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Abstract. The probability of winning a game, set, match, or single elimination tournament in tennis
is computed using Monte Carlo simulations based on each player’s probability of winning
a point on serve, which can be held constant or varied from point to point, game to game,
or match to match. The theory, described in Newton and Keller [Stud. Appl. Math., 114
(2005), pp. 241–269], is based on the assumption that points in tennis are independent,
identically distributed (i.i.d.) random variables. This is used as a baseline to compare with
the simulations, which under similar circumstances are shown to converge quickly to the
analytical curves in accordance with the weak law of large numbers. The concept of the
importance of a point, game, and set to winning a match is described based on conditional
probabilities and is used as a starting point to model non-i.i.d. effects, allowing each player
to vary, from point to point, his or her probability of winning on serve. Several non-i.i.d.
models are investigated, including the “hot-hand-effect,” in which we increase each player’s
probability of winning a point on serve on the next point after a point is won. The “back-
to-the-wall” effect is modeled by increasing each player’s probability of winning a point on
serve on the next point after a point is lost. In all cases, we find that the results provided by
the theoretical curves based on the i.i.d. assumption are remarkably robust and accurate,
even when relatively strong non-i.i.d. effects are introduced. We end by showing examples
of tournament predictions from the 2002 men’s and women’s U.S. Open draws based on
the Monte Carlo simulations. We also describe Arrow’s impossibility theorem and discuss
its relevance with regard to sports ranking systems, and we argue for the development of
probability-based ranking systems as a way to soften its consequences.

Key words. tennis, Monte Carlo Method, non-i.i.d. effects, probabilistic ranking systems, Arrow’s
theorem
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1. Introduction. We describe a Monte Carlo method which we use to calculate
the probability of winning a game, set, match, or single elimination tournament in
tennis. The corresponding analytical theory, described in detail in Newton and Keller
[15] and hereafter referred to as Part I, is based on each player’s probability of winning
a point on serve. Thus the values pRA ∈ [0, 1] and pRB ∈ [0, 1] for player A and player B
are assumed constant throughout each match and throughout the tournament. This
is the assumption that points in tennis are independent, identically distributed (i.i.d.)
random variables. In practice, these values are obtained empirically from each of
the player’s statistics gathered over enough matches and against different opponents
so that this accumulated value of the ratio of points won on serve over total points
served for each player can be used predictively. This ratio converges quite rapidly to
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Fig. 1 Convergence of pRA to the sample mean µ = 0.73 for Pete Sampras through the seven rounds
of the 2002 U.S. Open. Match mean µm = 0.7392 with standard deviation σ = .0314.

a nearly constant value for each player, as shown, for example, in Figure 1, which
shows data for Pete Sampras, the winner of the 2002 U.S. Open men’s singles event,
his last tournament win before retirement. Each data point represents the ratio of
total points won on serve over total points served accumulated through the first n
rounds of the tournament. The final data point (n = 7) contains information on the
player accumulated through the entire tournament, and hence can be viewed as a
cumulative value over his or her field of opponents. As an example, this ratio for Pete
Sampras converges fairly rapidly to its cumulative value of 0.73, which would be used
as input for him in the analytical theory described in Part I.

Using this value for Pete Sampras (i.e., pRA = 0.73), we can ask what the prob-
ability of defeating him would be, given the full range of values for pRB . Figure 2
shows the results based on the analytical theory from Part I. The curves depict the
probabilities of winning a game, set, and match against Sampras, along with data
from the 2002 U.S. Open. A general conclusion based on the steepness of the an-
alytical curves throughout the typical range encountered on the professional circuit
(0.60 < pRA, p

R
B < 0.75) together with the fact that the curves for sets are steeper than

those for games, and are steeper yet for matches (see the corresponding curves in Fig-
ure 2), is that the better player usually wins in tennis—the scoring system conspires
against the weaker player. This is depicted dramatically by the data points shown in
the figure. The data, taken from his 2002 U.S. Open opponents, show that by winning
65% of their points on serve, they won over 80% of their service games, but only 17%
of the sets and none of their matches. Relatively small differences in ability between
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Fig. 2 Probability of winning against Pete Sampras in the 2002 U.S. Open tournament. Note that
the steepness of the curves increases in going from games to sets to matches.

players are amplified relentlessly against the weaker player by the way the scoring
system is constructed. In addition, because of the fact that the top players are spread
throughout the draw based on the seeding system, they tend to meet often (typically
in the semifinals or finals) during a season of tournaments. These facts should, in prin-
ciple, make ranking systems for tennis easier to construct than in other sports which
have a more random component, making upsets more common, and have top ranked
teams that may never play each other during a season (see discussions in [4] and [6]).

