hence we view each ‘ballistic element’ as a billiard 

(see Tabachnikov (1995)). Although billiard systems have recently been studied on surfaces 

of constant curvature, such as a sphere (see Gutkin, Smilansky, Gutkin (1999)), these 

systems typically do not have long-range interactions. Because the nominal distance 

NXX +− αα  between each of the point vortices which constitute a given dipole is no 

longer constant, it is useful to think of each as represented by its centroid coordinate, , 

and although the centers-of-vorticity, , of each of these billiards is no longer a conserved 

quantity, their sum over all the billiards making up the interaction is. 

NJ +α

αJ
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Figure.22. Schematic diagram depicting the interaction parameters between two dipoles. (a) Symmetric 
configuration in which the centers-of-vorticity vectors are aligned and γ  denotes the orientation with respect to 
the equator.; (b) Generic configuration where the centers-of-vorticity are not aligned, which requires two angles 
( 1γ , 2γ ) to specify the orientation. 

 

 

4.1   N=2: Fundamental interactions  
 

We start with the most important case of two interacting dipoles, whose equations in the 

dipole coordinates are given by (3.21): 
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Where 
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The centroids are represented by the coordinates ( , ), while the center-of vorticity of 

each is given by ( , ). We use these coordinates to integrate the system using a 7th/8th 

order variable time-step Runga-Kutta method which is quite accurate for the time scales we 

consider and throughout the scattering phase. Our initial set-up is depicted in figure 22 

where we show the two dipoles at opposite sides of the sphere with their centroids initially 

located at antipodal points along the equator. A special symmetric case is depicted in figure 

22(a) where the dipoles are headed directly towards each other. In this case, their center-of-

vorticity vectors ( and ) are aligned and the orientation of the system with respect to the 

equator is denoted by the angle 

1J 2J

3J 4J

1J 2J

γ  . The more generic case is shown in figure 22(b) where 

the centers-of-vorticity vectors are not perfectly aligned, hence one requires two angles 

( 1γ , 2γ ) to fully specify the initial configuration. 
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4.1.1 Exchange scattering 

 

 

 

 
                            (a) No rotation                                              (d) Dipole coordinate for (a) 

 
                       (b) 1 : 1 frequency ratio                                         (e) Dipole coordinate for (b) 

 
                 (c) 3 : 1 frequency ratio                                           (f) Dipole coordinate for (c) 
 
Figure.23. Symmetric exchange scattering on rotating and non-rotating sphere for J=0 equal dipoles, With these 
initial conditions, two exchange events take place at antipodal points during one periodic cycle. 
 

 

The first and simplest example of a scattering event is called exchange scattering and is 

shown in figure 3. Shown is a symmetric case of exchange scattering of two equal strength 
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dipoles which initially have orientation 1γ  = 2γ = π /2. In this case  = 0. Two 

exchange events take place per cycle (i.e. the dipoles exchange partners) at antipodal points 

on the sphere (when there is no rotation). Figure 23(a) shows the exchange scattering on the 

non-rotating sphere, while figure 23(b),(c) shows trajectories on the rotating sphere where 

the ratio of dipole frequencies to rotation frequencies are (b) 1:1; (c) 2:1. Figures 23(d)-(f) 

show the same events but in the dipole coordinate system. The centroid paths are depicted 

here in red and green. 

JJJ ≡+ 21

 

4.1.2 Non-exchange scattering 

 

The second scattering event, called non-exchange scattering is depicted in figure 24 for two 

equal strength dipoles that retain their partners throughout the cycle. Figure 24(a) shows the 

basic interaction on the non-rotating sphere in the case where 0≠J  . Although there is a 

clear interaction between the two dipoles as indicated by the deviation of the dipoles from 

great circle paths, no partner exchange takes place throughout the period and the dipoles 

avoid direct collision. Figure 24(b) shows a long time trajectory on the rotating sphere, while 

figure 24(c) shows the tips of the J1 and J2 vectors during this event. Whether the orbit 

shown in figure 24(b) ultimately closes up, or densely covers a portion of the spherical 

surface crucially depends on the initial orientation of the two dipoles, and both periodic 

orbits and quasi-periodic orbits co-exist. Figure 24(d) show the same for the rotating sphere 

where the frequency ratio is 1:1. 

