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Abstract
Objective Brainmetastases (BM) are associated with poor prognosis and increasedmortality rates, making them a significant
clinical challenge. Studying BMs can aid in improving early detection and monitoring. Systematic comparisons of anatomical
distributions of BM from different primary cancers, however, remain largely unavailable.
Methods To test the hypothesis that anatomical BM distributions differ based on primary cancer type, we analyze the spatial
coordinates of BMs for five different primary cancer types along principal component (PC) axes. The dataset includes 3949
intracranial metastases, labeled by primary cancer types and with six features. We employ PC coordinates to highlight the
distinctions between various cancer types. We utilized different Machine Learning (ML) algorithms (RF, SVM, TabNet DL)
models to establish the relationship between primary cancer diagnosis, spatial coordinates of BMs, age, and target volume.
Results Our findings revealed that PC1 aligns most with the Y axis, followed by the Z axis, and has minimal correlation with
the X axis. Based on PC1 versus PC2 plots, we identified notable differences in anatomical spreading patterns between Breast
and Lung cancer, as well as Breast and Renal cancer. In contrast, Renal and Lung cancer, as well as Lung and Melanoma,
showed similar patterns. Our ML and DL results demonstrated high accuracy in distinguishing BM distribution for different
primary cancers, with the SVM algorithm achieving 97% accuracy using a polynomial kernel and TabNet achieving 96%.
The RF algorithm ranked PC1 as the most important discriminating feature.
Conclusions In summary, our results support accurate multiclass ML classification regarding brain metastases distribution.
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Introduction

It is well established that different primary cancer types, and
different molecular subtypes distribute metastases preferen-
tially to different locations [1–8], although a quantitative
understanding of the spatial distribution of metastatic dis-
ease, and the temporal ordering of when these metastases
first appear at the different locations remains far less under-
stood [3]. Although metastases to the brain are not usually
the location of the first metastatic site for any primary cancer
type [4], the presence of BMs portend poor prognosis for the
patient, regardless of cancer subtype. The advancements in
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treatment regimens, including the development of immuno-
logic therapies have increased life expectancies for a number
of primary cancers, and brought new importance to the study
of BMs, their natural progression and causes for growth.

Recently, progress has been made in quantifying the spa-
tial distribution of brain metastases for breast cancer patients
of differentmolecular subtypes [9], showing quantitively dis-
tinct patterns in some categories. The underlying hypothesis
rests on the notion that different cancers require different
environments for growth [10, 11], and therefore are more
or less likely to metastasize in certain regions of the brain.
We aim to expand on the work performed by our group in
prior studies [1–9], by exploring the predictive ability of a
machine learning model to determine the primary subtype of
cancer given spatial information about its three-dimensional
location, as well as age at treatment and target volume. The

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11060-024-04630-5&domain=pdf


Journal of Neuro-Oncology

potential ability for machine learning models to accurately
identify the primary cancer type from these small set of fea-
tureswould indicate that these differences are distinct enough
to be discerned, which might further motivate the search for
underlying biological explanations for these differences.

We demonstrate that using spatial data as the primary
means of input, a machine learning model can accurately
parse out the primary cancer subtype from a large dataset
of brain metastases from a national brain tumor metastasis
registry.

Methods

Dataset

Data used in this analysis is taken from the International
Radiosurgery Registry Foundation (IRRF) and all patients
underwent gamma-knife radiosurgery (GKRS) for the treat-
ment of brain metastases which are labeled based on the
primary cancer types Breast, Lung, Melanoma, Renal, and
Colon. The dataset consists of six features including sex, age,
target volume, and stereotactic Cartesian coordinates X, Y,
and Z of a total of 3949 intracranial metastases. See the data
summarized in Tables S1 and S2.

Principal component analysis (PCA)

The principal component coordinates are a data driven
orthogonal coordinate system intended to highlight the direc-
tions of the greatest spread of the data, with PC1 as the
direction of the largest variance and PC2 and PC3 as the
directions that capture the remaining variations orthogonal to
the first principal component and to each other. PCA is used
to identify patterns in a dataset and as amethod of dimension-
ality reduction for high dimensional datasets by identifying
new uncorrelated features which allows better visualization
of the dataset [12]. We use PCA from the Scikit-learn library
in Python for our analysis [13].