There are several important points to make. First, despite the fact that the
convergence shown in Figure 1 is rapid, there are always fluctuations of the higher-
order moments around the mean. These fluctuations are typically small (roughly 1%)
compared to the difference with the average of other players. Hence, on a match-
by-match basis, each player’s ratio of points won on serve to points served varies
somewhat from his accumulated value gathered over large numbers of matches against
different opponents. For example, in the case of Pete Sampras for the 2002 U.S. Open,
his match mean (i.e., the mean of the 7 ratios associated with each match) was 0.7392
with a standard deviation of .0314. For women, the match mean tends to be lower but
the variation tends to be higher. The match mean associated with Serena Williams
in the 2002 U.S. Open and Wimbledon championships, both of which she won, was
0.7158 with a standard deviation of .0762.

In practice, this means that for any given match, even with a large amount of
data in hand, there is some uncertainty as to what actual values to take for pRA and
pRB for each of the players. In addition, when examining targeted homogeneous data
sets, such as, for example, the Borg–McEnroe series of head-to-head matches, there
is some evidence of non-i.i.d. effects creeping in, such as the so-called back-to-the-
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MONTE CARLO TENNIS 725

wall and hot-hand effects (see [7, 10] for more discussions). Other aspects of tennis
that potentially introduce non-i.i.d. effects are the introduction of new balls [12] or
psychological factors that could be present in the first or final set of a match [11, 13].
Although we think of these kinds of effects as “second order,” in close matches they
can play prominent roles because of the steepness of the curves in Figure 2.

One can then legitimately ask how accurate the analytical theory is in predicting
probabilities of winning individual matches, given that it uses fixed values of pRA and
pRB throughout each match. In principle, one could compare the theory with data
gathered from the tournaments; however, this is difficult. While the number of points
and games played by each player in a typical match and tournament is large enough
to extract meaningful statistics (as shown in Part I when comparing the theory with
data for points and games), the number of sets and matches played is not. What is
worse, the analytical formulas predicting set and match probabilities are functions of
both pRA and pRB , while the formulas for predicting tournament outcomes are functions
of 128 variables, one for each of the players in the tournament. Hence, gathering data
for an individual player, say, player A, requires that one look at this player’s matches
only against opponents with the same value of pRB , which reduces the data set even
further. One might then be tempted to look at data for each player over an entire
season of tournaments against opponents with one value of pRB . But this introduces
other problems as tournaments are played on several different surfaces and player
characteristics can vary widely from surface to surface. For example, although Pete
Sampras was dominant on grass, winning a record seven Wimbledon singles titles, he
never did well at the French Open championship, which is played on the much slower
clay surface.

For all of these reasons, it seems desirable to develop a Monte Carlo approach that
is capable of generating large data sets quickly and reliably that would be difficult, if
not impossible, to gather in practice, and that could be used to evaluate the robustness
of the i.i.d. assumption adopted in Part I and used in other analytical approaches that
predate this work, such as those of Carter and Crews [3] and Pollard [17]. As discussed
in the final section, such a simulation could also be used as the basis for a probabilistic
ranking system that would have certain advantages over current ranking systems (see
[4, 5] for a description of a random walk method for ranking football teams).

The search for evidence of non-i.i.d. effects has been pursued in several sports
with mixed results. In basketball, an investigation into whether or not points are
i.i.d. was pioneered by Tversky and Gilovich [24]. Their analysis of consecutive shots
showed that, contrary to popular belief, the chances of a player hitting a shot are as
good after a miss as after a hit; thus they found no evidence of a hot-hand effect. A
similar analysis of hitting streaks in baseball [1, 23] also failed to detect any significant
effects on the probability of making a hit due to a player’s recent history of success or
failure. In tennis, the question of whether points are i.i.d. random variables was first
addressed in the paper of Klaassen and Magnus [10] by doing a statistical analysis of
90,000 points at Wimbledon, collected over a wide range of matches. This analysis
does show some evidence that winning the previous point has a positive effect on
winning the current point and that “important” points are more difficult to win for
the server than points that are less important. Their ultimate conclusion, however,
was that although points in tennis are not exactly i.i.d. random variables, the deviation
from i.i.d. is small. Recent attempts to model some of these non-i.i.d. effects in tennis
can be found in [7, 16, 18, 19, 20, 21].

The primary goal of our paper is to introduce a Monte Carlo approach in which
we can investigate the effects of these deviations and to explore the effects of some
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726 PAUL K. NEWTON AND KAMRAN ASLAM

specific non-i.i.d. models. We end with a description of Arrow’s impossibility theorem
and its consequences with regard to “outcome-based” (deterministic) ranking systems
and give a brief description of a “predictive” ranking system (probabilistic) for tennis
which could be used as the basis for an improved method for seeding players in a
tournament, ultimately producing a year-end ranking for the ATP (Association of
Tennis Professionals) and WTA (Women’s Tennis Association) tours.

