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Abstract
Purpose  Brain metastases (BM) remain a significant cause of morbidity and mortality in breast cancer (BC) patients. Specific 
factors promoting the process of BM and predilection for selected neuro-anatomical regions remain unknown, yet may have 
major implications for prevention or treatment. Anatomical spatial distributions of BM from BC suggest a predominance of 
metastases in the hindbrain and cerebellum. Systematic approaches to quantifying BM location or location-based analyses 
based on molecular subtypes, however, remain largely unavailable.
Methods  We analyzed stereotactic Cartesian coordinates derived from 134 patients undergoing gamma- knife radiosurgery 
(GKRS) for treatment of 407 breast cancer BMs to quantitatively study BM spatial distribution along principal component 
axes and by intrinsic molecular subtype (ER, PR, Herceptin). We used kernel density estimators (KDE) to highlight clustering 
and distribution regions in the brain, and we used the metric of mutual information (MI) to tease out subtle differences in the 
BM distributions associated with different molecular subtypes of BC. BM location maps according to vascular and anatomical 
distributions using Cartesian coordinates to aid in systematic classification of tumor locations were additionally developed.
Results  We corroborated that BC BMs show a consistent propensity to arise posteriorly and caudally, and that Her2+ tumors 
are relatively more likely to arise medially rather than laterally. To compare the distributions among varying BC molecular 
subtypes, the mutual information metric reveal that the ER−PR−Her2+ and ER−PR−Her2− subtypes show the smallest 
amount of mutual information and are most molecularly distinct. The kernel density contour plots show a propensity for 
triple negative BC to arise in more superiorly or cranially situated BMs.
Conclusions  We present a novel and shareable workflow for characterizing and comparing spatial distributions of BM 
which may aid in identifying therapeutic or diagnostic targets and interactions with the tumor microenvironment. Further 
characterization of these patterns with larger multi-institutional data-sets may have major impacts on treatment or manage-
ment of cancer patients.
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Introduction

In patients with breast cancer (BC), brain metastases 
(BM) are a significant source of morbidity and mortality, 
and average interval between diagnosis of BM and death 
remains under 2 years [1]. Despite significant advances in 
systemic treatment of primary breast cancer, treatment for 
BM remains mostly confined to surgical resection, stereotac-
tic radiosurgery, and less commonly whole brain radiation 
therapy. BM from BC have been reported to show prefer-
ential spatial metastatic patterns within the brain, with a 
predominance of lesions arising in the posterior circulation 
and cerebellum [2–4]. While the spatial distributions for BM 
have been described in a qualitative (regional) fashion (e.g. 
located in cerebellum), there have been minimal efforts to 
systematically and quantitively analyze spatial distributions 
of BM. In addition, the influence of molecular subtype in 
topographic BM distribution remains largely unknown.

There is relevant clinical and potential therapeutic moti-
vation for understanding the spatial distribution of BM, 
specifically according to cancer origin and molecular sub-
type. There has been growing interest in the relationship 
between the tumor microenvironment (TME), surrounding 
both tumor and normal brain parenchyma, and the devel-
opment of BM, which is referred to as the ‘seed-and-soil’ 
hypothesis [5–7]. Recent studies have characterized a need 
for priming a metastatic niche prior to BM colonization 
and tumorigenesis [8–10]. A more thorough understand-
ing of the patterns of spatial distribution of BM and the 
influence of TME on tumorigenesis may provide potential 
targets for diagnosis or treatment of BM.

Gamma Knife Radiosurgery (GKRS) is a highly tar-
geted form of stereotactic radiosurgery and is a first line 
therapy for many BM, particularly those in which surgical 
resection is unfavorable [11, 12]. The use of stereotac-
tic frames and precise, predetermined locations in three-
dimensional space allow for Cartesian coordinates of 
tumors to be recorded and studied (Fig. S1) using spatial 
modeling techniques. We describe a novel computational 
approach for characterizing and comparing the spatial dis-
tribution of BM arising from BC, using objective tumor 
location data from patients undergoing GKRS. Tumor 
locations were analyzed using kernel density plots and 
principal components analyses (data-based coordinates), 
and further characterized and compared according to BC 
molecular subtype. We compared two distributions using 
the metric of mutual information which is a (nonlinear) 
measure of the mutual dependence between two ran-
dom variables [13]. A standard interpretation of mutual 
information is that it quantifies the amount of informa-
tion obtained about one random variable by observing the 
other, thus low values indicate that the distributions are 

more distinct (independent) than distributions with higher 
values.

