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a b s t r a c t

We model Covid-19 vaccine uptake as a reinforcement learning dynamic between two populations:
the vaccine adopters, and the vaccine hesitant. Using data available from the Center for Disease Control
(CDC), we estimate the payoff matrix governing the interaction between these two groups over time
and show they are playing a Hawk–Dove evolutionary game with an internal evolutionarily stable
Nash equilibrium (the asymptotic percentage of vaccinated in the population). We then ask whether
vaccine adoption can be improved by implementing dynamic incentive schedules that reward/punish
the vaccine hesitant, and if so, what schedules are optimal and how effective are they likely to be?
When is the optimal time to start an incentive program, how large should the incentives be, and is
there a point of diminishing returns? By using a tailored replicator dynamic reinforcement learning
model together with optimal control theory, we show that well designed and timed incentive programs
can improve vaccine uptake by shifting the Nash equilibrium upward in large populations, but only
so much, and incentive sizes above a certain threshold show diminishing returns.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

The voluntary uptake of vaccines for Covid-19 has proven to
e a challenge around the world, but particularly in the United
tates where multiple vaccine options have been available since
arly in 2021 yet there remains a sizable unvaccinated group.
fter an initial population of early adopters were vaccinated, the
urge began to slow, despite widespread availability, and has now
eached what looks to be a fairly stable resting point (see Fig. 1).
hile 100% voluntary compliance is rarely if ever achievable, vac-

ine hesitancy [1] has proven to be more widespread for Covid-19
han for other vaccines, such as seasonal flu vaccines [2], the
olio vaccine, smallpox, HPV and others [3]. With any widespread
ationally coordinated vaccination effort, there will always be a
opulation of people who we label vaccine adopters (e.g. elderly,
mmuno-compromised, healthcare workers) who get vaccinated
s soon as they are eligible, or shortly thereafter, then others
ollow. The vaccine uptake curve for this group in these early
tages is limited mostly by vaccine availability and logistics. There
s also a vaccine hesitant population who will delay their initial
hances to get vaccinated, then as they see others getting sick
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and weigh evidence and public opinion, some might decide to
vaccinate (adopters), while still others might further delay, or
forgo their chance altogether for various reasons (hesitant) [4].
We view the full population as a collection of two types of players
in a time-evolving game, who interact, learn, and receive pay-
offs (reward/punishment) according to the strategy (adopt/forgo)
they choose, where the interactions determine the fitness of the
players using one of two strategies, and the survival of that
strategy is determined by the fitness function and the population
frequencies of the players in each group. The two competing
behaviors ultimately result in a growth curve describing vaccine
uptake, shown in Fig. 1, that starts out rapidly (exponential), then
slows down, passing through an inflection point to a fairly stable
resting percentage of vaccinated individuals, which in the United
States seems to have settled at just under 60% of the population
(Fig. 1).

The way to think about the evolutionary dynamics unfolding
in a vulnerable unvaccinated population of players is to imag-
ine that each individual carries with him/her a complex and
ever-changing set of beliefs about their faith in the efficacy of
the vaccine that is being introduced. Individuals begin to learn
about the vaccine well in advance of the rollout by talking with
friends and relatives, and listening and reading news reports. It
is widely appreciated that the social dynamics that takes place

in this pre-rollout phase is crucial to the ultimate success of
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Fig. 1. Covid-19 vaccine uptake data in the United States (1 dose for John-
son & Johnson or 2 doses for Pfizer/Moderna) starting in January 2021 as
is publicly available at https://covid.cdc.gov/covid-data-tracker/#datatracker-
home. Red curve shows a Gompertzian fit to the data (first derivative curve
also in red), blue curve shows the results of the Hawk–Dove evolutionary
game theory model (first derivative curve also in blue). Vertical lines mark the
inflection point (maxima of the first derivative) where vaccine uptake begins
to slow, resulting in an asymptote (Nash equilibrium) at roughly 58% of the
population. Upper left inset shows the phase-plane diagram for the Hawk–Dove
dynamical system with an internal evolutionary stable state (ESS) at 58%. How
much can well designed incentive programs push this percentage up?.

the program, and one can assume that the evolution of each
individuals’ perception regarding the vaccine is already forming
before the actual rollout begins. Once vaccines become available,
individual decisions are made over time, and from the initial
uniformly unvaccinated population, a subpopulation of vaccine
adopters begins to form and grow monotonically (a vaccinated
person cannot become unvaccinated). The exact shape of this
growth curve depends very much on the relative sizes of the two
sub-populations that are forming between the unvaccinated and
the vaccinated as the two groups continue to play this evolv-
ing game. The frequencies of each of the two groups within
the overall population influence the decision process of each
remaining unvaccinated person as it is known that unvaccinated
people surrounded by a sea of vaccinated are much more likely
to choose to be vaccinated than those who are surrounded by
vaccine skeptics.

