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Optimal dynamic incentive scheduling for Hawk-Dove evolutionary games
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The Hawk-Dove evolutionary game offers a paradigm of the trade-offs associated with aggressive and passive
behaviors. When two (or more) populations of players compete, their success or failure is measured by their
frequency in the population, and the system is governed by the replicator dynamics. We develop a time-dependent
optimal-adaptive control theory for this dynamical system in which the entries of the payoff matrix are dynam-
ically altered to produce control schedules that minimize and maximize the aggressive population through a
finite-time cycle. These schedules provide upper and lower bounds on the outcomes for all possible strategies
since they represent two extremizers of the cost function. We then adaptively extend the optimal control schedules
over multiple cycles to produce absolute maximizers and minimizers for the system.
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I. INTRODUCTION

The Hawk-Dove game (also known as the Chicken or
Snowdrift game) is a game-theoretic paradigm for studying
the conflict between players (or populations of players) who
use two opposing strategies: aggressive (Hawks) and pas-
sive (Doves). One way of framing the conflict is to consider
competition in the animal world where two different species
compete for a limited resource [1–4]. With no Hawks in the
population, Doves will share the resources and avoid conflict.
With no Doves, the Hawks will fight with each other for
resources, taking the risk of injury or death. If Hawks are
present in large enough numbers, the Doves will flee without
fighting. A sufficient fraction of Doves, on the other hand, can
cooperate and expel the Hawks from the population, thereby
protecting the resource [5]. The challenge is to find conditions
for the stable coexistence of the two opposing populations. In
the context of military conflicts, the game is framed as the
game of chicken, thought of as a situation in which two drivers
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head towards each other in a single lane trying not to be the
first to swerve away (Doves), each mindful of the fact that if
neither swerves (Hawks), both will die. Key to this game is
that the cost of losing is greater than the value of winning.
Versions of this (static) game have been analyzed and used
extensively in political science communities to study strate-
gies associated with the problem of nuclear brinkmanship [6].
In this setup, the payoffs are fixed, and the interactions unfold
based on the cost-benefit balance determined by these payoffs.

In a more complicated setting, one might want to mea-
sure repeated interactions in populations of competitors, �x =
(x1, x2)T ∈ R2, where winning and losing is reinforced by
the relative frequencies of the two competing populations
(frequency-dependent selection as in Darwinian evolution).
For this, the replicator dynamical system is commonly used
[7–9],

ẋi = xi((A�x)i − �xT (A�x)) (i = 1, 2), (1)

with x1 + x2 = 1, 0 � x1 � 1, 0 � x2 � 1, where each vari-
able has the interpretation of frequency in the population
or the alternative interpretation as a probability of pick-
ing a member of one of the two subgroups randomly. It is
sometimes useful to also think of the variables �x = (x1, x2)T

as strategies (heritable traits) that evolve, with the most
successful strategy dominating, as in the context of Darwinian
evolution [4] by natural selection. Here, A is the 2×2 payoff
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matrix, (A�x)i is the fitness of population i, and �xT (A�x) is the
average fitness of both populations, so xi in (1) drives growth
(instantaneously) at times when the species population i is
above the population average and decay at times when it falls
below the system average. Cumulative growth or decay over
a time T is governed by

∫ T
0 [(A�x)i − �xT (A�x)]dt which can

either be positive or negative depending on the proportion of
time spent above or below the system average. The fitness
functions in (1) are said to be population dependent (selection
pressure is imposed by the mix of population frequencies)
and determine the growth or decay of each subpopulation.
Because of this, these equations are also used extensively in
the reinforcement learning community where success begets
success and failure leads to a downward spiral of frequency in
the population [10].

Using the standard Hawk-Dove payoff matrix [5],

A =
[

a11 a12

a21 a22

]
=

[
3 1
5 0

]
, (2)

where the population x1 are the Hawks (aggressive), and x2

are the Doves (passive), and the strict Nash equilibrium �x∗ ≡
(x∗

1, x∗
2 ) is the mixed state x∗

1 = 1
3 , x∗

2 = 2
3 since �x∗T

A�x∗ >

�xT A�x for all �x �= �x∗. This implies that the mixed state is also
an evolutionary stable state (ESS) of the replicator system (1)
as discussed in Ref. [11]. It is also useful to uncouple the two
variables in (1) and write a single equation for the aggressor
population frequency x1:

ẋ1 = x1(1 − x1)[(A�x)1 − (A�x)2]

= x1(1 − x1){(a12 − a22) + [(a11 − a21) − (a12 − a22)]x1}.
(3)

Note also that a single equation for the passive population x2

is easily obtained using the change of variable x1 = 1 − x2 in
Eq. (3).