While this study introduces new tools for quantifying 
spatial distributions of BM using reasonably large com-
prehensive data sets collected over a twenty-year period, it 
also paves the way for further analyses (e.g. machine learn-
ing implementations) with larger, prospective multi-center 
studies across a variety of cancers and molecular subtypes 
to further elucidate natural distribution patterns of BM and 
their importance for improving cancer treatment.

Methods

Radiosurgery setup and patient selection

Gamma Knife radiosurgery (GKRS) is a commonly used 
frontline treatment modality in which a stereotactic frame 
(Leksell coordinate frame, see Fig. S1) is used in con-
junction with cobalt radiation sources to deliver precise 
doses of radiotherapy to highly accurate locations in three-
dimensional space corresponding to contoured BM on MRI 
(Fig. 1). Predetermined target coordinates are utilized (gen-
erated based on location of BM center and tumor volume as 
determined via MRI and via multidisciplinary consultation 
including neuro-radiology, radiation-oncology and neuro-
surgery), and patients are fixed to the stereotactic Leksell 
coordinate frame as depicted in Fig. S1. As a result, Car-
tesian coordinates (X,Y,Z) in 3D space of each BM central 
location are obtained and recorded.

All patients undergoing GKRS at The Keck Hospital of 
the University of Southern California (USC) between the 
years 1995–2015 for the treatment of BM were reviewed 
and analyzed following approval from the local USC IRB. 
Those with primary BC were identified, and retrospective 
chart review was conducted to determine molecular sub-
type (ER, PR and Her2/Neu). Samples were divided into 
six major subtypes based on HER2, ER and PR receptor 
status. Subtype information was available in 134 patients 
comprising a total 407 intracranial metastases. Clinical data 
gathered included: sex, age at diagnosis of primary cancer, 
age at diagnosis of BM, ER status, PR status and Her2/Neu 
status. To avoid potential confounders with prior radiation 
therapy, only patients with their first radiation treatment 
were included and those with prior radiation or radiosur-
gery were excluded. Multiple metastases from individual 
patients (at one treatment) were included. See data summary 
in Table S1.

GKRS planning and treatment were performed by a 
multidisciplinary team including a neurosurgeon, radiation 
oncologist, and medical physicist. Tumor locations were 
recorded as (X,Y,Z) values on a Cartesian plane, corre-
sponding to the Leksell coordinate frame axes and recorded 
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using GammaPlanTM software (Elekta corporation). In addi-
tion, specific clinical locations (e.g. Left frontal lobe) as well 
as tumor volume, number of treatments, vascular distribu-
tion, and radiation dose were recorded.

Principal component analysis (PCA) and mutual 
information (MI)

The principal component (PC) coordinates are a data-based 
orthogonal coordinate system designed to bring out the 
directions of maximal spread of the data and used in many 
settings in which patterns are sought from large data sets 
[14]. The PC coordinates are linear combinations of the 
three (X,Y,Z) physical coordinates, with mean at the origin, 
mutually orthogonal (so they span the same space as X-Y-Z), 
and such that PC1 lies in the direction of maximal spread, 
PC2 is orthogonal to PC1 and is in the next most likely 
direction of spread, while the PC3 direction is orthogonal 
to both, with the least direction of spread. Since the method 
of calculating the PC coordinates is standard, we refer the 
interested readers to Kirby for theoretical details. We use 
scikit-learn Python package [15] for our data analysis.

To compare two distributions associated with different 
molecular subtypes, we use the notion of mutual informa-
tion (MI) [13] (relative entropy) which quantifies nonlinear 
mutual dependence between two random variables. If the MI 
is zero between two random variables, they are deemed to 
be completely independent and unrelated, which implies that 
using observations drawn from one has no value in predict-
ing sequences generated by the other. The formula we use 
to estimate MI is [16]:

where pXY (xi, yi) is the estimated joint PDF (probability dis-
tribution function), and pX(xi) and pY (yi) are the estimated 
marginal PDF’s at (xi, yi) . The larger the MI value, the more 
the distributions are correlated, i.e. one distribution carries 
a high amount of information about the other. A very useful 
discussion and application of MI can be found in Ref. [17].

