BERRY’S PHASE

In the form stated in Equation (1), Bernoulli’s
‘equation applies only to steady, constant-density.
irrotational flow, that is, to a flow pattern that o
unchanging in time and that has no vorticity.

More refined versions may be derived. Thus. in a
steady, constant-density flow with vorticity, EQ!;ation
(1) still holds along each streamline, but the “constant”
on the right-hand side may vary from streamline
to streamline. Indeed, the gradient of this changing
“Bernoulli constant,” VC, equals the Lamb vector, the
vector product of flow velocity and vorticity,

Vxew=VC.

If the flow is irrotational but unsteady, a version of
Bernoulli’s equation again holds, but the constant on
the right-hand side of (1) is replaced by (minus) the time
derivative of the velocity potential. (In an irrotational
flow, the velocity field is the gradient of a scalar known
as the velocity potential.) With V = —V ¢, where ¢ is
the velocity potential, we obtain Bernoulli’s equation

in the form
2 d¢
(V) /2+p/o+gz=—7 2
which, coupled with the condition of irrotational flow,
A¢p =0, 3

gives a system of two partial differential equations for
the fields p and ¢.

Bernoulli’s equation in the simplistic form “high
flow speed implies low pressure and vice versa” is
often applied as a first, crude explanation of many
flow phenomena from the ability to balance a ball
atop a plume of air to the lift on an airfoil in flight.
Some of these explanations are t00 simplistic, not to
say incorrect. Nevertheless, Bernoulli’s equation, when
properly applied under the assumptions that ensure its
validity, can be an extremely useful and powerful tool
of fluid flow analysis.

It is remarkable—and important to note—that
Bernoulli’s equation (1) is not invariant to 2 Galilean
transformation, ordinarily a prerequisite for a physical
law to be useful. Thus, if one wants 10 use Bernoulli’s
equation (1) to calculate the pressure distribution for
flow around an object, assuming the velocity field
is known, it is essential to do so in a frame of reference
in which the flow satisfies the necessary assumptions,
in particular, that the flow is steady. The correct resultis
obtained by carrying out such a calculation in a frame
of reference moving with the body. If the calculation
is attempted in the “laboratory frame” through which
the object is moving, one has to tackle the much more
complex version of Bernoulli’s equation given in (2).
_If the version in Equation (1) is applied, one obtains an
Incorrect result.
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BERRY’S PHASE

Consider the parallel transport of an orthonormal frame

along a line of constant latitude on the surface of a
sphere. In going once around the sphere, the frame
undergoes a rotation through an angle AB =2mcosc,

where « is the colatitude. This may be_ shown using
the geometry of Figure 1. As is also evident frogn tl}e
hift is purely geometric 1N

figure, this phase § 1Y, of
character—it is independent of the time 1t takes to tra-

verse the closed loop.
This construction underlies the well-known phase

shift exhibited by the Foucault pendulum as the
Earth rotates through one full period. Although arising
through a dynamical process involving two widely
separated time scales (the period of the Earth’s
rotation and the oscillation period of the pendulum),
the phase shift in this and other examples is now
understood in a more unified way. Holonomic effects
such as these arise in a host of applications ranging
from problems in superconductivity theory, fiber
optic design, magnetic resonance imaging (MRI),
amoeba propulsion and robotic locomotion and control,
micromoter design, molecular dynamics, rigid-body
motion, vortex dynamics in incompressible fluid flows
(Newton, 2001), and satellite orientation control. For
a survey and further references on the use of phases
in locomotion problems, see Marsden & Ostrowski
(1998).

That the falling cat learns quickly to re-orient itself
optimally in mid-flight while maintaining zero angu-
lar momentum is a manifestation of the fact that con-
trolling and manipulating a system’s internal or shape
variables can lead to phase changes in the external, or
group variables, a process that can be exploited and has
deeper connections to problems related to the dynam-
ics of Yang-Mills particles moving in their associated
gauge field, a link that is the falling cat theorem of
Montgomery (1991a) (see further discussion and refer-
ences in Marsden (1992) and Marsden & Ratiu (1999)).
One can read many of the original articles leading to
our current understanding of the geometric phase in the
collection edited by Shapere & Wilczek (1989).

Problems of this type have a long and complex his-
tory dating back to work on the circular polarization of
light in an inhomogeneous medium by Vladimirskii and
Rytov in the 1930s and by Pancharatnam in the 1950s,
who studied interference patterns produced by plates of
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Figure 1. Parallel transport of a frame around a line of latitude.

an anisotropic crystal. Much of this early history is de-
scribed in the articles by Michael Berry (Berry, 1988,
1990). The more recent literature was initiated by his
earlier articles (Berry, 1984, 1985), which investigated
the evolution of quantum systems whose Hamiltonian
depends on external parameters that are slowly varied
around a closed loop. The adiabatic theorem of quantum
mechanics states that for infinitely slow changes of the
parameters, the evolution of the complex wave function,
governed by the time-dependent Schrodinger equation,
is instantaneously in an eigenstate of the frozen Hamil-
tonian. At the end of one cycle, when the parameters
recur, the wave function returns to its original eigen-
state, but with a phase change that is related to the geo-
metric properties of the closed loop. This phase change
now goes by the name Berry’s phase. Geometric de-
velopments started with the work of Simon (1983), and
Marsden et al. (1989). One can introduce a bundle of
eigenstates of the slowly varying Hamiltonian, as well
as a natural connection on it; the Berry phase is then
the bundle holonomy associated with this connection,
while the curvature of the connection, when integrated
over a closed two-dimensional (2-d) surface in parame-
ter space gives rise to the first Chern class characterizing
the topological twisting of this bundle.