The question we address in the paper is whether it is
possible to alter the entries in the payoff matrix A in a time-
dependent fashion (dynamic incentives) in order to optimally
achieve some predetermined goal (such as minimizing aggres-
sion) at the end of fixed time T . Dynamically altering the
entries of a payoff matrix in an evolutionary game setting
has only recently been studied by coupling the entries, for
example, to a system that represents an external environment
[12,13]. One can easily imagine different scenarios in which
this might be useful. In the context of nuclear brinkmanship,
for example, is it possible to alter the payoff incentives dy-
namically in order to achieve a goal [6] that would not be
achievable with fixed payoffs? Is it possible to offer dynamic
economic incentives that optimize some desired outcome
across a population of participants [14,15]? In this context,
one can fruitfully think of the problem as one in optimal
control theory where in real time, the government either turns
on or turns off various economic incentives, such as adjusting
interest rate policies or implementing targeted changes to con-
trol inflationary pressure. In the context of evolutionary game
theory, this translates into introducing time-dependent control
schedules that can alter the punishment-reward structure of
the system by explicitly controlling the entries of the payoff
matrix.

Can one optimally design time-dependent incentive sched-
ules of rewards/punishments to compel groups of people to
get vaccinated [16]? For coevolving microbial populations, is
it possible to dynamically schedule selective antibiotic agents
in order to steer the evolutionary trajectory in an advanta-
geous direction [17,18], or even reverse antibiotic resistance,
or in the context of scheduling chemotherapy treatments, is
it possible to design schedules optimally that make best use
of the chemotherapy agents administered in order to delay
chemotherapeutic resistance [8,9,19–21]? Control theory is
increasingly being used in a wide range of biological ap-
plications [21–27] but to date has not been systematically
implemented in the context of evolutionary games as far as
we know, aside from Refs. [8,9,21,28].

One interesting evolutionary context where an apparent
Hawk-Dove scenario may require attainment of a quasistable
equilibrium condition is during the evolution of symbiotic
relationships in which one partner is aggressive or preda-
tory. For example, hostile colonies of eusocial insects, such
as ants and termites, are plagued by a diversity of solitary
arthropods that have evolved to infiltrate the social system
and parasitize the nest [30,31]. The majority of such para-
sitic species evolved from free-living ancestors without any
behavioral specialization [32,33]. It follows that the initial
steps in establishing the symbiosis were contingent on these
free-living species (the Doves) entering into equilibrium with
their aggressive eusocial hosts (the Hawks). This equilibrium,
once attained, may have provided an essential, permissive
stepping stone to evolving the essential adaptive traits—such
as social behaviors and pheromonal mimicry—that facilitate
social parasitism [32].

To address these and related types of settings, we develop a
mathematical framework to determine time-dependent incen-
tive schedules for altering the payoff entries of a Hawk-Dove
evolutionary game in such a way as to (i) maximize aggression
at the end of time T , and (ii) minimize aggression at the end of
time T . By considering the bang-bang schedules that produce
these upper and lower bounds on the competing frequencies,
we can conclude that any alternative payoff schedule will
produce a result that lies somewhere between the two bounds
as each are extremizers of a cost function associated with the
Pontryagin maximum (minimum) principle. We then extend
the time period to time nT (n = 1, . . . , 5) by using an adap-
tive control method that adjusts the schedule in the (n + 1)st
window based on the ending frequency values from the nth
window. The schedules produced drive aggression down to
an absolute minimum (xmin

1 ), or drive it up to an absolute
maximum (xmax

1 ), which are functions of the cycle time T .
These values provide absolute lower and upper bounds on
opposing behavior strategies in an evolutionary setting.