Synthetic minority over-sampling technique
(SMOTE)

SMOTE is a data augmentation method used to address a
class imbalance in supervised machine learning problems.
Class imbalance occurs when one class of a classifica-
tion problem has significantly fewer samples than the other
classes, which can lead to poor performance of the classifier
on the minority class. SMOTE creates synthetic samples of
theminority class by interpolating between existingminority
class samples. The method selects a minority class sample
and identifies its k nearest neighbors in the feature space.
SMOTE then creates a newsample by randomly selecting one

of the ”k” nearest neighbors and creating a synthetic sample
between the original sample and each of its neighbors that
is a linear combination of the original and selected neigh-
bors. The process repeats until the desired balance between
the classes is achieved. The synthetic samples created by
SMOTE increase the size of the minority class, making it
more representative and improving the classifier’s ability to
learn the patterns in the minority class [14].

Dataset preprocessing

PCA is sensitive to the scaling of the variables in the dataset.
Variables that have larger magnitudes will dominate the vari-
ance and may obscure the contribution of other variables that
have smaller magnitudes. Scaling the variables to a common
scale ensures that all variables are equally important in the
analysis.Different variables in the dataset have different units
of measurement, and these units can affect the calculation of
the principal components. Scaling the variables to unit vari-
ance (i.e., standardizing) removes the units of measurement
and allows the components to be calculated based on the cor-
relations between the variables. In order to ensure that the
result of the PCA is representative of the underlying patterns
in the data, we scale our features before performing the PCA.
We use the StandardScaler from the Scikit-learn package in
Python which set the mean to zero and the variance to one
[13]. In order to reduce the effect of class imbalance in the
dataset, we use the Synthetic Minority Over-sampling Tech-
nique using the SMOTE from the imbalanced-learn library
in Python [15]. We split up the dataset into 90% training
and 10% testing. The reported evaluation metrics in Table 1
correspond to the testing dataset.

Random forest (RF)

Random Forest is a supervised machine learning algorithm
for classification and regression tasks. It is an ensemble learn-
ing method that combines multiple decision trees to make a
final prediction. During the training process, Random Forest
builds a large number of decision trees by using a randomly
selected portion of the training data along with a randomly
selected subset of the available features. Each tree is built

Table 1 Evaluation metrics for different machine learning and deep
learning models

Model Accuracy Precision Recall F1-score

RF 89% 89% 89% 89%

SVM-linear 71% 78% 71% 72%

SVM-poly 97% 97% 97% 97%

SVM-rbf 94% 94% 94% 94%

TabNet 96% 97% 96% 96%
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independently, and at each split, the algorithm selects the
best feature to split on among a random subset of features.
This randomness helps reduce overfitting and improves the
model’s generalization performance. Once the trees are built,
the Random Forest algorithm combines their predictions to
make a final prediction. In classification tasks, the class with
the most votes is selected, and in regression tasks, the mean
or median of the individual tree predictions is taken [16]. A
random forest classifier is built based on RandomForestClas-
sifier from the Scikit-learn package [13].

Support vector machine (SVM) and one v. all (OvA)

The linear SVMalgorithm aims to find a hyperplane that sep-
arates two tumor classes to maximize the distance between
the hyperplane and the nearest samples from each class. In
order to determine themaximumseparation distance between
classes, the dot products of support vectors and the classes
must be computed [17]. The main concept behind this is
identifying the largest margin between the classes. In cases
where the data is not linearly separable, SVMs can use a ker-
nel function to transform the data into a higher dimensional
space that a hyperplane can separate. The kernel functions
used in this study are linear, polynomial, and radial basis
functions. For transitioning from binary to multiclass classi-
fication, we adopt a One-vs-All (OvA) approach [18]. The
OvA strategy involves training multiple binary classifiers,
each distinguishing one class from all the others. For each
class, a binary classifier is trained to distinguish between that
class and all the other classes combined. This results in a set
of binary classifiers, one for each class. The classifier with
the highest confidence score is selected as the predicted class
during prediction. Kernel SVMs are helpful when the under-
lying relationships in the data are non-linear and can model
complex non-linear decision boundaries by transforming the
input features into a higher-dimensional space. This study
uses three different kernels: Radial Basis Function, Polyno-

mial, and Linear kernel. For our analysis, we utilize the SVC
algorithm from the Scikit-learn library in Python [13].

