
Probability of Winning at Tennis I. Theory and Data

By Paul K. Newton and Joseph B. Keller

The probability of winning a game, a set, and a match in tennis are computed,
based on each player’s probability of winning a point on serve, which we
assume are independent identically distributed (iid) random variables. Both
two out of three and three out of five set matches are considered, allowing a
13-point tiebreaker in each set, if necessary. As a by-product of these formulas,
we give an explicit proof that the probability of winning a set, and hence a
match, is independent of which player serves first. Then, the probability of each
player winning a 128-player tournament is calculated. Data from the 2002 U.S.
Open and Wimbledon tournaments are used both to validate the theory as well
as to show how predictions can be made regarding the ultimate tournament
champion. We finish with a brief discussion of evidence for non-iid effects in
tennis, and indicate how one could extend the current theory to incorporate
such features.

1. Introduction

We wish to calculate the probability that one player, A, wins a tennis match
against another player B. It is not enough to know the rankings of A and B,
because there is no unambiguous way to translate rankings into probabilities
of winning [1, 2]. However, it does suffice to know the probability pR

A that A
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242 P. K. Newton and J. B. Keller

wins a rally when A serves, and the probability pR
B that B wins a rally when

B serves. Such probabilities have been used to calculate the probability of
winning a game in other racquet sports, such as racquetball [3], squash [4],
and badminton [5]. Models of this type for tennis were first considered by Hsi
and Burych [6], followed by Carter and Crews [7], and Pollard [8]. All of
these analyses, including ours, treat points in tennis as independent identically
distributed (iid) random variables, hence pR

A and pR
B are taken as constant

throughout a match. A recent statistical analysis of 4 years of Wimbledon data
[9] shows that although points in tennis are not iid, for most purposes this
is not a bad assumption as the divergence from iid is small. Other aspects
of tennis that have been analyzed using probabilistic models include optimal
serving strategies [10], the efficiency of various scoring systems [11], and the
question of which is the most important point [12]. Statistical methods have
also been used to study the effects of new balls [13], service dominance [14],
and the probabilities of winning the final set of a match [15].

Our formulation unifies and extends some of the previous treatments by the
use of hierarchical recurrence relations whose solutions yield the probability
that A wins a game, a set, or a match against B in terms of pR

A and pR
B . We then

calculate the probability that a player in a 128 player single elimination
tournament reaches the second, third, . . . , or final round, and the probability
that a player who has reached the nth round will win the tournament. We also
provide an explicit proof, based on the solutions of our recurrence relations,
that the probability of winning a set or match does not depend on which player
serves first.

Of course the probability pR
A that A wins a rally on serve depends upon the

opponent B as well as upon A. If data are not available for A serving to B, then
data for A playing against players similar to B can be used. We illustrate
this point with data from the 2002 U.S. Open Men’s and Women’s Singles
Tournaments, and from the 2002 Wimbledon Men’s and Women’s Singles
Tournaments. The data, shown in Tables 1 and 2, and in Figure 1, agree well
with our theoretical calculation of pG

A , the probability that A wins a game
when A serves. In a companion paper (part II), we will compare the theory
with Monte Carlo simulations.

A game in tennis is played with one player serving. The game is won by the
first player to score four or more points and to be at least two points ahead of
the other player. In a set, the players serve alternate games until a player wins at
least six games and is ahead by at least two games. If the game score reaches
6–6, a 13-point tiebreaker is used to determine who wins the set, with the player
who started serving the set serving the first point of the tiebreaker.1 Then, the

1In the U.S. Open, a tiebreaker is used in every set, whereas in Wimbledon, in the French Open, and in
the Australian Open, tiebreakers are not used in the third set of a two out of three set match (women’s
format), or the fifth set in a three out of five set match (men’s format).