II. OPTIMAL CONTROL THEORY FOR THE
REPLICATOR DYNAMICAL SYSTEM

To implement an optimal dynamic incentive strategy, we
consider the time-dependent system

A =
[

a11 a12

a21 a22

]
= A0 + A1(t ) (4)
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=
[

3 1

5 0

]
+

[
0 4u2(t )

6u1(t ) 0

]
(5)

=
[

3 1 + 4u2(t )

5 + 6u1(t ) 0

]
, (6)

where A1(t ) represents our control with entries in the off-
diagonal terms, and A0 is the baseline Hawk-Dove payoff
matrix. The time-dependent functions �u(t ) = [u1(t ), u2(t )] ∈
R2 are bounded above and below, −1 � u1(t ) � 1, −1 �
u2(t ) � 1 and have a range (−3 � a12 � 5; −1 � a21 � 11)
that allows us to traverse the plane along any path depicted in
red in Fig. 1, starting in the Hawk-Dove zone in the uncon-
trolled (u1 = 0; u2 = 0) case which is shown in Fig. 2 in the
phase plane [Fig. 2(a)] and the frequency plane [Fig. 2(b)].
Traversing this plane amounts to dynamically sampling the
five reciprocity mechanisms allowable in 2×2 games, dis-
cussed in the context of social dilemmas in Refs. [34,35].
Dynamically altering the entries of the payoff matrix allows
the freedom to choose different mechanisms to gain advantage
over some prescribed finite time. Note that we have chosen
the coefficients and bounds on the controllers to ensure that
all regions of the plane in Fig. 1 are accessible. The ESS for
the uncontrolled case is x1 = 1/3. The control path chosen,
and the time parametrization 0 � t � T determines both the
sequence of games being played as well as the switching times
(the times at which the path crosses over from one region to
the next) between games. We denote the total control output

FIG. 1. Twelve regions in the off-diagonal (a12, a21) plane [29]
(delineated by dashed lines) define which game is being played.
We choose a22 at the origin (without loss). Starting at t = 0 in the
Hawk-Dove square, indicated by the initial large (red) dot, what are
the paths that minimize and maximize aggression at time t = T ?
The solid (red) curve is one example of a path that crosses into four
different regions of the plane.

FIG. 2. Dynamics of the uncontrolled (u1 = 0, u2 = 0) Hawk-
Dove evolutionary game. (a) Phase portrait associated with the
aggressor population x1. Both Hawk and Dove dominance (x1 = 1, 0)
are unstable fixed points, while the mixed state x1 = 1/3 is the
evolutionarily stable strategy (ESS). (b) Hawk dynamics for various
initial conditions. T = 1 is the end of one control cycle and also the
linear growth rate of the Hawk-Dove system.

�C ∈ R2,

�C(t ) = [C1(t ),C2(t )] =
∫ t

0
�u(t )dt, (7)

with total output delivered in time t , then

�̇C(t ) = �u(t ) (8)

and

�C(0) = 0, (9)

�C(T ) =
∫ T

0
�u(t )dt = �CT , (10)

where T denotes a final time in which we implement the
control over one cycle. We consider �CT as a constraint on
the optimization problem, with �CT = (0, 0), and our goal is
to first find schedules that minimize and maximize aggression
(x1) at the end of one cycle t = T subject to this constraint.
For the uncontrolled case, we know x1 → 1/3 as t → ∞
and we compare the controlled cases with the uncontrolled
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FIG. 3. Maximizing (solid blue) and minimizing (dashed red) trajectories for nine initial conditions. Also shown is the (dashed black) curve
for the uncontrolled Hawk-Dove trajectory which lands in between the maximum and minimum at T = 1. The top bar (dark blue) corresponds
to u1 = 1, with white indicating u1 = −1. The second bar (light blue) corresponds to u2 = 1, with white indicating u2 = −1 associated with
the maximizing control schedule. The third bar (dark red) corresponds to u1 = 1, with the white bar indicating u1 = −1. The fourth bar (light
red) corresponds to u2 = 1, with white indicating u2 = −1 associated with the minimizing control schedule. All schedules are bang-bang.
(a) x1(0) = 0.01, (b) x1(0) = 0.05, (c) x1(0) = 0.1, (d) x1(0) = 0.3, (e) x1(0) = 0.5, (f) x1(0) = 0.7, (g) x1(0) = 0.9, (h) x1(0) = 0.95, and (i)
x1(0) = 0.99.

case, both satisfying the constraint. Also notice that the linear
growth rate in (3) is (a12 − a22) = 1 − 0 = 1, so we scale T
the same way in our computations, as T = 1. We then perform
the optimization adaptively over multiple cycles nT using the
end value of cycle nT as the initial condition to compute the
optimal schedule for the (n + 1)st cycle. Using this method,
we are able to identify absolute maximizers and minimizers
as a function of the cycle time T .

