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We describe a Brownian ratchet scheme that we use to calculate relative equilibrium
configurations of N point vortices of mixed strength on the surface of a unit sphere. We
formulate it as a problem in linear algebra, AGZ0, where A is a N(NK1)/2!N non-
normal configuration matrix obtained by requiring that all inter-vortical distances on the
sphere remain constant and G2R

N is the (unit) vector of vortex strengths that must lie
in the null space of A. Existence of an equilibrium is expressed by the condition
det(ATA)Z0, while uniqueness follows if Rank(A)ZNK1. The singular value
decomposition of A is used to calculate an optimal basis set for the null space, yielding
all values of the vortex strengths for which the configuration is an equilibrium and
allowing us to decompose the equilibrium configuration into basis components. To home
in on an equilibrium, we allow the point vortices to undergo a random walk on the sphere
and, after each step, we compute the smallest singular value of the configuration matrix,
keeping the new arrangement only if it decreases. When the smallest singular value drops
below a predetermined convergence threshold, the existence criterion is satisfied and an
equilibrium configuration is achieved. We then find a basis set for the null space of A, and
hence the vortex strengths, by calculating the right singular vectors corresponding to the
singular values that are zero. We show a gallery of examples of equilibria with one-
dimensional null spaces obtained by this method. Then, using an unbiased ensemble of 1000
relative equilibria for each value NZ4/10, we discuss some general features of the
statistically averaged quantities, such as the Shannon entropy (using all of the normalized
singular values) and Frobenius norm, centre-of-vorticity vector and Hamiltonian energy.

Keywords: singular value decomposition; Brownian ratchets;
point vortices on a sphere; Shannon entropy; Thomson’s problem
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1. Introduction

We introduce a ‘Brownian ratchet’ scheme to obtain relative equilibrium
configurations of N-point vortices on the surface of a sphere. Using the criterion
that all inter-vortical distances remain constant, we find relative equilibria as
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fixed points of the evolution equation of the inter-vortical distances. Since these
equations are linear in the vortex strength vector G2R

N, we formulate the problem
as one in linear algebra, namely AGZ0, where A2R

M!N is a non-normal

configuration matrix with MZ N

2

� �
rows. Thus, we seek arrangements of particles

on the sphere for which det(ATA)Z0, or equivalently, for which A has a non-trivial
null space. When this condition is satisfied, we obtain the vortex strength vector G
a posteriori by finding a basis set for the null space of A.

The method used to produce an equilibrium is based on using the k smallest
singular values of the configuration matrix as a ‘ratchet’, which we drive to zero
by a random walk algorithm on the sphere. The number of singular values that
are zero corresponds to the dimension of the null space (which we call the degree
of heterogeneity of the configuration) and thus the number of basis vectors
needed to span the subspace of RN in which the vortex strength vector lies. The
decomposition method based on the null space of the configuration matrix was
introduced in Jamaloodeen & Newton (2006) and used to determine all vortex
strengths for which the Platonic solid configurations with a point vortex at each
vertex form an equilibrium. Subsequently, the Brownian ratchet scheme coupled
with the use of the singular value decomposition of the configuration matrix was
developed by Newton & Chamoun (2007) and used to study equilibrium
configurations in the planar N-vortex problem. The singular value decomposition
gives rise to the ‘optimal’ basis set in which to represent the vortex strength
vector and also produces a characteristic ‘distribution’ of singular values that
allows us to calculate other important quantities, such as the Shannon entropy,
a quantity borrowed from the field of communication theory (Shannon 1948),
and the size of the configuration, based on the Frobenius norm. The equilibria
described in this paper all have configuration matrices with one-dimensional null
spaces and hence a unique vector of vortex strengths and, typically, they have no
discernible symmetries. Previous results on relative equilibria of point vortices on
the sphere, such as those of Kidambi & Newton (1998), Lim et al. (2001),
Laurent-Polz (2002), Cabral et al. (2003) or Newton & Shokraneh (2006), are
much more restrictive. Typically, they assume the vortex strengths to be equal
(hence without loss of generality unity), or occur in equal and opposite pairs in
the case where N is even. This is also true of studies of equilibrium distributions
of particles on a sphere with more general interaction laws, such as those of
Erber & Hockney (1991), Edmundson (1992), Glasser & Every (1992), Bergersen
et al. (1994), Altschuler et al. (1997), Saff & Kuijlaars (1997) and Altschuler &
Perez-Garrido (2005, 2006). By allowing the vortex strengths to take on any
value, we show that the set of relative equilibrium configurations is far richer
than previously realized. Despite this fact, we also show that, surprisingly, many
of the key statistical quantities associated with ensembles of these equilibria
remain well behaved. For general background on the N-vortex problem, see
Newton (2001).