The question we address in this paper is whether or not a
well designed (optimized) punishment/reward system can signif-
icantly alter this natural dynamic, and if so, how best to achieve
the goal of obtaining a higher percentage of vaccinated people
making up a population? Vaccine incentive programs have been
utilized with varying degrees of success for other vaccines, but for
the Covid-19 vaccine they have largely been local (county-wide
and state-by-state) and somewhat haphazard, ranging from small
cash rewards handed out at vaccination clinics, medium-sized va-
cation add-ons, or larger lottery-style rewards [5,6]. Punishments
for the unvaccinated have also been levied, ranging from the
small extra hassle of requiring weekly Covid testing, more severe
restrictions of not being allowed entry to restaurants or public
events, and larger vaccine mandates that require vaccines as
part of the employment requirement or school enrollment [7–9].
Table 1 shows a compilation of the mostly ad hoc strategies that
have been implemented in states across the country but larger
scale national programs have not been systematically designed
or implemented.
2

Specific questions we address in this paper include whether
there are inherent limitations to well designed (optimized) pun-
ishment/reward systems, if implemented on a wide-scale basis?
Are there optimal schedules that can be designed that would
work most effectively? What are the optimal starting and ending
times for such dynamic incentive programs? Is there a point
of diminishing returns where larger incentives are no longer
as effective? By modeling the vaccine uptake problem as a re-
inforcement learning evolutionary game played between two
sub-populations of players (the vaccine adopters and the vac-
cine hesitant), we address these questions within the context
of a mathematical model calibrated with vaccine uptake data
obtained from the Center for Disease Control both on a nation-
wide level, and a state-by-state level. With models tailored to
individual states and for different age groups, we are able to test
various types of incentive schedules to produce upper and lower
bounds (using the Pontryagin maximum/minimum principle from
optimal control theory) on the inherent limitations of dynamic
incentive programs, and by producing incentive/response curves
(analogous to chemotherapeutic dose/response curves [10]), we
are able to hypothesize likely responses to different types and
sizes of the incentive schedules.

Aspects of vaccine policy and individual decision making sur-
rounding these policies have been studied, for example, by Korn
et al. [11] who argue that vaccine uptake can be viewed as a
social contract where individuals reward others who comply and
punish those who do not. Bauch et al. [12] frame the uptake
problem in terms of the complex trade-offs between group in-
terests versus self-interest arguing that, in the case of extreme
events (such as bio-terrorist attacks), it is unlikely that volun-
tary vaccination levels alone would reach the group optimal
level necessary for obtaining herd immunity. Bauch et al. [13,14]
have also used game-theoretical models to help explain human
decision-making surrounding vaccine uptake studying how vac-
cine scares unfold [15]. In [16], they invoke imitation dynamics
models to understand the complex interplay between vaccine
coverage, disease prevalence, and individual decision making.
In a very comprehensive recent book, Tanimoto [17] describes
many popular models associated with the spread of epidemics.
Chapter 9 addresses the topic of pre-emptive vs. late vaccination
strategies, Chapter 10 discusses the flu vaccine uptake problem,
while Chapter 11 discusses the optimal design of vaccination
subsidy policies. More general modeling frameworks have used
tools borrowed from statistical physics in interesting ways [18]
to model vaccine dynamics.

Our approach makes use of the vaccine uptake data (country-
wide as well as state by state data) available at https://covid.
cdc.gov/covid-data-tracker/#datatracker-home to fit three Gom-
pertzian parameters (a, b, c) and then use these to estimate the
entries of the 2 × 2 payoff matrix that describes the evolutionary
game played between the vaccine adopters and the vaccine hesi-
tant populations. The data shows that the population is effectively
playing a Hawk–Dove game with an evolutionary stable internal
fixed point (ESS) representing the percentage of vaccine adopters
(Doves) in the population. We then use optimal control theory
on this dynamical system to design time-dependent incentive
schedules that alter the baseline payoff matrix entries (altering
the reward/punishment balance) in order to obtain upper (and
lower) bounds on how different incentive strategies can shift
the asymptotic percentage of vaccine adopters in the population.
This control technique was originally developed for the design
of adaptive/optimal chemotherapy schedules for controlling re-
sistance in tumors [19–26]. Here, we exploit the observation that
optimizing vaccine incentive schedules is analogous to optimizing
chemotherapy schedules to produce dose–response curves [10]
for specific goals, such as, for example, avoiding chemothera-
peutic resistance [19–22]. The adoption of these techniques to

https://covid.cdc.gov/covid-data-tracker/#datatracker-home
https://covid.cdc.gov/covid-data-tracker/#datatracker-home
https://covid.cdc.gov/covid-data-tracker/#datatracker-home
https://covid.cdc.gov/covid-data-tracker/#datatracker-home
https://covid.cdc.gov/covid-data-tracker/#datatracker-home
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Table 1
Compiled information on different forms of vaccine incentives states have used. States are ranked in order of highest adoption
percentage to lowest. Not listed are states where we were not able to obtain information on any incentive programs.
Rank % Vaccinated State One Dose Fully Vaccinated

2 70.68 Connecticut Free event admission Free drinks
Concert tickets
Free food

4 70.56 Maine License or event pass $1 per person vaccinated

5 69.69 Massachusetts 5 $1 million prize

5 $300,000 scholarship

6 66.72 New York Baseball tickets State Park pass

7 66.4 New Jersey Free Beer State Park Vax Pass
Dinner with governor

8 66.18 Maryland $100 for state employees $2 million lottery

9 63.48 Washington Lottery tickets

11 62.88 Oregon $1 million prize
36 $10,000 prizes
5 $100,000 scholarships

14 62.14 New Mexico 5 wkly $250,000 prize
$5 million prize
$100
10 prize wheels
Travel prize

