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The N-vortex problem on a rotating sphere.
II. Heterogeneous Platonic solid equilibria
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We describe a new method of constructing point vortex equilibria on a sphere made-up of
N vortices with different strengths. Such equilibria, called heterogeneous equilibria, are
obtained for the fivePlatonic solid configurations, hence forNZ4; 6; 8; 12; 20.Themethod is
based on calculating a basis set for the nullspace of a matrix obtained by enforcing the
necessary and sufficient condition that the mutual distances between each pair of vortices
remain constant. By symmetries inherent in the Platonic solid configurations, this matrix is
reduced for each case andwe call the dimension of the nullspace the degree of heterogeneity of
the structure.For the tetrahedron (NZ4)andoctahedron (NZ6), thedegreeofheterogeneity
is 4 and6, respectively, henceweare free to choose eachof thevortex strengths independently.
For the cube (NZ8), the degree of heterogeneity is 5, for the icosahedron (NZ12) it is 7,while
for the dodecahedron (NZ20) it is 4. Thus, the entire set of equilibria based on the Platonic
solid configurations is obtained, including substructures associated with each configuration
constructed by taking different linear combinations of the basis elements.

Keywords: relative equilibria; Platonic solids; vortex crystals; N-vortex problem
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1. Introduction

In this paper, we describe a new method of finding point vortex equilibria on the
spheremade up of collections of vortices of different strengths. The identification of
such equilibria,whichwe call heterogeneous equilibria, is rare. This is because in the
traditional way of finding equilibria for point vortex systems, one first chooses the
vortex strengths, Gi2R ðiZ1;.;NÞ, and then one attempts to solve the N
nonlinear point vortex equations for special configurations that remain rigid. The
book of Newton (2001) gives the necessary background, while the review paper of
Aref et al. (2003) contains a comprehensive account of the current state-of-the-art
regarding vortex equilibrium patterns along with a fairly complete bibliography on
the topic. If the patterns do notmove, they are classified as fixed equilibria, whereas
if they rotate or translate, they are relative equilibria. Typically, the vortex
strengths are chosen so that all are equal (as inLim et al. 2001;Newton&Shokraneh
2006) in which case the strengths can be scaled out of the equations. With this
Proc. R. Soc. A (2006) 462, 3277–3299
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simplification, Campbell & Ziff (1978) claim to have found all linearly stable
patterns in the plane forN%30, a claim that has so far stood the test of time. Or, if
they are chosen in equal and opposite pairs so that the total vorticity is zero (see
Laurent-Polz 2002), the problem also simplifies considerably. In cases where the
number of vortices is small, a complete characterization can also sometimes be
achieved (seeKidambi&Newton (1998) forNZ3).All of these choices considerably
simplify what is more generally a complicated problem associated with
characterizing solutions of Kelvin’s variational principle, as explained in Aref
et al. (2003). Additionally, one typically uses symmetric configurations (see Aref
1982; Lim et al. 2001; Newton&Shokraneh 2006) in order tomake further progress,
such as placing the vortices on polygonal rings, or nested rings (Aref et al. 2003).

There are two notable exceptions to this in the literature. The paper of Lewis &
Ratiu (1996), who placed the vortices on nested polygons where the number of
vertices in the polygonsbeingnested is commensurate, is theonly oneweknowof that
identifies equilibria in the planar point vortex systemwith non-trivial choices for the
vortex strengths. They identify collections of rotating n-and kn-gon structures that
remain rigid, i.e. the mutual distances between each pair of vortices remains fixed in
time. The second exception is the paper of Aref & Vainchtein (1998), in which
asymmetric equilibria are grown from symmetric states by using a numerical
continuation method in which a particle (i.e. zero strength vortex) is initially placed
at a stagnation point associated with a known equilibrium pattern, then the vortex
strength is used as a continuationparameter and increased as the structure is allowed
todeform in suchawayas to remain rigid.Thegoal of this studywas to ‘grow’ thenew
vortex until it had the same strength as all the others, yielding an asymmetric
pattern. However in the process, the rigid structures obtained this way are made-up
of NK1 vortices of equal strength, and one vortex of a different strength. As such,
they are heterogeneous equilibria, although of a somewhat special kind.

We construct the heterogeneous equilibria by a different procedure. First, we
choose the geometric configuration (which initially defines all the intervortical
distances lijð0Þ), and then ask what choice of Gis leads to an equilibrium structure
(i.e. lijðtÞZ lijð0Þ, tO0). The procedure leads to a complete characterization of the

vortex strength vector GZðG1;G2;.;GN Þ2R
N for which the given configuration

remains rigid, i.e. it is a necessary and sufficient condition for the given pattern to be
an equilibrium.Since thepoint vortex equations are linear in the strengths,Gi, when

we enforce the N

2

 !
conditions that each of the intervortical distances remain fixed,

one obtains a linear system of N

2

 !
equations for the N-vortex strengths, ~AGZ0,

where ~A is a matrix withN columns and N

2

 !
rows. Since N

2

 !
ON ; forNR4, the system

is overdetermined and unless some of the equations are redundant, there are no
solutions. Since redundancy of the equations is closely related to symmetries of the
configurations, for NR4, configurations with no symmetries have no equilibria,
giving an indication ofwhy equilibria for asymmetric structures aremore difficult to
obtain. By taking into account all inherent symmetries of the configuration, we
reduce the matrix ~A to obtain the reduced matrix A, and arrive at a general
criterion for an equilibrium structure, namely that the vortex strength vector G be
an element of the nullspace of A, i.e. G2NðAÞ. The method leads to non-trivial
heterogeneous equilibria as long as NðAÞ is non-empty. We call the dimension of
the nullspace, d, the degree of heterogeneity of the structure as it represents
the number of independent vortex strengths that can be used to construct an
Proc. R. Soc. A (2006)
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equilibrium. Since RankðAÞCnullityðAÞZN , we have that dZNKRankðAÞ.
Because the basis elements ofNðAÞ can be chosen in arbitrary linear combinations,
the equilibria associated with each Platonic solid also includes structures with one
or more of the basis elements missing (i.e. if the vortex strengths are chosen to be
zero). We call these substructures of the Platonic solid. Note that only
configurations in which all N points remain rigid are obtained by our method,
regardless of whether the vortex strengths are zero or non-zero.