1.1. Analytical Theory. First, we review briefly the theory presented in Part I.
In order to calculate the probability that one player A wins a tennis match against
another player B, it suffices to know the probability pRA that A wins a rally when A
serves, and the probability pRB that B wins a rally when B serves. When these two
independent parameters are held constant throughout the match, explicit formulas for
the probabilities of winning a game, set, and match for each player can be obtained.
For example, the probability of winning a game on serve, pGA, is given by

pGA = (pRA)4[1 + 4qRA + 10(qRA)2] + 20(pRAq
R
A)3(pRA)2[1− 2pRAq

R
A ]−1,(1.1)

where qRA = 1−pRA. Note that the formula depends only on characteristics of player A
and not on player B. This simple, explicit, and compact formula which encodes nicely
the game scoring system was, to our knowledge, first obtained in Carter and Crews
[3]. As mentioned earlier, its relatively steep slope in the region of interest for most
players (0.55 ≤ pRA ≤ 0.75) is responsible for the amplification of small differences in
abilities, making upsets more rare in tennis than in other sports, such as football and
basketball.

To obtain corresponding formulas for the probability of winning a set and a match,
let pSA denote the probability that player A wins a set against player B, with A serving
first, and qSA = 1 − pSA. To calculate pSA in terms of pGA and pGB , we define pSA(i, j) as
the probability that, in a set, the score becomes i games for A, j games for B, with
A serving initially. Then

pSA =
4∑

j=0

pSA(6, j) + pSA(7, 5) + pSA(6, 6)pTA.(1.2)

Here, pTA is the probability that A wins a 13-point tiebreaker with A serving initially,
and qTA = 1− pTA.

To calculate the terms pSA(i, j) needed in (1.2), we solve the following system of
recursion equations:
For 0 ≤ i, j ≤ 6,

if i− 1 + j is even: pSA(i, j) = pSA(i− 1, j)pGA + pSA(i, j − 1)qGA ,
omit i− 1 term if j = 6, i ≤ 5;
omit j − 1 term if i = 6, j ≤ 5;

if i− 1 + j is odd: pSA(i, j) = pSA(i− 1, j)qGB + pSA(i, j − 1)pGB ,
omit i− 1 term if j = 6, i ≤ 5;
omit j − 1 term if i = 6, j ≤ 5.

These must be supplemented with the initial conditions

pSA(0, 0) = 1, pSA(i, j) = 0(1.3)

if i < 0 or j < 0. In terms of pSA(6, 5) and pSA(5, 6), we have

pSA(7, 5) = pSA(6, 5)qGB , pSA(5, 7) = pSA(5, 6)pGB .(1.4)
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MONTE CARLO TENNIS 727

To calculate the probability of winning a tiebreaker, pTA, in terms of pRA and pRB ,
we define pTA(i, j) to be the probability that the score becomes i for A, j for B in a
tiebreaker with A serving initially. Then

pTA =
5∑

j=0

pTA(7, j) + pTA(6, 6)
∞∑

n=0

pTA(n+ 2, n).(1.5)

Because the sequence of serves in a tiebreaker is A, BB, AA, BB, etc., we have

pTA(n+ 2, n) =
n∑

j=0

(pRAp
R
B)j

(
qRAq

R
B

)n−j n!
j!(n− j)!p

R
Aq

R
B

= (pRAp
R
B + qRAq

R
B)npRAq

R
B .(1.6)

Using (1.6) in (1.5) and summing yields

pTA =
5∑

j=0

pTA(7, j) + pTA(6, 6)pRAq
R
B

[
1− pRApRB − qRAqRB

]−1
.(1.7)

To calculate pTA(i, j), we solve the following equations:
For 0 ≤ i, j ≤ 7,

if i− 1 + j = 0, 3, 4, . . . , 4n− 1, 4n, . . . ,

pTA(i, j) = pTA(i− 1, j)pRA + pTA(i, j − 1)qRA ,(1.8)

omit j − 1 term if i = 7, j ≤ 6;
omit i− 1 term if j = 7, i ≤ 6;

if i− 1 + j = 1, 2, 5, 6, . . . , 4n+ 1, 4n+ 2, . . . ,

pTA(i, j) = pTA(i− 1, j)qRB + pTA(i, j − 1)pRB ,(1.9)

omit j − 1 term if i = 7, j ≤ 6;
omit i− 1 term if j = 7, i ≤ 6.
These must be supplemented with the initial conditions

pTA(0, 0) = 1, pTA(i, j) = 0(1.10)

if i < 0 or j < 0.
We then calculate pTA by using the solution of (1.8)–(1.10) in (1.7). This allows

us to calculate pSA by using the recursion equations after (1.2) along with (1.3) and
(1.4), with the result for pTA, in (1.2). More details along with all the solutions of
the recursion formulas can be found in Part I. As long as pRA and pRB are held fixed,
the approach is equivalent to a Markov chain model [9]. The analytical curves which
are the results from this theory are shown and discussed in the next section. The
main point to make is that the formulas for winning a tiebreaker, set, and match
for each player are functions of both pRA and pRB , in contrast to the formula (1.1) for
winning a game. This makes it much more difficult to gather large quantities of data
for comparison purposes.
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Fig. 3 Convergence of the Monte Carlo simulation (100 trials and 1000 trials) to the analytical
curves (solid). (a) pGA vs. pRA; (b) Gaussian distributions showing convergence to the mean
for 10, 100, and 1000 trials; (c) standard deviation as a function of the number of games
showing power law convergence σ ∼ αn−β with convergence rate β ∼ 0.511.