15 61.64 Colorado Weekly lottery $500 for CDOC
$50,000 tuition

16 61.31 California 10 $1.5 million prize
30 $50,000 prizes
$50 gift card
6 vacations

18 60.42 Illinois 50,000 six flags tickets
3 $1 million prizes
40 $100,000 prizes

19 59.9 Minnesota Free/discounted drinks

20 59.81 Hawaii Travel perks

22 59.73 Delaware Inmate incentives $302,000 prize
Scholarship raffle Free drinks
Vacation passes

27 53.54 Michigan $5 million in cash prizes

31 52.98 Nevada ‘‘Vax Nevada Days"

32 52.67 North Carolina 4 $1 million prizes
$25 cash cards

35 51.88 Ohio $1 million drawings

36 50.72 Kentucky Lottery Tickets
3 $1 million prizes
15 scholarships

40 49.87 Indiana Girl scout cookies
43 48.04 Arkansas $20 lottery tickets $100 for state employees

44 47.71 Louisiana State park access Free drinks
$100,000 prizes

45 47.66 Tennessee Car sweepstakes

47 44.78 Alabama Talladega Sweepstakes
$250 gift cards

48 43.89 Wyoming ‘‘Shots for swag"

49 43.92 Idaho 4 hr paid leave

50 41.04 West Virginia $100 gift cards
$1.58 million prize
vaccine incentive scheduling presents a different set of questions
and challenges but can be addressed within a similar modeling
framework. Other recent work that makes use of feedback con-
trol ideas to develop COVID-19 policies includes [27]. While the
merging of reinforcement learning models with optimal/adaptive
control theory is a new and promising field with many potential
applications, a nice introduction to the field, described mostly
in the robotics framework, can be found in a recent monograph
[28].
3

2. The vaccine uptake model

Calibrating the Gompertzian curves

The vaccine uptake curve shown in Fig. 1 is a three parameter
(a, b, c) Gompertzian curve,

f (t) = a exp[− exp(b − ct)] (1)

which has a long history of use in actuarial sciences (laws of
human mortality), economics (growth laws of wealth), biology
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Table 2
Model parameters for different population groups.
Population T (days) f ′(0) f ′(T ) a b c a21 a11 a12
US population 88 0.028256504 0.405499161 57.71 1.675 0.0191 0.034 0.02 0.0191
18 − 39 year olds 106 0.008343649 0.382741771 57.8 1.907 0.018 0.032 0.019 0.018
40 − 64 year olds 90 0.004432806 0.597362637 70.6 2.077 0.023 0.033 0.023 0.023
65+ year olds 58 0.015256548 1.024397092 81.9 1.971 0.034 0.043 0.035 0.034
Connecticut 86 0.012707894 0.563297 69.6 1.901 0.022 0.032 0.022 0.022
Vermont 89 0.002882054 0.612739997 69.4 2.14 0.024 0.035 0.024 0.024
Idaho 77 0.030170215 0.327559854 42.4 1.608 0.021 0.051 0.022 0.021
West Virginia 63 0.065387774 0.331017921 40.9 1.389 0.022 0.055 0.0231 0.0221
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(population growth and saturation), cancer (tumor growth)
[29,30]. Key parameters for fitting such a curve to this data are:
(1) T : the location of the inflection point (shown in Fig. 1);
2) f ′(T ): the slope of the tangent line at the inflection point
the growth rate when the growth curve changes from concave
p to concave down); (3) f ′(0): the slope of the tangent line
t the origin (initial growth rate). In Eq. (1), a is the asymp-
ote (limt→∞f (t)) (also known as carrying-capacity in other con-
exts [31,32]), b is the displacement along the t-axis (time-shift
arameter), and c is a time-scaling factor. In terms of those
arameters, the inflection point is located at T , where:

T = b/c, (2)

is the ratio of time-shift to time scaling parameters, while the
slope of f (t) at the origin and inflection points are given by:

f ′(0) = ac exp(b − exp(b)), (3)
f ′(T ) = ac/ exp(1). (4)

Inverting (2)–(4) for (a, b, c) gives:

a = exp(1)f ′(T )T/b, (5)
c = b/T , (6)

b − exp(b) = ln(f ′(0)/ exp(1)f ′(T )). (7)

The transcendental equation (7) can be solved numerically to
give the value of b, and the results are shown in Table 2, and
corresponding curve in Fig. 1 (in red) for the US population. For
this, the asymptote is roughly 58% vaccinated, and the uptake
inflection point is T ≈ 88 days from when vaccines first became
available. Error bars in Fig. 1 are produced using a stochastic
process that governs the evolutionary game dynamics in finite
populations [33–35], which in the limit of large populations con-
verges to the deterministic problem. The stochastic simulation is
run and at each time step, the relative fitness of each population
is used to the calculate the probability of birth and the probability
of death. These probabilities are sampled and the proportion of
individuals in each population is updated accordingly. This pro-
cess is repeated 10,000 times. The error bars show one standard
deviation around the mean.