A. Optimal control formulation

A standard form for implementing the Pontryagin maxi-
mum (minimum) principle with boundary value constraints is

�X = [�x(t ), �C(t )]
T
, �X ∈ R4, (11)

�̇X = �F ( �X ) = [�̇x, �̇C(t )]
T
, �F : R4 → R4, (12)

where one would like to minimize or maximize a general cost
function: ∫ T

0
L(�x(t ), �u(t ), t )dt + ϕ(�x(T )). (13)

In our case, we are only interested in minimizing the
terminal value φ(�x(T )) ≡ x1(T ), which is called a classical
Mayer problem (specifically choosing L = 0 and optimiz-
ing the terminal value, developed in the context of missile
guidance problems where the final distance from the target
is optimized) discussed in detail in Sec. 13.3, and together
with the Pontryagin principle in Sec. 14.6 of Ref. [36]. The
controllers, of course, still play an important role as they enter
both the payoff matrix through Eq. (6) as well as the constraint
Eq. (7).

Since the method is standard, we will just briefly describe
the basic framework and refer readers to Refs. [37–41] for
more details on how to implement the approach. Following
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FIG. 4. Maximizing (solid blue) and minimizing (dashed red) trajectories for nine initial conditions over n = 5 cycles, with solid
(blue)/dashed (red) curves joining the end values after each cycle. The adaptive schedule for the (n + 1)st cycle is calculated based on
the endpoint of the nth cycle. The dashed black curve shows the uncontrolled Hawk-Dove trajectory. (a) x1(0) = 0.01, (b) x1(0) = 0.05,
(c) x1(0) = 0.1, (d) x1(0) = 0.3, (e) x1(0) = 0.5, (f) x1(0) = 0.7, (g) x1(0) = 0.9, (h) x1(0) = 0.95, and (i) x1(0) = 0.99.

Ref. [40] in particular (see p. 62, Theorem 4.2.1), we construct
the control theory Hamiltonian,

H (�x(t ), �C(t ), �λ, �u(t )) = �λT �F (�x), (14)

where �λ = [λ1, λ2, μ1, μ2]T are the costate functions (i.e.,
momenta) associated with �x and �C, respectively. Assum-
ing that �u∗(t ) is the optimal control for this problem, with
corresponding trajectory �x∗(t ), �C∗(t ), the canonical equa-
tions satisfy

ẋi
∗(t ) = ∂H

∂λ∗
i

, (15)

Ċi
∗(t ) = ∂H

∂μ∗
i

, (16)

λ̇i
∗(t ) = − ∂H

∂x∗
i

, (17)

μ̇i
∗(t ) = − ∂H

∂C∗
i

, (18)

where i = (1, 2). The corresponding boundary conditions are

�x∗(0) = �x0, (19)

�C∗(0) = 0, �C∗(T ) = �C∗
T , (20)

λ∗
i (T ) = ∂ϕ(�x(T ))

∂x∗
i (T )

. (21)

Then, at any point in time, the optimal control �u∗(t ) will
minimize the control theory Hamiltonian:

�u∗(t ) = arg min
�u(t )

H (�x∗(t ), �C∗(t ), �λ∗(t ), �u(t )). (22)

The optimization problem becomes a two-point bound-
ary value problem [using (19)–(21)] with unknowns
[λ∗

2(0), x∗
2 (T )] whose solution gives rise to the optimal tra-

jectory �x∗(t ) [from (15)] and the corresponding control �u∗(t )
that produces it [37–40]. We solve this problem by standard
numerical shooting-type methods [40]. The result is that the
optimal controllers follow a bang-bang schedule, taking on
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FIG. 5. Maximizing (solid blue) and minimizing (dashed red)
trajectories for the two special initial conditions x1(0) = 0.08, 0.79.
For the larger initial condition, the maximizing schedule (top two
bars in blue) produces an absolute maximum xmax

1 for T = 1. For the
smaller initial condition, the minimizing schedule (bottom two bars
in red) produces an absolute minimum xmin