We focus on the five Platonic solids: the tetrahedron (NZ4), octahedron
(NZ6), cube (NZ8), icosahedron (NZ12) and dodecahedron (NZ20), which can
all be inscribed inside a sphere. A point vortex is placed at each vertex and by
requiring that the intervortical distances l 2ij be constant, we obtain a complete
characterization of all vortex strengths that allow the Platonic solid to remain
rigid. We obtain the degree of heterogeneity of each of these structures and, in
the process, identify many new examples of equilibria that have not been
identified previously. The method holds great promise for the general
construction of heterogeneous equilibria based on other patterns, and even
asymmetric patterns both in the plane and on the sphere.
2. Equations of motion for relative equilibria

Consider the equations of motion for N-point vortices on a rotating sphere, as
written by Newton & Shokraneh (2006) (Part I in this sequence),

_xi Z
1

4p

XN 0

kZ1

Gk

xk!xi

ð1Kxi$xkÞ
CUêz!xi ði Z 1;.;NÞ

xi2R
3; sxisZ 1:

ð2:1Þ

The prime on the summation indicates that the singular term kZi is omitted and
initially, the vortices are located at the given positions xið0Þ2R

3 ðiZ1;.;NÞ.
The denominator in (2.1) is the intervortical distance, lik, between vortex Gi and
Gk since l 2ik hkxiKxkk2Z2ð1Kxi$xkÞ.

The evolution equations for these relative distances are obtained as follows.
Using equation (2.1), taking the difference of the equations for the ith and the j th
vortex,

_xiK _xj Z
1

2p

XN
kZ1;ksi

Gk

xk!xi

l 2ik
K

1

2p

XN
kZ1;ksj

Gk

xk!xj

l 2jk
CUêz!ðxiKxjÞ

Z
1

2p

XN
kZ1;ksi;ksj

Gk

xk!xi

l 2ik
K

1

2p

XN
kZ1;ksj;ksi

Gk

xk!xj

l 2jk

C
1

2p
Gj

xj!xi

l 2ij
K

1

2p
Gi

xi!xj

l 2ji
CUêz!ðxiKxjÞ

Z
1

2p

XN
kZ1;ksi;ksj

Gk

xk!xi

l 2ik
K

xk!xj

l 2jk

" #
K

1

2p
ðGj CGiÞ

xi!xj

l 2ij

CUêz!ðxiKxjÞ: ð2:2Þ
Proc. R. Soc. A (2006)
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Now, noting that

2ðxiKxjÞ$ð _xiK _xjÞh
dðl 2ijÞ
dt

; ð2:3Þ

take the dot product of equation (2.2) with 2ðxiKxjÞ

2ðxiKxjÞ$ð _xiK _xjÞh
dðl 2ijÞ
dt

Z
1

p
ðxiKxjÞ

XN
kZ1;ksi;ksj

Gk

xk!xi

l 2ik
K

xk!xj

l 2jk

" #

K
1

p
ðGj CGiÞðxiKxjÞ$

ðxi!xjÞ
l 2ij

C2UðxiKxjÞ$êz!ðxiKxjÞ: ð2:4Þ

The last two terms in equation (2.4) are both identically zero, hence we are left
with

dðl 2ijÞ
dt

Z
1

p
ðxiKxjÞ

XN
kZ1;ksi;ksj

Gk

xk!xi

l 2ik
K

xk!xj

l 2jk

" #

Z
1

p

XN
kZ1;ksi;ksj

Gk

xi$xk!xi

l 2ik
K

xi$xk!xj

l 2jk
K

xj$xk!xi

l 2ik
C

xj$xk!xj

l 2jk

" #
:

The first and fourth terms in this sum are identically zero yielding

p
dðl 2ijÞ
dt

Z
XN

kZ1;ksi;ksj

Gk

xj$xk!xi

l 2jk
K

xj$xk!xi

l 2ik

" #
Z
X00
k

GkVijkdijk;

where dijk h ½ð1=l 2jkÞKð1=l 2ikÞ�. Here, the 00 means the summation excludes kZi
and j. Vijk is the volume of the parallelepiped formed by the vectors xi; xj ; xk,

Vijk Zxi$ðxj!xkÞhxj$ðxk!xiÞhxk$ðxi!xjÞ:

Notice that the sign of Vijk can be positive or negative depending on whether the
vectors form a right- or left-handed coordinate system. The relative equations of
motion yield immediately necessary and sufficient conditions for relative
equilibria,

dl 2ij
dt

Z 0; ci; j; 1;.;N ; isj;

for all N

2

 !
distances between any two vortices. This equation does not distinguish

between fixed or relative equilibria, hence the latter case does not yield
information on the rotational frequencies. However, in Newton & Shokraneh
(2006) (Part I), we obtain general formulae for these frequencies about the
centre-of-vorticity axis. The analysis of the relative equilibria of the five Platonic
solids simplifies because of the symmetrical nature of the configurations. These
simplifications take four basic forms:
Proc. R. Soc. A (2006)
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(i) when the faces of the polyhedron are triangles, one does not need to look
at the equations for all N

2

 !
intervortical distances, but instead only

the equations for the edges. Constant edges on the triangular faces are
sufficient to ensure rigidity;

(ii) when any of the terms Vijk are zero, corresponding to three vortices i; j; k
lying on a great circle;

(iii) when any of the terms dijk are zero, corresponding to ljkZ lki; and
(iv) when any of the terms dijk are common as, for instance, are the edge

lengths on a regular polyhedron.

These simplifications will be exploited in varying degrees for each of the
Platonic solid configurations and their analysis. We are now in a position to state
a proposition regarding the existence and non-existence of equilibria.

Proposition 2.1. A necessary and sufficient condition for an N-vortex
equilibrium configuration is thatX00

k

GkVijkdijk Z 0 ði Z 1;.;N ; j Z 1;.;N ; k Z 1;.;N ; isjskÞ; ð2:5Þ

which is a linear system of N

2

 !
equations for the N unknowns GkðkZ1;.;NÞ.