We want to emphasize the importance of the inflection point
time T in our approach which we use to set the basic timescale
over which we optimize. An optimization cycle of T/4 was chosen
o be short enough to allow for relatively frequent changes in
he incentive schedules if necessary, but long enough for an
ptimized schedule to have a reasonable impact. Each T/4 cycle
s optimized individually, then longer periods nT/4 (where n is
an integer) are optimized sequentially using the final value of
the previous cycle as the initial value for the next. Table 2
provides a summary of all of the model parameters we use for
the different sub-populations. With these parameters, we develop
the reinforcement learning dynamical system.
4

The reinforcement learning/replicator model

We use the replicator dynamics equations from evolutionary
game theory as our reinforcement learning model for vaccine up-
take dynamics between the two populations xA (vaccine adopters)
and xH (vaccine hesitant), where each represents a proportion of
he entire population, x⃗(t) = (x1, x2)T ≡ (xA, xH )T ; xA + xH =

. The essential feature of replicator dynamics is that people
reinforcement learners) copy others, and successful strategies
et replicated more frequently than unsuccessful strategies [36]
hereby spreading throughout the population. As discussed ear-
ier, initially, none of the players are committed to just one
ay of behaving, but retain several potential ways of behav-

ng simultaneously. Which behavior predominates depends on
he experiences at the individual level. At the population level,
he process operates analogously to biological evolution gov-
rned by the replicator dynamical system. This makes the model
seful not only in contexts where biological evolution by nat-
ral selection (due to competition) is prominent [37], as cells
nd organisms with higher fitness (measured by their ability
o replicate) more often pass along their genetic characteristics
n the population, but also in any reinforcement learning set-
ing where learners copy successful strategies [38] more often
han unsuccessful ones (success begets success and failure spirals
ownward), with success determined by fitness level. The attrac-
iveness of this framework in the present context is that it has
een widely documented that vaccine uptake is more common
n a positive uptake environment, and less common in settings
here fewer people choose to get vaccinated. This dynamic is
lso the hallmark of a reinforcement learning process where
eople interact, learn strategies from others, receive payoffs (in
he form of advantage or disadvantage) based on strategies they
dopt, the payoffs determine the fitness (ability to survive) of
hose strategies in the overall population, the fitness controls the
urvival probability of the strategy.
To formulate the dynamical system, we use:

ẋA = xA(fA − ⟨f ⟩), (8)
˙H = xH (fH − ⟨f ⟩). (9)

ere, fA and fH denote the fitness of the vaccine adopters and
he vaccine hesitant populations, while ⟨f ⟩ denotes the average
itness of the entire population under consideration. The sys-
em simply says that the growth rate of each sub-population
ẋA/xA; ẋH/xH ) is governed by the difference between the fit-
ess of that population and the overall average fitness of both
opulations. The more each sub-population fitness deviates from
he average (either above or below), the larger/smaller the in-
tantaneous growth rate is of that strategy in the population.
his models gradual evolution (as contrasted, for example, with
atastrophism), i.e. behavior changes occur gradually as is the
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ase with vaccine uptake dynamics. The fitnesses are defined via
2 × 2 payoff matrix A as:

fA =
(
Ax⃗

)
1 = a11xA + a12xH , (10)

fH =
(
Ax⃗

)
2 = a21xA + a22xH , (11)

f ⟩ = x⃗T (Ax⃗) = xAfA + xH fH , (12)

ith:

=

[
a11 a12
a21 a22

]
(13)

hich defines the evolutionary game being played as deter-
ined by the CDC data. The four entries of this matrix encode

the punishment-reward balance (i.e. payoffs) associated with com-
petition between the two groups and is the heart of the model.
s described in [39], the payoffs are decided by many complex
actors, including each person’s perceived risk of infection (which
an vary in time), the severity of the disease (which certainly
aries in time), perhaps measured in hospitalization rates, fi-
ancial costs of vaccinations, and also the perceived uptake of
accinations by others. Increasing/decreasing either of the entries
f the top row of A increases/decreases the fitness of the vaccine
dopter population, whereas increasing/decreasing either of the
ntries of the bottom row of A increases/decreases the fitness of

the hesitant population. Without loss, we can choose a22 = 0,
while the remaining three entries (shown in Table 2) can be
obtained as functions of (a, b, c) (which were optimally fit to the
data) via Eqs. (5)–(7). Thus, all of the complexities associated with
the many decision processes which result in the Gompertzian
uptake curves are neatly packaged into three of the four entries
of the payoff matrix determining the evolutionary game which
unfolds between the vaccine adopters and the vaccine hesitant.