TabNet

Deep learning algorithms have generally been successful in
classifying images or audio but not tabular data [19]. Tab-
Net, a deep neural network (DNN) tailored for learning from
tabular data, employs a distinctive architecture known as the
TabNet encoder [20]. In this architecture, sequential multi-
steps (Nsteps) are a pivotal component. Each step, denoted
as i , leverages processed information from the previous step
(i−1) to make decisions regarding feature utilization. These
decisions culminate in processed feature representations,
which, in turn, play a critical role in the overarching decision-
making process.

Results

InFig. 1we show2Dscatter plots ofBMlocations for fivedif-
ferent primary cancer types (Breast, Lung,Melanoma,Renal,
and Colon) plotted with their PC1 component versus each of
the (X, Y, Z) Cartesian coordinates in 3D space. Figure 1a
shows that PC1 correlates most strongly with the Y coor-
dinate (front-to-back), next, Fig. 1b shows the correlation
with the Z coordinate (top-to-bottom), while Fig. 1c shows
there is very little linear correlation with the X coordinate
(side-to-side). See [9] Fig. S1 for a more detailed plot of the
coordinate systems used with the GKRS stereotactic headset
which measures BM locations.

Our conclusion from these comparisons is that the (PC1,
PC2) plane offers an optimal [12] reduced dimension plane
that most accurately will depict the differences in the spatial
distributions of BMs for the five different cancer types, in
addition to the other features from the data set. The side-to-
side X coordinate distribution is the least important of the

(b) (c)(a)

Fig. 1 Brain metastases scatter plots for five different primary cancers
along Principal Component 1 axis (PC1) vs. X, Y, and Z coordinates
showing strongest linear correlation betweenY axis and PC1 axis. a) 2D

projection of data onto (PC1, Y) plane and linear curve fit; b) 2D pro-
jection of data onto (PC1, Z) plane and linear curve fit; c) 2D projection
of data onto (PC1, X) and linear curve fit
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three, reflecting the fact that the five cancers all distribute
their BMs more or less symmetrically across the midline.
Given that it is the (Y, Z) coordinate plane that mostly cap-
tures the important differences in Cartesian BM locations,
we show in Fig. 2 PC1 for each of the primary cancer types
projected onto this plane. Both the means (the base of each
coordinate arrow) and the directions of each PC1 vector are
different for each primary cancer type as can easily be seen.
Note the similarity, however, between the direction of the
PC1 axis associated with lung and renal cancers, with only
the mean basepoint shifting between the two.

In Fig. 3 we focus on depicting the BM locations in the
PC1 vs. PC2 planes (the optimal reduced-order plane). In
Figs. 3a, 3b we show the distributions of the two cancer
types that are most distinct with respect to their spatial dis-
tributions: Breast vs. Lung (3a), and Breast vs. Renal (3b).
We indicate these differences by plotting the linear curve fits
to each of the cancer types on the same plots, showing both
their means and orientation of the linear curves are very dis-
tinct. By contrast, Figs. 3c, 3d show the distributions that are
most similar: Lung vs. Melanoma (3c), and Lung vs. Renal
(3d). Note the similarity of their means and linear curve fits
as compared with those in Figs. 3a, 3b. The linear curve fits
in these four plots are not intended to indicate that the data
closely follows a linear regression model, but only meant to
show the most apparent differences/similarities in the spread
of points along the regression line (i.e a useful visual guide).