Remark. Note that (2.5) can be written as a matrix system of the form
~AGZ0, where GhðG1;.;GN ÞT2RN and ~A has N

2

 !
rows and N columns. This

gives:

Corollary 2.2. Non-trivial equilibria exist iff detð ~AT ~AÞZ0. When this

condition holds, the nullspace of ~A, denoted Nð ~AÞ, is non-empty, and equilibria
exist for all G2Nð ~AÞ.
Definition. The dimension of Nð ~AÞhd, where dZNKRankð ~AÞ, is called the

degree of heterogeneity of the structure.

We now use this to characterize all of the Platonic solid equilibria.
3. The tetrahedron

We begin by observing that on the tetrahedron, every lij corresponds to an edge,
as shown in figure 1. Moreover, the edges have common length lijZd. This means
that all terms in the sum (2.5) are zero since (see figure 1)

1

l 2jk
K

1

l 2ki

" #
Z

1

d2
K

1

d2

� �
Z 0:

Hence, the matrix ~Ah0 and its nullspace has dimension four. A basis for this
nullspace is the standard basis in R4. This simple observation leads us to
conclude that any configuration of vortices on a tetrahedron is a relative
equilibrium on the sphere. The important result here is that the four vortex
strengths can be chosen independently and in any linear combination, thus, each
of the four configurations shown in figure 2 can be thought of as a basis element
making up all possible tetrahedral equilibria. We summarize this result in the
following proposition.
Proc. R. Soc. A (2006)



G1

G2

G3

G4

Figure 2. The four basis elements of the tetrahedron. Any linear combination of these elements
forms an equilibrium. Open circles represent a vortex of zero strength.

G4

G3
G1

G2

d

d

d
d

d

d

Figure 1. The tetrahedron with NZ4 and common edge length lijZd.
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Proposition 3.1. Any configuration of four vortices (regardless of vortex
strengths) on a tetrahedron is necessarily a relative equilibrium configuration on
the sphere.

Notice that vortices can be of arbitrary strength and, in particular, their
strengths can be zero. If one or more of the vortices has strength zero, such a
tetrahedral configuration is termed as a substructure of the ‘full’ four-vortex
tetrahedral configuration. In view of this, the following corollary is
immediate.

Corollary 3.2. Any substructure of one, two or three vortices (regardless of
vortex strengths) on a tetrahedron is necessarily a relative equilibrium
configuration on the sphere.

This corollary in itself is not a new result, but ties in nicely with previous
results. It is known, for instance, that any two vortices on a sphere are
necessarily in relative equilibrium (Kidambi & Newton 1998; Newton 2001).
Likewise, any three vortices on a tetrahedron necessarily lie on an equilateral
triangle, and equilateral triangle configurations have been shown to be relative
equilibria (Kidambi & Newton 1998; Newton 2001).
Proc. R. Soc. A (2006)
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G6

G5

G3G2

G4

Figure 3. Vortex assignment for the octahedron with common edge lijZd and vortex coordinates
x1Zð0;K1; 0Þ, x2Zð1; 0; 0Þ, x3Zð0; 1; 0Þ, x4ZðK1; 0; 0Þ, x5Zð0; 0; 1Þ, x6Zð0; 0;K1Þ.
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4. The octahedron

The faces of the octahedron, like the tetrahedron, are triangles. This means only
the edges of the triangular faces need be considered. Consider, for example, the
evolution of the edge l12 with reference to figure 3,

p
dl 212
dt

ZG3V123d123CG4V124d124CG5V125d125CG6V126d126: ð4:1Þ

Each of the terms is seen to be zero as follows:

(i) V123Z0, as G1;G2;G3 lie on a great circle;
(ii) V124Z0, as G1;G2;G4 lie on a great circle;
(iii) d125Z ½ð1=l 215ÞKð1=l 225Þ�Z0, as l15Z l25; and

(iv) d126Z ½ð1=l 216ÞKð1=l 226Þ�Z0, as l16Z l26.

It is straightforward to show that G1;G2;G3 and G1;G2;G4 lie on great circles.
By cycling through all indices i, j corresponding to edges, we find the same

reasoning holds for each lij . Hence, as for the tetrahedron, the matrix ~Ah0 and
its nullspace has dimension six. A basis for this nullspace is the standard basis in
R6. We summarize this result in the following proposition.

Proposition 4.1. Any configuration of six vortices (regardless of vortex
strengths) on an octahedron is necessarily a relative equilibrium configuration
on the sphere.

The following corollary is also immediate.

Corollary 4.2. Any substructure of one, two, three, four or five vortices
(regardless of vortex strengths) on an octahedron is necessarily a relative
equilibrium configuration on the sphere.

Figure 4 shows the six basis elements that can be chosen in any linear
combination to make-up an octahedral equilibrium, some of which have been
found before by ad hoc methods, some of which have not previously been
identified as such.
Proc. R. Soc. A (2006)



G1

G8

G7

G6

G5

G4

G3

G2

Figure 5. Vortex assignment for the cube with common edge lijZ2=
ffiffiffi
3

p
and vortex locations

x1Zð1=
ffiffiffi
3

p
ÞðK1;K1; 1Þ, x2Zð1=

ffiffiffi
3

p
ÞðK1; 1; 1Þ, x3Zð1=

ffiffiffi
3

p
Þð1; 1; 1Þ, x4Zð1=

ffiffiffi
3

p
Þð1;K1; 1Þ,

x5Zð1=
ffiffiffi
3

p
ÞðK1;K1;K1Þ, x6Zð1=

ffiffiffi
3

p
ÞðK1; 1;K1Þ, x7Zð1=

ffiffiffi
3

p
Þð1; 1;K1Þ, x8Zð1=

ffiffiffi
3

p
Þð1;K1;K1Þ.