Our paper is organized as follows. In §2, we describe the basic tool we use to
construct relative equilibria on the sphere, namely the singular value
decomposition of the configuration matrix associated with each equilibrium.
The distribution of these singular values (properly normalized) gives rise to a
scalar quantity that characterizes the equilibria—the Shannon entropy of the
configuration matrix. In §3 ,we describe the Brownian ratchet algorithm that we
Proc. R. Soc. A (2009)
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use to calculate the collection of equilibria for each N. In particular, we describe
our random walk algorithm on the sphere and how it is used to home in on
configurations of particles that produce a configuration matrix with a non-trivial
null space. We show examples of typical relative equilibria for NZ4, 6, 8, 10. We
also detail the convergence properties of the Brownian ratchet scheme. In §4, we
discuss several statistical properties of the unbiased ensembles, including the
statistically averaged Shannon entropy, Frobenius norm, Hamiltonian energy
and centre of vorticity. Section 5 contains a discussion of our key findings.
2. Decomposing the pattern

The evolution equations for N-point vortices moving on the surface of the unit
sphere, written in Cartesian coordinates, are given by

_xa Z
1

4p

XN
bZ1

0Gb

xb!xa

ð1Kxa$xbÞ
; aZ 1;.;N ; xa 2R

3; kxakZ 1: ð2:1Þ

The vector xa denotes the position of the ath vortex whose strength is given by
Ga2R. The prime on the summation indicates that the singular term bZa is
omitted and, initially, the vortices are located at the given positions xa(0)2R

3,
aZ1,., N . The denominator in (2.1) is the inter-vortical distance, lab, between
vortex Ga and Gb since l

2
ab hkxaKxbk2Z2ð1Kxa$xbÞ. As described in Newton &

Shokraneh (2006), equation (2.1) has two conserved quantities associated with it,
the Hamiltonian energy

H ZK
1

4p

XN
a!b

GaGb logkxaKxbk ð2:2Þ

and the centre-of-vorticity vector

J Z
XN
aZ1

Gaxa Z
XN
aZ1

Gaxa;
XN
aZ1

Gaya;
XN
aZ1

Gaza

 !
Z ðJx ; Jy; JzÞ: ð2:3Þ

The evolution equations for the relative distances are

p
dðl 2abÞ
dt

Z
XN
gZ1

00Gg

xb$xg!xa

l 2bg
K

xb$xg!xa

l 2ag

" #
Z
XN
gZ1

00GgVabgdabg; ð2:4Þ

where dabg h
�
ð1=l 2bgÞKð1=l 2agÞ

�
. Here, the 00 means the summation excludes gZa

and gZb. Vabg is the volume of the parallelepiped formed by the vectors xa, xb
and xg,

Vabg Zxa$ðxb!xgÞhxb$ðxg!xaÞhxg$ðxa!xbÞ:
Notice that the sign of Vabg can be positive or negative, depending on whether
the vectors form a right- or left-handed coordinate system. The relative
equations of motion yield sufficient conditions for relative equilibria,

dl 2ab
dt

Z 0; ca; bZ 1;.;N ; asb: ð2:5Þ
Proc. R. Soc. A (2009)
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(a ) The configuration matrix approach

Using condition (2.5) in (2.4) gives the equation for the relative equilibria

XN
gZ1

00GgVabgdabg Z 0; ð2:6Þ

for each value of a, bZ1,., N. Based on the fact that (2.6) is linear in the
vortex strengths, we write it as a linear matrix system

