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A straightforward analysis leads to

A=as—ag—if, wp=4das—as+i8p,

A= B==1
2 2 X (34)
C=0, D= T 3R20-198)°
me il e 1
£o3h. Fe= syt

This completes the center manifold reduction.

Very interesting conclusions result, for example,
with respect to the number of modes and their interplay
in time, from the systematic treatment with the center
manifold theory. For example, one interesting aspect is
that the present codimension-two analysis can describe
successive bifurcations of one unstable mode, which,
in some cases can lead to chaos in time.

KARL SPATSCHEK

See also Inertial manifolds; Invariant manifolds
and sets; Synergetics
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CENTRAL LIMIT THEOREM

See Martingales

CHAOS VS. TURBULENCE

The notion of chaos has its genesis in the work of
Henri Poincaré (See Poincaré theorems) on the three-
body problem of celestial mechanics. Poincaré realized
that this problem cannot be reduced to quadratures
and solved in the manner of the two-body problem. A
precise definition of chaos or non-integrability can be
given in terms of the absence of conserved quantities
necessary to yield a solution. It took several decades
for the full significance of non-integrable dynamical
systems to be appreciated and for the term “chaos” to
be introduced (See Chaotic dynamics). An important
step was the 1963 paper by Edward N. Lorenz, entitled
“Deterministic Nonperiodic Flow” (Lorenz, 1963), on
a model describing thermal convection in a layer of
fluid heated from below. The Lorenz model truncates
the basic fluid dynamical equations, written in terms
of Fourier amplitudes, to just three modes (See Lorenz

CHAOS VS. TURBULENCE

ions):
equations) o o i G
) =g RSy (1)
7 =Xy = bz.

In this system, x is the tirne-.dependent amplityde
of a stream-function mode, while y and z are moge
amplitudes of the temperature field. The parameters
o, r, and b depend on the geometry, the boundary
conditions, and the physical parameters of. the fluid,
Equations (1) are a subset of the full, infinite system
of mode amplitude equations, cl;osen such that it
exactly captures the initial instability of the thermally
conducting state to convecting rolls when the parameter
r, known as the Rayleigh number, is increased.

What Lorenz observed in numerical solutions of (1),
and verified by analysis, was that very complicated, er-
ratic solutions would arise when r was increased well
beyond the conduction-to-convection transition. In fact,
Lorenz had found the first example of what is today
called a strange attractor (See Figure 1 and Attrac-
tors). System (1) is clearly deterministic, yet it can pro-
duce non-periodic solutions. There were other intrigu-
ing aspects of the solutions to (1) in the chaotic regime.
Solutions arising from close initial conditions would
separate exponentially in time, leading to an ap-
parently random dependence on initial conditions
of the solution after a finite time (See Butterfly
effect). Today, this would be associated with the ex-
istence of a positive characteristic Lyapunov expo-
nent. A list of “symptoms” can be established that
are shared by systems having the property of chaos,
including: complex temporal evolution, exponential
separation from close initial conditions, a strange
attractor in phase space (if the system is dissipa-
tive), and positive Lyapunov exponents. An impor-
tant difference from Poincaré’s work was that Lorenz’s
§ystem described a dissipative system in which energy
1s not conserved,

From the start, the potential connection between
chaos and other concepts in statistical physics, such
as ergodicity and turbulence, was of central interest.
For example, chaos was thought to imply ergodic

Ij‘igure 1. Strange attractor associated with the Lorenz equa-
tions. Reproduced with permission from Images by Paul Bourke,
http://asironomy.swin.edu. aw/ pbourke/fractals/lorenz/.
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haviorin the sense of the “ergodic -
: ib;mg equi]_ibfium statistical nglecha:lyczozl;selsE

(heory)- Similarly, tl:]e connection between ch

rbulence was sought, particular] : .
me[ Lorenz’s model was of a fluid ﬂ)({,\ffgi(;‘;giz given
other fluid systems by Gollub, Swinney, LibChabems on
jater many others established that the UaﬂSiti()nr%and
[aminar to turbulent flow typically takes vifgE s ron;l
aregime of chaotic fluid motion. The well-known l(‘::lgt
tochaos via period-doubling bifurcations of Mitchellllje
Feigenbaum belongs here as well (Feigenbaum 1980:
Eckmann, 1981). In view of this, it is natural t;) think,
that turbulent flow itself is simply some kind of chaotic
flow state.