 
Figure.24. Non-exchange scattering event between two equal strength dipoles. Each dipole retains its partner 
throughout the event. (a) Non-rotating sphere, 1γ  = 90 deg, 2γ = 80 deg; (b) Long-time trajectory on the rotating 
sphere; (c) Tips of the J1 and J2 vectors; (d) Tips of the J3 and J4 vectors from north pole view 
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Figure.24, Continued. Non-exchange scattering event between two equal strength dipoles. Each dipole retains its 
partner throughout the event. (a) Non-rotating sphere, 1γ  = 90 deg, 2γ = 80 deg; (b) Long-time trajectory on the 
rotating sphere; (c) Tips of the J1 and J2 vectors; (d) Tips of the J3 and J4 vectors from north pole view 
 

 

4.1.3 Loop scattering 

 

Shown in figure 25 is an example of a loop-scattering interaction (head-on) for two unequal 

dipoles in which the frequency ratio is 3:1. Figure 25(a) shows a case with dipole strengths 

=-  = 1.0, =  = 3.0 with orientations 1Γ 3Γ 2Γ 4Γ 1γ = 2γ =π /2 on the non-rotating sphere.  

 

 
Figure 25. Loop-exchange scattering (head-on) events for unequal dipoles. The vortex trajectories are depicted as 
solid curves while the centers-of-vorticity are depicted as dashed curves. (a) Non-rotating sphere; (b) Rotating 
sphere with 3:1 frequency ratio. 
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(a) Vortex trajectories. 

 
                     (b) Center-of-vorticity coordinates.                                    (c) Centroid coordinates 
 
Figure.26. Loop exchange scattering (head-on) events for unequal dipoles on rotating sphere: 1:1 frequency ratio 
 

The dipoles perform a sequence of loops as they travel around the sphere, the number of 

loops depends on the frequency ratio of the two dipoles. One each loop, one dipole loops 

inside the other, which accommodates the passage by splitting around the inner loop. Within 

the loop, the dipoles exchange partners, forming two new dipoles comprised of vortices of 

opposite sign but unequal magnitude. As a result, they move along curved trajectories within 

the loop. Figure 25(b) shows the same interaction on the rotating sphere. Shown is a case 

with unequal dipoles with frequency ratio 1ω : 2ω  = 2 : 1and 1ω : ω = 1 : 1. While the 

dipole trajectories are relatively complex, the tips of the centers-of-vorticity vectors, shown 

as dashed curves, move on closed periodic orbits. In this case, the overall trajectory is 

periodic as these vectors execute closed loops. Figure 26 shows an example of a loop-

scattering interaction (head-on) with a 1:1 frequency ratio.We show the vortex trajectories 
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(figure 26(a)), the centers-of-vorticity trajectories (figure 26(b)) projected onto a plane, and 

the centroid trajectories (figure 26(c)) projected onto a plane.  

 
(a) (b) 

Figure.27. Loop exchange scattering (chasing) events for unequal dipoles. 
        

 
(a) Vortex trajectories             

 
                         (b) Center-of-vorticity coordinates.                               (c) Centroid coordinates. 
 
Figure.28. Loop exchange scattering (chasing) events for unequal dipoles on rotating sphere: 1:1 frequency ratio. 
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By contrast, a loop-scattering interaction that we call a ‘chasing’ mode is shown in figures 

27 and 28. Figure 27(a) shows two unequal dipoles initially aligned so that one chases the 

other around the non-rotating sphere creating a smaller loop during the interaction process 

than the head-on collision. Figure 27(b) shows the dipole coordinates during the interaction. 

The same interaction on the rotating sphere is shown in the sequence of figures 28(a)-(c), 

with a 1:1 frequency ratio. The full gamut of interactions is shown in figure 29 where we 

depict the scattering of two dipoles as a function of the interaction angle, varying this angle 

in increments of 20 deg. From this, we can see that depending on the angle, we can have 

loop-scattering interactions, non-exchange scattering, or exchange scattering, depending on 

the angle at which the dipoles are initially oriented. 

 

 

 

 
   (a) 

 
                            (b)                                                        (c)                                                        (d) 
 
Figure.29. Scattering of two equal strength dipoles as a function of interaction angle. Both loop-scattering and 
non-exchange scattering events are seen in these sequences. (a) θ = 0 deg; (b) θ = 20 deg; (c) θ = 40 deg: (d) 
θ = 60 deg: (e) θ = 80 deg; (f) θ = 100 deg; (g) θ  = 120 deg; (h) θ = 140 deg; (i) θ = 160 deg; (j) θ = 180 
deg. 
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                            (e)                                                        (f)                                                         (g) 

 
                            (h)                                                          (i)                                                        (j) 
Figure.29, Continued. Scattering of two equal strength dipoles as a function of interaction angle. Both loop-
scattering and non-exchange scattering events are seen in these sequences. (a) θ = 0 deg; (b) θ = 20 deg; (c) θ = 
40 deg: (d) θ = 60 deg: (e) θ = 80 deg; (f) θ = 100 deg; (g) θ  = 120 deg; (h) θ = 140 deg; (i) θ = 160 deg; (j) 
θ = 180 deg. 
 

4.2  Three dipoles 
 

When three or more dipoles interact, the scattering modes described earlier for the two-

dipole system remain central. This is because, unless the initial conditions are chosen 

judiciously, only two of the dipoles within the system will typically undergo a close 

interaction at any given time, thus the others affect the interaction only through the far-field. 