Kernel density estimators and bootstrap method

Kernel density estimators offer a useful visual tool to convert 
a discrete multivariate data set into smoothed, multivariate 

(1)MI(X;Y) =
1

n

n
∑

i=1

log

[

pXY (xi, yi)

pX(xi)pY (yi)

]

Fig. 1   Scatter and kernel density plots showing the spatial distribu-
tion of metastatic brain tumors for all breast cancer patients in sag-
ittal, axial, and coronal views. A Scatter plot, sagittal view, red dot 
indicates the mean; B Scatter plot, axial view, red dot indicates the 
mean; C Scatter plot, coronal view, red dot indicates the mean; D 

Kernel density plot, sagittal view. Color shading indicates density, 
closed dark regions indicate highest density of metastatic tumors. 
Distributions on top and right are probability distribution functions 
(pdf’s) describing the distribution of tumors. E Same as (D) axial 
view; F Same as (D), coronal view
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distributions to extract information and patterns associated 
with the probability distribution function associated with 
data [18]. Color gradient bars and contours are then used 
to identify ‘hot spot’ regions of highest density (probabil-
ity), and regions of lowest density (probability). When used 
in conjunction with more standard anatomical distribution 
approaches, we believe the kernel density and violin plot 
techniques add important quantitative value to more nuanced 
questions associated with regional BM clustering. In prin-
ciple, the computed MI does not depend on the size of the 
data sets being compared, although well known issues can 
arise from smaller data sets [16, 17]. For these reasons, to 
overcome the issue associated with small and unequal sizes 
of data sets for different molecular subtypes, we use a boot-
strap (resampling) method [19], starting from the smoothed 
multivariate distributions obtained for each subtype (from 
the original data sets) to generate sample data of 1000 points 
and then calculate the MI values (see Table S2) for those 
points between each pair of subtypes. We carry out this 
re-sampling step and MI calculation step 1000 times, and 
obtain sample means and standard deviations for the MI for 
each pair using the enlarged data sets generated from sam-
pling from the distributions generated from the original data 
sets. This method seems to yield reasonably robust results.

Anatomical distribution analysis

To contextualize distribution of metastases with respect 
to anatomic location (and to more intuitively portray the 
spatial distribution in a clinical context most relevant to 
neurosurgeons, neuro-oncologists and clinical researchers), 
individual points on the Cartesian plane were labeled based 
on their vascular circulation and their laterality. For the 
medial/lateral distribution of metastases, the X value of 100 
corresponded to the center of our Cartesian plane. Metas-
tases with an X value between 65 and 135 were labeled as 
“medial” and those with a X value less than 65 or greater 
than 135 were labeled as “Lateral” (Fig. 5). For the labeling 
of anterior/posterior, we grouped metastases in the frontal 
lobe and anterior temporal lobe as “anterior.” These metas-
tases likely had vascular supply from branches of the middle 
cerebral artery (MCA) or anterior cerebral artery (ACA). We 
grouped all metastases in the occipital lobe, cerebellum, and 
brainstem as “posterior.” These likely had vascular supply 
from the posterior circulation (fed via the posterior cerebral 
arteries).

Results

The data set is compiled in Table S1 which shows the num-
ber of BM for each of the molecular subgroups, as well 
as details associated with Figs. 1, 2, 3, 4, 5 and 6, S2–S4. 

