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Construction of point vortex equilibria
via Brownian ratchets

BY PAUL K. NEWTON* AND GEORGE CHAMOUN

Department of Aerospace and Mechanical Engineering and
Department of Mathematics, University of Southern California,

Los Angeles, CA 90089-1191, USA

A theory capable of producing equilibrium configurations of point vortices in the plane,
along with a numerical scheme to compute them, is described. The theory is formulated
as a problem in linear algebra where one must find solutions to the matrix equation
AGZ0, where A is the (1/2)N(NK1)!N non-normal configuration matrix obtained by
requiring that all intervortical distances remain fixed, and G2R

N are the N-vortex
strengths. For existence of an equilibrium, A must have a non-trivial nullspace. We
consider the singular values of A; when this has one or more zero singular values, the
nullspace of A is non-empty and an equilibrium exists for some choice of G. New
equilibrium configurations are found numerically by randomly depositing N points in the
plane, which generically gives rise to a configuration matrix A with empty nullspace.
Using the sum of squares of the k smallest singular values of A as a ‘ratchet’, we
‘thermally fluctuate’ the configuration, allowing each point to execute a random walk in
the plane, retaining only those configurations which reduce this quantity at the next
step. The configuration is thus driven to one with nullspace (A)ZkO0. These converged
states are not necessarily nearby their initial configurations, typically they are
asymmetric, and often we can drive the same initial state to several different equilibria.
A reverse-ratchet method is also described, which can produce initial conditions that
would evolve to a specified equilibrium state. Once a converged final state is achieved,
the full singular value decomposition of A is used to calculate an optimal basis set for the
nullspace of A and thus all allowable G. The distribution of the singular values gives
important information on the size of each equilibrium state (as measured by Frobenius
norm), their distance from each other (spacing and density) and how far a randomly
chosen system of N points in the plane is from the nearest equilibrium configuration with
a specified rank, as well as its Shannon entropy.

Keywords: point vortex equilibria; relative equilibria; Hamiltonian systems;
Brownian ratchets; random walk methods; singular value decomposition
*A
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Acc
1. Introduction

The study of equilibrium patterns of point vortices in the plane has a long and
interesting history, dating back to the 1800s with the work of Mayer (1878),
Thomson (1878), Warder & Shipley (1888) and Wood (1898) on configurations of
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floating magnetic devices which self-assemble into symmetric geometric
configurations reminiscent of those that would form by a collection of straight,
rectilinear thin vortex filaments, i.e. point vortices. These objects were once
thought of as physical models of ‘vortex atoms’ by Thomson (soon to become
Lord Kelvin). In an elegant reincarnation of these early experiments, Grzybowski
et al. (2000) produced new and more robust symmetric patterns, some of which
had first been seen in the famous Los Alamos catalogue of two-dimensional
vortex patterns produced by Campbell & Ziff (1978). For type II superconduc-
tors, vortex lattice configurations were first predicted by Abrikosov (1957). The
first direct image of such a lattice can be found in the paper by Essmann &
Trauble (1967), which shows a very clear ‘perfect’ triangular lattice configuration
of point vortices, as well as some which are not so perfect. More recent
experiments on Bose–Einstein condensate vortex lattices have produced still
more elaborate, precise and smaller-scale configurations (see Abo-Shaer et al.
2001), captured some of their interesting dynamics in the formation process
(Tsubota et al. 2002), under forcing (Adhikari & Muruganandam 2002),
uncovered states with multiply quantized vortex sites (Lundh 2002) and lattices
with ‘broken symmetries’, i.e. which exhibit defects or dislocations in the field.
Particularly interesting and relevant to this work are the experiments reported
by Engels et al. (2002, 2003), in which they show a vortex lattice with no
discernible symmetries that reforms after being perturbed. This work has
reinvigorated a classical subject and brought to light new issues that remain
poorly understood. Why, for example, are symmetric states far more prevalent
than asymmetric ones and what causes the dislocations, that sometimes form,
which break the high degree of symmetry associated with a lattice? Two-
dimensional vortex lattices can also be produced using magnetically confined
non-neutral plasmas (Durkin & Fajans 2000) and superfluid helium (Yarmchuk
et al. 1979), and although each of these continuum systems is governed by a
different mean-field equation, when the vortices at the lattice sites are sufficiently
compact, their azimuthal structure becomes irrelevant and they can be modelled
more directly as a linear superposition of velocity fields, which are radially
symmetric around each site and decay with distance Gb$r

Ka, with Gb2R being
the strength of the bth particle and aR1. The velocity field at the lattice site
of the bth particle is thus a superposition of the velocities induced by the other
NK1 particles. When aZ1, the system has been rigorously derived, under
suitable assumptions, as a particle approximation to the two-dimensional Euler
equations of incompressible fluid flow (Marchioro & Pulvirenti 1994), and it is
generally accepted that such a decay law also generically models these other
continuum systems, at least to leading order and when all the particles are
stationary. We refer the reader to the fairly comprehensive recent review on
these so-called ‘vortex crystals’ (Aref et al. 2003).