We use three different Machine Learning, and Deep
Learning algorithms: Random Forest model, Support Vec-
tor Machine (SVM) and TabNet to see how well each can

distinguish between the BM spatial distributions associated
with the five primary cancer types. These were chosen based
on their ease of implementation for our dataset and our asses-
ment of their high liklihood of distinguishing subtle pattern
differences in our data subgroups. See discussions of these
algorithms in the Methods section and references therein.

The first important observation is shown in Fig. 4 where
we plot the relative importance of the top 8 most important
features from the data. PC1 is identified as the most impor-
tant feature, followed by the Z coordinate, the Y coordinate,
then PC2, PC3, followed by Age at treatment, X coordinate,
and Target volume. Taken together, our conclusion is con-
sistent with our previous observations, that (PC1, PC2) are
a more efficient coordinate system to use than (Y,Z) given
that the PC1 direction captures most of the spread in the
(Y,Z) plane. In addition, Age at treatment seems to be a
more important variable than Target volume in distinguish-
ing spatial BMdistributions. Table 1 summarizes keymetrics
(Accuracy, Precision, Recall, F1-score) associated with the
Random Forest (RF) method, and three different Support
Vector Machine (SVM) methods: SVM-linear; SVM-poly;
and SVM-rbf as well as TabNet. With all metrics, the SVM-
poly method performs best, scoring at 97% on the test data
in each category. In Table 1, Precision is the number of cor-
rectly identified members of a class divided by the number
of times the model predicted that class; Recall is the number
of members of a class that the classifier identified correctly
divided by the total number of members in that class; and
F1-score is a combination of Precision and Recall combined

Fig. 2 2D projection of scatter
plot of all cancer metastatic
brain tumors onto (Y, Z) plane
showing the Principal
component 1 axis for each
cancer type separately and with
respect to all cancer types
together. Violet crosses indicate
the means of each cancer and
the yellow cross indicates the
mean of all data points
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Fig. 3 Scatter plot of pair
cancer types onto (PC1, PC2)
axes. The black line indicates
the linear curve fit is not meant
to imply that the data is spread
linearly, but is useful to draw
attention to differences in the
two data sets being compared.
Yellow and green crosses show
the means. (a) and (b) plots have
the most distinct brain
metastasis distributions (lung vs.
breast cancers, and breast vs.
renal cancers); (c) and (d) have
the most similar brain metastasis
distributions (lung vs.
melanoma cancers, and lung vs.
renal cancers)

(a) (b)

(c) (d)

Fig. 4 Bar plot showing the
feature importance of the
Random Forest model.
(PC1,PC2,PC3) coordinate
features are collectively more
important than (X,Y,Z)
coordinate features. Age at
Treatment is a more important
non-coordinate feature than
Target volume
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into one single metric. By contrast, SVM-linear performs the
poorest in each category.

Discussion

The primary focus of this study was to analyze the spatial
distribution of BMs across diverse primary cancers and eval-
uate the capacity of machine learning models to distinguish
between them. The results underscore the significance of the
first principal component (PC1), which exhibited substan-
tial alignment with the Y and Z axes (Figs. 1a, 1b), while
the X axis showed minimal correlation (Fig. 1c), consis-
tent with left-right symmetries across primary cancer types.
Utilizing the (PC1, PC2) plane as an optimally reduced
dimension plane proved superior in depicting differences
in BM spatial distributions compared to the (Y, Z) coordi-
nate plane. Notably, distinctive spatial distribution patterns
were observed for Breast vs. Lung and Breast vs. Renal can-
cers [21], emphasizing potential specificity to primary cancer
types. Conversely, similarities were noted in distributions for
Lung vs. Melanoma and Lung vs. Renal cancers, hinting at
shared mechanisms in their development. Machine learning
algorithms, including Random Forest (RF), Support Vec-
tor Machine (SVM), and TabNet, effectively differentiated
between primary cancer subtypes based on BM spatial dis-
tributions. PC1 emerged as a pivotal feature, with the SVM
algorithmusing a polynomial kernel achieving a notable 97%
accuracy, showcasing robust differentiation capabilities. The
high accuracy achieved by these models in most cases not
only suggests the presence of distinct differences in the spa-
tial distribution of BMs across primary cancer types but also
indicates that the translation of these distributions onto the
first principal component (PC1) further enhances the dif-
ferentiation capabilities as indicated by its standing as the
most important feature in the RF algorithm. This observation
implies that utilizing the PC1, which already highlights dif-
ferences in spatial distribution, can be a robust approach for
parsing out these distinctions amongprimary cancer subtypes
and should be an important component in usingMLmethods
on larger data sets. The downstreameffects of developingML
and DL models for BM subtyping could be multifold. First,
it is estimated that no primary tumor source is identified in
roughly 15%of patients, even after imagingworkup [1]. Even
for patients in which BM have known primary cancer diag-
nosis, there are often instances where neurologic symptoms
and brain MRI are the first scans which demonstrate tumor
burden. A high- fidelity test could at the minimum, key in
radiologists and oncologists to look out for a particular sub-
type or unusual patterns. We also note the clinical utility in
shrinking the radiation field based on knowledge of tumor-
specific distributions to minimize unwanted consequences of