1 for T = 1. The dashed
(black) curve shows the uncontrolled Hawk-Dove trajectory. The top
bar (dark blue) shows u1 = 1, and the white bar shows u1 = −1.
The second bar (light blue) shows u2 = 1, and the white bar shows
u2 = −1 associated with the maximizing control schedule. The third
(dark red) bar shows u1 = 1, and the white bar shows u1 = −1. The
fourth (light red) bar shows u2 = 1, and the white bar shows u2 = −1
associated with the minimizing control schedule. (a) x1(0) = 0.08,
and (b) x1(0) = 0.79.

only the extreme values +1 or −1, and not values throughout
the interval [−1, 1].

III. RESULTS

In this section we show the results of solving the adaptive
optimal control method to minimize and maximize aggres-
sion at time T = 1, and then further at the end of multiple
cycles t = nT . Figures 3(a)–3(i) show the maximizing (blue)
and minimizing (red) trajectories for nine initial conditions.
The corresponding bang-bang schedules that produce these
trajectories are also shown in each case. It is straightforward to
prove that the optimal schedules must be bang-bang since the

FIG. 6. Maximizing (solid blue) and minimizing (dashed red)
trajectories for the two special initial conditions x1(0) = 0.08, 0.79
over n = 5 cycles. Notice that the minimizing trajectory (dashed
red) shown in (a) exactly repeats for each cycle [x1(0) = x1(T )]
since the schedule is an absolute minimizer, while the maximizing
trajectory (solid blue) shown in (b) exactly repeats for each cycle
[x1(0) = x1(T )] since the schedule is an absolute maximizer. The
dashed (black) curve shows the uncontrolled Hawk-Dove trajectory.
(a) x1(0) = 0.08. The dashed (red) horizontal line indicates an abso-
lute minimizer at xmin

1 . (b) x1(0) = 0.079. The solid (blue) horizontal
line indicates an absolute maximizer at xmax

1 .

controllers are linear in the governing equations. In each case,
we show the uncontrolled (dashed curve) Hawk-Dove trajec-
tory, which ends in between the maximizer and minimizer as
expected.

Figure 4 shows the maximizing (blue) and minimizing
trajectories over n = 5 cycles. We obtain these adaptively,
using the endpoint from the nth cycle to compute the optimal
schedule for the following (n + 1)st cycle. Two special initial
conditions are shown in Fig. 5. For x1(0) = 0.08, the minimiz-
ing (red) trajectory shown in Fig. 5(a) ends at x1(1) = 0.08,
hence is periodic. This value (and corresponding schedule)
corresponds to an absolute minimizer xmin

1 for aggression x1.
By contrast, for x1(0) = 0.79 shown in Fig. 5(b), the maximiz-
ing (blue) trajectory ends at x1(1) = 0.79, hence is periodic.
This value (and the corresponding schedule) corresponds
to an absolute maximizer xmax

1 for aggression. These two
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FIG. 7. Minimizing sequence of four games (Deadlock; Leader; Prisoner’s Dilemma; Game 9) associated with initial condition
x1(0) = 0.08 that produces the absolute minimizer. Open dots show the starting point, and the solid dot shows the ending point.

FIG. 8. Maximizing sequence of four games (Prisoner’s Dilemma; Leader; Deadlock; Game 9) associated with initial condition
x1(0) = 0.79 that produces the absolute maximizer. Open dots show the starting point, and the solid dot shows the ending point.

014412-7
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FIG. 9. (a) Hawk initial condition x1(0) vs Hawk frequency at
final time x1(T ) for maximizing (solid blue) and minimizing (dashed
red) schedules. The vertical dashed line at x1(0) = 0.65 marks the
maximum difference between the minimizer and the maximizer.
(b) Change in Hawk frequency as a function of initial condition.
Points above the line x1(T )/x1(0) − 1 = 0 represent an increase
over time and points below this line represent a decrease over time.
The two intersection points x1(0) = 0.08 and x1(0) = 0.79 mark the
absolute minimizer and maximizer initial conditions for T = 1.