Figure  1 shows the entire data set of brain metastases 
(Fig. 1A–C) for our cohort of breast cancer patients, in the 
sagittal, axial, and coronal planes. These same views are 
shown in Fig. 1D–F as kernel density plots depicting the 
density distributions associated with the data. The darkest 
enclosed regions of the kernel density plots nicely depict 
the highest density regions (‘hotspots’), which generally 
cluster towards the midline (coronal, axial view), poste-
riorly and caudally (sagittal). Figure S2 shows the same 
data broken down according to the molecular subtype 
(along each column): ER−PR−Her2+; ER+PR+Her2−; 
ER−PR−Her2−(TNBC); ER+PR+Her2+ (TPBC). The red 
dot marks the mean position. The corresponding kernel den-
sity plots for the molecular subgroups are shown in Fig. 2. 
The sagittal view across all subtypes (Fig. 2, Row 1) dem-
onstrates clear maximal clustering in the posterior, caudal 
region of brain; however TNBC appears to visually cluster 
superiorly/cranially compared to the other breast cancer sub-
types. We next focused on elucidating differences in topo-
graphic patterns associated with the molecular subgroups 
by using the principal component axis coordinates [14]. The 
principal component coordinates are a rotated orthogonal 
coordinate system centered at the mean of the data that are 
optimally designed to highlight the largest spread direc-
tion (PC1). In Fig. 3 we show the relationship between the 
principal component coordinates (PC1-PC2-PC3) and the 
physical cartesian coordinates (X-Y-Z). Figure 3A shows 
PC1-PC2-PC3 in the X-Y-Z space, while Fig 3B–D shows 
each of the two-dimensional projections. From Fig. 3B we 
can see that PC1 lies predominantly in the anterior-posterior 
(Y), although with other components as well (Fig. 3C, D). 
The precise linear relationship between the two coordinate 
systems is given by:

In Fig. S3 we compare the spatial distributions in the origi-
nal X-Y-Z coordinates and the principal component axes 
(PC1-PC2-PC3) from the full data set for the six molecu-
lar subtypes: Her2+, ER+, PR+, PR−, Her2−, ER− sep-
arately. In each plot, the yellow horizontal bar marks the 
mean, while the white dot marks the median. The colors 
mark the molecular subtype, as shown in Fig. S3A which 
most clearly shows the divergence along the PC1 axis 
which is the direction of maximal spread. To understand 
the advantages of using the principal component coordi-
nates over the cartesian coordinates, in Fig. S3A it is clear 
that the median lies below the mean (i.e. is shifted back 
with respect to the mean), with the three negative subtypes 
shifted further back than the three positive ones. Comparing 
this with Fig. S3E (spread along Y-axis), the pattern is not 

PC1 = −0.0486(1, 0, 0) + 0.7672(0, 1, 0) + 0.6396(0, 0, 1)

PC2 = −0.6140(1, 0, 0) − 0.5280(0, 1, 0) + 0.5867(0, 0, 1)

PC3 = −0.7878(1, 0, 0) + 0.3642(0, 1, 0) − 0.4968(0, 0, 1)
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nearly as clear. For each pair of violin plots (distributions), 
we calculate the mutual information score (MI) along with 
standard deviations using the bootstrap method described 
earlier. Lower MI score indicates less mutual dependence 
between the compared distributions, higher MI score indi-
cates more mutual dependence. Figure 4A–F shows the same 
as Fig. S3, but using the molecular subgroupings: TPBC; 
ER+PR+Her2−;ER−PR−Her2+; TNBC. The divergence 
between the mean and the median is largest in the triple 
negative grouping, shown most clearly in Fig. 4A along the 
PC1 axis. An ordered listing of all of the MI scores for each 

pair of molecular subtypes is shown in Table S2 and pre-
sented visually for the individual subtypes in Fig. S4 as a 
heat map. The ordering in Table S2 goes from smallest to 
largest along the PC1 axis (first column), with all other axes 
also shown. In Table S2 and Fig. 4A we draw attention to 
the fact that the pair with the smallest MI value (8.966 ± 
3.394) is between ER−PR−Her2+ and ER−PR−Her2−, i.e. 
those two groupings are the most molecularly distinct. The 
two groups with the largest MI value (14.808 ± 3.589) is 
between ER+PR+Her2+ and ER+PR+Her2−, i.e. those two 
groupings are the most molecularly similar (more important 

Fig. 2   Kernel density plots of metastatic tumor distributions accord-
ing to genetic subgroups, sagittal, axial, and coronal views. Color 
shading indicates density, closed dark regions indicate highest density 
of metastatic tumors. Distributions on top and right are probability 
distribution functions (pdf’s) describing the distribution of tumors. A 

Column showing ER−/PR−/Her2+ subgroup, three views; B Column 
showing ER+/PR+/Her2− subgroup, three views; C Column show-
ing TNBC subgroup, three views; D Column showing TPBC sub-
group, three views
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than the nominal values of these MI scores are the differ-
ences between them).