Notably lacking in all of these studies are examples of completely asymmetric
patterns and heterogeneous states made up of vortices whose strengths are not
equal or do not sum to zero. Though it was long suspected that patterns
exhibiting no particular symmetries existed, a commonly held view was that they
were elusive owing to their lack of stability (Tkachenko 1966a,b). Indeed, most of
the numerical methods used to find equilibria, such as those of Campbell & Ziff
(1978), relied heavily on driving the free energy to a local minimum that was
close to an initial symmetric configuration. A common assumption is that the
Proc. R. Soc. A (2007)
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vortices are spaced evenly on nested rings from a central point (Aref 1982);
hence, they can be thought of as a family of nested polygonal patterns of various
shapes and sizes (Lewis & Ratiu 1996). The only paper that focuses on producing
asymmetric states is that of Aref & Vainchtein (1998) who found such states of
equal strength point vortices using a clever parameter continuation strategy.

Our goal in this paper is to formulate an interacting particle theory as a
problem in linear algebra and derived from the N-point vortex equations
governing a wide class of vortex lattice systems. Equally important to the
development of such a theory is a practical numerical scheme capable of
producing these states; hence, we describe what we call a ‘Brownian ratchet
scheme’ (in analogy to molecular and biological motors that rectify Brownian
motion) to home in on new N-vortex equilibrium patterns, showing examples for
NZ6, 8 and 10. Our method gives insights into how prevalent an equilibrium
configuration is with respect to all possible N-vortex configurations, why
asymmetric patterns are far less prevalent than symmetric ones (not relying on
stability arguments) and why equilibrium states with pre-assigned vortex
strengths (such as all being equal) are even less prevalent than more complex
heterogeneous states. Since the search algorithm we use is driven by unbiased
Brownian motion, the method has an equally likely chance of finding any existing
equilibrium configuration and does so relatively quickly.
2. The equilibrium problem

First, we pose the equilibrium problem as a constrained variational problem
based on an augmented Hamiltonian and then we formulate it as a classical
problem in linear algebra.
(a ) Variational formulation

The equations of motion for N-point vortices in complex form, which assume
radial symmetry at each site and have a velocity field Gb$r

K1, are given by
Newton (2001) and Aref et al. (2003) as

_z�a Z
1

2pi

XN
bZ1

0 Gb

zaK zb
; ðaZ 1;.;NÞ: ð2:1Þ

Here, zaZxaCiya denotes the position of the ath vortex in the complex plane,
Gb2R denotes its strength and the prime on the summation indicates that the
singular term bZa is omitted. Equation (2.1) arises from a Hamiltonian

H ZK
1

4p

XN
a;bZ1

0GaGblogjzaK zbj; ð2:2Þ

as is well known (Newton 2001). If we assume that the entire configuration of
point vortices moves as a rigid body, then each vortex can, in principle, translate
and rotate, which gives rise to the ansatz

_za ZV C iuza; ð2:3Þ
Proc. R. Soc. A (2007)
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where V is the (complex) translational velocity, u is the (real) rotational
frequency, and these are the same for each of the N vortices making up the
configuration. By substituting this in the equations of motion (2.1), we obtain the
system of equations that must be solved to obtain an equilibrium

V �Kiuz�a Z
1

2pi

XN
bZ1

0 Gb

zaK zb
; ðaZ 1;.;NÞ: ð2:4Þ

When the vortex strengths are first given, by solving this algebraic system, we
simultaneously find the vortex positions za, the translational velocity V and the
rotational frequency u of the rigid structure.

This algebraic system can also be obtained by extremizing the augmented
Hamiltonian

H Cv
XN
aZ1

GaxaKu
XN
aZ1

GayaC
1

2
u
XN
aZ1

Gajzaj2; ð2:5Þ

where VZuCiv and u play the role of Lagrange multipliers and the constraints
are the conservation of linear impulse XC iYZ

PN
aZ1 Gaza and angular impulse

IZ
PN

aZ1 Gajzaj2 (Aref et al. (2003) for discussions on this variational principal
due to Kelvin). To see this, we differentiate equation (2.5) with respect to xa
and ya,

vH

vxa
CvGa CuGaxa Z 0; ð2:6Þ

vH

vya
KuGa CuGaya Z 0: ð2:7Þ

We also know that the equations of motion for the system in the complex plane are

vH

vya
ZGa _xa;

vH

vxa
ZKGa _ya: ð2:8Þ

Using equation (2.8) in equation (2.6), equation (2.7) yields

vCuxa Z
dya
dt

; KuCuya ZK
dxa
dt

: ð2:9Þ

Combining these relations gives

uKivKiuðxaKiyaÞZ
dxa
dt

Ki
dya
dt

; ð2:10Þ

or

V �Kiuz�a Z _z�a Z
1

2pi

XN
bZ1

0 Gb

zaK zb
; ð2:11Þ

where VhuCiv. These are precisely the equations that guarantee that the system
of N vortices moves as a rigid collection of points in the plane, with translational
velocity V and angular velocity u. Thus, equilibrium configurations of N-point
vortices in the plane arise as extremizers of the interparticle Hamiltonian energy
Proc. R. Soc. A (2007)
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(2.2), subject to the constraints that the linear and angular impulse be conserved.
The stability of the configuration thus depends on whether it sits at a local
minimum (stable), maximum (unstable) or saddle point (unstable) on the
appropriate energy landscape.
(b ) Linear algebra approach

Alternatively, if we form the equations for the intervortical distances from
(2.1), i.e. the equations governing l 2alh jzaK zlj2, we obtain (Aref et al. 2003)