AGZ 0; ð2:7Þ

where GZðG1;G2;.;GN ÞT 2R
N is the vector of vortex strengths and A is the

M!N configuration matrix (MZN(NK1)/2) whose entries, given by the terms
Vabgdabg, encode the geometry of the configuration. Without loss of generality,
we normalize the vector of vortex strengths to have unit length, hence

XN
aZ1

G2
a Z 1: ð2:8Þ

Thus, we seek configurations so that

detðATAÞZ 0; ð2:9Þ

in which case A is rank deficient, and has a non-trivial null space. We seek a basis
set for this subspace of RN. In all the cases considered in this paper, Rank(A)Z
NK1, hence the vortex strength vector is unique up to the G sign.
(b ) Singular value decomposition

The optimal basis set for the null space of A is obtained by using the singular
value decomposition of the matrix (see Trefethen & Bau 1997). We obtain the N
singular values si and corresponding left and right singular vectors ui 2R

M ,
vi 2R

N by solving the coupled linear system

Avi Zsiui and ATui Z sivi; ð2:10Þ

where smaxhs1Rs2R/RsminhsNR0. The vector ui is called the left-
singular vector associated with si , while vi is the right-singular vector. In terms
of these, the matrix A has the factorization

AZUSVT: ð2:11Þ

Since MON, the first N columns of U are the left-singular vectors ui , and the
remaining MKN columns are chosen to be orthonormal so that U is orthogonal
(UTUZI ). Then, U is an M!M orthogonal matrix, V is an N!N orthogonal
matrix whose columns are the right-singular vectors vi and S is an M!N matrix
with the N singular values on the diagonal and zeros off the diagonal,
Proc. R. Soc. A (2009)
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SZ

sð1Þ / 0

1

0 / sðNÞ

0 / 0

« «

0 / 0

0
BBBBBBBBBB@

1
CCCCCCCCCCA
: ð2:12Þ

Equivalently, multiplying the first equation in (2.10) by AT, the second by A and
uncoupling the two, we obtain

ATAvi Z ðsiÞ2vi and AATui Z ðsiÞ2ui; ð2:13Þ

which express the fact that the singular values squared are the eigenvalues of
the square covariance matrices ATA and AAT. We write these eigenvalues as
lih(si)

2. The decomposition (2.11) expresses A as a linear superposition of the
rank-one matrices uiv

T
i , iZ1,., N , with weighting determined by the singular

values si. Its optimality is seen by the fact that the mth partial sum, defined as

Am Z
Xm
iZ1

siuiv
T
i ; m%N ; ð2:14Þ

provides the best rank-m approximation to A, as measured by the Frobenius
norm. In other words, any rank-m matrix BsAm has the property that
kAKBkFRkAKAmkF, where k$kF denotes the Frobenius norm defined as

kAkFZ
PN

iZ1 si.
(c ) Shannon entropy

To understand how the rank-one modes are distributed, it is useful to normalize
each of the eigenvalues of the covariance matrices so that they lie in the range from
zero to one and can be interpreted either as probabilities, or as the percentage of
energy contained in each mode. The normalized eigenvalues are given by

l̂i Z li=
Xk
iZ1

li; ð2:15Þ

where k is the number of non-zero singular values, hence the rank of A. The
sequence of numbers ðl̂1; l̂2;.; l̂kÞ forms a discrete stochastic sequence that
uniquely characterizes each relative equilibrium. As discussed in Shannon (1948)
in the context of communication theory, the entropy, S, is obtained from the
sequence via the definition