G1

G2

G5

G6

G3

G4

Figure 4. The six basis elements of the octahedron. Any linear combination of these forms an
equilibrium. Open circles represent a vortex of zero strength.
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5. The cube

The faces of the cube are not triangles, so they must be tesselated by also
considering the diagonals on them. Consider the evolution of the diagonal l13
with reference to figure 5,

p
dl 213
dt

ZG2V132d132CG4V134d134CG6V136d136CG8V138d138

CG5V135d135CG7V137d137:

ð5:1Þ

Each of the terms is seen to be zero as follows:

(i) d132Z ½ð1=l 212ÞKð1=l 232Þ�Z0, as l12Z l32;

(ii) d134Z ½ð1=l 214ÞKð1=l 234Þ�Z0, as l14Z l34;

(iii) d136Z ½ð1=l 216ÞKð1=l 236Þ�Z0, as l16Z l36;

(iv) d138Z ½ð1=l 218ÞKð1=l 238Þ�Z0, as l18Z l38;

(v) V135Z0, as G1;G3;G5 lie on a great circle; and
(vi) V137Z0, as G1;G3;G7 lie on a great circle.

Since it is straightforward to prove that V135 and V137 are both zero, i.e that x1,
x3, x5 and x1, x3, x7 lie on great circles, we do not include the proof. By
symmetries, the same is true for all other diagonals.
Proc. R. Soc. A (2006)
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Thus, it suffices to find conditions on the cube edges to remain fixed. Consider
the equation for the edge l12,

p
dl 212
dt

Z
X00
k

GkV12kd12k Z
X00
k

Gk ½xk$ðx1!x2Þ�
1

l 21k
K

1

l 22k

� �
: ð5:2Þ

We simplify each of the terms by noting that

x1!x2 Z

i j k

K1=
ffiffiffi
3

p
K1=

ffiffiffi
3

p
1=

ffiffiffi
3

p

K1=
ffiffiffi
3

p
1=

ffiffiffi
3

p
1=

ffiffiffi
3

p

��������

��������
Z

K2=3

0

K2=3

2
64

3
75:

Hence, each term in the summation in (5.2) is

Gkxk$ðx1!x2Þ
1

l 21k
K

1

l 22k

� �
Z

1

3
Gkxk$

K2

0

K2

2
64

3
75 1

l 21k
K

1

l 22k

� �

Z
4
ffiffiffi
3

p

9
ðK1ÞkC1aGk ðk Z 3; 4; 5; 6Þ; ð5:3Þ

Gkxk$ðx1!x2Þ
1

l 21k
K

1

l 22k

� �
Z 0 ðk Z 7; 8Þ: ð5:4Þ

The simplifications mentioned in §1 are apparent in the common term a,
which arises as a result of the symmetry of the cube. The term is common to all
non-zero or non-great-circle terms with ½ð1=l 2jkÞKð1=l 2ikÞ� appearing in the
dynamical equation for the edges of the cube. With reference to figure 5, it is
clear that

aZ
1

l 213
K

1

l 223

����
����Z 3

ð2
ffiffiffi
2

p
Þ2
K

3

ð2Þ2

�����
�����Z 3

8
:

Putting together equations (5.3) and (5.4) simplifies the equation for the edge l12,

p
dl 212
dt

Z
4
ffiffiffi
3

p

9
aG3K

4
ffiffiffi
3

p

9
aG4 C

4
ffiffiffi
3

p

9
aG5K

4
ffiffiffi
3

p

9
aG6:

So, a necessary condition for a relative equilibrium is

p
dl 212
dt

Z 00G3KG4CG5KG6 Z 0: ð5:5Þ

The analysis can be repeated for all 12 edges on the cube simply by permuting
the edges into the edge l12 and obtaining the relevant linear equations on the
vortex strengths corresponding to the given edge as in equation (5.5). The results
are displayed in table 1. Some of the relations in table 1 are redundant; for
example, the relations arising from l12 and l87. When all of these redundancies are
Proc. R. Soc. A (2006)



Table 1. Linear constraints on the vortex strengths Gi arising from requiring that the cube edges
remain constant, i.e. lijðtÞZconst.

permutation ðsÞ edge constraint on vortex strengths

(1, 2, 3, 4, 5, 6, 7, 8) l12 KG3CG4KG5CG6Z0
(8, 7, 6, 5, 4, 3, 2, 1) l87 KG6CG5KG4CG3Z0
(5, 6, 2, 1, 8, 7, 3, 4) l56 KG2CG1KG8CG7Z0
(4, 3, 7, 8, 1, 2, 6, 5) l43 KG7CG8KG1CG2Z0
(4, 1, 2, 3, 8, 5, 6, 7) l41 KG2CG3KG8CG5Z0
(2, 3, 4, 1, 6, 7, 8, 5) l23 KG4CG1KG6CG7Z0
(2, 6, 7, 3, 1, 5, 8, 4) l26 KG7CG3KG1CG5Z0
(5, 1, 4, 8, 6, 2, 3, 7) l51 KG4CG8KG6CG2Z0
(6, 7, 3, 2, 5, 8, 4, 1) l67 KG3CG2KG5CG8Z0
(8, 5, 1, 4, 7, 6, 2, 3) l85 KG1CG4KG7CG6Z0
(3, 7, 2, 6, 8, 4, 1, 5) l37 KG2CG6KG8CG4Z0
(8, 4, 3, 7, 5, 1, 2, 6) l84 KG3CG7KG5CG1Z0

M. I. Jamaloodeen and P. K. Newton3286
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removed, the reduced linear system of equations is

AGZ

0 0 K1 1 K1 1 0 0

0 K1 1 0 1 0 0 K1

K1 1 0 0 0 0 K1 1

1 0 0 K1 0 K1 1 0

0 1 0 K1 0 K1 0 1

1 0 K1 0 K1 0 1 0

0 K1 0 1 0 1 0 K1

K1 0 1 0 1 0 K1 0

2
6666666666666664

3
7777777777777775

G1

G2

G3

G4

G5

G6

G7

G8

2
6666666666666664

3
7777777777777775

Z 0: ð5:6Þ

The structure of A yields immediately the solution GZð1; 1; 1; 1; 1; 1; 1; 1ÞT,
the case of all identical vortices. All relative equilibrium solutions are found by
finding NðAÞ, the nullspace (kernel) of A, a basis for which is computed to be

v1 Z

1

0

0

0

0

0

K1

0

2
6666666666666664

3
7777777777777775

; v2 Z

0

1

0

0

0

0

0

K1

2
6666666666666664

3
7777777777777775

; v3 Z

0

0

1

0

0

1

1

1

2
6666666666666664

3
7777777777777775

; v4 Z

0

0

0

1

0

K1

0

0

2
6666666666666664

3
7777777777777775

; v5 Z

0

0

0

0

1

1

1

1

2
6666666666666664

3
7777777777777775

:

Any allocation of vortex strengths that is a linear combination of these basis
vectors is a relative equilibrium configuration on the cube. We summarize this
result in the following proposition.
Proc. R. Soc. A (2006)
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−G4

−
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G3

G4

G5

G5

G5 G5G3

G3

Figure 6. The five basis elements of the cube. Any linear combination of these forms an
equilibrium. Open circles represent a vortex of zero strength.
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Proposition 5.1. Label the vortices on the cube and their strengths according to
figure 5. The set of relative equilibria on the cube corresponds to an assignment of
vortex strengths GZðG1;G2;G3;G4;G5;G6;G7;G8ÞT with G2NðAÞ, or equiva-
lently G2RangeðBÞ with A and B,

AZ

0 0 K1 1 K1 1 0 0

0 K1 1 0 1 0 0 K1

K1 1 0 0 0 0 K1 1

1 0 0 K1 0 K1 1 0

0 1 0 K1 0 K1 0 1

1 0 K1 0 K1 0 1 0

0 K1 0 1 0 1 0 K1

K1 0 1 0 1 0 K1 0

2
6666666666666664

3
7777777777777775

; BZ

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 1 K1 1

K1 0 1 0 1

0 K1 1 0 1

2
6666666666666664

3
7777777777777775

:

The five basis elements of the cube are shown in figure 6. Any linear
combination of these gives rise to an equilibrium configuration.
6. The icosahedron

The icosahedron can be best be viewed as 12 vertices lying on three mutually
orthogonal golden ratio rectangles as shown in figure 7. Consider, for example,
the equation for the edge l12

p
dl 212
dt

Z
X00
k

Gk ½x1$ðx2!xkÞ�
1

l 21k
K

1

l 22k

� �
: ð6:1Þ

There are 10 interaction terms and we show the first six to be automatically zero.

G3x3$ðx1!x2Þ
1

l 213
K

1

l 223

� �
Z r31G3

0

1

Kf

2
64

3
75$

i j k

0 K1 f

0 1 f

�������
�������

1

l 213
K

1

l 223

� �

Z r31G3

0

1

Kf

2
64

3
75$

�
0

0

2
64
3
75 1

l 213
K

1

l 223

� �
Z 0;
Proc. R. Soc. A (2006)



G1

G3

G6

G2

G12

G9

G11

G10

G8

G7

G5

G4

Figure 7. The icosahedron viewed as 12 vertices arranged on three mutually orthogonal golden
rectangles. The vortices are located as indicatedwith the golden ratiofZð

ffiffiffi
5

p
C1Þ=2. Vortex locations

are x1Zr1ð0;K1;fÞ, x2Zr1ð0; 1;fÞ, x3Zr1ð0; 1;KfÞ, x4Zr1ð0;K1;KfÞ, x5Zr1ðK1;Kf; 0Þ,
x6Zr1ðK1;f; 0Þ, x7Zr1ð1;f; 0Þ, x8Zr1ð1;Kf; 0Þ, x9Zr1ðKf; 0; 1Þ, x10Zr1ðf; 0; 1Þ,
x11Zr1ðf; 0;K1Þ, x12Zr1ðKf; 0;K1Þ where r1 h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ð5C

ffiffiffi
5

p
Þ

q
normalizes each vector to have unit

M. I. Jamaloodeen and P. K. Newton3288

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

19
 A

pr
il 

20
24

 

G4x4$ðx1!x2Þ
1

l 214
K

1

l 224

� �
Z r31G4

0

K1

Kf

2
664

3
775$

i j k

0 K1 f

0 1 f

��������

��������
1

l 214
K

1

l 224

� �

Z r31G4

0

K1

Kf

2
664

3
775$

�

0

0

2
664
3
775 1

l 214
K

1

l 224

� �
Z 0;

Gkxk$ðx1!x2Þ
1

l 21k
K

1

l 22k

� �
Z 0 as ½l 21k Z l 22k� ðk Z 9; 10; 11; 12Þ:

We now look at the remaining four terms in the equation for l12

Gkx1$ðx2!xkÞ
1

l 21k
K

1

l 22k

� �
Z 2r31fGk

1

l 21k
K

1

l 22k

� �

Z ðK1Þk2r31d21kfGk ; ðk Z 5; 6; 7; 8Þ:

The simplifications mentioned in §1 are again apparent in the common term d21k,
which arises as a result of the inherent symmetry of the icosahedron. The term
is common to the previous four equations. With reference to figure 7 and the

length.
Proc. R. Soc. A (2006)
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coordinates of the vertices, it is clear that the common term d21k is

d21k Z
1

l 22k
K

1

l 21k
Z

1

2ð1CfCf2ÞK
1

2ð1KfCf2Þ :

Putting these together simplifies the equation for the edge l12

p
dl 212
dt

Z r31ðK2d21kfG5C2d21kfG6K2d21kfG7 C2d21kfG8Þ:

So a necessary condition for a relative equilibrium is

p
dl 212
dt

Z 2d21kfr
3
1ðKG5 CG6KG7 CG8ÞZ 00KG5 CG6KG7CG8 Z 0: ð6:2Þ

The analysis can be repeated for all 30 edges on the icosahedron simply by
permuting the other 29 edges into the edge l12 and obtaining the relevant linear
equations on the vortex strengths corresponding to the given edge as in equation
(6.2). As in the case of the cube, some of these are redundant. Eliminating the
redundant equations yields the following reduced system of 15 linear equations
for vortex strengths: G1;.;G12.