_l
2
al Z

2

p

XN
bZ1

00GbAalb

1

l 2ab
K

1

l 2lb

 !
Z 0; ða; lZ 1;.;NÞ: ð2:12Þ

Here, Aalb is the signed area subtended by the three vortices located at points za,
zl and zb. If they appear in clockwise order, then the area is considered positive,
otherwise it is negative. The double prime indicates that the singular terms bZa
and bZl are omitted. Any configuration of N-point vortices such that

d

dt
l 2al
� �

Z 0; ða; lZ 1;.;NÞ; ð2:13Þ

is an equilibrium state; hence, a necessary and sufficient condition for the N-point
vortices to form a relative equilibrium is

XN
bZ1

00GbAalb

1

l 2ab
K

1

l 2lb

 !
Z 0; ða; lZ 1;.;NÞ: ð2:14Þ

A key observation is that this set of equations is linear in the vortex strengths Gb

(in contrast to the interparticle Hamiltonian energy (2.2) which is quadratic in
the vortex strengths) and hence can be written as a matrix equation

AGZ 0; ð2:15Þ
where G2R

NZðG1;G2;.;GN Þ is the vector of vortex strengths and A is an
(1/2)N(NK1)!N non-normal (ATAsAAT) matrix, before any reduction which
takes advantage of the conservation of the Hamiltonian and linear and angular
impulse. The dimension of the nullspace of the matrix A is denoted by nullity(A),
the rank by rank(A) and the range of A by R(A). We call A the configuration
matrix, and the dimension of the nullspace of A represents the configuration’s
degeneracy. Since rank(A)Cnullity(A)ZN, non-trivial equilibria exist iff
rank(A)!N (in this case, A is said to be rank deficient), or equivalently
nullity(A)O0. Multiplying equation (2.15) by AT yields the matrix equation

ðATAÞGZ 0; ð2:16Þ
where ATA is now a square, symmetric N!N matrix, called the configuration’s
covariancematrix. The condition for equation (2.16) to have a non-trivial solution
is det(ATA)h0, which is equivalent to saying nullity(A)O0. Equivalently, if ATA
has one or more zero eigenvalues, then there is a non-trivial nullspace of A and G
can be chosen so that an equilibrium exists for that configuration. If the dimension
of this nullspace is one, then there is a unique choice for the vector of vortex
Proc. R. Soc. A (2007)
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Figure 1. (a) Smallest eigenvalue of ATA corresponding to 106 random arrangements of NZ10
point vortices in the plane. (b) Square root of sum of squares of two smallest eigenvalues of ATA.
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strengths G (up to multiplicative constant) for which the configuration is an
equilibrium. Thus, each equilibrium configuration can be naturally categorized
according to the dimension of the nullspace of its corresponding configuration
matrix (Jamaloodeen & Newton 2006; Newton & Chamoun 2006) as well as its
Hamiltonian energy level. This formulation gives immediate insights into several
interesting issues, such as the ‘likelihood’ of finding an equilibrium state and thus
their density in the space of all possible configurations.

Figure 1a shows the smallest eigenvalue of ATA corresponding to 106 random
arrangements of NZ10 points in the plane. Since none of the eigenvalues are
zero, none of the configurations are equilibria, indicating that a generic
arrangement of N points in the plane will not be an equilibrium for any choice
of G1. Alternatively, if we first choose G and ask which configurations lead to
equilibria (as is the common practice), these will be a subset of those produced by
random arrangements as shown in figure 1, making them even more rare.
Figure 1b shows the square root of sum of squares of the smallest two
eigenvalues, and our conclusions are the same for the case with two- and higher-
dimensional nullspaces—the problem of finding an equilibrium state is akin to
that of finding a needle in a haystack (figure 2).
3. The singular value decomposition

(a ) Summary of important properties of the singular value decomposition

The appropriate tool for understanding and characterizing the nullspace, range
and rank of a non-normal matrix is the singular value decomposition (SVD;
Golub & Van Loan 1996). The N singular values, s(i ) (iZ1,., N ), of the M!N
real matrix A, are non-negative real numbers that satisfy

AvðiÞ ZsðiÞuðiÞ; ATuðiÞ ZsðiÞvðiÞ; ð3:1Þ

1 The smallest eigenvalue can also be thought of as a 2-norm measure of the distance between this
non-equilibrium configuration and the closest configuration which is an equilibrium for some choice
of G.

Proc. R. Soc. A (2007)



(a)

0

1

2

3

4

5

0 1 2 3–1–2–3– 4

–1

–2

y

G3

G6

G5

G2

G4

G1

(b)

G1 G2G4

G5

G3

G6

0 1 2 3–1–2–3–4 4 5

0

1

2

3

4
5

–1

–2

–3

(c)

y 0

0–0.8

G2

G3 G5
G6

G7

G4

G8

G1

1.0

1.0

(d )

0

0

1–1
–1

1
G8

G7 G6G5

G4

G3

G2

G1

( f )