S ZK
Xk
iZ1

l̂i log l̂i: ð2:16Þ

Equation (2.16) provides a convenient scalar measure of how the rank-one
matrices in (2.11) are distributed in forming the configuration matrix, and thus
can be thought of as a measure of ‘disorder’ of the pattern. In particular, if all of
Proc. R. Soc. A (2009)
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the weighting is in one mode, then A has rank one and the Shannon entropy is
minimized—its value is zero. The configuration matrix in this case can be
viewed as the ‘least disordered’ in terms of how its rank-one modes are
distributed. On the other hand, if each mode has equal weighting, the entropy is
maximum—its value is ln(k). In this case, the configuration matrix is the ‘least
ordered’ in terms of how the rank-one modes are distributed. In addition, this
measure of maximum entropy increases monotonically with k. Interpreted
slightly differently, the Shannon entropy of the configuration can be thought of
as a measure of how close the configuration matrix is to one of low rank. The
lower the entropy, the closer the matrix is to a rank-one matrix, whereas
the higher the entropy, the closer it is to one of full rank. We mention also
that low entropy distributions are less ‘robust’ to perturbations than high
entropy ones. As discussed in Newton & Chamoun (in press), generic pertur-
bations to a given configuration will tend to increase the entropy of a base
configuration, i.e. spread out the distribution among the modes.1 If the
distribution is already spread out in the base state (i.e. a high entropy base
state), the perturbation has a smaller effect than if the modes are clustered
among only a small number. See Newton & Chamoun (in press) for more
comprehensive discussions of these ideas.
3. The Brownian ratchet idea

Our method of obtaining relative equilibria is based on a Brownian ratchet
scheme that we implement by a diffusion process in the plane, which we then
map to the unit sphere. The terminology we use is borrowed from the
biological literature in which molecular motors are known to extract energy
from their surrounding ‘heat bath’ and rectify it via a ratchet mechanism. See
Riemann (2002) for a comprehensive recent review. For us, the heat bath is
provided by a random walk algorithm on the sphere, while the ratchet that
rectifies this motion is the smallest singular value of the configuration matrix
that we drive to zero. The random walk problem on the sphere is interesting in
its own right, and has been studied in the past by Brillinger (1997), who
considered the motion of a particle on the unit sphere heading towards a
specific destination but subject to random deviations, which he modelled as a
diffusion process with drift. His motivation was to model the trajectories of
certain marine mammals, and in so doing he obtained quantitative formulae
for expected travel times to a spherical cap, as well as forms for limiting
distributions. Indeed, before this work, Kendall (1974) was interested in
modelling the navigation of birds and used a pole-seeking Brownian motion
model to partially explain their behaviour. An early and quite general work on
random walk models on the sphere and on more general Riemannian manifolds
is that of Roberts & Ursell (1960).
1 An alternative way of conveying this same idea is contained in Shannon’s original 1948
publication. He proves that any averaging operation on l̂i of the form hl̂iiZ

P
jaij l̂j , whereP

iaijZ
P

jaijZ1, with all aijR0, will increase S. Other properties of this logarithmic quantity are
also discussed in Shannon’s paper.

Proc. R. Soc. A (2009)
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(a) (b) (c)

Figure 1. Schematic depicting one random step based on an arbitrary ‘seed’ particle at (q0, f0) on the
unit sphere. See text for details. (a) Step 1: a particle, initially at the origin in the plane, is diffused to a
random location (r, 4) via a Gaussian process; (b) step 2: the point is then mapped to (qe, fe) on the
unit sphere, with the origin of the plane corresponding to the North Pole; and (c) step 3: the North Pole
is rotated so that it is centred at the arbitrary seed location (q0, f0), giving rise to the diffused point
(q1, f1) based on that seed. The process is then repeated using (q1, f1) as the new seed.
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(a ) Random walk on a sphere

The random walk algorithm on the sphere is the engine that drives our ratchet
scheme, so we describe it first. As shown schematically in figure 1, we start with
an initial ‘seed’ point (q0, f0) on the sphere. From this point, the random walk is
computed in three simple steps:

(i) First, we obtain a sample point in the plane from the two-dimensional
Gaussian distribution, for which we compute the polar coordinate
representation (r, 4).

(ii) Next, with a scale factor e (typically taken as eZ0.01), we rescale the
point as (er, 4) and then map it to a corresponding point on the surface of
the unit sphere centred around the North Pole so that the point is
represented by (qe, fe)Z(er, 4) in spherical coordinates.

(iii) Finally, we rotate the point so that the North Pole maps to the original
point (q0, f0), while (qe, fe) maps to the new ‘diffused’ point (q1, f1).