It is a non-trivial result of this fitting process that the payoff
matrix corresponds to a Hawk–Dove evolutionary game, where
the vaccine adopters are the Doves, and the vaccine hesitants are
the Hawks. This is based on the inequalities: a21 > a11 > a12 >

22 = 0. A key feature of a Hawk–Dove evolutionary game is the
xistence of an internal ∈ (0, 1) ESS (Nash equilibrium), which we

denote by a (the asymptote of f (t)). As shown in Fig. 1, for the US
population as a whole, a ≈ 0.58. Fig. 2 shows the data, curve fit,
and replicator dynamic model for the two states with the highest
vaccine uptake percentages (Vermont and Connecticut ≈ 69%),
and the two lowest (West Virginia and Idaho ≈ 41%). Fig. 2(a)
shows the results of the vaccine uptake data along with both
the Gompertzian curve fit and the replicator dynamics model for
the four states, along with the entire US population. In Fig. 2(b)
we break the US data into three different age groups (18–39;
40–64; 65+) in a similar way that the vaccine rollout prioritized
these groups. This is reflected in the leftward shift of the curve
corresponding to the older compared to younger groups, with the
oldest population showing the steepest uptake curve consistent
with the notion that this group was among the most eager to be
vaccinated. The inflection point for the US population as a whole
is roughly at T ≈ 88 days which we take as a benchmark for
scaling time when we implement our control strategy on this
group. Similarly, for all other subgroups, we use the correspond-
ing inflection point location associated with that subgroup (see
Table 2).

Shifting vaccine uptake curves with time-dependent payoffs

To implement an optimal vaccine incentive strategy, we now
consider the time-dependent payoff matrix:

A =

[
a11 a12

]
= A0 + A1(t) (14)
a21 a22 X

5

Fig. 2. Vaccine uptake curves for different subgroups. Dots (data), Dashed
(Gompertzian fit), Solid (replicator model). Vertical lines mark inflection points
at maximizers of the derivative curves. (a) United States (dashed black);
Connecticut (green); Vermont (purple); West Virgina (red); Idaho (blue). (b)
Three different age groups: 18–39 (red), 40–64 (blue) and 65+ (purple).

=

[
a11 a12
a21 a22

]
+

[
0 u1(t)

u2(t) 0

]
(15)

=

[
a11 a12 + u1(t)

a21 + u2(t) a22

]
, (16)

here A1(t) represents our control with entries in the off-diagonal
erms (without loss of generality), and A0 is the baseline Hawk–
ove payoff matrix as obtained from the vaccine uptake data.
he time-dependent controllers u⃗(t) = (u1(t), u2(t)) ∈ R2 are
ounded above and below (based on an incentive size parameter
):

ap
a12 + a21

≤ u1(t), u2(t) ≤
ap

a12 + a21
(17)

0 ≤ p ≤ 1) and a global constraint on the incentive schedule,
⃗ (t) =

∫ t
0 u⃗(τ )dτ = const . is enforced, all of which play a role in

etermining the detailed outcome of the optimization procedure.

. Methods

To implement the Pontryagin maximum (minimum) princi-
le with boundary value constraints in order to compute upper
maximum principle) and lower (minimum principle) bounds, we
ollow standard methods [40] and denote:

⃗ = [x⃗(t), U⃗(t)]
T
, X⃗ ∈ R4 (18)
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Fig. 3. Optimal schedules (top horizontal bars indicating incentives on) and
response curves (underneath) associated with the US population. Black curve
is the uncontrolled subpopulation, blue curve is the maximized population, red
curve is the minimized population. In this case, the incentive schedules start at
the inflection point of the uptake curve, which is roughly at T ∼ 88 days, with
18% of the population vaccinated. The dependent variables in our system are
ptimized through one fundamental cycle time of length T/4 ∼ 22 days using
nly an endpoint cost (Meyer problem). Dark blue/red color corresponds to the
1 schedule, light blue/red color corresponds to the u2 schedule in Eq. (16).

˙⃗X = F⃗ (X⃗) = [˙⃗x, ˙⃗U(t)]
T
, F⃗ : R4

→ R4 (19)

where we would like to minimize or maximize a mathematical
cost function:

J[x⃗(·), u⃗(·), t0, tf ] =

∫ tf

t0

L(x⃗(t), u⃗(t), t)dt

+ ϕ[x⃗(t0), t0, x⃗(tf ), tf ] (20)

over times from t0 to tf . The first term on the right is called
the running cost, while the second is called the endpoint cost.
Since we are optimizing the endpoint cost, ϕ[x⃗(t0), t0, x⃗(tf ), tf ] =

x1 = xA(tf ) only (i.e. the asymptotic vaccine acceptance value),
we take L = 0 (called a Meyer problem [40] developed in
the context of missile guidance problems where final distance
from the target is minimized). We briefly describe the basic
 r

6

framework and refer readers to [40] for more details on how to
implement the approach. In particular, we construct the control
theory Hamiltonian:

H(x⃗(t), U⃗(t), λ⃗, u⃗(t)) = λ⃗T F⃗ (x⃗) + L(x⃗, u⃗(t), t) (21)

where λ⃗ = [λ1, λ2, µ1, µ2]
T are the co-state functions (i.e. mo-

menta) associated with x⃗ and U⃗ respectively. Assuming that u⃗∗(t)
is the optimal control for this problem, with corresponding tra-
jectory x⃗∗(t), U⃗∗(t), the canonical equations satisfy:

ẋi∗(t) =
∂H
∂λ∗

i
(22)

U̇i
∗
(t) =

∂H
∂µ∗

i
(23)

λ̇i
∗(t) = −

∂H
∂x∗

i
(24)