Turbulence is a common state of fluid flow that
shares several “symptoms” with chaotic dynamical
systems, but also has distinct features not easily
duplicated by chaos. The word “turbulence” was
apparently first used by Leonardo da Vinci to describe
acomplex flow. In mathematical terms, turbulent flows
should be solutions of the Navier-Stokes equation,
usually written in the dimensionless form (See Navier—
Stokes equation)

under-
rgodic
a0s and

ou :
—+4+u-Vu=—-Vp+ R Au, 2)

at
V.-u=0. 3)

We have restricted attention to incompressible flows
by insisting in (3) that the velocity field u(z, 1) be
divergence free. In (2) the field p represents the
pressure—the constant density has been absorbed in
the nondimensionalization. The sole dimensionless
parameter R is Reynolds number. In terms of physical
variables R = UL /v, where U is a typical scale of
velocity, L a typical length scale of the flow, and n
is the kinematic viscosity of the fluid. For small values
of R, say 0 < R < 1, the flow is laminar. For moderate
R.say 1 < R < 100, various periodic flow phenomena
may arise, such as the shedding of vortices from blunt
bodies. For large R, the flow eventually breaks down
into many interacting eddies—this is turbulent flow.
Since most flowing fluid is, in fact, flowing at large R,
turbulence is the prevailing flow state of fluids in our
surroundings (oceans and atmosphere), in the umverse
in general, in many industrial processes, and to some
extent, within our bodies.

_ The characterization of what makes a
1$not nearly so clear as what makes a dyn. :
chaotic. First, the issue of whether the partlcular set
of nonlinear partial differential equations (2) and (3)
even has a smooth solution for all time, given smooth

nitial conditions, is still unsettled and is one of the

Prize challenges set by the Clay Mathematics Institute
f several attempts,

(http://www.cla ite 0

: 3 ymath.org).In spite e
4 convincing example of a flow with smooth initial
con_ditions, evolving under (2) and (3), that develolzjs
¢ singularity in a finite time has not been found.

flow turbulent
amical system
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l(_:eo']ll‘_’e}'sely, there is no proof that solutions with the
quisite number of derivatives will exist for all time.
’ Turbulent flows are also recognized by a variety of
Symptoms.” The flow velocity as a function of time
at any given point in a turbulent flow is a random
function (roughly a Gaussian). However, the overall
naturf: of the velocity field viewed as a random vector
field 18 not Gaussian. The random nature of turbulent
vcloc.::ty fields is today thoroughly familiar to the flying
public. The randomness is not just temporal at a fixed
point In space; the spatial variation of the flow field
at a given time constitutes a multitude of interacting
eddies of different sizes. Because of their random
character, turbulent flows stir vigorously, leading to
rapid dispersal of a passively advected substance or a
field, such as temperature, and to a rapid exchange of
momentum with contiguous fluid. In the classic pipe
flow experiment of Osborne Reynolds, for example, in
which the transition from laminar to turbulent flow was
first demonstrated to depend only on the dimensionless
number R, a streak of dye introduced at the inlet would
remain a thin streak (except for a bit of molecular
diffusion) when the flow in the pipe was laminar.
When the flow rate was increased and the flow became
turbulent, the dye rapidly dispersed across the pipe.

In a turbulent flow, the large scales of motion, which
are typically in contact with some kind of forcing
from the outside, will generate smaller scales through
interactions and instabilities. This process continues
through a broad range of length scales, ultimately
reaching small scales where molecular dissipation is
effective and quells the motion altogether. The repeated
process of “handing down” energy from larger scales
to smaller scales is a key process in turbulence. It
is usually referred to as the Kolmogorov cascade
(See Kolmogorov cascade). The qualitative nature
of this process was already envisaged by Lewis Fry
Richardson and was described by him in an adaptation
of a verse by Jonathan Swift:

Big whorls have little whorls,

Which feed on their velocity;

And little whorls have lesser whorls,

And so on to viscosity (in the molecular sense).