As in the two dipole case, a pure exchange scattering event can take place, as shown in 

figure 30(a), (b) on the non-rotating sphere. The three equal strength dipoles are aligned 

initially so that they head for the North Pole. Note that the members of each dipole pair split 

off near the North Pole and pair up with a member of another dipole as they head South. The 

dipole coordinates are shown in figure 30(b). Figure 31(a),(b) shows an interaction of three 

dipoles on a non-rotating sphere that involves both an exchange event and a loop scattering 

event. In figure 32, we show a panel with all of the previously documented interactions 

between two dipoles, retained for the three dipole problem in a setting that combines them 
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throughout a more complex evolution. However, if all three approach each other so that they 

interact simultaneously, as shown in figure 23, a much more complex process occurs that 

cannot easily be interpreted as combinations of simpler interactions. In a long evolutionary 

process of multiple dipoles, these types of interactions will not be nearly as common as the 

simpler interactions between pairs. 

 
                                                                       (a) 

 
                                                                       (b) 
 
Figure.30. Pure exchange scattering of three equal strength dipoles. 
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Figure .31. Interaction of three dipoles which includes both an exchange scattering and a loop scattering 
interaction. 
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(a) Non-exchange scattering 

        
                             (b) Exchange scattering                                                    (c) Loop-scattering                   

 
                           (d) Exchange scattering                                                       (e) loop-scattering 

 

Figure.32. Three dipole interaction panel which shows that the basic two dipole interactions are retained, 
although in a setting that combines them throughout the evolution. 
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                       (f) Exchange and loop-scattering                           (e) Exchange and loop-scattering   
 
Figure.32, Continued Three dipole interaction panel which shows that the basic two dipole interactions are 
retained, although in a setting that combines them throughout the evolution. 
 

 

 

 

4.3   General case of N distinct dipoles with different strengths 
 

For the general case of N dipoles, the fundamental interactions previously described between 

two and three dipoles occur, but in a more complex manner. For example, in figure 33. we 

have three sets of dipoles with different strengths =Γ1 1, =Γ2 1.5 and 2 located on a 

great circle with distances which guarantees that they arrive at the south pole all at a same 

time. In this figure, trajectories are more complicated, but the interactions are similar to what 

we had before in 4.1, although their paths leading to the interactions are more complex. 

=Γ3

 

For example, figure.33. exhibits all exchange-scattering (like those shown in figure.23.), 

non-exchange scattering (like those shown in figure.24.), and loop-scattering (like those 

shown in figure.25.), as well as interactions that are new to the three-dipole case. 
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Figure 33. Interaction process of three dipoles which includes aspects of the two dipoles interaction problem but 
is generally more complex. Shown are the point vortex paths on the sphere 
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Appendices 
 

Appendix I 

 
The following appendix contains real data analysis of streamline patterns with the goal of 

comparing them with those produced from the point-vortex systems on the sphere.  

All data and graphs for pressure patterns have been obtained from Climate Diagnostics 

Center website (http://cdc.noaa.gov). There are options to plot pressure patterns, air 

temperature, vector winds and other weather parameters on Atmospheric Variable Plotting 

Page (http://www.cdc.noaa.gov/HistData/). Data coverage is from 1980 to the present and 

for all data there are options of averaging the last n days. 

 

In purpose to have unique set of plots all data are related to sea level pressure and analysis 

level is set to be on surface. All data gathered are mean values which lead us to have daily, 

weakly or monthly mean value of parameters. For each specific period of time there is two 

set of pressure pattern, one of them is related to northern hemisphere and the other covers 

southern hemisphere. 

 
Figure.I.1. One day mean sea level pressure patterns for July 2, 2003 
 

 

 62

http://cdc.noaa.gov/
http://www.cdc.noaa.gov/HistData/


After finding mean pressure patterns on both northern and southern hemispheres now it’s 

time to decompose them and simplify the pressure patterns which looks complicated at first 

look. To start all closed patterns which do not include any other closed patterns can be 

considered as a center and are colored black as you can see in next figure: 

      
Figure.I.2. Modified one day mean sea level pressure patterns for July 2, 2003 

 
At this step the only important factor is to locate each center approximately with no concern 

about their size and shape. There would be several closed paths which include some center 

and closed patterns. We will separate each closed path with different colors. 

 

a)   Pressure pattern graph simplification 

Coloring connected bodies 

After locating centers on both hemispheres, now is time to separate closed patterns which 

only contain one center. Each closed pattern would lie in another closed pattern which would 

contain some centers and some other closed patterns. To make it simple we will use different 

colors to keep each closed path separate. 