0 0.5 1.0
x

G8

G7

G6

G5

G4

G2

G10

G1

G3
G9

(e)

y

0 0.5 1.0

0.5

0.9

x

G1

G2

G4

G5

G7
G8

G6G10

G9

G3

Figure 2. Examplesof asymmetric equilibriumconfigurationswithone-dimensionalnullspacesachieved
by starting with initial configuration depicted in unfilled circles. Converged final states, with smallest
singular value less than 10K5, are shown in filled circles. (a) NZ6, GZ(0.0040, K0.0033, K0.0254,
K0.0079, K0.9996,K0.0001)T; (b) NZ6, GZ(K0.2394, K0.1049, 0.1078, 0.0314, 0.7461,K0.6020)T;
(c) NZ8, GZ(0.0064, K0.0221, K0.0743, 0.0456, 0.1197, K0.1380, 0.0751, K0.9761)T; (d ) NZ8,
GZ(K0.4235, K0.0167, K0.0266, K0.2444, 0.0227, K0.0306, 0.0196, K0.8707)T; (e) NZ10,
GZ(K0.0364, K0.0666,K0.0253, K0.0335, K0.1392, K0.5016, K0.0716, 0.0163, K0.8462, 0)T; and
( f ) NZ10, GZ(0.1561, 0.0048, 0.0970,K0.0078, 0.1108, 0.2844,K0.0047,K0.0410, 0.9334, 0.0004)T.
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where u(i )2R
M and v(i )2R

N. The vector u(i ) is called the left-singular vector
associated with s(i ), while v(i ) is the right-singular vector. In terms of these, the
matrix A has the factorization (spectral decomposition)

AZUSVT ; ð3:2Þ

where U is an M!M unitary (i.e. UTUZ1) matrix whose columns are the vectors
u(i ); V is an N!N unitary matrix with columns given by v(i ); and S is an M!N
matrix with non-negative numbers on the diagonal and zeros off the diagonal

SZ

sð1Þ / 0

1

0 / sðN Þ

0 / 0

« «

0 / 0

0
BBBBBBBBBB@

1
CCCCCCCCCCA
: ð3:3Þ

The singular values can be ordered so that s(1)hs(max)Rs(2)R/Rs(min)R0 and
of course one or more may be zero. As is evident from multiplying the first
equation in (3.1) by AT and the second by A,

ðATAKsðiÞ2ÞvðiÞ Z 0; ðAATKsðiÞ2ÞuðiÞ Z 0; ð3:4Þ

i.e. the singular values squared are the eigenvalues of the matrices ATA or AAT,
which have the same eigenvalue structure, while the left-singular vectors u(i ) are

the eigenvectors of AAT and the right-singular vectors v(i ) are the eigenvectors of
ATA. From equation (3.1), we also note that the right-singular vectors v(i )

corresponding to s(i)Z0 form a basis for the nullspace of A. From a practical
point of view, it is well known (Golub & Van Loan 1996) that numerical
algorithms which calculate the singular values of A are much more stable and
accurate than those that calculate the eigenvalues of ATA, particularly when
calculating small or zero values.

The main use here is that we seek configuration matrices with one or more
singular values that are zero, and the SVD provides an explicit and optimal
representation of the range and nullspace of the matrix A. In particular, the right-
singular vectors v(i ) corresponding to the singular values that are zero span the
nullspace of A, while the left-singular vectors u(i ) corresponding to the non-zero
singular values span the range of A. The rank of A equals the number of non-zero
singular values and since rank(A)Cnullity(A)ZN, we know that the number of
zero singular values equals the dimension of the nullspace of A. In addition, the
ranks ofA,ATA andAAT are the same, andATA andAAT have the same non-zero
eigenvalues and nullspaces.

If the rank of A is r, then there are r non-zero singular values ordered so that
s(1)R/Rs(r)Rs(rC1)Zs(rC2)Z/s(N )Z0 and one obtains the following rep-
resentation of the matrix A:

AZsð1Þuð1Þvð1ÞT Csð2Þuð2Þvð2ÞT C/sðrÞuðrÞvðrÞT : ð3:5Þ
Proc. R. Soc. A (2007)
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In this way, the singular value decomposition expresses A as a sum of r rank-one
matrices and also provides an optimal method of approximating A by another
matrix of reduced rank. In particular, we can define a rank k!r approximation to
A by keeping only the first k terms of equation (3.5),

Ak Z sð1Þuð1Þvð1ÞT Csð2Þuð2Þvð2ÞT C/sðkÞuðkÞvðkÞT sA: ð3:6Þ
This matrix is sometimes referred to as the k-truncated SVD. It can be proved
that Ak is the optimal reduced rank approximation to the matrix A, meaning
that any other rank k matrix approximation to A has greater error, as measured
by their Frobenius-norm difference.
(b ) Variational aspects of the SVD

It is perhaps worth pointing out, in view of Kelvin’s variational character-
ization of equilibria based on the augmented Hamiltonian, that the singular
values can also be characterized variationally. Consider the quadratic function
formed from the configuration matrix

sðu; vÞZuTAv: ð3:7Þ
Here, u and v are unit vectors in R

M and R
N, respectively. It can be proved that s

attains its maximum when uhu(1) and vhv(1), i.e. when they correspond to the
left- and right-singular vectors of A. The maximum value achieved by the
function s corresponds to the largest singular value of A, s(u(1), v(1))hs(1).
Likewise, the next largest singular value maximizes (3.7) when u and v are
required to be orthogonal to u(1) and v(1). The kth largest singular value
maximizes (3.7) when u and v are required to be orthogonal to u(1) and v(1), u(2)

and v(2),., u(kK1) and v(kK1).
In addition, it is also interesting to note that if we define the Shannon entropy,