Because of its broad range of length scales,
the energy in a turbulent flow may be considered
partitioned among modes of different wavenumbers k.
The energy spectrum E (k) is defined such that E (k) dk
is the amount of kinetic energy of the turbulent flow
associated with motions with wavenumbers between
k and k-+dk. The cascade implies a transfer of
energy from scale to scale with a characteristic energy
flux per unit mass, &, which must also be equal to
the rate at which energy is fed to the .ﬂow from
the largest scales, and to the rate at which energy
is dissipated by viscosity at the smalles't scah?s. A
simple dimensional argument then (See Dimensional
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analysis) gives the dependence of E(k) on ¢ and k
to be

E(k) = Ce2Pk—5/3, 4)

This is the well-known Kolmogorov spectrum, pre-
dicted by Andrei N. Kolmogorov in 1941 (Hunt et al.,
1991; Frisch, 1995) and only subsequently verified by
experiments in a tidal channel (see Figure 2).
Turbulence has many further intriguing statistical
properties, which remain subjects of active research.
A major shift in our thinking on turbulence occurred in
the late 1960s and in the 1970s when experiments by
Kline and Brown & Roshko demonstrated that even in
turbulent shear flows at very large Reynolds number,
one can identify coherent structures that organize the
flow to some extent (Figure 3). Later investigations have
shown that even in homogeneous, isotropic turbulence,
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Figure 2. One-dimensional spectrum in a tidal channel from
data in Grant et al. (1962).

Figure 3. Coherent structures in a turbulent mixing layer. From

Brown & Roshko (1974), reprinted from An Album of Fluid
Motion, M. Van Dyke, Parabolic Press, 1982.
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the flow is often organized into strong filamey,
vortices. The persistence of these organizeq Structype
which can dominate the flow for long time, and
interact dynamically, forces a strong coupling amgy
the spectral modes, reducing the effective Number (e
degrees of freedom of the problem.

Chaos and turbulence both describe state
deterministic dynamical system in which the solutiong
appear random. Qur current understanding of chgg, is
largely restricted to few-degree-of-freedom Systems,
Turbulence, on the other hand, is a many-degree.
of-freedom phenomenon. It seems somewhat unique
to fluid flows—related phenomena such ag Plasma
turbulence or wave turbulence appear to be intrinsically
different. The emergence of collective modes in the
form of coherent structures in turbulence amidst
the randomness is an intriguing feature, somewhat
reminiscent of the mix between regular “islands” ang
the *“chaotic sea” observed in chaotic, low-dimensiona
dynamical systems. The coherent structures themselves
approximately form a deterministic, low-dimensional
dynamical system. However, it seems impossible to
fully eliminate all but a finite number of degrees of
freedom in a turbulent flow—the modes not included
explicitly form an essential, dissipative background,
often referred to as an eddy viscosity, that must be
included in the description.

Turbulence is intrinsically spatiotemporal, whereas
chaotic behavior in a fluid system can be merely
temporal with a simple spatial structure. It is possible
for the flow field to be perfectly regular in space
and time, yet the trajectories of fluid particles moving
within the flow will be chaotic. This is the phenomenon
of chaotic advection (See Choatic advection), which
points out the hugely increased complexity of a
turbulent flow relative to chaos in a dynamical system.

PAuL K.A.NEWTON AND HAsSAN AREF
See also Attractors; Butterfly effect; Celestial me-
chanics; Chaotic advection; Chaotic dynamics;
Diffusion; Ergodic theory; Kolmogorov cascade;
Lorenz equations; Lyapunov exponents; Navier-
Stokes equation; N-body problem; Partial differ-
ential equations, nonlinear; Period doubling; Phase

space; Poincaré theorems; Routes to chaos; Shear
flow; Thermal convection; Turbulence
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CHAOTIC ADVECTION
In fluid mechanics, advection means the transport of
material particles by a fluid flow, as when smoke from
2 chimney is blown by the wind. The term passive
advection 13 sometimes used to emphasize that the
substance being carried by the flow is sufficiently inert
hat it follows the flow entirely, the velocity of the
advected substance at every point and every instant
adjusting to that of the prevailing flow.