The process is then iterated to obtain each subsequent point (qnC1, fnC1),
starting with (qn, fn) as a seed. Here, the procedure is implemented for a
collection of particles initially clustered around the North Pole (those marked as
circles), and South Pole (those marked as pluses), as shown in figure 2. As the
particles evolve, they gradually diffuse over the surface of the sphere, eventually
giving equal probability of finding a circle particle or a plus particle in any fixed
two-dimensional spherical sector.
(b ) The ratchet scheme in practice

For each N, we seek configurations of particles on the unit sphere for which
(2.9) is satisfied, hence Rank(A)!N. We find these configurations with the
following ratchet algorithm.
Proc. R. Soc. A (2009)



(a)

(b)

(c)

(d )

(e)

( f )

(g)

(h)

(i )

( j )

Figure 2. (a–j ) Panel depicting the random walk of collections of particles on the sphere initially
clustered in spherical caps around the two poles. Circles are clustered at the North Pole, while
pluses are clustered at the South Pole. After many sufficient steps, the particles distribute
themselves about the surface of the sphere in such a way that there no longer appears to be any
preference for either type of particle to be in either hemisphere. Shown are (non-dimensional) times
TZ0K20 000.
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(i) First, we distribute N points randomly on the surface of the unit sphere
and calculate the configuration matrix A, finding its smallest singular
value smin.

(ii) We then allow each particle to execute one random step on the sphere in
order to produce a new configuration matrix ~A, along with its smallest
singular value ~smin.
Proc. R. Soc. A (2009)
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Figure 3. (a) Convergence of the smallest singular value squared (log plot) as a function of the
random walk step for NZ6, 8, 10. (b) Convergence of one of the point vortices making up the
relative equilibrium configuration to its final position (marked as a plus) on the sphere.
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(iii) If ~smin%smin, we keep the new configuration, otherwise we discard it.
(iv) The process is repeated until ~smin drops below a certain pre-determined

threshold, which we typically choose to be O(10K10). This ‘converged’
configuration is what we call a relative equilibrium.

(v) We then compute a basis set for the null space in order to find the
corresponding vortex strengths.

Typical convergence plots are shown in figure 3. Figure 3a shows the decay of the
smallest singular value (squared) as a function of the step number for NZ6, 8,
10, plotted on a log–log scale. In most cases, convergence is rapid. Figure 3b
shows the actual path of one of the point vortices making up the configuration
from its initial point to its final (converged) point (marked by a plus) on the
sphere. Note that the vortex meanders initially before it homes in rather directly
to its final location, which need not be nearby the initial location. As a general
remark, we note that the singular values of a matrix are relatively insensitive to
perturbations of the matrix (see Trefethen & Bau 1997); hence, we expect that
the converged positions of the vortices are not far from the exact equilibrium
positions when the smallest singular value is below O(10K10).
(c ) Gallery of relative equilibria for NZ4, 6, 8, 10

Typical examples of relative equilibria found this way are shown in the panels
of figure 4 for NZ4, figure 5 for NZ6, figure 6 for NZ8 and figure 7 for NZ10. In
each figure, we present a panel of six distinct relative equilibrium configurations
showing both the vortex positions in the Northern and Southern hemispheres. In
each case, the intersection of the centre-of-vorticity vector J (as defined in (2.3))
with the unit sphere marked by an ‘!’. All of the cases treated in this paper have
one-dimensional null spaces; hence, unique vortex strength vectors that we
normalize to unity. Note that all of the configurations are manifestly asymmetric,
a topic discussed in Newton & Chamoun (in press). Examples of asymmetric
equilibria are indeed rare, the first discussion of this can be found in Aref &
Vainchtein (1998).
Proc. R. Soc. A (2009)



(a) (d )

(b) (e)

(c) ( f )

Figure 4. NZ4: (a–f ) Panel of six different converged equilibrium configurations each with one-
dimensional null spaces. Shown are the Northern and Southern hemisphere projections, with ‘!’
marking the intersection of J with the unit sphere. Different symbols and shadings indicate vortices
of different strength.

(a) (d )

(b) (e)

(c) ( f )

Figure 5. Same as figure 4, with NZ6.
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(a) (d )

(b) (e)

(c) ( f )

Figure 6. Same as figure 4, with NZ8.