1.2. Description of theMonte Carlo Approach. The starting point for a Monte
Carlo simulation of tennis is a random number generator which is capable of generating
values for pRA and pRB sampled from a uniform distribution on the interval [0, 1]. When
player A is serving, for each point we sample a value on the unit interval, and if the
value lies in the range [0, pRA], player A wins the point, otherwise player B wins the
point. Similarly, when player B is serving, for each point we sample a value on
the unit interval, and if the value lies in the range [0, pRB ], player B wins the point,
otherwise player A wins the point. The point-by-point simulation proceeds in this
way according to the scoring rules of tennis (see Part I), and statistics are gathered
to show the number of games, sets, and matches won by each. For our purposes,
the pseudorandom number generation algorithm RAND in MATLAB is suitable and
the statistics generated from a sequence of trials is discussed below. The average
computational time per match is roughly 3 ms.

2. Convergence to Analytical Theory. Figure 3 shows the convergence results
for games as a function of points. We show the analytical curve from Part I, together
with the statistics based on 100 realizations and 1000 realizations of games (Figure
3(a)). Figure 3(b) shows the Gaussian convergence for one of the data points (pRA =
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Fig. 4 (a) pSA vs. pRA showing convergence of the Monte Carlo simulation (1000 trials) to the
analytical curves (solid) against a spectrum of servers 0.0 < pRB < 1.0; (b) pMA vs. pRA
showing convergence of the Monte Carlo simulation (1000 trials) to the analytical curves
(solid) against a spectrum of servers 0.0 < pRB < 1.0.

0.5) which converges most slowly to the correct analytical value (pGA = 0.5) for 10,
100, and 1000 trials. Figure 3(c) shows the standard deviation σ as a function of the
number of games plotted on a log-log scale. The data shows a characteristic power law
convergence σ ∼ αn−β with power law exponent β ∼ 0.511. The convergence for sets
and matches is similarly rapid and of the same power law form, with exponents β ∼
0.611 and β ∼ 0.476, respectively. In all cases we found that after 1000 realizations,
convergence was sufficiently close to the analytical curves and was uniform throughout
the entire range of values of pRA. Thus, in practice, this relatively small number of
realizations was used.

Figure 4(a) shows the results of pSA as a function of pRA for the entire spectrum of
opponents; hence, pRB = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9. Again, for 1000 realiza-
tions, the convergence to the analytical curves is uniform throughout the entire range.
The same is true of Figure 4(b), which shows results for pMA (3 out of 5 set format) as
a function of pRA against a wide spectrum of opponents. The results for the 2 out of
3 set format are similar. Our main conclusion from these test runs is that 1000 trials
are sufficient for most purposes to ensure that the statistics are accurate throughout
the full range of both parameters pRA and pRB .

3. Non-i.i.d. Models. To test the robustness of the analytical model based on the
i.i.d. assumption, we can perturb the values of pRA and pRB to see what effect this has
on the shapes of the curves. We do this in the context of modeling non-i.i.d. effects.

3.1. Importance. Not all points in a tennis match are equally important to
determining its outcome. Although this is well known to professional players, there
is not uniform agreement on which points are the most important. Some think that
the first point of a game is the most important as it is crucial to get off to a good
start, while probably the points most frequently cited as being pivotal are 15-30 and
30-15. What is agreed upon is that great players adjust their efforts according to
which points, games, and sets they feel are the most crucial toward winning a match.
In fact, one of the qualities that is frequently cited as a sign of a great champion
is his or her ability to focus on key points and to be able to raise the level of play
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730 PAUL K. NEWTON AND KAMRAN ASLAM

accordingly. The most recent example of a player who seemed to have this ability is
Pete Sampras, but Bjorn Borg and Chris Evert are also frequently singled out.

