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Abstract
We use the Bernstein polynomials of degree d as the basis for constructing a uniform
approximation to the rate of evolution (related to the fixation probability) of a species in a
two-component finite-population, well-mixed, frequency-dependent evolutionary game set-
ting. The approximation is valid over the full range 0 ≤ w ≤ 1, where w is the selection
pressure parameter, and converges uniformly to the exact solution as d → ∞. We compare
it to a widely used non-uniform approximation formula in the weak-selection limit (w ∼ 0)
as well as numerically computed values of the exact solution. Because of a boundary layer
that occurs in the weak-selection limit, the Bernstein polynomial method is more efficient at
approximating the rate of evolution in the strong selection region (w ∼ 1) (requiring the use
of fewer modes to obtain the same level of accuracy) than in the weak selection regime.

Keywords Finite-population evolutionary games · Fixation probability · Boundary layers ·
Rate of evolution · Bernstein polynomials · Markov processes

1 Introduction

In finite-population stochastic evolutionary games, an important quantity is the so-called
fixation probability of a given sub-species of mutants [10]. For a population of size N , we
denote this fixation probability for a sub-species A comprised of i < N mutants as ρA

i ,
and note that it is related to the rate of evolution of that sub-species via r Ai ≡ NρA

i . It
is straighforward to show that the fixation probability of a sub-species, in the absence of
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selection, is simply given by the neutral drift formula ρA
i = i/N [7] in a well-mixed setting.

With rate of evolution r Ai = i , this says that any mutant has an equal probability of reaching
fixation (spreading throughout the population), and the rate of evolution is simply given by
the number of mutants. When selection is present, sometimes introduced using a selection
pressure parameter 0 ≤ w ≤ 1, the fixation probability formulas ρA

i (w, N ) are continuous
functions of this parameter, aswell as N , and becomemore complicated. Of particular interest
are theweak selection (individuals have very similar fitness) and strong selection (individuals
have widely varying fitness) limits, given respectively by w << 1 and w ∼ 1. In those two
cases, asymptotic approximations or Taylor expansions are often invoked [17]. However,
since these formulas are simultaneously functions of N , they are local approximations (in
w) only, and are interpreted as being valid for fixed population sizes N . As simultaneous
functions of w and N , however, these approximations break down, particularly in the small
(wN << 1) and large (wN >> 1) population limits, or intermediate values of the selection
pressure parameter w. That is because in these two-parameter formulas, these limits become
singular and contain boundary layers (non-uniformities), rendering them invalid throughout
the full selection range [2] and for all population sizes N .

In this note, we take a different approach and derive a new family of formulas, based on
the Bernstein polynomial basis set [3]. These can be used as global approximation formulas
in the full selection interval 0 ≤ w ≤ 1, for all N , that uniformly approximate the more
complicated exact fixation probability and rate of evolution formulas. Bernstein polynomials
were originally constructed by S. Bernstein [3] in 1912 and used to prove the Weierstrass
approximation theorem [5] which states that any continuous function on a closed interval can
be uniformly approximated by a series of polynomials. They have since become a standard
tool in the field of polynomial approximation theory [5, 6, 14]. If Bd(ri ;w) denotes the
Bernstein polynomial (of degree d) representation of the rate of evolution ri , we will show
that for each i , Bd(ri ;w) uniformly converges [5] to ri as d → ∞ in the full interval
w ∈ [0, 1]. We investigate properties of the representation for different selection regimes
w ∼ 0 and w ∼ 1 and values of d since we anticipate that low d representations are more
useful in practice.