The classical counterpart to Berry’s phase was
originally developed by Hannay (1985) (hence the
terminology Hannay's angle) and is most naturally
described by considering slowly varying integrable
Hamiltonian systems in action-angle form. If we let
(I, ..., I,;61,...0,) represent the action-angle vari-
ables of a given integrable system, then the governing
Hamiltonian can be expressed as H(Iy, ..., In; R(1)),
where R(t) is a slowly varying parameter that cy-
cles through a closed loop in time period T, that is,
R(t+T)=R(t), R(t) ~eR, £ K 1. The configuration
space for the system is an n-dimensional torus T" and
we seek a formula for the angle variables as the pa-
rameter or parameters slowly evolve around the closed
loop C in parameter space. The time-dependent system
is governed by

. . ol
I= R(f)'ﬁ, )
; . a0
6 = w(d gty
o +R(1) - =, @)

BERRY’S PHASE

where i O
o= 37"

R is slowly varying, we can average the system

f the frozen (i.e., € = 0) Hamilto-

denote this phase-space average,

1 system becomes

Since
around level curves 0
pian. If we let ( ) '
then the averaged canonica

: : ) |

L= R(f)'(a‘E) 3)
. ; a0

0 =w(I)-{—R(l‘)-<-§§)- 4)

The well-known adiabatic theorem of quantum me-
chanics guarantees that the action variable is nearly
constant due to its adiabatic invariance, whereas the
angle variables can be integrated over period T

. ¥ oy Toe o Jootl
ol =f0 w(I)dt+f0 R(t)-<5ﬁ) £ )
it o (6)

The first term, 64, called the dynamic phase is due to the
frozen system, while the second term, &g, arises from
the time variation. This geometric phase can be rewrit-
ten in a revealing manner as

/ 8 agi
O =f0 R(t)-(ﬁ)dz )

96! =
= f(é—ﬁ—a)dR. (8)

The contour integral is taken over the closed loop C in
parameter space. Although arising through a dynami-
cal process, it is ultimately a purely geometric quantity
that results from a delicate balance of two compensat-
ing effects in the limit ¢ — 0. On the one hand, T — o¢
in (7), while on the other, R(t) — (. Their rates exactly
balance so that the integral leaves a residual term in the
limit £ =0, as given in (8).

A nice example developed in Hannay (1983) is the
bead-on-hoop problem in which a frictionless bead is
constrained to slide along a closed planar wire hoop that
er}closes area A and has perimeter length £. As the bead
§11des around the hoop, the hoop is slowly rotated about
its vertical axis (which is aligned with the gravitational
yector) through one full revolution. We are interested
in the angular position of the bead with respect to a
fixed point on the hoop after one full revolution of the
hoop. When compared with its angular position had the
hf’OP been held fixed (the frozen problem), this angle
difference would represent the geometric phase and is
given by

AO = —8x2 A/ L2. ©

Montgomery (1991b) shows that modulo 27, We
have the following rigid-body phase formula:

A8 = —A +2ET/R. (10)
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Figure 2. The geometry of the rigid-body phase formula.

Let us explain the notation in this remarkable formula.
When a rigid body is freely spinning about its center of
mass, one learns in mechanics that this dynamics can be
described by the Euler equations, which are equations
for the body angular momentum IT. This vector in R3
moves on a sphere (of radius R = | ||) and describes
periodic orbits (or exceptionally, heteroclinic orbits).
This orbit is schematically depicted by the closed curve
on the sphere shown in Figure 2. However, the full
dynamics includes the dynamics of the rotation matrix
for describing the attitude of the rigid body as well as
its conjugate momentum. There is a projection from the
full dynamic phase space (which is 6-d) to the body
angular momentum space (which is 3-d). After one
period of the motion on the sphere, the actual rigid-
body motion was not periodic, but it had rotated about
the spatial angular momentum vector by an angle A0,
the left-hand side of the above formula. The quantity
A is the spherical angle subtended by the cap shown in
the figure, E is the energy of the trajectory, and T is

the period of the closed orbit on the sphere. A detailed

history of this formula is given in Marsden & Ratiu

(1999).
PauL K. NEWTON AND JERROLD E. MARSDEN

See also Adiabatic invariants; Averaging methods;
Hamiltonian systems; Integrability; Phase space
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BETHE ANSATZ
The Bethe ansatz is the name given to a methpd for
exactly solving quantum many-body systems in one

spatial dimension (1-d) or classical statistical lattice

models (vertex models) in two spatial dimensions

(Baxter, 1982; Korepin et al., 1993). The method was
developed by Hans Bethe in 1931 (Bethe, 1931) in
order to diagonalize the Hamiltonian of a chain of N
spins with isotropic exchange interactions, introduced
by Werner Heisenberg some years before as the simplest
model for a 1-d magnet. This result was achieved by
assuming the wave function to be of the form

M )
f(xlong-..,XM)=Z APelzj=lkijJ (1)
P

with the sum performed on all possible permutations
P of M distinct wave numbers {ki, ..., kpy}, corre-
sponding to down spins in the system (Bethe ansatz).
By imposing invariance under the physical symme-
tries of the system (discrete translations and total spin
rotations), Bethe obtained conditions on the coeffi-
cients A p, which were satisfied if a set of M nonlinear
equations (Bethe equations) in N complex parameters
(Bethe numbers) were fulfilled. Surprisingly, the wave
functions thus constructed were simultaneous eigen-
functions not only of the translation operator, the total
spin S, and its projection S, along the z-direction but
also of the isotropic Heisenberg Hamiltonian

N
H=Z(Si'si+l—i)- )

i=l1

The energy and the crystal momentum were expressed
as symmetric functions of the Bethe numbers; thus, the
eigenvalue problem for H was reduced to the solution of
an algebraic problem—solution of the Bethe equations.
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