Figures 5 and 6 show the differences between anterior 
vs. posterior and lateral vs. medial lesions from the sagittal, 
axial, and coronal views (Fig. 5) and according to molecular 
subtype groupings. While Fig. 6A–D show the Count (num-
ber of metastatic lesions), Fig. 6E–H shows the proportion in 
each of the regions. It is clear that from Fig. 5, the majority 
of lesions are located in the posterior circulation or watershed 
areas, and BMBC are relatively rare in the anterior circulation. 
Figure 6G, H demonstrate the differences in medial vs lateral 
distribution of these tumors. It is clear from Fig. 6G that mid-
line tumors are most common across all molecular subtypes. 
In addition, it appears that Her2+ tumors have the highest 
proportion of medial metastases, and more rarely metastasize 
laterally. This is consistent (Fig. 6H) within the molecular sub-
groups as well, with ER+PR+Her2+ tumors having similar 

categorical distributions to ER−PR−Her2+ tumors but signifi-
cantly different than TNBC or ER+PR+Her2− tumors.

Discussion

Accurate quantitative characterization and analysis of 
BM distributions for primary breast cancer, broken down 
according to molecular subtypes, is an important step in 
the direction of highly personalized oncologic therapy 
and an understanding of the dynamics between BM sub-
types and the TME that promote or inhibit the formation 
of metastasis. To further classify the relationship between 
a tumor and the microenvironment in which growth is 
facilitated or the genetic influences which allow for tumor 
growth in a particular environment, the specific loca-
tion of tumor foci must be accurately and quantitatively 

Fig. 3   Scatter plot of all breast cancer metastatic brain tumors in 
X-Y-Z coordinates showing the Principal component axes PC1-PC2-
PC3. A 3D data representation in (X,Y,Z) space showing the orien-

tation of (PC1,PC2,PC3). B 2D projection onto (X,Y) plane; C 2D 
projection onto (X,Z) plane; D 2D projection onto (Y,Z) plane
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analyzed. Although collecting, quantifying, and processing 
this information from large multicenter datasets is ongo-
ing, our intention was to develop and share a practical and 
novel workflow for objective and data-driven analysis of 
BM distribution, along with useful quantitative techniques 
that are broadly applicable to other cancer types, larger 
data sets, and a wide range of centers whom intend to 
investigate similar relationships.

It is worth discussing how a molecular subtype would 
have a predilection for a particular area of the brain. While 
the seed-and-soil hypothesis has been an accepted overarch-
ing framework for over 100 years, detailed information about 
the spatial distributions of metastases in sensitive organs 
and broken down by tumor types and molecular subtypes is 
lacking [13]. There are numerous theories on how individual 
molecular subtypes may preferentially metastasize to a par-
ticular area of the brain, however studying this distribution 
has been challenging partly given the lack of methodology 
for qualitatively analyzing BM location without MRI analy-
sis. However, it has been shown that, in-vitro, human breast 
and lung cancer, when spread to the CSF (leptomeningeal 
disease) displays two distinct phenotypes which can be 

reliably reproduced based on tumor microenviornment [20]. 
Others have postulated that differences of gyral density and 
increased grey-white matter junctions, differences in blood 
supply volume, and varying neurotransmitter levels may 
trigger varying phenotypes based off of molecular subtypes, 
or may create a microenvironment for certain subtypes to 
proliferate more freely [1, 21]. In this study, we emphasize 
novel methods for quantifying the spatial distribution of 
brain metastases, describe the utility of GKRS coordinates 
to facilitate this quantification, and discuss future applica-
tions and possibilities using widespread coordinate mapping 
and analysis.

In preliminary analyses, triple negative breast cancers or 
TNBC (i.e. estrogen receptor negative, progesterone receptor 
negative) with varying her2 status were the most spatially 
distinct. In contrast, hormone receptor positive tumors with 
differing her2 status were the most similar. This suggests 
that hormone receptor status may disproportionately influ-
ence the spatial distribution of metastases. One hypothesis is 
that hormone receptor status, when ‘silent’, then allows her2 
status to drive spatial distribution of BM. Conversely, when 
‘activated’ (e.g. progesterone positive and estrogen positive), 

Fig. 4   Violin plots (probability distribution functions) of metastatic 
distributions according to molecular groupings (indicated by color), 
comparing distributions in original Cartesian X-Y-Z coordinates, 
and Principal component coordinates (PC1-PC2-PC3). MI metric 
is shown for each pair. A Distribution along PC1-axis according to 
molecular grouping. Yellow dash indicates mean, white dot indi-
cates median; B Distribution along PC2-axis according to molecular 
grouping. Yellow dash indicates mean, white dot indicates median; 
C Distribution along PC3-axis according to molecular grouping. 