(a) (d )

(b) (e)

(c) ( f )

Figure 7. Same as figure 4, with NZ10.
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In figure 8, we show histograms (for large collections of equilibria as discussed
in §4) of the length of the J vector for the cases NZ4, 6, 8, 10. In all cases, the
peak is near the unit value, indicating that most of the states making up the
ensemble can be described as not too different from a single dominant vortex of
near unit strength resting near the tip of the centre-of-vorticity vector, with the
Proc. R. Soc. A (2009)
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Figure 8. Histograms of the length of the centre-of-vorticity vector kJ k. In each case, the peak
clusters around the unit value that would be its value if there was a single point vortex of unit
strength. (a) NZ4; (b) NZ6; (c) NZ8; and (d ) NZ10.
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remaining NK1 weaker vortices distributed asymmetrically around the surface
of the sphere. In all cases, the N vortices have mixed signs and the spread around
the most likely state tightens as N increases, indicating that the limiting
configuration (constrained to have RankZNK1) is a single vortex of unit
strength resting at the tip of the centre-of-vorticity vector.

Likewise, histograms of the Hamiltonian energy (2.2) are shown in figure 9,
and, in each case, the peak value is zero with a spread that tightens with
increasing N. This limiting configuration suggests a relatively uniform
distribution of points around the sphere with vortex strengths of mixed sign.
4. Statistical properties

In contrast to classes of equilibria obtained by other methods (see Aref et al.
(2003) for a comprehensive overview), the approach described in this paper is
capable of generating large unbiased ensembles of equilibria. This is both due to
the random initial conditions used to start each Brownian based search and
to the random search algorithm that is capable of finding all relative equilibria,
not just those with prescribed symmetries or specific vortex strengths. Thus,
it makes sense to use these ensembles to produce statistically averaged
quantities that characterize the equilibria. We discuss some of these properties
in this section.
Proc. R. Soc. A (2009)
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Figure 9. Histograms of the Hamiltonian energy H. In each case, the peak clusters around zero,
indicating a relatively even distribution of points around the sphere with vortex strengths of mixed
sign. (a) NZ4; (b) NZ6; (c) NZ8; and (d ) NZ10.
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(a ) Ensemble averages

For each value of NZ4/10, we generate an ensemble of equilibrium
configuration matrices, denoting each member of the ensemble A( j ), with
corresponding right null vector G( j ). The initial sample size for each case is
nominally MZ1000, which we double to MZ2000 by including both GG( j ). The

singular values for the j th realization are denoted by s
ðj Þ
maxhs

ðj Þ
1 Rs

ðj Þ
2 R/R

s
ðj Þ
minhs

ðj Þ
N R0 and their corresponding left and right singular vectors are denoted

by u
ðj Þ
i and v

ðj Þ
i , iZ1;.;N , respectively. We define the ensemble average of the

collection of configuration matrices

hAiM Z
1

M

XM
jZ1

Aðj Þ and hAiNZ lim
M/N

hAiM ; ð4:1Þ

as well as the ensemble averages of the singular components

hsiiM Z
1

M

XM
jZ1

s
ðj Þ
i and hsiiNZ lim

M/N
hsiiM ; ð4:2Þ

hliiM Z
1

M

XM
jZ1

l
ðj Þ
i and hliiNZ lim

M/N
hliiM : ð4:3Þ
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Table 1. Maximum value, minimum value, sample mean and standard deviation for NZ10
ensemble-averaged singular values (normalized), based on a sample size of MZ1000.

singular values maxj ŝ
ðj Þ
i minj ŝ

ðj Þ
i hŝiiM hhŝiiiM

ŝ1 4.95!10K1 1.72!10K1 2.74!10K1 5.76!10K2

ŝ2 4.95!10K1 1.51!10K1 2.56!10K1 6.20!10K2

ŝ3 2.60!10K1 2.21!10K3 1.38!10K1 3.64!10K2

ŝ4 2.15!10K1 2.11!10K3 1.12!10K1 3.26!10K2

ŝ5 1.38!10K1 1.98!10K3 7.84!10K2 2.48!10K2

ŝ6 1.14!10K1 1.53!10K3 5.78!10K2 1.99!10K2

ŝ7 8.74!10K2 9.52!10K4 4.06!10K2 1.58!10K2

ŝ8 7.60!10K2 8.96!10K4 2.62!10K2 1.21!10K2

ŝ9 4.65!10K2 2.31!10K4 1.39!10K2 8.21!10K3

ŝ10 1.10!10K11 1.19!10K13 5.09!10K12 2.03!10K12
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The standard deviation of each quantity is denoted with double brackets hh$ii.
We denote the averaged normalized values