If, indeed, players changed their level of effort according to the point, game, or
set, then not all points, games, or sets would be identical and the i.i.d. assumption
on which the theory in Part I is based would need to be modified. To carry out this
modification, we describe a method for quantifying the importance of a point, game,
or set based on an original formulation of Morris [14] and examined further in Pollard
[19]. Morris defined the importance of a point for winning the game as the difference
between two conditional probabilities: the probability that the server wins the game
given that he wins the point, minus the probability that he wins the game given that
he loses the point. If Ipij denotes the importance of point i for the server and j for
the receiver for winning the game, then

IPij = PGi+1,j − PGi,j+1,(3.1)

where we define PGij as the probability that the server will win the game given that
the score is i points for the server and j points for the receiver. In a similar way, we
can define the importance of a given game toward winning a set as

IGij = PSi+1,j − PSi,j+1,(3.2)

where PSij denotes the probability that the first server will win the set given that the
score is i games for the first server and j games for the first receiver. The importance
of each point toward winning a tiebreaker, ITij , is defined as

ITij = PTi+1,j − PTi,j+1,(3.3)

where we define PTij as the probability that the first server will win the tiebreaker
given that the score is i points for the first server and j points for the first receiver.
Finally, the importance of each set toward winning a match is defined as

ISij = PMi+1,j − PMi,j+1,(3.4)

where PMij denotes the probability that the first server will win the match given that
the score is i sets for the first server and j sets for the first receiver. We can then
calculate the importance of each point, game, and set in terms of the variables pRA
and pRB .

To obtain the terms for the importance of each point, we solve hierarchically the
system

PGij = pRAP
G
i+1j + qRAP

G
ij+1, i, j = 0, 1, 2,(3.5)

and when i = 3 or j = 3 we use

PG31 = pRA + qRAP
G
32,(3.6)

PG13 = pRAP
G
23,(3.7)

pG30 = pRA + qRAP
G
31,(3.8)

pG03 = pRAP
G
13.(3.9)

Since the probability of winning a game when the score is 0 to 0 is simply pGA, we
have as an initial condition

PG00 ≡ pGA = (pRA)4[1 + 4qRA + 10(qRA)2] + 20(pRAq
R
A)3(pRA)2[1− 2pRAq

R
A ]−1.(3.10)
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Fig. 5 Importance of each point in terms of winning a game as a function of pRA.

We show the results for the importance of each point in Figure 5. Each figure
shows the importance curves as a function of pRA with the server having 0, 1, 2, or
3 points, respectively. The curves show that the importance of the point depends
on the value of pRA and how many points the server currently has. Figure 6 shows
the point with maximal and minimal importance as a function of pRA. In the region
0 ≤ pRA ≤ 0.5, the most important point is 40-30 and the least important point is
0-40, whereas in the region 0.5 ≤ pRA ≤ 1.0, which is the typical range for professional
players, the most important point is 30-40, while the least important point is 40-0.

The importance of each point in a tiebreaker, game, and set can be obtained
by solving similar hierarchical systems of equations, taking care to keep track of the
alternating service games between players A and B throughout the set and the serving
order in a tiebreaker. For example, if playing against Pete Sampras, the importance
of each point in a tiebreaker and the importance of each game toward winning a set as
a function of pRA are shown in Figures 7 and 8, respectively. Again, the detailed values
of the importance of the various points in a tiebreaker and games in a set depend on
the values of both pRA and pRB .

We can now use this information to test the effects of a non-i.i.d. model based on
the following idea. Suppose player A adjusts his or her level of play according to the
importance of each point. In the simplest case, we adjust player A’s nominal value
of pRA by 20%, increasing the value on the most important point of the game (40-30
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Fig. 6 Curves of maximal (solid) and minimal (dashed) importance as a function of pRA.

or 30-40), and decreasing the value by the same amount on the least important point
(40-0 or 0-40). Note that the least important point in a game can occur only once,
whereas the most important point can occur arbitrarily many times (ad-in, which
means the server wins the next point after deuce, is equivalent to 40-30 and ad-out,
which means the server loses the next point after deuce, is equivalent to 30-40). The
effect of this model is shown in Figure 9 for the values pRB = 0.2, 0.4, 0.6, 0.8 and for the
full range of values of pRA. The overall effect is that the curves are shifted slightly up
from what they would have been in the pure i.i.d. theory, i.e., player A’s probability
of winning is increased in this model. The reason for this is that the adjustment up
on the most important point occurs more frequently than the adjustment down on
the least important point; hence the effective value for pRA is slightly higher than that
in the baseline i.i.d. case.

3.2. The Hot-Hand Effect: Does Success Breed Success?. To model the hot-
hand effect, we perturb each player’s value of pRA or pRB on the one point immediately
following each point that they win. Figure 10 shows the result of perturbations
with 20% amplitude taken from a uniform distribution evenly distributed around the
analytical curve. The figure shows relatively rapid convergence to the i.i.d. curves for
10, 100, and 1000 trials. After 1000 trials, the convergence to the analytical curves
is uniform throughout the range. This is somewhat surprising given the size of the
perturbations and their non-i.i.d. nature; however, because they are taken from a
uniform distribution which is symmetric about the analytical curves, the increased
kicks and decreased kicks from the nominal analytical values of pRA and pRB effectively
cancel each other out after a sufficiently large number of trials. Contrast this with
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Fig. 7 Importance of points in a tiebreaker against Pete Sampras (pRB = 0.73). Gray zone marks
the typical professional range 0.6 < pRA < 0.75.
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Fig. 8 Importance of games toward winning a set against Pete Sampras (pRB = 0.73). Gray zone
marks the typical professional range 0.6 < pRA < 0.75.
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Fig. 9 Non-i.i.d. effects based on adjusting play according to the importance of points for a range
of values of pRB.