high radiation doses.Additionally, by addressing phenotypic,
tumoral behavior characteristics (e.g. where it metastasizes),
and exploring molecular traits which have overlap irrespec-
tive of primary cancer subtype (i.e. where it came from), we
mayunlocknewoptions for therapeutic targets that are shared
between seemingly disparate cancer subtypes. Although this
study focuses on the development of data analytics tools,
we mention some of the important biological hypotheses for
why brain metastases from different tumor types could favor
one region of the brain over another. First is the ’seed-and-
soil’ hypothesis developed over 100 years ago (discussed in
the contex of brain metastases in [10]) which postulates that
cells from the primary tumor (’seed’) metastasize to specific
areas of the brain (’soil’) due to its unique microenviron-
ment that both attracts and allows the tumor to grow [11].
Both the molecular and phenotypic ’compatibility’ of the
seed and soil are important in this framework and have been
explored [11]. A second hypothesis is differening vascular-
ization patterns in the brain [9] and the associated cellular
communication between tumor cells, brain pericytes, astro-
cytes, and vascular endothelial cells partly responsible for
growth and stimulation of vasculature required for spread.
For example, as discussed in [1], it is known that certain pri-
mary cancers (melanoma, NSCLC, and breast cancers) can
co-opt the vasculature and grow preferentially along existing
vessels, while other lung cancers can instigate early angio-
genesis by effecting differing cellular receptors and protein
expression patterns specific to tumor type.

Limitations and challenges

Limitations and challenges associatedwith this study include
the fact that it is a retrospective study from a specific tumor
registry. It would be desirable to carry out a prospective study
that could highlight differences in treatment history (e.g.
chemotherapy, radiation) and differences in brain metasta-
sis distributions from different geographic or demographic
populations.

Challenges include those associated with differences in
brain size and shapes, and pinpointing the exact location of
each BM (defined as the center) given their varying volumes
and shapes using different imaging modalities at different
cancer center facilities.

Conclusions

For the purposes of distinguishing the spatial distribution
of brain metastases associated with the five primary cancer
types under study, we find that the optimal data-designed
coordinates PC1 vs. PC2, as opposed to the Cartesian Y-Z
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coordinate plane offers the best reduced dimensional pro-
jection in which to highlight differences in the spread of the
BMdata. As a variable in our feature-basedmachine learning
approaches, PC1 emerges as the single most important fea-
ture to distinguish the spatial patterns. Instead of the (X,Y,Z)
features in our ML approaches, the best set of features to
use are (PC1, PC2, PC3), with Age at Treatment being more
important than Target volume, but less important than the PC
variables. The SVM-poly ML method performs very well
(97% on test data by all metrics) in distinguishing among
the five cancer types based on their BM distributions. We
believe with more data, and better optimization of the ML
andDLpipelines,MLandDLmethods offer a verypromising
approach towards discerning potentially subtle differences in
BM distributions associated with primary tumor type.
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