E, of the system in terms of normalized eigenvalues of the covariance matrix

E ZK
XN
iZ1

Piln Pi; ð3:8Þ

where the probabilities Pi are defined in terms of the normalized eigenvalues

Pi Z
lðiÞPN
jZ1 l

ðj Þ ; ð3:9Þ

then it is a standard fact that the basis set obtained using the SVD minimizes
the Shannon entropy, which, to some extent, dictates the distribution of the
singular values.
4. The Brownian ratchet scheme

Effective tools to find a needle in a haystack are algorithms driven by Brownian
motion, so that all portions of the configuration landscape are sampled in an
unbiased way. Here, we use what we call a Brownian ‘ratchet’ scheme. The idea
behind a Brownian ratchet is simple—it is a device that sits in a heat bath and
Proc. R. Soc. A (2007)
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rectifies the non-equilibrium thermal fluctuations to generate motion in a
preferred direction. One can read surveys by Doering (1995, 1998) and Reimann
(2002). In analogy with these studies, we ratchet the Brownian motion of the
particles, allowing it only in the direction that decreases the smallest singular
value (or sum of the smallest k singular values) of A until it drops below a pre-
assigned threshold. In this way, we drive the configuration towards an
equilibrium (i.e. one or more zero singular values), but we do not know which
values to assign G until we derive a basis set for the nullspace of A corresponding
to the converged state. The number of singular values that are simultaneously
driven to zero correspond to the dimension of the nullspace and thus determine
whether or not the equilibrium configuration is unique (up to a multiplicative
constant) with respect to the choice of G.
(a ) The Brownian ratchet algorithm

The algorithm consists of four main steps.

(i) First, we randomly deposit N points in the plane in an unbiased way and
compute the N singular values of the configuration matrix A. These can be
ordered and denoted s1hs(max)Rs2R/RsNhs(min)R0. The minimum
singular value, sN, is positive with probability one. In practice, we cycle
through 106 random configurations and choose the one with the smallest
s(min) as our initial state in order to speed up the convergence in later steps.

(ii) After picking an initial state, we allow each of the N points to execute an
unbiased random walk in R

2, and we compute the singular values of A at
each random step. The singular values, after the nth step, are denoted

s
ðnÞ
1 R/Rs

ðnÞ
N , and the step size is scaled so that it is linearly proportional

to the smallest, hence decreases in size as the configuration gets closer to an
equilibrium.

(iii) To find a configuration with a one-dimensional nullspace, at the (nC1)
step, we only keep the new arrangement if the minimal singular value

decreases from that of the previous step, i.e. if s
ðnC1Þ
ðminÞ!s

ðnÞ
ðminÞ. Otherwise, we

discard the configuration, produce a new random arrangement and repeat
this step. For equilibria with k-dimensional nullspaces, we drive the scalar

quantity dk h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s
ðnÞ
N

� �2
C/C s

ðnÞ
NKkC1

� �2r
to zero in a similar fashion.

(iv) When s
ðnC1Þ
N (or equivalently dk) is below a certain predetermined

threshold, i.e. dk!dthreshold, the algorithm has converged. Typically, we
take dthresholdw10K10k.

In practice, the algorithm converges fairly quickly to equilibrium configu-
rations, particularly if dk associated with the initial guess is small. Figure 3 shows
some convergence properties of the algorithm. Figure 3a shows the evolution of
the smallest singular value squared of A as the configuration homes in on a
converged state for NZ6, 8 and 10. Figure 3b shows a magnified view of the
convergence path of one of the vortices making up the configuration. We also
note that there is nothing that prevents us from reversing the ratchet, as
described in step (iii), and only retaining new configurations at each step that
Proc. R. Soc. A (2007)
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Figure 3. Convergence properties of the Brownian ratchet scheme. (a) Evolution of smallest
singular value squared of A as the configuration homes in on a converged state for NZ6, 8 and 10.
Convergence is achieved when smin!O(10K5). (b) Magnified view showing the convergence path of
one of the points in the equilibrium configuration.
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increase the smallest singular value. This reverse-ratchet procedure can be used
when starting from a specific equilibrium configuration in order to find a path
leading to a generic starting point with empty nullspace. The convergence path
identified in this manner is also a convergence path to the equilibrium from that
starting point using the forward-ratchet procedure.

For us, the truncated SVD plays an important practical role. As stated in step
(iv) of the numerical procedure, we are searching for configurations which lead to
matrices A which have one or more zero singular values. In practice, we say the
configuration has converged if one or more of the singular values is smaller than
10K5. We then approximate this ‘converged’ configuration matrix (say of rank r)

with the optimal rank k!r matrix Ak as in (3.6) (i.e. by setting s(kC1)Zs(kC2)Z
/s(r)Z0) to compute a basis set for the nullspace of Ak and hence the vortex
strength vectors G for which the converged configuration is an equilibrium.
Figure 2 shows examples of equilibria for NZ6, 8 and 10 corresponding to
configuration matrices with one-dimensional nullspaces. Note that these
converged states show no underlying symmetries (figure 3).