hŝiiM Z
1

M

XM
jZ1

ŝ
ðj Þ
i and hŝiiNZ lim

M/N
hŝiiM ; ð4:4Þ

hl̂iiM Z
1

M

XM
jZ1

l̂
ðj Þ
i and hl̂iiNZ lim

M/N
hl̂iiM ; ð4:5Þ

with standard deviations hh$̂ii. We then define the Shannon entropy of the j th
member of the ensemble to be

Sðj Þ ZK
Xk
iZ1

l̂
ðj Þ
i log l̂

ðj Þ
i ; ð4:6Þ

with ensemble average

hS iM Z
1

M

XM
jZ1

Sðj Þ; hS iNZ lim
M/N

hS iM ð4:7Þ

and standard deviation hhS ii.
(b ) Statistical properties

Here, we summarize the main results based on an analysis of the ensemble
averages for the cases NZ4, 5, 6, 7, 8, 9, 10. Table 1 shows the ensemble-averaged
properties of the normalized singular values, listed in decreasing order, for the case
NZ10. For each of the 10 singular values, we show the maximum value in the

ensemble ðmaxj ŝ
ðj Þ
i Þ, the minimum value ðminj ŝ

ðj Þ
i Þ, the sample mean ðhŝiiM Þ and

the sample standard deviation ðhhŝiiiM Þ forMZ1000. The smallest sample average
is hŝ10i1000Z5:09!10K12 with a gap of 10 orders of magnitude between it and the
next smallest value hŝ9i1000Z1:39!10K2. The size of the smallest singular value,
the gap between it and the next smallest and the steady decrease of the convergence
curve shown in figure 3a give us confidence that we are in close proximity to an
equilibrium configuration. Figure 10 shows the distribution of the normalized
Proc. R. Soc. A (2009)
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Figure 10. (a–d ) Distribution of ensemble-averaged normalized singular values, with error bars at
one standard deviation about the mean. Note that there appears to be little difference between the
distributions shown for NZ8 and 10.
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singular values for NZ4, 6, 8, 10. A noteworthy feature is that the shape of the
distribution for the final two cases NZ8 and 10 is quite similar, indicating
convergence to a fixed distribution as a function of N.

In table 2, we show the statistical properties of the averaged Shannon entropy
and Frobenius norms for NZ4, 5, 6, 7, 8, 9, 10. These quantities, shown as a
function of the sample size M, are depicted in figures 11 and 13. It is interesting
to note from figure 11 that the spacing of the converged values is quite regular,
indicating an underlying scaling law. Indeed, in figure 12 we show the ensemble-
averaged Shannon entropy values, shown in table 2, plotted as a function of N on
a log–log scale. The data show power-law scaling of the form hS iwaNb, with
aw0.305683 and bw0.671424, as obtained via a least-squares fit to the data. In
figure 14, we show histograms of the total vortex strength of each equilibrium.
We note the tendency for

PN
iZ1 Gi to cluster at the extreme values G1 in

agreement with the observation that the histograms of kJ k in figure 8 cluster
around 1. The ‘pure translation’ case

PN
iZ1 GiZ0 appears to be quite rare,

although there are examples of pure translational equilibria in the samples.
5. Discussion

The Brownian search scheme described in this paper, based on a linear algebra
formulation of the problem (in contrast to the classical variational approach
used, for example, in Campbell & Ziff (1979)), offers an unbiased approach for
finding all of the relative equilibrium configurations of point vortices on the
Proc. R. Soc. A (2009)
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Figure 11. Ensemble-averaged entropy levels for NZ4K10, compared with the maximum
entropy ln(N ).