AGZ

0 0 0 0 K1 1 K1 1 0 0 0 0

0 0 0 0 0 0 0 0 1 K1 1 K1

1 K1 1 K1 0 0 0 0 0 0 0 0

0 K1 0 K1 0 0 0 0 0 1 0 1

0 0 0 0 0 K1 0 K1 1 0 1 0

1 0 1 0 K1 0 K1 0 0 0 0 0

0 K1 0 K1 1 0 1 0 0 0 0 0

1 0 1 0 0 0 0 0 K1 0 K1 0

0 0 0 0 K1 0 K1 0 0 1 0 1

0 K1 0 K1 0 1 0 1 0 0 0 0

0 0 0 0 1 0 1 0 K1 0 K1 0

K1 0 K1 0 0 0 0 0 0 1 0 1

0 K1 0 K1 0 0 0 0 1 0 1 0

K1 0 K1 0 0 1 0 1 0 0 0 0

0 0 0 0 1 0 1 0 0 K1 0 K1

2
666666666666666666666666666666666664

3
777777777777777777777777777777777775

G1

G2

G3

G4

G5

G6

G7

G8

G9

G10

G11

G12

2
6666666666666666666666666664

3
7777777777777777777777777775

Z 0:

The structure of A yields immediately the solution GZð1; 1; 1; 1; 1; 1;
1; 1; 1; 1; 1; 1ÞT, the case of all identical vortices. All relative equilibrium solutions
are found by finding NðAÞ the nullspace (kernel) of A a basis for which is
Proc. R. Soc. A (2006)
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computed to be

1Z

1

0

0

1

0

0

1

1

0

0

1

1

2
6666666666666666666666666664

3
7777777777777777777777777775

; v2Z

0

0

1

1

0

0

1

1

0

0

1

1

2
6666666666666666666666666664

3
7777777777777777777777777775

; v3Z

0

1

0

K1

0

0

0

0

0

0

0

0

2
6666666666666666666666666664

3
7777777777777777777777777775

; v4Z

0

0

0

0

1

0

K1

0

0

0

0

0

2
6666666666666666666666666664

3
7777777777777777777777777775

; v5Z

0

0

0

0

0

1

0

K1

0

0

0

0

2
6666666666666666666666666664

3
7777777777777777777777777775

; v6Z

0

0

0

0

0

0

0

0

1

0

K1

0

2
6666666666666666666666666664

3
7777777777777777777777777775

; v7Z

0

0

0

0

0

0

0

0

0

1

0

K1

2
6666666666666666666666666664

3
7777777777777777777777777775

:

Any allocation of vortex strengths that is a linear combination of these basis
vectors is a relative equilibrium configuration on the icosahedron. We summarize
this result in the following proposition with the matrix A replaced by its
simplified row echelon form.

Proposition 6.1. Label the vortices on the icosahedron and their strengths
according to figure 7. The set of relative equilibria on the icosahedron corresponds
to an assignment of vortex strengths GZðG1;G2;.;G11;G12ÞT with G2NðAÞ, or
equivalently G2RangeðBÞ with A and B,

AZ

1 K1 1 K1 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 K1 0 K1

0 0 0 0 1K1 1 K1 0 0 0 0

0 0 0 0 0 1 0 1 K1 0 K1 0

0 0 0 0 0 0 0 0 1 K1 1 K1

2
66666664

3
77777775
; BZ

1 0 0 0 0 0 0

0 0 1 0 0 0 0

0 1 0 0 0 0 0

1 1 K1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

1 1 0 K1 0 0 0

1 1 0 0 K1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

1 1 0 0 0 K1 0

1 1 0 0 0 0 K1

2
6666666666666666666666666664

3
7777777777777777777777777775

:

Figure 8 depicts the seven basis elements associated with the icosahedron. Any
linear combination of these elements gives rise to an equilibrium configuration.
Proc. R. Soc. A (2006)



G1

–G5

–G6

–G2

–G9

G9

–G10

G10

G6

G5

G3

G3

G3

G3

G3

G3

G2

G1

GG1

G1

G1

G1

Figure 8. The seven basis elements of the icosahedron corresponding to v1, v2, v3, v4, v5, v6, v7.
Any linear combination of these elements give rise to an equilibrium configuration. Open circles
represent vortices of zero strength.
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7. The dodecahedron

The dodecahedron can best be viewed by regarding it as four planar rings stacked
on each other as shown in figure 9. Observe that the faces on the dodecahedron
are pentagons, not triangles. Therefore, it does not suffice to look at the relative
equations for the edges only. The pentagonal faces have to be triangulated and
the relative equations for the diagonals on them have to be considered also. Begin
by examining the relative equations for one of the edges such as l16.

p
dl 216
dt

Z
X00
k

GkV16kd16k Z
X00
k

Gk ½xk$ðx1!x6Þ�
1

l 21k
K

1

l 26k

� �
; ð7:1Þ

where for the dodecahedron

x1!x6 Z r22

i j k

2 0 fC1

2f 0 fK1

�������
�������Z r22

0

2ð1Cf2Þ
0

2
664

3
775:

As there are 20 vortices on the dodecahedron, there are 18 terms to consider in
equation (7.1). We examine each of these terms exploiting the symmetry
inherent in the dodecahedron. Since l17Z l67, l1;10Z l6;10, l1;17Z l6;17, l1;20Z l6;20,
Proc. R. Soc. A (2006)



G13

G20
G15

G16

G3

G2

G4

G5

G6

G7

G8
G9

G10

G11

G1

G12

G19G18

G17

G14

top
bottom

Figure 9. The dodecahedron shown as four planar rings stacked upon each other. Vortex locations are
given by x1;.;x5Zr2ð2 cosð2kp=5Þ; 2 sinð2kp=5Þ;fC1Þ; kZ0;.; 4; x6;.;x10Zr2ð2 cosð2kp=5Þ;
2 sinð2kp=5Þ;fK1Þ; kZ0;.; 4; x16;.; x20ZKr2ð2 cosð2kp=5Þ; 2 sinð2kp=5Þ;fK1Þ; kZ0;.; 4;
x11;.;x15ZKr2ð2 cosð2kp=5Þ; 2 sinð2kp=5Þ;fC1Þ; kZ0;.; 4, where f is the golden ratio fZ

ð
ffiffiffi
5

p
C1Þ=2 and r2 h1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2C2fC5

p
is chosen to normalize each vector to have unit length.