Figure 12, which shows the results from hot-hand perturbations that are are still large
(20% size amplitudes) but are not symmetric about the analytical curve. Here, we
increase the nominal value of pRA or pRB , depending on who is serving, on each point
after a point is won. The result, after 1000 trials, does not converge to the i.i.d. curves
but shows a systematic shift upwards. Hence, the server’s probability of winning a
game is increased over what it would be from the pure i.i.d. theory.

3.3. Back-to-the-Wall Effect: Does Failure Breed Success?. To model the back-
to-the-wall effect, we perturb each player’s value of pRA or pRB by a fixed percentage on
one point immediately following each point that they lose. Figure 11 shows the result
of perturbations with 20% amplitude taken from a uniform distribution evenly dis-
tributed around the analytical curve. The figure again shows relatively rapid conver-
gence to the i.i.d. curves for 10, 100, and 1000 trials. After 1000 trials, the convergence
to the analytical curves is uniform throughout the range. Figure 12 shows the results
from back-to-the-wall perturbations that are are still large (20% size amplitudes) but
are not symmetric about the analytical curve. Here, we increase the nominal value of
pRA or pRB , depending on who is serving, on each point after a point is lost. Again, the
result, after 1000 trials, does not converge to the i.i.d. curves but shows a systematic
shift upwards. Hence, as in the hot-hand perturbations, the server’s probability of
winning a game is increased over what it would be from the pure i.i.d. theory.

4. Arrow’s Impossibility Theorem and Probabilistic Ranking Systems. Sports
ranking systems take many different forms, as reviewed in Stefani [22], but, roughly
speaking, they can be grouped into two distinct categories. One type attempts to
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Fig. 10 Random white noise hot-hand perturbations with 20% amplitude.
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Fig. 11 Random white noise back-to-the-wall perturbations with 20% amplitude.
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Fig. 12 Curves showing the effect of hot-hand perturbations and back-to-the-wall perturbations with
20% amplitude.

reward teams after a predetermined number of games are played, by, for example,
crowning them as national champions or year-end champions—we call these types of
ranking systems “outcome based.” The philosophy behind these methods is that there
should be a player or team who “deserves” to be recognized as “the best,” and if only
the correct method were found, such a team or player could be unambiguously chosen.
Examples of systems of this type are the ones currently used in college football (see
[4] for a lucid description of the BCS system) and in men’s and women’s professional
tennis. They typically rely on matrix methods of the type surveyed nicely in Keener
[8] and used by Colley [6] for ranking football teams.

With regard to this use of ranking systems, it is an underappreciated fact that
Arrow’s impossibility theorem [2] for aggregating individual preferences into social
preferences holds. The theorem states that there is no rule, majority voting or oth-
erwise, for establishing social preferences from arbitrary individual preferences (the
monkey ranking system notwithstanding [4, 5]). In other words, under certain condi-
tions of rationality and equality, it is impossible to guarantee that a ranking of societal
preferences will correspond to rankings of individual preferences when more than two
individuals and alternative choices are involved.

As a simple and concrete example of how this translates into the ability of
outcome-based methods to unambiguously determine rankings, consider the prob-
lem of trying to decide upon the year-end men’s tennis champion for the 2002 season
in which Pete Sampras won the U.S. Open, Andre Agassi won the Australian Open,
and Lleyton Hewitt won Wimbledon. Suppose we do this by majority voting among
three judges between each pair of players. Let one of the judges be an American who
might naturally favor the U.S. Open champion, one an Australian who favors the Aus-
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Table 1 Fictional year-end voting by three judges in the 2002 men’s professional tennis tour. Each
player won one of the grand slam events.