2 TheModel

2.1 The Finite-Population Evolutionary Game

We consider a frequency-dependent Moran process model [10, 11, 17] comprised of N indi-
viduals divided into two sub-populations A (mutants) and B (wild-type). Let i be the number
of individuals in sub-population A, let j be the number of individuals in sub-population B
with i + j = N . Let T+

i be the transition probability from state i to i + 1, and let T−
i

denote the transition probability from state i to i − 1. Then, T 0
i = 1− T+

i − T−
i denotes the

probability that the system stays at its current state (under the assumption of no mutations).
Both i = 0 and i = N are absorbing states, respectively, corresponding to a homogeneous
B population and a homogeneous A population, and these lead to T+

0 = 0 and T−
N = 0, or

T 0
0 = 1 and T 0

N = 1. For all other states, theMarkov transition probability T±
i is computed by

considering a weighted birth-death process [13]. The birth rates of this process are assumed
to be proportional to the expected fitness of populations A and B, denoted f Ai and f Bi , which
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are, in turn, functions of the expected payoffs, π A
i and π B

i :

π A
i = a11(i − 1) + a12(N − i)

N − 1
,

π B
i = a21i + a22(N − i − 1)

N − 1
,

(1)

with 2 × 2 payoff matrix:

A =
[
a11 a12
a21 a22

]
. (2)

The fitness functions are defined by:

f Ai := 1 − w + wπ A
i , (3)

f Bi := 1 − w + wπ B
i , (4)

where 0 ≤ w ≤ 1 is selection intensity parameter, with w << 1 and w ∼ 1 being the weak
selection and strong selection limits, respectively [1, 10, 11, 17]. To compute the transition

probabilities T±
i , we use fitness-weighted frequency-dependent averages

i f Ai
i f Ai +(N−i) f Bi

and

(N−i) f Bi
i f Ai +(N−i) f Bi

as birth rates of the A and B sub-populations, respectively, which give rise to

transition probabilities:

T+
i = i f Ai

i f Ai +(N−i) f Bi
· N−i

N , (5)

T−
i = (N−i) f Bi

i f Ai +(N−i) f Bi
· i
N , (6)

T 0
i = 1 − T+

i − T−
i (7)

for i ∈ {1, · · · , N − 1}. Knowing T0 = 1 and TN = 1 are two absorbing states, we can now
write the (N + 1) × (N + 1) tridiagonal transition matrix T governing the Markov process
[13]:

T =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0 0 0
T−
1 T 0

1 T+
1 · · · 0 0 0

...
...

...
. . .

...
...

...

0 0 0 · · · T−
N−1 T 0

N−1 T+
N−1

0 0 0 · · · 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

(8)

for this finite-population evolutionary game.

2.2 Fixation Probability Formulas

An important quantity for these games is called the fixation probability that a finite number of
mutants of type A invade and take over the resident population of type B [10].We will denote
by ρi the probability that i mutants of type A fixate the entire population for i = 0, 1, · · · , N .
Then, it is obvious by the assumption of no mutation that ρ0 = 0 and ρN = 1. To obtain an
exact formula for ρi , it is easiest to start from the recurrence relation (i ≥ 1):

ρi = T−
i ρi−1 + T 0

i ρi + T+
i ρi+1. (9)
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Defining variables, φi := ρi − ρi−1 and λi := T−
i /T+

i , Eq. (9) can be rewritten:

φ1 = ρ1,

φi+1 = λiφi
(10)

for i = 1, · · · , N − 1, which is equivalent to

φi+1 = ρ1

i∏
k=1

λi . (11)

Summing (11) over i gives rise to
∑N

i=1 φi = (ρ1 −ρ0)+ (ρ2 −ρ1)+· · ·+ (ρN −ρN−1) =
ρN − ρ0 = 1 which leads to:

ρ1 = 1

1 + ∑N−1
j=1

∏ j
k=1 λk

. (12)

Then, using the same summation of (11) but up to any number of terms as desired, it implies
ρi = ρ1(1 + ∑i−1

j=1
∏ j

k=1 λk), and the general fixation probability ρi of A starting from the
state, i , is written as follows:

ρi = 1 + ∑i−1
j=1

∏ j
k=1 λk

1 + ∑N−1
j=1

∏ j
k=1 λk

(13)

using
∑i−1

j=1
∏ j

k=1 λk = 0 when i = 1. The expression in (13) is valid for any one-
dimensional birth-and-death processes (without mutations) and is well-known [10, 11].