Of course, the method can be used to find symmetric states as well, as shown
in figure 4. For this, we use the reverse-ratchet procedure, as described earlier,
increasing the smallest singular value at each step instead of decreasing it. The
case shown in figure 4a starts as an NZ6 triangular relative equilibrium state
with a one-dimensional nullspace (Newton & Chamoun 2006). As the
configuration evolves to its final asymmetric state (filled circles), the smallest
singular value increases to its final value O(1), showing that the configuration
made up of filled circles is not an equilibrium. However, if this asymmetric
configuration were used as an initial state for the forward-ratchet scheme, one
realization of an ensemble of random runs would converge to the symmetric
equilateral triangle. Likewise, figure 4b starts with an NZ7 polygonal relative
equilibrium with a two-dimensional nullspace (Newton & Chamoun 2006) and
Proc. R. Soc. A (2007)
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Figure 4. Two examples showing the reverse-ratchet scheme to produce initial configurations that
converge to symmetric equilibrium states. (a) NZ6 triangular equilibrium configuration (unfilled
circles) has a configuration matrix with a one-dimensional nullspace. The reverse-ratchet method
produces an initial state (filled circles) that converges to it. (b) NZ7 polygonal configuration with a
centre vortex is an equilibrium state (unfilled circles) with a configuration matrix having a two-
dimensional nullspace. The reverse-ratchet method produces an initial state (filled circles) that
converges to it.
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uses the reverse-ratchet method to evolve to a final asymmetric state (filled
circles) that is not an equilibrium, but if it were used as the initial state for the
forward-ratchet scheme, then it would converge to the polygonal state in one of
its random runs.
(b ) The Frobenius norm and distribution of singular values

A key characterization which allows us to quantify the size of each equilibrium
configuration as well as their distances from each other is the Frobenius norm of
a matrix, which is the sum of squares of its singular values. Thus, the Frobenius
norm of a rank r matrix A is given by

kAk2F Z sð1Þ2 Csð2Þ2 C/CsðrÞ2htraceðATAÞ: ð4:1Þ
The distance between this matrix and its k-truncated SVD is

kAKAkk2F ZsðkC1Þ2C/CsðrÞ2: ð4:2Þ
We use this characterization to calculate the size of each of the equilibrium
configurations, how far each converged state in figure 2 is from its initial state, as
well as how far each of the respective equilibria are from each other. Table 1
shows the Frobenius-norm size for each of the equilibrium states (column 1), the
distances between the initial and converged states (column 2), the Hamiltonian
energy value (2.2) for each of the asymmetric equilibria (column 3) and the
distances between each of the two converged states for each N (column 4).
Table 2 shows all of the singular values for each of the equilibrium states from
figure 2, with one singular value in each case nearly zero. The size of the next
smallest singular value gives a measure of how far these equilibria with one-
dimensional nullspaces are to ones with two-dimensional nullspaces, as measured
Proc. R. Soc. A (2007)



Table 1. Equilibria with one-dimensional nullspaces shown in figure 2.

N kAfinalkF kAinitKAfinalkF H kA1KA2kF

NZ6(a) 53.6412 3.15!10K05 K0.0047 59.0357
NZ6(b) 23.4493 6.42!10K06 0.0816 59.0357
NZ8(a) 22.0578 1.00!10K05 K0.0104 55.5116
NZ8(b) 51.4244 9.99!10K06 K0.051 55.5116
NZ10(a) 25.0397 9.96!10K06 0.0166 51.058
NZ10(b) 44.6184 9.99!10K06 0.0157 51.058

Table 2. Singular values of each of the equilibria shown in figure 2, listed in descending order.

N s’s

NZ6(a) (36.8899, 34.0091, 16.8357, 8.0756, 3.3529, 3.15!10K05)
NZ6(b) (16.4495, 15.1967, 6.6437, 2.0431, 0.1741, 6.42!10K06)
NZ8(a) (11.8714, 11.344, 9.347, 8.4775, 5.43, 4.5957, 2.6626, 1.00!10K05)
NZ8(b) (34.6657, 34.5454, 11.1811, 9.6584, 4.1464, 2.9317, 2.2993, 9.99!10K06)
NZ10(a) (13.2665, 12.1482, 10.7102, 8.7633, 7.4807, 5.1647, 4.7517, 2.4412, 0.8549, 9.96!10K06)
NZ10(b) (28.3155, 27.8314, 12.5556, 10.5146, 7.3477, 7.1772, 5.1661, 3.6358, 0.9141, 9.99!10K06)
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by the matrix 2-norm (Golub & Van Loan 1996). The distribution of all the
singular values, in turn, contains important information regarding the spacing
and density of the equilibrium states. Golub & Van Loan (1996, p. 73) have
proved that the set of full rank matrices in R

mxn is both open and dense. Whether
or not this is true of the set of configuration matrices is not clear, although
figure 1 certainly provides numerical evidence that the set is dense. In addition,
since the size of the smallest singular value can be thought of as the distance
between a full rank matrix and the nearest singular one (Trefethen & Embree
(2005) for interesting discussions of this topic related to robust control theory),
the numerics also shows that the set of equilibrium configurations is not dense.