µ̇i
∗(t) = −

∂H
∂U∗

i
(25)

where i = (1, 2). The corresponding boundary conditions are:

x⃗∗(t0) = x⃗0 (26)
U⃗∗(t0) = 0, U⃗∗(tf ) = U⃗∗

tf (27)

λ∗

i (tf ) =
∂ϕ(x⃗(tf ))
∂x∗

i (tf )
(28)

hen, at any point in time, the optimal control u⃗∗(t) will minimize
he control theory Hamiltonian:

⃗
∗(t) = argmin

u⃗(t)
H(x⃗∗(t), U⃗∗(t), λ⃗∗(t), u⃗(t)) (29)

he optimization problem becomes a two-point boundary value
roblem (using (26)–(28)) with unknowns (λ∗

2(t0), x
∗

2(tf )) whose
olution gives rise to the optimal trajectory x⃗∗(t) (from (22)) and
he corresponding control u⃗∗(t) that produces it, as shown, for
xample, in Fig. 3. In practice, we solve the optimization problem
umerically using the dynamic optimization software GEKKO.
ocumentation for the software can be found at https://gekko.

eadthedocs.io/.
Fig. 4. Phase portraits associated with US population with incentive schedules starting at the inflection point of the uptake curve as shown in Fig. 3. In each of
the four legs of the cycle (see Fig. 3), a different evolutionary game is being played, which drives the system along an optimal path. The dynamics along the x1
horizontal axis proceeds from the initial open circle to the closed one. (a) Phase diagram of vaccinated population through first leg of the maximizing schedule
(Prisoner’s dilemma game); (b) Phase diagram of vaccinated population through second leg of the maximizing schedule (Leader game); (c) Phase diagram of vaccinated
population through third leg of the maximizing schedule (Deadlock game); (d) Phase diagram of vaccinated population through fourth leg of the maximizing schedule
(Game No. 10); (e) Phase diagram of vaccinated population through first leg of the minimizing schedule (Game No. 10); (f) Phase diagram of vaccinated population
through second leg of the minimizing schedule (Deadlock game); (g) Phase diagram of vaccinated population through third leg of the minimizing schedule (Leader
game); (h) Phase diagram of vaccinated population through fourth leg of the minimizing schedule (Prisoner’s dilemma).

https://gekko.readthedocs.io/
https://gekko.readthedocs.io/
https://gekko.readthedocs.io/
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Fig. 5. Maximizing and minimizing vaccination percentages for state with
lowest vaccination rates, West Virginia and Idaho, in comparison with states
with the highest vaccination rates, Vermont (purple) and Connecticut (green).
(a) Solid blue curve depicts Idaho’s natural vaccine uptake curve. Dashed curves
show the Idaho optimized model with upper bounds using 5%, 10%, 15%, 20%
incentive sizes (normalized using baseline value) and lower bounds using 5%,
10%, 15%, 20% incentive sizes (normalized using baseline value);(b) Solid red
curve depicts West Virginia’s natural vaccine uptake curve. Red dashed curves
show the West Virginia optimized model with upper bounds using 5%, 10%, 15%,
20% incentive sizes (normalized using baseline value) and lower bounds using
5%, 10%, 15%, 20% incentive sizes (normalized using baseline value).

4. Results

As a first important example, we show in Fig. 3 an optimized
esult using the US population curve as a baseline, with opti-
ized schedules for the controllers u⃗(t) = (u1(t), u2(t)) shown

as horizontal bars at the top, and the maximized (blue) and
minimized (red) values of the % vaccinated at the end of one
cycle T/4. The optimized incentive schedule, which begins at the
inflection point of the Gompertzian uptake curve, is able to push
the vaccinated population up to a value of 38%, as compared
to the unincentivized value of 29% that would have naturally
occurred in the absence of any incentives. The control schedule is
bang–bang (off/on), with the bars showing the time each of the
controllers is on.

Associated with the schedules and responses shown in Fig. 3,
we show a complementary and useful interpretation of our method
in Fig. 4 in terms of the phase portraits (ẋ1 vs. x1) that correspond
to the optimized trajectories through the four separate time-
regions defined from the off/on schedules in Fig. 3. Figs. 4(a)–(d)
show the maximized dynamics in the four regions along with
the name of the evolutionary game defined by the controlled
7

payoff matrix in each regime. On the first leg (Fig. 4(a)), the
subpopulation x1 actually decreases while a Prisoner’s dilemma
game is the governing matrix. But then in the next three legs
(Fig. 4(b), (c), (d)), the games are changed (Leader-Deadlock-
Game #10), and the endpoint (shown by the blue curve in figure
3 is pushed up to its maximally achievable value of ∼37%. In
Figs. 4(e)–(h) we show the corresponding four legs associated
with the minimization procedure from Fig. 3. Here, the sequence
of evolutionary games cycle through the reverse order as in the
maximization procedure (Game #10-Deadlock-Leader-Prisoner’s
Dilemma) to push the vaccinated population down to its lowest
value of ∼23% at the end of the optimization cycle. Note that in
all cases, the exact switching times from one game to another are
determined from the outcome of the optimization procedure, and
depends on the starting value x⃗1(t0). We mention a recent paper
by Tanimoto [41] which also discusses the connection between
scaling the social dilemma strengths and its affect on the resulting
phase plane dynamics which is related to this interpretation.