Tailoring to our model, using the variable λk = f Bk
f Ak
, the fixation probability in (13) then

becomes:

ρi = 1 + ∑i−1
j=1

∏ j
k=1 f Bk / f Ak

1 + ∑N−1
j=1

∏ j
k=1 f Bk / f Ak

. (14)

2.3 The Repeated Prisoner’s Dilemma Game

An approximation to the rate of evolution in the weak selection limit, r̃i , discussed in [1, 10,
11, 15], is given by:

r̃i = 1

[1 − (αN − β)(w/6)]
≈ Nρi (15)

with α = a11 + 2a12 − a21 − 2a22 and β = 2a11 + a12 + a21 − 4a22 where a11, a12, a21, a22
are entries of a payoff matrix (2). It is important to keep in mind that this formula is a local
approximation under weak selection. Due to the fact that it is a rational function of selection
strength (w), its validity is limited to a small subinterval of [0, 1]. To appreciate the limitations
of the formula as a global approximation, we consider for definiteness a repeated prisoner’s
dilemma (PD) game [10, 11] in which two players, a cooperator (C) and a defector (D),
repeatedly interact with the ability to choose strategies on each interaction. The general PD
payoff matrix is given by:

( C D

C R S
D T P

)
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with the prisoner’s inequality

T > R > P > S. (16)

We consider a tit-for-tat strategy for player A playing against a player (B) who always defects.
The tit-for-tat player cooperates in the first round (n = 1), then does whatever the opponent
did in the previous round. If this game is repeated n times, it has the following payoff matrix
[10, 11]

( A B

A Rn S + P(n − 1)
B T + P(n − 1) Pn

)
. (17)

For the emergence of cooperation, we need [11] that

n >
T − P

R − P
. (18)

With the choice of R = 3, S = 0, T = 5, P = 1 for our experiment, (18) gives n ≥ 3.
The limitations of the approximation formula are shown in Fig. 1where we plot weak

selection formula r̃i and exact formula (14) for N = 10, 100, 1000, 10000 in the range
w ∈ [0, 0.01]. Figure1a shows the two formulas begin to depart with increasing w, while
Fig. 1b–d show an internal boundary layer developing around the threshold value wT , and a
negative rate of evolution when w is above it. The threshold value wT → 0 as N → ∞ (i.e.,
the boundary layer is pushed to the left boundary). To ensure that r̃i > 0, it is straightforward
to obtain the following threshold formula:

wT = 6

αN − β
, (19)

with

w < wT · N − 1

N
if αN − β > 0. (20)

The convergence wT → 0 as N → ∞ is shown in Fig. 1.

3 Bernstein Polynomials

We now describe a global approximation on the interval w ∈ [0, 1] that uses the Bernstein
polynomials originally constructed by S. Bernstein [3] in 1912 and used to proveWeierstrass
approximation theorem [5]. Given a function f (x), defined on the closed interval [0, 1], the
Bernstein polynomial of degree d of the function f (x) is defined by:

Bd( f ) ≡
d∑

k=0

f (
k

d
)

(
d

k

)
xk(1 − x)d−k . (21)

The expressions
(d
k

)
xk(1 − x)d−k are called the Bernstein basis functions, the first seven of

which (as well as many other interesting properties of them) are shown in Fig. 4 of [6]. It is
proven that if f is continuous on [0, 1], then Bd( f ) converges uniformly to f on [0, 1] as
d → ∞ with an error bound:

| f (x) − Bd(x) |≤ 9

4
ω( f ; d−1/2), (22)
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Fig. 1 Local approximation r̃1 overw ∈ [0, 0.01]. The validity of r̃1 (blue line) as a local approximation to the
rate of evolution r1 = Nρ1(=: NρA) (black line) reduces as N increases since it takes nonnegative values only
in the interval w ∈ [0, wT ] and develops an internal boundary layer around wT rendering the approximation
non-uniform.Weuse the repeated prisoner’s dilemmagame values a21 = 5 > a11 = 3 > a22 = 1 > a12 = 0,
and n = 10, but the non-uniformity in the approximation is a general feature associated with the behavior
of the fixation probability curve as a function of both w and N . a N = 10; b N = 100; c N = 1000; d
N = 10, 000

where the modulus of continuity [5] ω( f , d−1/2) is defined by

ω( f , δ) = sup
x,y∈[0,1],|x−y|<δ

{| f (x) − f (y) |}. (23)