It is interesting to note that the typical distribution of singular values
associated with the equilibrium configurations is definitely not what a random
matrix would produce. As an example, we show in figure 5 the plots of the six
singular values associated with matrices that are N(NK1)/2!N for NZ6.
The singular values are normalized by dividing by their sum, i.e. plotted are
sj=
P6

iZ1 si for two cases. The unfilled circles, connected by short dashed lines, are
the averaged normalized singular values that a random matrix produces. We
independently choose each of the entries of the matrix in this case using a random
number generator, where each entry is a real number between 0 and 1, chosen from
a uniform distribution. For this data, 104 matrices are independently produced
and their normalized singular values are averaged. By contrast, the filled circles,
joined by longer dashed lines, are the averaged normalized singular values
produced by actual configuration matrices whose entries are chosen to satisfy the
relations (2.14). The vortex positions are chosen by a random number generator,
but because the entries must satisfy (2.14) to be a configuration matrix, the entries
are correlated. For this, the distribution has more of a Gaussian shape, decreasing
Proc. R. Soc. A (2007)
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Figure 5. Singular values averaged over 104 runs plotted in descending order for NZ6 normalized
as sj=

P6
iZ1 si, jZ1,., 6. Unfilled circles represent averaged data for matrices with randomly

generated entries using a uniform distribution 2[0, 1] to choose each matrix entry. Filled circles
represent averaged data for actual configuration matrices.
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from the peak much more slowly than that of the random matrix ensemble.
Whether or not the actual distribution of singular values corresponding to
equilibrium configurations, for large N, are, in fact, Gaussian distributed, or
perhaps follow some other probability distribution, is at this point an open
question. In fact, characterizing the distributions of classes of matrices, random or
otherwise, is an active area of research (Sengupta & Mitra 1999).
5. Discussion

The method presented in this paper characterizes an equilibrium configuration as
a point in a vector space whose non-normal configuration matrix has at least one
zero singular value (i.e. is rank deficient) and whose strength vector lies in the
spanning set of the right-singular vectors of A corresponding to singular values
which are zero. This viewpoint complements the classical way of viewing each as
an extremizer of an augmented Hamiltonian via Kelvin’s variational principle. We
believe this characterization adds new insights into the problem and allows us to
conveniently classify equilibria according to the SVD of its configuration matrix as
well as its Hamiltonian energy (2.2) and gives us a practical way of measuring
quantities such as the size of each of the equilibria, distances between them and
Proc. R. Soc. A (2007)
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the distance between a generic non-equilibrium configuration and the nearest
equilibrium configuration to it. The Brownian ratchet scheme, in practice,
converges fairly quickly to configurations with non-trivial nullspaces if the
nullspace is low dimensional, but from a practical point of view, for largeN and for
configurations with high-dimensional nullspaces, more efficient and stable random
walk and SVD schemes will need to be implemented. It is a curious fact that, for
the most part, the equilibrium states identified by the ratchet scheme have turned
out to be asymmetric, despite the fact that there is nothing, in principle, that
prevents the scheme from converging to symmetric states. One explanation for
this could be that our initial configurations are generated randomly, hence
typically have no inherent symmetries. It therefore seems unlikely for the scheme
to converge towards an equilibrium configuration which is highly symmetric,
unless there are no asymmetric states around. However, another more intriguing
possibility might be that asymmetric states are far more prevalent than symmetric
ones, despite the fact that much more is known about symmetric equilibria.
References

Abo-Shaer, J. R., Raman, C., Vogels, J. M. & Ketterle, W. 2001 Observation of vortex lattices in
Bose–Einstein condensates. Science 292, 476–479. (doi:10.1126/science.1060182)

Abrikosov, A. A. 1957 On the magnetic properties of superconductors of the second group. Sov.
Phys. JETP 5, 1174–1178.

Adhikari, S. K. & Muruganandam, P. 2002 Effect of an impulsive force on vortices in a rotating
Bose–Einstein condensate. Phys. Lett. A 301, 333–339. (doi:10.1016/S0375-9601(02)00980-5)
arXiv:cond-mat/0204285v1

Aref, H. 1982 Point vortex motions with a center of symmetry. Phys. Fluids 25, 2183–2187. (doi:10.
1063/1.863710)

Aref, H. & Vainchtein, D. L. 1998 Point vortices exhibit asymmetric equilibria. Nature 392,
769–770. (doi:10.1038/33827)

Aref, H., Newton, P. K., Stremler, M. A., Tokieda, T. & Vainchtein, D. L. 2003 Vortex crystals.
Adv. Appl. Mech. 39, 1–79.

Campbell, L. J. & Ziff, R. 1978 A catalog of two-dimensional vortex patterns, LA-7384-MS, Rev.,
Informal Report, Los Alamos Scientific Laboratory, pp. 1–40.

Doering, C. R. 1995 Randomly rattled ratchets. Nuovo Cimento D 17, 685–697. (doi:10.1007/
BF02451826)

Doering, C. R. 1998 Stochastic ratchets. Physica A 254, 1–6. (doi:10.1016/S0378-4371(98)00006-5)
Durkin, D. & Fajans, J. 2000 Experiments on two-dimensional vortex patterns. Phys. Fluids 12,

289–293. (doi:10.1063/1.870307)
Engels, P., Coddington, I., Haljan, P. C. & Cornell, E. A. 2002 Nonequilibrium effects of

anisotropic compression applied to vortex lattices in Bose–Einstein condensates. Phys. Rev.
Lett. 89, 100403-1–100403-4. (doi:10.1103/PhysRevLett.89.100403)

Engels, P., Coddington, I., Haljan, P. C., Schweikhard, V. & Cornell, E. A. 2003 Observation of
longlived vortex aggregates in rapidly rotating Bose–Einstein condensates. Phys. Rev. Lett. 90,
170405-1–170405-4. (doi:10.1103/PhysRevLett.90.170405)

Essmann, U. & Trauble, H. 1967 The direct observation of individual flux lines in type II
superconductors. Phys. Lett. A 24, 526–530. (doi:10.1016/0375-9601(67)90819-5)

Golub, G. H. & Van Loan, C. F. 1996 Matrix computations, 3rd edn. Baltimore, MD; London, UK:
Johns Hopkins University Press.