 
Figure.I.3. Connected bodies on the North Pole 
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Connecting Northern and Southern Hemisphere 

After separating all possible closed patterns on both northern and southern hemispheres, 

there would still be some uncolored regions which can not be closed in one hemisphere. In 

order to close these patterns we need to consider both hemispheres simultaneously and try 

connecting them over the full sphere. As NOAA website is using different precision for 

northern ham southern hemispheres, sometime It would be hard to follow a path from 

southern hemisphere on north hemisphere accurately, but as we are not concern about the 

exact shape of each closed path at this moment we have used some approximations to close 

all existing patterns. 

 

 

 

       
Figure.I.4. Real time pressure patterns on a full sphere. To connect north pole pressure patterns to those on south 

pole we require 45 and 90 degree side maps of pressure patterns 
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b) Kinematic decomposition 

 

Now is time to consider how this patterns change day by day. Following changes and 

bifurcations of patterns on a spherical coordinate is not simple and we need to simplify these 

images in purpose to follow their evolutions. As it can be seen in e set of patterns, centers 

are continuously separating and joining together and forming new centers and in some cases 

similar bifurcation is happening to several sets of centers.  To study this changes all centers 

and closed patterns can be represented in a new format like a DNA chain as follow: 

 

 
Figure.I.5. Simplified one day Mean sea level pressure patterns for July 2, 2003 
 

 

Now by considering a sequence of this kind of patterns it would be easier to follow how 

pressure patterns are bifurcating and evolving over time.  
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c) Pattern sequencing 

 

Here are simplified pressure patterns for a period of 07/01/2003 to 07/04/2003: 

 

 
Figure.I.6. Simplified one day Mean sea level pressure patterns for July 1, 2003 

 
Figure.I.7. Simplified one day Mean sea level pressure patterns for July 2, 2003 
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Figure.I.8. Simplified one day Mean sea level pressure patterns for July 3, 2003 

 
 

Figure.I.9. Simplified one day Mean sea level pressure patterns for July 4, 2003 
 
 
We will consider this 4 sequential day patterns and use our simulation model to numerically 

solve N-vortex problem on a unit sphere and we will try different initial conditions to 
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generate shapes close enough to what we see in above pictures and check our model’s 

accuracy 
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Appendix II 
 
 
In order to obtain similar results from our model to what we hade from real data 

decomposition (Appendix I) we have to study streamlines around each point vortices in any 

interaction. 

(a) Exchange - scattering 

Following pictures exhibit streamline around each vortex while two dipoles with same 

strengths are heading toward each other. In this case each vortex shapes a circle shape 

streamline (situation (0,0,0) in figure.2(a).) and these circle shape streamlines remain 

unchanged during interactions and changing partners. 

 
                                                    (a)                                                                         (b) 

 
                                                    (c)                                                                         (d) 
Figure.II.1. Streamline pattern bifurcations in Exchange-scattering mode 
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                                                 (e)                                                                            (f) 
 
Figure.II.1, Continued. Streamline pattern bifurcations in Exchange-scattering mode 
 
 
 
 
(b) Loop - scattering 
In this case two dipoles with different strengths ( 1Γ =1 , 2Γ =3) are shooting toward 
each other. Again as we have dipole here, each vortex has a circle shape streamline 
around it and as it can be seen in following pictures this circle shape streamline 
remains unchanged during all interactions. 
 
 
 

 
                                                (a)                                                                              (b) 
 
Figure.II.2. Streamline pattern bifurcations in Loop-scattering mode 
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                                               (c)                                                                               (d) 

 
                                               (e)                                                                                (f) 
 
Figure.II.2, Continued. Streamline pattern bifurcations in Loop-scattering mode 

 
(c) An example for interactions with streamline bifurcations 
 
To observe a general case in which real bifurcations occur during interaction we start a 
specific case here.We put four point vortecis on a north pole, one exactly on north pole with 
strength =-1, and other three on a circle around 1Γ 1Γ  with equal distances from each 
other and strengths = =2Γ 3Γ 4Γ =1. 
 
Now we shoot a dipole of strength Γ =1, from great circle toward the North Pole. As 
it is clear in following pictures, several bifurcations from circle shape streamline ( 
case (0,0,0) in figure.2(a).) to figure eight streamline (case (2,0,0) in figure.2(a)) and 
vice versa. 
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                                                      (a)                                                                   (b) 
 

 
                                                     (c)                                                                   (d) 
 

 

 
                                                    (e)                                                                     (f) 
 
Figure.II.3. Streamline pattern bifurcations in more general case. Shooting a dipole toward North Pole while 
having a set of four vortices circling on the North Pole   
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                                                    (g)                                                                    (h) 
 

 
                                                      (i)                                                                    (j) 

 
Figure.II.3, Continued. Streamline pattern bifurcations in more general case. Shooting a dipole toward North Pole 
while having a set of four vortices circling on the North Pole 
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