Judge Sampras Agassi Hewitt
American 1 2 3
British 2 3 1
Australian 3 1 2

tralian Open champion, and the third British, who favors the Wimbledon champion.
A set of preferences is said to be rational (or transitive) if when player A is ranked
higher than player B and B is ranked higher than C, then A is ranked higher than
C. Certainly this is a desirable property for any ranking system and any system that
produces an outcome without this property is likely to be viewed as unfair. Consider
Table 1, which shows rankings chosen by the three judges. Suppose the American
judge gives Sampras his number one rating, the British judge gives Hewitt his top
rating, and the Australian judge gives Agassi his number one rating. The number two
and three rankings for each of the judges are also shown in the table. If we compile
the final rankings by majority vote, in a choice between Sampras and Agassi, since
two out of the three judges voted Sampras as the higher-ranked player, he would
be ranked above Agassi. In a choice between Agassi and Hewitt, Agassi would be
ranked ahead of Hewitt since two out of the three judges voted this way. Now, since
Sampras was chosen ahead of Agassi, and Agassi ahead of Hewitt, logic would tell
us to rank Sampras ahead of Hewitt, i.e., transitivity should hold. But consider the
outcome of the voting among the three judges in trying to decide between Sampras
and Hewitt—two out of the three of the judges ranked Hewitt higher than Sampras.
The outcome is irrational as transitivity does not hold.

Despite the fact that Kenneth Arrow was awarded the Nobel Prize in Economics in
1972 for his work, there continues to be a widespread belief that if the right method
were discovered, there would be a “correct” way to crown a national champion in
college football or a year-end champion in tennis which would eliminate irrational
outcomes and settle all arguments, leaving everyone satisfied. But in fact Arrow
proved that under certain reasonable assumptions, there is no method for constructing
social preferences (rankings) from arbitrary individual ones (votes). Such outcome-
based methods based on voting, as the one used to crown the NCAA national football
champion, very often produce logical inconsistencies that are the basis for arguments
that cannot be settled rationally. The amount of energy and effort spent on arguing
over rankings of all types (particularly in college football, where few games are played
compared to the total number of teams involved, but also regarding the notorious
U.S. News and World Report Annual Ranking of Colleges) is an indication of the
pervasiveness of Arrow’s theorem.

A second, and very different, kind of system attempts to use rankings for the
purpose of predicting outcomes; hence we call these “predictive methods.” In a sense,
they are inherently probabilistic. This type of system is used, for example, by the
amateur and professional chess tour where rankings are designed so that they can
be directly translated into predictions of outcomes in head-to-head competitions (see
[22]). In tennis, it is widely recognized that this is not possible to do with the current
ranking systems. In fact, two of the four grand slam tournaments (the French Open
and Wimbledon) do not use the world rankings when it comes to seeding the players
in the draw before the tournament begins. One then has to wonder what sort of ad
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hoc system they adopt when choosing the seed, as this choice can have very direct
and important consequences on how far players advance in the draw, which, in turn,
affects their future seedings, rankings, and earnings.

For example, the seedings of the men’s 2005 Wimbledon draw created a contro-
versy when the number-two-ranked player in the world, Lleyton Hewitt, was seeded
third, causing him to face the top-ranked player, Roger Federer, in the semifinal round
instead of the finals. His loss to Federer in the semifinals instead of the finals cost He-
witt several hundreds of thousands of dollars, since players are paid according to how
far they advance in the tournament. With regard to world rankings, on two separate
recent occasions in women’s professional tennis, the top ranking went to players who
had never won a grand slam championship.

A way to soften the consequences of Arrow’s theorem is to represent the alterna-
tives as elements in a spectrum of possibilities, i.e., to use probability-based ranking
systems. Then, if the preferences of the individual exhibit single-peakedness, the
societal preferences can be constructed unambiguously. The Monte Carlo methods
described in this paper have the potential to provide such distributional information;
hence they represent an important step in the direction of designing a probabilistic
ranking system for tennis. The idea is to run thousands of simulated tournaments
with players randomly ordered in fictitious draws before the tournament begins and
then use the accumulated statistical winning distributions as the basis for seeding
the actual tournament before it is played. The player who is most likely to win the
tournament based on the simulations would be the number one seed in the real draw,
the player with the second highest winning percentage would be seeded second, and so
on. The input for each player, at the very least, would be his or her accumulated ratio
of points won on serve to points served, together with higher-order fluctuations (thus
allowing for non-i.i.d. effects), collected over the most recent relevant tournaments
(i.e., clay court tournaments would be used to seed the French Open, whereas grass
court tournaments would be used to seed Wimbledon). A more elaborate vector of
input parameters for each player (for example, their ability to win points on service
returns) could also be used. Moreover, we believe the computational power is avail-
able to run similar simulations in other sports, such as NCAA College Basketball and
Football. Moving toward systems that are probabilistic and predictive would finesse
the inherent inconsistencies guaranteed by Arrow’s impossibility theorem and would
better reflect the reality that a victory of a lower-ranked player over a higher-ranked
one in a single match is not necessarily an inconsistent outcome.