special initial conditions are shown in Fig. 6 over n = 5 cy-
cles, confirming the periodicity of the minimizing trajectory
(red) in Fig. 6(a) and the periodicity of the maximizing (blue)
trajectory in Fig. 6(b). The sequence of games that the system
cycles through to achieve the minimizing sequence is shown
in Fig. 7, while the maximizing sequence is shown in Fig, 8.
These are obtained from Eq. (3) and the following four equa-
tions:

(1) u1 = 1, u2 = 1: ẋ1 = x1(1 − x1)(5 − 13x1);
(2) u1 = 1, u2 = −1: ẋ1 = x1(1 − x1)(−3 − 5x1);
(3) u1 = −1, u2 = 1: ẋ1 = x1(1 − x1)(5 − x1);
(4) u1 = −1, u2 = −1: ẋ1 = x1(1 − x1)(−3 + 7x1).
In Fig. 9 we show the minimizing values and maxi-

mizing values of x1(T ) vs x1(0) through the full range
0 � x1(0) � 1. Notice that at the endpoints, the two val-
ues converge (since for the linear system, the schedule does

FIG. 10. xmax
1 (solid blue) and xmin

1 (dashed red) as a function of
cycle time T . The dashed horizontal line at x1 = 1/3 is the ESS for
the uncontrolled Hawk-Dove system where the two curves meet as
T → 0.

not matter, only the total �CT ). Figure 9(b) shows the ratio
x1(T )/x1(0) − 1 (percentage increase or decrease) versus the
initial condition x1(0) through the full range 0 � x1(0) � 1.
When the maximizing (blue) curve crosses x1(T )/x1(0) −
1 = 0, [i.e., x1(0) = x1(T )] an absolute maximizer is achieved
[for x1(0) = x1(T ) = xmax

1 = 0.79], while when the minimiz-
ing (red) curve crosses x1(T )/x1(0) − 1 = 0, an absolute
minimizer is achieved [for x1(0) = x1(T ) = xmin

1 = 0.08]. In
Fig. 10 we show how xmax

1 and xmin
1 depend on the cycle time

T . Interestingly, as T → 0, xmax
1 , xmin

1 → (a12−a22 )
(a12+a21 )−(a11+a22 ) =

1/3 which is the ESS for the uncontrolled Hawk-Dove sys-
tem. For T � (a12+a21 )−(a11+a22 )

(a12−a22 ) = 3, xmax
1 → 1 and xmin

1 → 0
showing that for large enough cycle times we can drive either
of the subpopulations to extinction or to fixation.

IV. DISCUSSION

Our goal in this paper is to lay out a mathematical frame-
work for determining optimal dynamic incentive schedules
(time-dependent payoff schedules) that maximize/minimize
certain behaviors in an evolutionary game theory setting us-
ing the 2×2 replicator dynamical system with a Hawk-Dove
payoff matrix as our baseline. By changing the payoff en-
tries in a time-dependent manner, subject to constraints, we
are altering the payoff-reward structure of the Hawk-Dove
interaction as the populations evolve, which is equivalent to
selecting a sequence of 2×2 evolutionary games in such a way
that an optimum is achieved after a fixed passage of time. The
determination of these schedules requires a balance between
the timescale on which the payoffs change, and the timescale
of the underlying replicator dynamical system in such a way
that the Pontryagin maximum/minimum principle is satisfied.

As mentioned earlier, there are many settings in which
dynamic payoffs can be used to achieve a certain out-
come (developing chemotherapeutic schedules that manage
chemoresistance, antibiotic scheduling to avoid and even re-
verse antibiotic resistance in microbial populations, or the
introduction of economic incentive packages to guide behav-
ior). One of the more compelling potential applications of
the methods developed in this paper in the context of social
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dilemmas, is to frame people’s attitudes towards vaccination
acceptance as a social contract [42–44] and to devise dynamic
incentive methods to encourage vaccination acceptance as
well as to explore their theoretical limitations. Our method
uses the Pontryagin maximum/minimum principle along with
the 2×2 replicator dynamical system, with constraints, to
determine schedules over one cycle time T , then we extend the
results adaptively over multiple cycles nT . We show this leads
to the identification of an absolute maximizer and minimizer
(xmax

1 , xmin
1 ) for the aggressor population, both of which are

functions of the cycle time T . We believe the framework laid
out in the paper can be extended to N×N replicator systems,
as well as discrete (stochastic) models for the interaction of
a finite number of partcipants using a frequency-dependent
Moran process.
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