 14679590, 2005, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/j.0022-2526.2005.01547.x by U

niversity O
f Southern C

alifornia, W
iley O

nline L
ibrary on [19/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Probability of Winning at Tennis 243

Table 1
Data for the Semifinalists in the 2002 U.S. Open Tournament

Player A B C D E F G

Women
S. Williams 240 349 52 57 0.69 0.91 0.89
V. Williams 270 428 56 70 0.63 0.8 0.79
L. Davenport 206 301 45 53 0.68 0.85 0.88
A. Mauresmo 287 457 58 75 0.63 0.77 0.79

Men
P. Sampras 573 781 124 130 0.73 0.95 0.93
A. Agassi 443 676 96 110 0.66 0.87 0.85
L. Hewitt 436 654 91 107 0.67 0.85 0.86
S. Schalken 519 768 107 119 0.68 0.9 0.88

Column A: points won on serve; Column B: total points served; Column C:
games won on serve; Column D: total games served; Column E: empirical
probability pR

A of winning a rally on serve = A/B; Column F: empirical
probability pG

A of winning a game on serve = C/D; Column G: theoretical
probability pG

A of winning a game on serve, given by (5), with pR
A from

Column E.

Table 2
Data for the Semifinalists in the 2002 Wimbledon Tournament

Player A B C D E F G

Women
S. Williams 276 390 57 64 0.71 0.89 0.91
V. Williams 273 352 51 62 0.67 0.82 0.86
J. Henin 252 427 48 66 0.59 0.73 0.71
A. Mauresmo 241 378 50 57 0.64 0.88 0.81

Men
L. Hewitt 450 646 96 107 0.70 0.90 0.90
D. Nalbandian 516 847 94 128 0.61 0.73 0.76
T. Henman 457 683 92 110 0.67 0.84 0.86
X. Malisse 483 721 101 114 0.67 0.89 0.86

Column A: points won on serve; Column B: total points served; Column C:
games won on serve; Column D: total games served; Column E: empirical
probability pR

A of winning a rally on serve = A/B; Column F: empirical
probability pG

A of winning a game on serve = C/D; Column G: theoretical
probability pG

A of winning a game on serve, given by (5), with pR
A from

Column E.

 14679590, 2005, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/j.0022-2526.2005.01547.x by U

niversity O
f Southern C

alifornia, W
iley O

nline L
ibrary on [19/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



244 P. K. Newton and J. B. Keller

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
A

R

p
A

G

2002 Wimbledon semifinalists

2002 US Open semifinalists

First round opponents (women)
First round opponents (men)

First round opponents (women)

First round opponents (men)

Figure 1. The probability pG
A of A winning a game when A serves, i.e., of holding

serve, as a function of pR
A based on (6). The open circles correspond to data from eight

semifinalists in the 2002 U.S. Open Men’s and Women’s Singles Tournaments and the open
stars correspond to data from eight semifinalists in the 2002 Wimbledon Men’s and Women’s
Singles Tournaments. The four left most data points represent the combined data from the
semifinalists’ first round opponents in each tournament.

players alternate serves, each serving two consecutive points, until someone
wins at least seven points, and is ahead by at least two points. The winner of
the tiebreaker wins the set with seven games to the opponents six games. To
win a match, a player must win two out of three sets (women’s format), or win
three out of five sets (men’s format), with the two players serving alternate
games throughout the match. The initial server in the match is determined by a
coin toss, with the winner given the choice of serving first or receiving first.

2. Probability of winning a game

Player A can win a game against player B by a score of (4, 0), (4, 1) or (4,
2), or else the score can become (3, 3), called “deuce.” Then, A can win by
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Probability of Winning at Tennis 245

getting two points ahead of B, with a score of (n + 5, n + 3) with n ≥ 0. To
calculate the probability pG

A that A wins a game when A serves, we assume
that pR

A is the probability that A wins a rally when A serves, and set qR
A =

1 − pR
A , qG

A = 1 − pG
A . We also denote by pG

A (i , j) the probability that the
score reaches i points for A and j points for B when A serves. Upon summing
the probabilities of the different ways in which A can win, we get

pG
A =

2∑
j=0

pG
A (4, j) + pG

A (3, 3)
∞∑

n=0

pDG
A (n + 2, n). (1)

Here, pDG
A (n + 2, n) is the probability that A wins by scoring n + 2 while B

scores n after deuce has been reached, with A serving. It is given by

pDG
A (n + 2, n) =

n∑
j=0

(
pR

Aq R
A

) j(
q R

A pR
A

)n− j n!

j!(n − j)!