5. Discussion. We finish by showing one use of these Monte Carlo simulations
for the purpose of predicting tournament outcomes based on data gathered through-
out a tournament or in previous tournaments. Figures 13 and 14 show the 2002
U.S. Open men’s and women’s draws from the semifinals onward, with the values of
pRA and pRB collected for each of the four players over the previous rounds of the tour-
nament. These values are listed under each player’s name as pRi (n), where i = 1, 2, 3, 4
indicates the player and n indicates the number of previous rounds over which the
data was collected. Using the values pRi (5) for each of the players, we then run 1000
simulated matches for each of the next two rounds and gather statistics giving the
probabilities for each player to advance to the next round (Pij) and for each to become
the ultimate tournament champion (superscript “TC”). In each case, the error bars
with one standard deviation are shown as well. The comparison with the numbers
from the analytical theory from Part I are not shown, but in each case the analytical
predictions are within one standard deviation of the simulated values.
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2002 US Open Women’s Semifinals Draw

                     P   = .4564+/- .0146   12 

p  (5) = 158/225 = .7022
1

R

L. Davenport   

A. Mauresmo 

V. Williams   

21

TC
3

p  (5) = 170/239 = .7113
2

R

p  (5) = 237/374 = .6337
3

R

p  (5) = 176/256 = .6875
4

R

p  (6) = 208/301 = .6910
1

R

p  (6) = 235/357= .6583
4

R

p  (7) = 240/349 = .6877
1

R

S. Williams   P  =  p    = .6519+/- .015614 1

TC

V. Williams   P  =  p    = .3481+/- .015641 4

TC

S. Williams     p    = 1
1
TC

p    = .2861+/- .0137
1
TCS. Williams

P  = .5436+/- .0146  

2

TCp    = .3597+/- .0126

P  = .2559+/- .012934

p    = .0482+/- .0700

P  = .7441+/- .0129
43

p    = .3059+/- .0148
4

TC

Fig. 13 Tournament predictions based on Monte Carlo simulations of the 2002 U.S. Open women’s
draw using data through the quarterfinal round. Note that the eventual champion,
S. Williams, had only a 28.61% chance of winning the tournament based on data through
the quarterfinal round, while L. Davenport and V. Williams had higher percentages. How-
ever, after the semifinal round, her chances of winning the tournament increased to 65.19%,
making her the clear favorite.

We believe this gives a glimpse into the power of the Monte Carlo code and its
potential usefulness and flexibility both in doing full tournament simulations while
holding the values of pRA and pRB for each player fixed, and also for doing non-i.i.d.
simulations while varying these values in some prescribed way. One of the main
conclusions of our work, however, is that varying these values in ways that might
be considered reasonable from the point of view of modeling non-i.i.d. effects such
as hot-hand, back-to-the-wall, or random fluctuations does not dramatically alter
the probabilities predicted from a pure i.i.d. theory (see discussions of this effect in
[21]). While this result may be somewhat surprising, it is consistent with many of the
previously cited results that indicate the difficulties in detecting non-i.i.d. effects in
data sets, not only in tennis but in other sports as well. It highlights the unreasonable
effectiveness of the i.i.d. assumption in certain situations even when it is suspected
that non-i.i.d. effects are present. While the i.i.d. assumption may not be perfect, it
is important to remember that even if one knows that non-i.i.d. effects are present,
the choice of a particular non-i.i.d. model can introduce further sources of error.

The Monte Carlo program for running tennis simulations is a working, evolving
code written in the MATLAB programming environment that can be used to shed
light on many questions one could think of, and we welcome such questions from
interested readers. Our code is currently being used to simulate a grand slam season
in tennis and to develop probabilistic tennis ranking systems for both men and women.
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2002 US Open Men’s Semifinals Draw

P. Sampras
1
TC

S. Schalken 21

2
TC

A. Agassi 34 

3
TC

L. Hewitt 43

4
TC

p  (5) = 392/524 = .7481
1

R

p  (5) = 447/655 = .6824
2

R

p  (5) = 285/420 = .6786
3

R

p  (5) = 370/537 = .6890
4

R

P. Sampras 14 1
TC

A. Agassi 41 4
TC

p  (6) = 469/629 = .7456
1

R

p  (6) = 365/551 = .6624
4

R

p  (7) = 573/781 = .7337
1

R

P. Sampras      p    = 1
1
TC

P  = .8252+/- .012312

p    = .6752+/- .0153

P  = .1748+/- .0123

p    = .0847+/- .0084

P  = .4374+/- .0134
p    = .0933+/- .0087

P   = .5627+/- .0134

p    = .1468+/- .0124

P  =  p    = .8853+/- .0104

P  =  p    = .1147+/- .0104

Fig. 14 Tournament predictions based on Monte Carlo simulations of the 2002 U.S. Open men’s
draw using data through the quarterfinal round. Based on this data, the tournament cham-
pion, P. Sampras, was the clear favorite, with a 67.52% chance of winning the tournament
after the quarterfinal round. His probability of winning the tournament then increased to
88.53% after his semifinal performance, making him the prohibitive favorite over A. Agassi,
whose chance of winning the finals was only 11.47%.
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