M. I. Jamaloodeen and P. K. Newton3292
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we have

Gkxk$ðx1!x6Þ
1

l 21k
K

1

l 26k

� �
Z 0 ðk Z 7; 10; 17; 20Þ: ð7:2Þ

The next two terms are zero because the relevant vortices lie on great circles seen
as follows:

G11x11$ðx1!x6Þ
1

l 21;11
K

1

l 26;11

" #
ZG11r

3
2

K2

0

KðfC1Þ

2
64

3
75$

0

2ð1CfÞ2

0

2
664

3
775 1

l 21;11
K

1

l 26;11

" #
Z0;

ð7:3Þ

G16x16$ðx1!x6Þ
1

l 21;16
K

1

l 26;16

" #
ZG16r

3
2

K2f

0

1Kf

2
64

3
75$

0

2ð1CfÞ2

0

2
664

3
775 1

l 21;16
K

1

l 26;16

" #
Z0:

ð7:4Þ
The next four terms have the common term a

Gkxk$ðx1!x6Þ
1

l 21k
K

1

l 26k

� �
ZaðK1ÞkC1r32Gk ðk Z 2; 5; 18; 19Þ: ð7:5Þ

It can be shown by symmetry that the next four terms have the common term g

Gkxk$ðx1!x6Þ
1

l 21k
K

1

l 26k

� �
ZgðK1ÞkC1r32Gk ðk Z 8; 9; 12; 15Þ: ð7:6Þ
Proc. R. Soc. A (2006)
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The next four terms have the common term b

Gkxk$ðx1!x6Þ
1

l 21k
K

1

l 26k

� �
Z ðK1Þkbr32Gk ðk Z 3; 4; 13; 14Þ: ð7:7Þ

Putting these together simplifies the equation for the edge l16

p
dl 216
dt

Zar32½KG2CG5KG18CG19�Cbr32½KG3CG4KG13CG14�

Cgr32½KG8CG9KG12CG15�;

where the constants a;b;g are calculated as

aZ
ðf2 C1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4f2K1

p
2f

f

2fK1
K

1

f2C1

� �
;

gZ
ðf2 C1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4f2K1

p
2f

1

ð2f2 C1ÞK
1

4ðf2K1Þ

� �
; a$gZ 2b2;

with f being the golden ratio fZð
ffiffiffi
5

p
C1Þ=2. So a necessary condition for a

relative equilibrium is

p
dl 216
dt

Zar32½KG2CG5KG18CG19�Cbr32½KG3CG4KG13CG14�

Cgr32½KG8CG9KG12 CG15�Z 0;

or the linear equation on the vortex strengths

a½KG2CG5KG18CG19�Cb½KG3CG4KG13CG14�Cg½KG8CG9KG12CG15�Z0:

ð7:8Þ

The analysis can be repeated for all 30 edges on the dodecahedron simply by
permuting the remaining edges onto the edge l16 and obtaining the relevant linear
equations on the vortex strengths corresponding to the given edge as in equation
(7.8). As in the case of the icosahedron some of these are redundant. For
example, our choice of vortex labelling gives an equation for d21;6=dt that is the
same as d211;16=dt with the following equivalency f1411; 2412;.; 9419;
10420g. Eliminating the redundant equations yields the following system of 15
linear equations

AGZ 0 ð7:9Þ
Proc. R. Soc. A (2006)



G3

G2

G4

G5

G6

G7

G8
G9

G10

G1

Figure 10. A triangulation of one of the pentagonal faces of the dodecahedron, showing
dodecahedral edges as well as chords that form the sides of the triangles. We consider the chords l13
and l14.
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on the vortex strengths GTZ ½G1;.;G20�, where the matrix A, is

AZ

0 KaKb b a 0 0 Kg g 0 0 KgKb b g 0 0 Ka a 0

KaKb b a 0 0 Kg g 0 0 KgKb b g 0 0 Ka a 0 0

Kb b a 0 KaKg g 0 0 0 Kb b g 0 KgKa a 0 0 0

b a 0 KaKb g 0 0 0 Kg b g 0 KgKb a 0 0 0 Ka

a 0 KaKb b 0 0 0 Kg g g 0 KgKb b 0 0 0 Ka a

0 0 a 0 Ka a Ka b 0 Kb 0 0 g 0 Kg g Kg b 0 Kb

0 a 0 Ka 0 Ka b 0 Kb a 0 g 0 Kg 0 Kg b 0 Kb g

a 0 Ka 0 0 b 0 Kb a Ka g 0 Kg 0 0 b 0 Kb g Kg

0 Ka 0 0 a 0 Kb a Ka b 0 Kg 0 0 g 0 Kb g Kg b

Ka 0 0 a 0 Kb a Ka b 0 Kg 0 0 g 0 Kb g Kg b 0

KaKbKg 0 0 0 b 0 g a KgKbKa 0 0 0 b 0 a g

0 KaKbKg 0 a 0 b 0 g 0 KgKbKa 0 g 0 b 0 a

0 0 KaKbKg g a 0 b 0 0 0 KgKbKa a g 0 b 0

Kg 0 0 KaKb 0 g a 0 b Ka 0 0 KgKb 0 a g 0 b

KbKg 0 0 Ka b 0 g a 0 KbKa 0 0 Kg b 0 a g 0

2
666666666666666666666666666666666664

3
777777777777777777777777777777777775

:

We remark that this system yields only necessary conditions on the vortex
strengths for a relative equilibrium on the dodecahedron as they arise from
looking only at the dynamical equations for the edge lengths. The faces on the
dodecahedron are not triangles, so it remains to triangulate the pentagonal faces
and also consider the relative equations for chords belonging to these
triangulations. A typical triangulation of one of the pentagonal faces of the
dodecahedron is shown in figure 10. Observe that there are 12 pentagonal faces
Proc. R. Soc. A (2006)
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on the dodecahedron so that, in principle, the dynamical equations for 24 chord
lengths have to be examined. We will see though that (as was the case with the
30 edges with only 15 non-redundant equations), symmetry yields that the
equations for only 12 chords are non-redundant.