We now use our optimization method to answer several spe-
cific questions that give insight into how well an optimized
incentive vaccine rollout program can perform.

State-by-state results

The first question we address using our optimized incentive
model, is whether it is possible to incentivize the states with
low vaccine uptake curves (West Virginia and Idaho) to bring
them up to the level of states with high uptake curves (Vermont
and Connecticut). Fig. 5(a) shows the result of our simulations
for Idaho. With relatively large incentive sizes roughly between
15%–20% (measure normalized by the baseline value), we show
this is possible. But we consider this range of incentive sizes
to be so large that the price of implementing them might be
prohibitive. Fig. 5(b) shows our simulations for West Virginia,
with the same general conclusions as Idaho. Incentive sizes this
large can have a considerable effect, but the price would be high
to implement them. At this point we have not included any
running penalty in our cost function which could account for
incentive sizes.

Optimal timing

We next address whether or not the initial start-time of our
optimal incentive schedule has much impact on the end result.
The short answer to this is no, it does not, as shown in Fig. 6
panel for the (a) Vermont population, (b) Connecticut population,
(c) Idaho population, and (d) West Virginia population. In all
cases, the incentivized curves (dashed) asymptote to the abso-
lute max/min curves no matter when the schedules begin. This
indicates that we could begin the schedules at the inflection
point of the uptake curves, allowing us to collect and develop
the model in real time as the uptake dynamics unfolds, designing
the optimal incentive schedules to use going forward. The one
caveat with this approach is that although the curves all reach
the same asymptote, if time is of the essence (say because of
high death rates in the unvaccinated population), there could
well be advantages to starting the incentive schedules as early as
possible. To design optimal schedules in real time before reaching
the inflection point of the uptake curve would require a separate
careful forecasting model based only on earlier data.

In Fig. 7 we highlight both the results of the incentive sched-
ules as well as the optimized results starting at three different
times. The time-windows are shown in Fig. 7(a) in black rect-
angles, before the inflection point, at the inflection point, and
after the inflection point. Corresponding optimized results with
schedules are shown in Figs. 7(b), (c), (d). The plots show that
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Fig. 6. Maximizing and minimizing vaccination uptake with controllers turning on at different times. All plots show incentive schedules beginning at t0 =
T
4 n for

increasing n. In all cases, the incentivized schedules reach upper (blue) and lower (red) asymptotes, indicating relative insensitivity of the optimal outcome to start
times. (a) Vermont unincentivized uptake curve (black), T = 88 days. Blue shows optimized upper bounds using incentive schedules, red shows lower bounds using
incentive schedules; (b) Connecticut unincentivized uptake curve (black), T = 86 days. Blue shows optimized upper bounds using incentive schedules, red shows
lower bounds using incentive schedules; (c) Idaho unincentivized uptake curve (black), T = 77 days. Blue shows optimized upper bounds using incentive schedules,
ed shows lower bounds using incentive schedules; (d) West Virginia unincentivized uptake curve (black), T = 63 days. Blue shows optimized upper bounds using
ncentive schedules, red shows lower bounds using incentive schedules.
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ncentive schedules are generally more effective at pushing the
inal value up for the later time-windows, which is somewhat
ounter-intuitive. We interpret this result to mean that incentives
re most effective when rolled out into a population of unvacci-
ated people who make up a smaller part of a larger population
ith a relatively high percentage of vaccinated individuals. The
nvaccinated are more receptive to the incentives when they are
urrounded by people who have already been vaccinated. This is
hat the model predicts, but whether or not this pans out in an
ctual vaccine rollout would need to be tested, as there might
ell be other factors at play not considered in our model.

ncentive-response curves

We now address the question of what incentive size leads to
he best response? Fig. 8 shows the percent shift in the asymptote
US population) for different size incentives, both upper (blue)
nd lower (red) bounds. With no incentive (0%), the asymptote
emains at 58% of the population, as expected. In general, the
arger the incentive, the larger the response.

Notice that for higher percentage incentives, the curves rise
uch faster than for low, which means the optimized results
ill be achieved more quickly. But it is also important to point
ut that even for lower incentives, the upper asymptote will
ventually be reached. The bottom line here is that, as would be
xpected, it seems that the smaller the incentive, the longer it
akes to achieve the desired result.
8

iminishing returns

Is there a point of diminishing returns on implementing larger
ncentives, after which the response diminishes? Fig. 9 shows
n incentive-response curve for the US population. Our model
roduces a curve (data points fit to three-parameter Gompertzian
urve) depicting the incentive strength (abscissa) versus the
hange in asymptote (ordinate). For incentive strengths below
1%, the curve is concave up, indicating a better response with
igher incentives. Above 11%, however, the curve is concave
own, indicating a weaker response to higher incentives. We can
hink of this threshold value (∼11%) as a point of diminishing
eturns. This is in many ways analogous to dose–response curves
n chemotherapy settings [10] where past a threshold, increasing
he dose further shows a diminished response. This leads to
threshold value of optimal incentive size, which our model
redicts is roughly 11%. We place more value in showing that
uch a threshold exists in our model, than the actual threshold
alue, which can be tricky to pin down accurately without more
etailed analysis.