Yellow dash indicates mean, white dot indicates median; D Distri-
bution along X-axis according to molecular grouping. Yellow dash 
indicates mean, white dot indicates median. We use this representa-
tion to arrange the subtypes from left to right in order of increasing 
divergence between the means and medians; E Distribution along 
Y-axis according to molecular grouping. Yellow dash indicates mean, 
white dot indicates median; F Distribution along Z-axis according to 
molecular grouping. Yellow dash indicates mean, white dot indicates 
median
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Fig. 5   Scatter plots of metastatic tumors, anterior/posterior, lateral/
medial, three different views. A Sagittal view, blue indicates anterior, 
pink indicates posterior, grey dots indicate washout region; B Axial 
view, blue indicates anterior, pink indicates posterior, grey dots indi-
cate washout region; C Coronal view, blue indicates anterior, pink 
indicates posterior, grey dots indicate washout region; D Sagittal 

view, blue indicates lateral, red indicates medial; E Axial view, blue 
indicates lateral, red indicates medial; F Coronal view, blue indicates 
lateral, red indicates medial; G Topographical illustration (axial) 
showing the X-coordinates corresponding to the lateral and medial 
regions

Fig. 6   Histograms (Count and Proportion) showing spatial distribu-
tion (anterior/posterior; lateral/medial) by molecular subtypes and 
groupings. A Count per molecular subtype, anterior (blue), posterior 
(pink), watershed (grey); B Count per molecular grouping, anterior 
(blue), posterior (pink), watershed (grey); C Count per molecular 
subtype, lateral (blue), medial (red); D Count per molecular group-

ing, lateral (blue), medial (red); E Proportion per molecular subtype, 
anterior (blue), posterior (pink), watershed (grey); F Proportion per 
molecular grouping, anterior (blue), posterior (pink), watershed 
(grey); G Proportion per molecular subtype, lateral (blue), medial 
(red); H Proportion per molecular grouping, lateral (blue), medial 
(red)
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differences in her2 status may be more muted, at least in 
the context of spatial distribution. Clinically, luminal breast 
cancer (hormone receptor positive, Her2 negative) demon-
strates distinct responses to therapies, and have a slower rate 
of growth and more positive outcomes. In addition, there 
is a relationship between TNBC, Her2−negative/hormone 
receptor positive tumors and mutations in the genes BRCA1 
and BRCA2. These additional genetic markers may influ-
ence the spatial makeup of these subtypes and may validate 
the mutual information scores determined between these 
subtypes. Furthermore, hormone receptor positive tumors, 
regardless of their Her2 status, tend to portend the best 
clinical outcomes for patients. While this phenomenon is 
currently largely driven by therapeutic targets afforded by 
hormone receptor positivity, there may be additional genetic 
drivers which also influence spatial distribution.

While several groups have aimed to categorize tumor 
location by subtype using MRIs, these studies are generally 
pilot studies and relatively small in sample size [1, 22–24]. 
The non-granular level of anatomical precision from MRI 
studies (e.g. describing tumor location qualitatively as 
‘frontal lobe’) often prevents further downstream analysis 
of these tumor distributions using advanced mathematical 
and computational means. This precision becomes important 
when discussing embryologic, signal-based and/or genetic 
and epigenetic influences in tumor development; discrimi-
nating between the midline frontal lobe and more lateral 
aspects is meaningful as these regions have different vascu-
lar distributions, functions and are likely embryologically 
driven by different mechanisms, despite being in the same 
lobe [24]. FOX genes, for instance, are theorized to drive 
midline brain development and Sonic Hedgehog (SHH) has 
been shown to drive cerebellar development [25–27]. The 
process of anatomical mapping of brain metastases when 
performed via MRI is also sensitive to variations in institu-
tional MRI sequence protocol, and can influence the spatial 
mapping of tumors, as shown by a study by Kyeong et al. 
[27] and Izustsu et al. [28] who mapped genetic subtypes of 
breast cancer with differing MRI sequences and obtained 
conflicting results [27, 28]. Lastly, MRI reading requires a 
trained neuro-radiologist and is time consuming and tedious, 
preventing its widespread adoption. While advancements in 
machine learning and computer vision may allow for precise 
anatomical landmark distinction at scale, these techniques 
are not widespread [29].