As with the edges of the dodecahedron, by exploiting symmetry, we can find
the equations describing the evolution of the chords l13 and l14. Omitting the
details, we obtain

p
dl 213
dt

Zar32 G5KG4C
G8

2
K

G6

2

� �
Cbr32½G10KG9CG20KG19�

Ccr32 G18KG16C
G15

2
K

G14

2

� �
; ð7:10Þ
p
dl 214
dt

Zar32 G3KG2C
G6

2
K

G9

2

� �
Cbr32½G8KG7CG18KG17�

Ccr32 G16KG19C
G13

2
K

G12

2

� �
; ð7:11Þ

where it can be calculated that

aZaf; cZ
a

2fK1
f

� �2 ; bZaCc

3
:

To see explicitly why the equations for only 12 chords are necessary consider
the equations for the ‘mirror’ chords l11;13 and l11;14

p
dl 211;13
dt

Zar32 G15KG14C
G18

2
K

G16

2

� �
Cbr32½G20KG19CG10KG9�

Ccr32 G8KG6C
G5

2
K

G4

2

� �
; ð7:12Þ
p
dl 211;14
dt

Zar32 G13KG12C
G16

2
K

G19

2

� �
Cbr32½G18KG17CG8KG7�

Ccr32 G16KG9C
G3

2
K

G2

2

� �
: ð7:13Þ

Setting to zero, equation (7.10) and its ‘mirror’ equations and eliminating the
redundant equations yields the following system of 12 linear equations

BGZ0; ð7:14Þ
Proc. R. Soc. A (2006)
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on the vortex strengths GTZ½G1;.;G20�, where the matrix B, is

BZ

0 0 0 Ka a K
a

2
0

a

2
Kb b 0 0 0 K

c

2

c

2
Kc 0 c Kb b

0 Ka a 0 0
a

2
Kb b K

a

2
0 0 K

c

2

c

2
0 0 c Kb b Kc 0

0 K
a

2
Kb 0 0 a c K

c

2
b 0 0 Kc Kb 0 0

c

2

a

2
Ka b 0

0
a

2
Kc Kb Ka 0 b 0 0 a 0 c K

a

2
Kb K

c

2
0 b 0 0

c

2

0 a b c K
a

2
0 Ka 0 0 Kb 0

c

2
b

a

2
Kc 0 K

c

2
0 0 Kb

0 0 0 b
a

2
Ka 0 Kb

c

2
Kc 0 0 0 b c K

c

2
0 Kb a K

a

2

K
a

2
0 a b c Kb 0 Ka 0 0 Kc 0

c

2
b

a

2
Kb 0 K

c

2
0 0

a

2
0 0 0 b Kc Ka 0 Kb

c

2
c 0 0 0 b K

a

2
K

c

2
0 Kb a

c K
a

2
0 a b 0 Kb 0 Ka 0

a

2
Kc 0

c

2
b 0 Kb 0 K

c

2
0

b
a

2
0 0 0

c

2
Kc Ka 0 Kb b c 0 0 0 a K

a

2
K

c

2
0 Kb

b c K
a

2
0 a 0 0 Kb 0 Ka b

a

2
Kc 0

c

2
0 0 Kb 0 K

c

2

0 b
a

2
0 0 Kb

c

2
Kc Ka 0 0 b c 0 0 Kb a K

a

2
K

c

2
0

2
6666666666666666666666666666666666666666666666666664

3
7777777777777777777777777777777777777777777777777775

:

Necessary and sufficient conditions for relative equilibria are obtained by
finding solutions G to both the equations for the edges, equation (7.9), and the
equations for the chords coming from the triangulations, equation (7.14). We
write this as the augmented matrix system

A

B

" #
GZ0: ð7:15Þ

As with the icosahedron, the structure of A and B yields immediately the

solution GZð1;1;.;1;1ÞT, the case of all identical vortices. All relative
equilibrium solutions are found by finding the nullspace (kernel) of the
augmented matrix in (7.15) a basis for which is computed to be

v1Z½Kf;Kf;Kf;Kf;Kf;KfC1;KfC1;KfC1;KfC1;KfC1;1;1;1;1;1;0;0;0;0;0�T;

v2Z½1;fK1;1;f;f;fK1;0;fK1;f;f;fK1;1;fK1;0;0;1;f;1;0;0�T;

v3Z½0;0;K1;Kf;K1;fK1;fK1;K1;K2;K1;K1;K1;0;fK1;0;Kf;Kf;0;1;0�T;

v4Z½f;2;fC1;fC1;2;2Kf;1;2;2;1;2Kf;0;KfC1;KfC1;0;f;1;0;0;1�T:

:

Any allocation of vortex strengths that is a linear combination of these basis
vectors is a relative equilibrium configuration on the dodecahedron. We
summarize this result in the following proposition.
Proc. R. Soc. A (2006)
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Proposition 7.1. Label the vortices on the dodecahedron and their strengths
according to figure 9. The set of relative equilibria on the dodecahedron
corresponds to an assignment of vortex strengths GZðG1;G2;.;G19;G20ÞT for
G2RangeðCÞ with C,

C Z

Kf 1 0 f

Kf fK1 0 2

Kf 1 K1 fC1

Kf f Kf fC1

Kf f K1 2

fC1 fK1 fK1 2Kf

fC1 0 fK1 1

fC1 fK1 K1 2

fC1 f K2 2

fC1 f K1 1

1 fK1 K1 2Kf

1 1 K1 0

1 fK1 0 KfC1

1 0 fK1 KfC1

1 0 0 0

0 1 Kf f

0 f Kf 1

0 1 0 0

0 0 1 0

0 0 0 1

2
66666666666666666666666666666666666666666666666664

3
77777777777777777777777777777777777777777777777775

:

The four basis elements associated with the dodecahedron are shown in
figure 11.
8. Conclusion

The method described in this paper holds great promise for constructing
heterogeneous equilibria for more general geometric configurations on the
sphere and should also work well for the planar N-vortex problem, as well as for
other particle interaction problems, such as those arising in electrostatics where
one has freedom to choose the charges associated with each particle (see Saff &
Kuijlaars 1997). There is also the general question of stability of such structures,
about which far less is known. The only stability analysis of the Platonic solid
configurations we know of is that of Kurakin (2004), in which all the vortex
Proc. R. Soc. A (2006)
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Figure 11. The four basis elements of the dodecahedron. Any linear combination of these forms an
equilibrium configuration. Open circles represent vortices of zero strength.
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strengths are taken as equal. In this case, the tetrahedron, octahedron
and icosahedron are shown to be nonlinearly stable, whereas the cube and
dodecahedron are unstable.

This work was supported in part by the National Science Foundation under grants NSF-DMS

9800797 and NSF-DMS 0203581.
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