It is easy to see from formula (21) that Bd( f ) is a weighted linear combination of products of
polynomials xk(1− x)d−k , and it requires us to know d +1 function values at discrete points
w = k

d , k = 0, 1, · · · , d , that equally partition the interval, [0, 1], into d subintervals. By
contrast, the weak selection local approximation (15) or Taylor expansion approximations
[17] are based on the stronger differentiability condition of r̃i but at only one locationw = 0.
Tailoring formula (21) for our use, we obtain the Bernstein approximation formula for the
rate of evolution ri as a function of the selection parameter w ∈ [0, 1]:

Bd(ri ;w) :=
d∑

k=0

ri (
k

d
)

(
d

k

)
wk(1 − w)d−k . (24)
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Fig. 2 Bernstein approximations over [0,1]. The Bernstein approximation Bd (lines in colors) of various
degrees of 1, 2, 4, 5, 10, 20, 25, 50 show uniform convergence to the rate of evolution r1 = Nρ1(black solid
line) for each N = 10, 100, 1, 000 and 10, 000 as d increases. Note the boundary layer at the weak selection
left edge. We use a21 = 5 > a11 = 3 > a22 = 1 > a12 = 0 for a repeated Prisoner’s Dilemma game with
n = 10. The rate of evolution r1 for the neutral selection (black dashed line) is also given as a comparison. a
N = 10; b N = 100; c N = 1000; d N = 10, 000

The Bernstein polynomial then becomes a global uniform approximation as long as ri is
continuous.

Lemma 1 Given a two-player game for a fixed N, the Bernstein polynomial Bd of degree d
uniformly converges to the rate of evolution ri for all i ∈ {1, 2, · · · , N − 1} if the following
inequalities are satisfied

a11(N − 2) + a12 > 0,

a21 + a22(N − 2) > 0,

a12 > 0,

a21 > 0.

(25)

This sufficient condition is equivalent to π A
i > 0, π B

i > 0 for all i = 1, 2, · · · , N − 1,
which implies f Ai > 0, f Bi > 0 for all w ∈ [0, 1] taking into account that these are linear
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Fig. 3 Errors from theBernstein approximations over [0,1].Weuse a21 = 5 > a11 = 3 > a22 = 1 > a12 = 0
for a repeated prisoner’s dilemma game with n = 10. For any fixed d, errors are largest at the weak selection
left edge and smallest at the strong selection right edge. a N = 10; b N = 100; c N = 1000; d N = 10, 000

functions in w. Then, transition probabilities T+
i and T−

i become positive, hence so is their
ratio, eventually making ρi continuous in w.

It is clear that the Bernstein approximation Bd is a polynomial of degree less than or
equal to d and passes through the two points (0, f (0)) = (0, 1) and (1, f (1)) for every d .
Its definition requires d + 1 exact functions values f ( kd ), k = 0, 1, · · · , d . In particular, B1

is just the line segment joining the two end points of the curve f at 0 and 1. Moreover, the
Bernstein approximation can be adjusted so as to approximate a function f defined on any
closed interval [a, b] by scaling:

Bd(x) = B f
d (x) =

d∑
k=0

f (a + (b − a)
k

d
)

(
d

k

)
(
x − a

b − a
)k(1 − x − a

b − a
)d−k . (26)

Thus, whenever the interval of selection w of interest is narrowed, the Bernstein polynomial
will be accordingly taken using Eq. (26).When it is restricted onto the weak selection interval
including the origin where the Taylor approximation gives a valid approximation, the global
Bernstein approximation can be compared to this local (truncated) Taylor approximation.
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Differentiability at the origin is needed to construct this local pointwiseTaylor approximation,
while continuity is the main condition to form a uniform global Bernstein approximation. In
fact, unlike the necessity of d + 1 original function values at different points in domain for
the Bernstein approximation, d + 1 values of derivative functions f (k), k = 0, 1, · · · , d at
the origin must be evaluated for a local Taylor polynomial of degree d .