Analysis using GKRS is a promising alternative to quali-
tative anatomical location analysis for a variety of reasons. 
GKRS Leksell coordinates are already collected at the time 
of radiosurgery and utilized in routine clinical care, allow-
ing for ease of implementation. They are specific to each 
patient and each tumor and provide accurate, three-dimen-
sional coordinates of tumor centroids. Finally, GKRS data 
are easily scalable and standardizable across institutions for 

future data collection and does not require manual anno-
tation by skilled professionals, and can be analyzed in an 
objective and quantitative fashion rather than using categori-
cal descriptors, thereby increasing internal validity of the 
analyses.

By transforming the data from the original Leksell ana-
tomical coordinates to the principal coordinate axes, we are 
using an optimal data-derived coordinate system that high-
lights the axis along which there is the largest spread (PC1), 
the second largest spread (PC2), and the least spread (PC3) 
of the data. What we lose in this linear transformation is an 
easily interpretable anatomical frame, but we gain the ability 
to quantify what would otherwise be very subtle differences 
among molecular subgroups. We have retained the original 
anatomical frame, however, to depict the kernel density plots 
showing the clustering regions along the 3 two-dimensional 
projections, in order to more easily discern the physical loca-
tions in the brain where the clusters occur and to correlate 
this with blood flow patterns.

We further demonstrate that the results obtained by the 
GKRS coordinate spatial distribution system are accurate 
and can elucidate meaningful differences in molecular 
subtype distribution patterns. It has been well described 
that breast cancer preferentially metastasizes to the cer-
ebellum; KDE plots from GKRS data demonstrate the 
preference for the posterior circulation and below the 
central cranio-caudal axis, consistent with a cerebellar 
distribution [2, 23]. Izutsu et al. [28] found that in their 
cohort of 67 patients with 437 tumors, Her2 positivity was 
associated with metastases in the putamen and thalamus 
and less frequently in the cerebellum [28]. Figure 6 cor-
roborates these findings, wherein Her2+ tumors appear to 
be preferentially distributed on the midline (thalamus and 
putamen are midline structures). Kyeong et al. [27] found 
that TNBC was evenly distributed in the brain, which 
is supported by Fig. 6F, where TNBC appears to have a 
relatively uniform distribution between anterior, posterior 
and watershed areas of circulation [27]. It is important 
to note that our study did not corroborate all of the find-
ings within the literature- for example Kyeong et al. [27] 
contradicted the findings by Izutsu et al. [28] (and our 
analysis) and found BM from Her2 positive and luminal 
type tumors more common in the cerebellum and occipital 
lobe. These inconsistencies (and differences in sequence 
methods) highlight the need for high quality, standard-
ized data collection and analysis methods. Using mutual 
information, data on subtype similarity may be explored: 
for instance, TPBC and hormone negative BC (TNBC, 
ER−PR−Her2+) had two of the most divergent patterns 
of distribution. This supports known characterization of 
BC, where hormone receptor positivity portends signifi-
cantly improved outcomes [30]. Further characterization 
of and groupings of subtypes with higher MI coefficients 
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(higher similarity) should also be explored (with larger 
data sets), such as between ER+PR+Her2+ tumors and 
ER+PR+Her2− tumors; it may be that the clustering of 
these tumors are both relatively non-preferential, hence 
they have high MI coefficients, however there may be 
underlying factors related to tumor microenvironment 
or other genes which may drive tumorigenesis in similar 
locations. Subsequent translational/animal models which 
attempt to categorize growth of tumors based on their 
location should prioritize investigating tumor subtypes 
with the most convergent and divergent MI indices.