To describe the kinematics of a fluid, two points
of view may be adopted: the Eulerian representation
focuses on the velocity field u as a function of position
and time, u(x,?); the Lagrangian representation
emphasizes the trajectories Xp (¢) of a fluid particle as
itis advected by the flow. The two points of view are
linked by stating that the value of the velocity field at
a given point in space and instant in time equals the
velocity of the fluid element passing through that same
point at that instant, that is,

xp(t) = u(xp (1), 1). (B

The Eulerian representation is used extensively for
measurements and numerical simulations of fluid flow
since it allows one to fix the points in space and time
where the field is to be determined. The Lagrangian
representation, on the other hand, is often more natural
for theoretical analysis, as it explicitly addresses the
nonlinearity of the Navier-Stokes equation.

For a given flow, the equations of motion (1),
sometimes called the advection equations, are a
system of ordinary differential equations that define a
dynamical system. These equations can be integrab]e
or non-integrable. Chaotic advection appears when the
€uations are non-integrable and the trajectories of
fuid elements become chaotic. The dynamical system
Qefined by (1) has two or more degrees of freedom.

0ratwo-dimensional time-independent or steady fiow,
lher.e are just two degrees of freedom and no chaotic
g:)“on is possible. However, already for 2 2—3;1;1:;
. Pfendem ora3-d steady flow, thereare f:nc.)ughI (g)ther
Wo teedom to allow for chaotic trajectories: :v o
WordS' chaotic advection can appear even fOr flo
Uld otherwise be considered laminar. . o,
no he phenomenon of chaotic ad.vectnon ISn o
Wh as Lagrangjan chaos, or sometimes Lagra g
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turbulence, Usuall
Eulerian Tepresen
velocity field fluct
and temporal scq]
flows, the traject

Y, the w

v aO(rid turbulenc; refers to the
s nd to flows in which the

a : ;

s W'thcll'-os‘s a wide range of spatial
e 1 flmlted correlations. In such
' es i

chaotic. By contrast ho fluid elcments are always
chaos can arise i t, Chaotic advection or Lagrangian
Spatially coherent :ﬁ;agons s
o d the time dependence is no more

plicated than a simp] iodi ;
M ple periodic modulation.
any examples have now b i '
thesn, W been given to illustrate
point that the complexity of i
material plexity of the spatial structure of
al advected by a flow can be much greater th

one might surmise f _ h greater than
e € Irom a picture of the instantaneous
i dm ines of tt.le flow. Thus, in the paper that
" dop .uced the notion of chaotic advection (Aref (1984)

n : igure 1), the case of two stirrers that act alternately
on fluid confined to a disk was considered. Each stirrer
was modeled as a point vortex that could be switched
on and off. There are several parameters in the system,
such as t].w st.rengths and positions of the vortex stirrer
and the time interval over which each acts. For a wide
range of paramt?ter values, the dynamics is as shown in
Flgure 1; after just a few periods, the 10,000 particles
being advected are spread out over a large fraction of
the disk.

Chaotic advection gives rise to very efficient stirring
of a fluid. Material lines are stretched at a rate given
by the Lyapunov exponent. In bounded flows, these
exponentially growing material lines have to be folded
back over and over again, giving rise to ever finer and
denser striations. They are familiar from the mixin

2
of paint or from marbelized paper. On the smallest
scales diffusion, takes over and smoothes the steep
gradients, giving rise to mixing on the molecular scale.
The interplay between stirring and diffusion is the

cles in a cylindrical
ction of two stirrers.
by crosses. (a) initial
g after 1,2, ..., 6
ods. From (Aref,

of 10,000 parti
the alternating @
are marked
tions of the particles
ds; (i) after 12 pert

Figure 1. Spreading
co;gltainer (disk) under' -
The positions of the stire
distribution; (b)~{g) post
eriods; (h) after 9 perio

1984).
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