. Discussion

Although it is presumably unrealistic to assume that opti-
ality will actually be achievable in practice, optimal control
onetheless gives clear upper and lower bounds on what is theo-
etically possible in an ideal setting. But there are several tan-
ible ways the model could be improved. First, we make the
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Fig. 7. Optimal schedules and optimal responses for early, medium, and late times. Blue schedules and curves maximize the % vaccinated at the end of one cycle
time. Red schedules and curves minimize the % vaccinated at the end of one cycle time. Dark blue/red color corresponds to the u1 schedule, light blue/red color
orresponds to the u2 schedule. Black curve is the uncontrolled response curve. (a) Three black rectangles show early, medium, and late time regions over which
e introduce the first optimization cycle; (b) Max and min schedules and responses for early time window; (c) Max and min schedules and responses for medium
ime window at the Gompertzian inflection point; (d) Max and min schedules and responses for late time window.
Fig. 8. Absolute maximizers (blue) and minimizers (red) for a range of incentive
ntensities using US population model. Cycle times 44 days ≤ T ≤ 352 days.

implifying assumption that response times to incentives are
nstantaneous. Building in finite-time responses (i.e. time delays)
ould make the model more realistic. Second, the hesitant popu-

ation could be further sub-divided into groups, such as hesitant
ut willing, hesitant and unwilling, with incentives influencing
ach of those groups differently. This would lead to a higher
imensional model with more complexity but perhaps higher
idelity. Third, the model assumes what is called a well-mixed
opulation (i.e. no spatial structure). A spatially dependent model
ould be significantly more complex but has the potential to be
ore targeted geographically. Finally, the psychological aspects of
9

Fig. 9. Incentive-response curve fit to data. Abscissa indicates the incentive
size (measured as % of baseline). Ordinate shows the shift in the asymptote
(measured as % of baseline). Also shown is the first derivative of the response
curve. Response curve is concave up for incentive strengths below 11%, and
concave down for larger incentives indicating diminishing returns in terms of
response.

how people, states, groups, respond to different incentives are not
considered in our model. Matching the size of our controllers with
actual incentives/punishments would best be handled by experts
in human psychology and is not addressed in our approach. Addi-
tionally, the size of the incentives (in terms of financial cost) are
not part of our cost function in the optimization procedure which
may well be desirable in future model improvements by including



K. Stuckey and P.K. Newton Physica D 445 (2023) 133613

a
w

t
s
s
w
p
l
i
a
r

6

h
c
a
w
o
u
t
e
p
i
a
a
t
t
(
p
t
s
l
r
a
(
d
o
f
r
u
p
u
m
h
s
g
g

D

c
t

D

A

O
(
t

running penalty term to our mathematical cost function (20)
hich takes into account incentive size.
Two strengths of our model we would like to emphasize are

hat only data up until the inflection point needs to be used, and
tarting the incentives after that point will ultimately lead to the
ame shift in the asymptotic percentage of vaccinated people as
ould have happened if the incentives started earlier. It is not a
riori clear whether or not nationwide, state-wide, or even more
ocalized data is most useful, but models that use more localized
nformation (at least state-wide) would probably be more useful
s it seems probable that different regions of the country would
espond differently to different kinds of incentives.

. Conclusion

Every vaccine rollout associated with each new epidemic will
ave its own natural uptake curve, depending essentially on the
omplex nature of the interactions between the vaccine adopters
nd the vaccine hesitant populations, and also the interactions
ithin each group, all of which are nicely encoded as elements
f the payoff matrix as determined by the data. But it is not
nreasonable to speculate that they should all commonly follow
he general form of a three-parameter Gompertzian, with differ-
nt parameters in each case, and geographic location (targeted
opulation), but of the same universal form. This general form
s an outcome of the fact that there are, generally speaking, early
dopters, followed by a population of players who decide to adopt
s time proceeds, leaving only the most hesitant who remain
owards the later stages of a rollout. As a vaccine rollout unfolds,
he key parameters to obtain from the vaccine uptake curve are:
i) the initial rate of uptake (which we write as % of the relevant
opulation per day), (ii) the inflection point location on the up-
ake curve (i.e. when uptake begins to slow down), and (iii) the
lope of the tangent line at the inflection point (rate of uptake). As
ong as reliable data is available up until the inflection point, the
einforcement learning model described can then be developed
nd calibrated in real-time. When the uptake rate begins to slow
i.e. at or near the inflection point), using the controlled replicator
ynamical system model, vaccine incentive schedules can be
ptimized going forward and likely responses can be predicted
rom the dose–response curves produced by the model. A recent
eview paper [39] has highlighted the importance and need for
sing game theory and mathematical models in designing vaccine
olicy, which we enthusiastically endorse and feel is an under-
tilized tool in the arsenal of developing science-based decision
aking during an infectious outbreak. The framework developed
ere, which allows the mathematical models to be tailored to
pecific settings, offers the possibility of testing different strate-
ies in real time for many different scenarios and is flexible,
eneralizable, relatively simple, and potentially actionable.
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