Table 2. Ensemble-averaged Shannon entropy and Frobenius norms with standard deviations for
NZ4–10. (Each ensemble consists of 1000 equilibrium configurations.)

N hSi hhS ii hk$ki hhk$kii

4 7.74!10K1 9.71!10K2 2.75 5.32
5 8.88!10K1 1.64!10K1 4.78 13.2
6 1.02 2.07!10K1 7.96 12.5
7 1.14 2.30!10K1 10.4 10.9
8 1.23 2.51!10K1 16.3 21.1
9 1.35 2.51!10K1 18.9 14.6
10 14.2 2.75!10K1 27.5 42.7
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sphere, regardless of their stability properties or symmetries. For the range of
values of N used in this paper, the convergence properties of the algorithm were
adequate—for larger values of N, we expect convergence to be more sluggish. The
richness of the class of relative equilibria allowed us to use them as microstates
from which to extract information on the macroscopic level via ensemble
averages. There are two main findings:

(i) The length of the centre-of-vorticity vector, kJ k, clusters near 1, as shown
in the histograms of figure 8, while the total vorticity associated with each

member of the ensemble, as expressed by
PN

iZ1 G
ðj Þ
i , tends to cluster at the

extreme values of G1, as shown in the histograms in figure 14.
Proc. R. Soc. A (2009)
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Figure 12. Ensemble-averaged Shannon entropy values shown in table 2, plotted as a function of N
on a log–log scale. The data show power-law scaling of the form hS iwaNb, with aw0.305683 and
bw0.671424, as obtained via a least-squares fit to the data. Pluses, entropy NZ4–10; dashed line,
0.305683N 0.671424.
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Figure 13. Ensemble-averaged Frobenius norms for NZ4K10. Pluses, NZ4; crosses, NZ5; eight-
point stars,NZ6; open squares,NZ7; filled squares,NZ8; open circles,NZ9; and filled circles,NZ10.
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(ii) The averaged Shannon entropy scales very nearly as hS izaNb, with bw2/3.
This quantity reflects the averaged distribution of the normalized singular
values shown in figure 10 as a function of N and provides a scalar measure of
the relative weighting of the rank-one components, uiv

T
i , constituting

the equilibrium ‘pattern’, as encoded in the configuration matrix and
expressed in (2.11).
Proc. R. Soc. A (2009)
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Figure 14. Histograms showing the total vortex strength of the ensemble. Note the symmetry
around

PN
iZ1 GiZ0 due to doubling the sample size by including both GG( j ). (a) NZ4; (b) NZ6;

(c) NZ8; and (d ) NZ10. Note the tendency for
PN

iZ1 Gi to cluster at the extreme values G1. The
‘pure translation’ case

PN
iZ1 GiZ0 appears to be quite rare.
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The first conclusion provides evidence that the macroscopic average vorticity
can be thought of as one single vortex of unit strength, with either clockwise or
anticlockwise circulation, discretized, in a sense, by the point vortices in their
relative equilibrium configuration. Since this macroscopic state is in agreement
with statistical results reported by mean-field theory using collections of equal
strength vortices moving dynamically on the sphere or via Monte Carlo simulations
(see the recent monograph of Lim & Nebus (2006)), it suggests that using the full
family of relative equilibria (presumably most of them unstable) offers a useful and
rich enough set of microscopic building blocks from which to extract meaningful
macroscopic information. The second conclusion, we believe, is unexpected as there
is no a priori reason for the averaged quantities to follow any clean scaling law.
Indeed, as shown in figure 13, the ensemble-averaged Frobenius norms do not
exhibit clear scaling features. As a final remark, we point out that the methods and
conclusions reached in this paper are also relevant in treating the classical problem
of optimally distributing N-charged electrons on the surface of a conducting sphere,
an unsolved problem with a long history (e.g. Erber & Hockney 1991; Edmundson
1992; Glasser & Every 1992; Bergersen et al. 1994; Altschuler et al. 1997; Saff &
Kuijlaars 1997; Altschuler & Perez-Garrido 2005, 2006), and listed by Smale (2000)
as one of the outstanding mathematical problems for the next century.
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