To be clear, to actually use the formula, we pre-compute ri ( kd ) from exact formula (14) at
d + 1 grid points. Alternatively, one could numerically compute ri ( kd ) at the finite number
of grid points if an analytical formula is not available or is unwieldy (such as for large
numbers of subpopulations in a well-mixed setting, or potentially in structured population
settings). The payoff of doing these one-time computations is we are then guaranteed that
Bd(ri ;w) converges uniformly to ri as d → ∞ throughout the entire regionw ∈ [0, 1], even
off the computed grid points. We show in Fig. 2the Bernstein approximations to the rate of
evolution r1 for N = 10, 100, 1000, 10, 000 throughout the full selection interval w ∈ [0, 1]
as the degree increases. Note the formation of a boundary layer (non-uniformity) in the weak
selection (left) regime. Also shown in the figures is the exact rate of evolution to which
the Bernstein approximations converge. The exact rate of evolution curve is particularly
interesting in that its shape depends very much on N , but as d increases, the finite-degree
approximations converge to the exact (numerical) solution throughout the entire interval.
The size of the errors between the Bernstein approximations and the exact formula is shown
in Fig. 3. Notice that for any fixed value of d , the errors are largest in the weak selection
(boundary layer) regime. Because of this, it is clear the Bernstein polynomial representation
is particularly efficient in the strong selection regime w ∼ 1. To obtain high accuracy of the
approximation in the other regimes, it would require more Bernstein modes. See [6] for more
insight into convergence rates associated with using Bernstein polynomials to approximate
functions.

4 Discussion

The use of Bernstein polynomials as a basis set for approximating curves has a long and illus-
trious history, some of which is described in [6]. Because of the relatively slow convergence
properties of the approximants, the method was not heavily developed as a practical tool
until the advent of computers. Its current use (along with methods due to Bezier) is mostly
in exploiting computers to interactively design parametric curves and surfaces because of
the many insights the Bernstein coefficients provide on the properties of these sometimes
complex objects. For our purposes, we use them as approximants to construct a uniformly
valid approximation to a function defined via a stochastic process through and outside of a
boundary layer region [2], which to our knowledge is novel. While we do not expect approx-
imation formula (24) to provide a practical substitute for the widely used formula (15) in the
weak selection regime, we can imagine its use in problems where selection is stronger, or
where it is computationally impractical to use exact formula (14) over a range of selection
parameter regimes.

Our motivation for developing the Bernstein approximation method is for our use in both
deterministic [8, 9] and stochastic [4, 12] tumor evolution models where we use a chemother-
apy control function as part of the selection parameter. In these models, the chemotherapy
dose determines the selection pressure imposed on different cell subpopulations (chemo-
sensitive cells, chemo-resistant cells), and the parameter can be adjusted time-dependently
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for implementing adaptive chemo-schedules [16]. In these settings, fixation probabilities gen-
erally are computed, as no analytical formulas are available, yet computing these probabilities
at fixed selection parameter values throughout a range is feasible.

The approximation method we propose only requires the computation at d + 1 evenly
spaced grid points, and thenwe inherit (for free) all of thewell-known convergence properties
of the Bernstein approximants [5, 6].

5 Conclusion

In summary, the Bernstein polynomial formula, Bd(ri ), [Eq. (24)] plays the role of a global
approximation to the fixation probability ρi and rate of evolution, ri = Nρi , on the full
interval w ∈ [0, 1] for all N despite the presence of a boundary layer in the weak selection
regime. Its performance improves as d increases for each N so that the error can be reduced
as much as desired, and the major refinement is achieved for strong selection. However,
the approximation needs larger values of d (degree) to gain the same accuracy in the weak
selection range as the strong selection range, especially near w = 0, where it produces a
relatively larger error because of the shape of the curve as a function of N . Despite the
larger error near w = 0, this error is overall smaller for either a small or a large population
size, as shown in Fig. 3a and d. On the other hand, the error remains relatively large near
w = 0 (even with a higher degree) for intermediate values of N as shown in Fig. 3c. In
this weak selection range, there are several simple superior alternative formulas one might
invoke as discussed earlier. It is probably in the intermediate and strong selection range that
our Bernstein polynomial formulas might prove to be most useful.
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