Opportunities for advancement in diagnosis 
and treatment

Neurotransmitters (e.g. gamma-aminobutyric acid (GABA), 
glutamate, dopamine, etc) are the biochemical backbone for 
synaptic signaling, but are also utilized for other cellular 
functions. These neurotransmitters are present in varying 
concentrations in different regions; for example, GABA-
ergic communication is predominant in cerebellum. This 
difference is also highlighted by blood-flow; and it is specu-
lated that BM have a predominance in the cerebellum due 
to the difference in blood flow to those regions, however it 
is unknown why this affect has a nonuniform impact across 
primary cancers and subtypes. Understanding the spatial 
distribution of BM based on molecular subtype may further 
characterize tumor ability to adapt to regional microenvi-
ronments based on these neurotransmitter distributions, and 
may promote BM progression [4, 11, 31].

There is a need for large, multi-center studies which uti-
lize standardized data collection criteria to accurately map 
our brain metastases to avoid inaccuracies as previously 
mentioned, and enhance generalizability and external valid-
ity of this work. In addition, the current advantage of MRI 
mapping vs GKRS is the ability to develop a 1-1 anatomic 
map. Accordingly, efforts should be made to create a Lek-
sell-Anatomic mapping, wherein specific X,Y,Z coordinates 
map to a specific location on a standardized cartesian plane. 
These mapping classifications must be corroborated with 
in-vitro and animal models, demonstrating the ability to seed 
tumor more readily in certain areas of the brain, or identify 
DNA/RNA lineages specific to tumor locations. Finally, 
this data must be correlated with clinical factors (e.g. time 
to diagnosis, overall survival, etc.) which can allow for the 
development of clinical decision trees. Groups have postu-
lated that the accurate classification of subtypes and cor-
relation with high-risk subgroups might warrant increased 
surveillance in the period following cancer diagnosis but 
before BM diagnosis, or even prophylactic, low dose radia-
tion to regions of the brain with high susceptibility [28]. 
These clinical implementations remain distant, however the 

systematic, quantifiable mapping of BM distributions is an 
important first step in personalized oncologic care for the 
patient with BMBC.

Limitations

There are limitations to the current study. While stereotac-
tic headsets are standardized in their size, they are fit to a 
patient’s specific head size which may introduce variation in 
coordinate recordings. Studied across a cohort of hundreds 
or thousands of patients, however, these individual cranial-
frame variations are likely to normalize and not preclude 
meaningful statistical comparison. Secondly, the anatomi-
cal distributions demonstrated (anterior/posterior, medial/
lateral) are Cartesian-derived and may have a limited degree 
of inaccuracy, although GKRS accuracy has been reported 
to be on the order of 1mm. The data itself introduces a level 
of systematic bias as it only accounts for patients who had 
GKRS for treatment of BM, and not patients who elect not 
to undergo GKRS, those who undergo whole brain radiation, 
or have undiagnosed BMBC. Furthermore, correlation with 
MRI endpoints would significantly strengthen this work. 
However, advanced imaging studies which may allow us 
to make more definitive claims regarding the tumor-tumor 
microenvironment specific to anatomic endpoints (e.g. MR 
angiograms, perfusion MRI, tractography, etc.) were not 
performed systematically across any significant subset of 
patients. Lastly, given that individual cancers themselves 
have differential distribution patterns, by definition, vari-
ance within cancers will be far more subtle. Accordingly, 
our samples may be significantly underpowered to detect 
meaningful difference in cancer subtype distribution, which 
is why we employ the bootstrap/re-sampling method. Scal-
ing the analysis described using the current workflow to 
thousands of BMK patients from multi-center consortia 
will increase power and allow more meaningful and granular 
comparison of cancer and molecular BM subtypes. Addi-
tionally, larger data sets might well allow for novel machine 
learning based methods of pattern classification that were 
not possible using our current data cohort.

Conclusion

We demonstrate a novel, objective, data-based methodol-
ogy for classifying and analyzing the spatial distribution of 
brain metastases by breast cancer molecular subtypes using 
stereotactic coordinates, principal component coordinates 
(PC), and kernel density estimators (KDE) to highlight 
clustering regions in the brain. We then compare distribu-
tions associated with different molecular subtypes using 
the mutual information (MI) metric, which is a widely used 
bioinformatic metric [16, 17], but to our knowledge has not 
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been used in the current context. This systematic, quantita-
tive method for classifying BM distribution is easy to scale, 
accurate, and a meaningful step forward towards understand-
ing the relationship between BM tumor microenvironment 
and tumorigenesis. Her2+ vs. Her2− cancers may show dif-
ferential patterns based on this pilot study data and novel 
methodology.
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