Grzybowski, B. A., Stone, H. A. & Whitesides, G. M. 2000 Dynamic self-assembly of magnetized,
millimeter-sized objects rotating at a liquid–air interface. Nature 405, 1033–1036. (doi:10.1038/
35016528)
Proc. R. Soc. A (2007)

http://dx.doi.org/doi:10.1126/science.1060182
http://dx.doi.org/doi:10.1016/S0375-9601(02)00980-5
http://dx.doi.org/doi:10.1063/1.863710
http://dx.doi.org/doi:10.1063/1.863710
http://dx.doi.org/doi:10.1038/33827
http://dx.doi.org/doi:10.1007/BF02451826
http://dx.doi.org/doi:10.1007/BF02451826
http://dx.doi.org/doi:10.1016/S0378-4371(98)00006-5
http://dx.doi.org/doi:10.1063/1.870307
http://dx.doi.org/doi:10.1103/PhysRevLett.89.100403
http://dx.doi.org/doi:10.1103/PhysRevLett.90.170405
http://dx.doi.org/doi:10.1016/0375-9601(67)90819-5
http://dx.doi.org/doi:10.1038/35016528
http://dx.doi.org/doi:10.1038/35016528


P. K. Newton and G. Chamoun1540

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

19
 A

pr
il 

20
24

 

Jamaloodeen,M. I.&Newton,P.K. 2006TheN-vortexproblemon a rotating sphere. II.Heterogeneous
Platonic solid equilibria. Proc. R. Soc. A 462, 3277–3299. (doi:10.1098/rspa.2006.1731)

Lewis, D. & Ratiu, T. 1996 Rotating n-gon/kn-gon vortex configurations. J. Nonlin. Sci. 6,
385–414. (doi:10.1007/BF02440160)

Lundh, E. 2002 Multiply quantized vortices in trapped Bose–Einstein condensates. Phys. Rev. E
65, 043604.

Marchioro, C. & Pulvirenti, M. 1994 Mathematical theory of incompressible nonviscous fluids.
Appl. Math. Sci. 96, Berlin, Germany: Springer.

Mayer, A. M. 1878 Floating magnets. Nature 17, 487–488.
Newton P. K. 2001 The N-vortex problem: analytical techniques. Appl. Math. Sci. 145, New York,

NY: Springer.
Newton P. K. & Chamoun G. 2006 On regular triangular vortex lattices, USC preprint.
Reimann, P. 2002 Brownian motors: noisy transport far from equilibrium. Phys. Rep. 361, 57–265.

(doi:10.1016/S0370-1573(01)00081-3)
Sengupta, A. M. & Mitra, P. P. 1999 Distributions of singular values for some random matrices.

Phys. Rev. E 60, 3389–3392. (doi:10.1103/PhysRevE.60.3389)
Thomson, W. 1878 Floating magnets [illustrating vortex systems]. Nature XVIII, 13–14.
Tkachenko, V. K. 1966a On vortex lattices. Soviet Phys. JETP 22, 1282–1286.
Tkachenko, V. K. 1966b Stability of vortex lattices. Soviet Phys. JETP 23, 1049–1056.
Trefethen, L. N. & Embree, M. 2005 Spectra and pseudospectra: the behavior of nonnormal

operators. Princeton, NJ: Princeton University Press.
Tsubota, M., Kasamatsu, K. & Ueda, M. 2002 Vortex lattice formation in a rotating Bose–Einstein

condensate. Phys. Rev. E 65, 023603.
Warder, R. B. & Shipley, W. P. 1888 Floating magnets. Am. J. Sci. 20, 285–288.
Wood, R. W. 1898 Equilibrium figures formed by floating magnets. Phil. Mag. 46, 162–164.
Yarmchuk, E. J., Gordon, M. J. V. & Packard, R. 1979 Observation of stationary vortex arrays in

rotating superfluid Helium. Phys. Rev. Lett. 43, 214–217. (doi:10.1103/PhysRevLett.43.214)
Proc. R. Soc. A (2007)

http://dx.doi.org/doi:10.1098/rspa.2006.1731
http://dx.doi.org/doi:10.1007/BF02440160
http://dx.doi.org/doi:10.1016/S0370-1573(01)00081-3
http://dx.doi.org/doi:10.1103/PhysRevE.60.3389
http://dx.doi.org/doi:10.1103/PhysRevLett.43.214


NOTICE OF CORRECTION

Equations (2.12) and (2.14) are now presented in their correct forms.

A detailed erratum will appear at the end of the volume.
26 April 2007

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

19
 A

pr
il 

20
24

 


	Construction of point vortex equilibria via Brownian ratchets
	Introduction
	The equilibrium problem
	Variational formulation
	Linear algebra approach

	The singular value decomposition
	Summary of important properties of the singular value decomposition
	Variational aspects of the SVD

	The Brownian ratchet scheme
	The Brownian ratchet algorithm
	The Frobenius norm and distribution of singular values

	Discussion
	References