(
pR

A

)2

= (
pR

A

)2[
pR

Aq R
A

]n
2n. (2)

Upon using (2) in (1), and summing the geometric series, we get

pG
A =

2∑
j=0

pG
A (4, j) + pG

A (3, 3)
(

pR
A

)2[
1 − 2pR

Aq R
A

]−1
. (3)

Elementary combinatorial analysis yields

pG
A (4, 0) = (

pR
A

)4
, pG

A (4, 1) = 4
(

pR
A

)4
q R

A , pG
A (4, 2) = 5 · 4

2

(
pR

A

)4(
q R

A

)2
,

pG
A (3, 3) = 6!

(3!)2

(
pR

Aq R
A

)3
. (4)

Now using (4) in (3) gives the probability that A wins a game when A serves,
i.e., that A holds serve:

pG
A = (

pR
A

)4[
1 + 4q R

A + 10
(
q R

A

)2] + 20
(

pR
Aq R

A

)3(
pR

A

)2[
1 − 2pR

Aq R
A

]−1
. (5)

This equation agrees with that given in [7]. Figure 1 shows pG
A as a function of

pR
A , based upon (5). The open circles in the figure are data for the semifinalists

in the 2002 U.S. Open Men’s and Women’s Singles Tournaments, shown in
Table 1, while the stars are data for the semifinalists in the 2002 Wimbledon
Men’s and Women’s Singles Tournaments shown in Table 2. The left most four
points are totals for their first round opponents in both tournaments. They all
lie close to the theoretical curve.
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246 P. K. Newton and J. B. Keller

3. Probability of winning a set

3.1. Recursion equations

Let pS
A denote the probability that player A wins a set against player B, with A

serving first, and qS
A = 1 − pS

A. To calculate pS
A in terms of pG

A and pG
B , we

define pS
A(i , j) as the probability that in a set, the score becomes i games for

A, j games for B, with A serving initially. Then,

pS
A =

4∑
j=0

pS
A(6, j) + pS

A(7, 5) + pS
A(6, 6)pT

A . (6)

Here, pT
A is the probability that A wins a 13-point tiebreaker with A serving

initially, and qT
A = 1 − pT

A .
To calculate pS

A(i , j), needed in (6), we use the following recursion formulas
and initial conditions:

For 0 ≤ i , j ≤ 6:

if i − 1 + j is even: pS
A(i, j) = pS

A(i − 1, j)pG
A + pS

A(i, j − 1)qG
A

omit i − 1 term if j = 6, i ≤ 5;

omit j − 1 term if i = 6, j ≤ 5 (7)

if i − 1 + j is odd: pS
A(i, j) = pS

A(i − 1, j)qG
B + pS

A(i, j − 1)pG
B

omit i − 1 term if j = 6, i ≤ 5;

omit j − 1 term if i = 6, j ≤ 5 (8)

Initial conditions:

pS
A(0, 0) = 1; pS

A(i, j) = 0 if i < 0, or j < 0. (9)

In terms of pS
A (6, 5) and pS

A(5, 6), we have

pS
A(7, 5) = pS

A(6, 5)qG
B ; pS

A(5, 7) = pS
A(5, 6)pG

B . (10)

The explicit solution of (7)–(10) is given in the Appendix.

3.2. Probability of winning a tiebreaker

To calculate pT
A in terms of pR

A and pR
B , we define pT

A (i , j) to be the probability
that the score becomes i for A, j for B in a tiebreaker with A serving initially.
Then,

pT
A =

5∑
j=0

pT
A(7, j) + pT

A(6, 6)
∞∑

n=0

pT
A(n + 2, n). (11)
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Probability of Winning at Tennis 247

Because the sequence of serves in a tiebreaker is A, BB, AA, BB, etc., we have

pT
A(n + 2, n) =

n∑
j=0

(
pR

A pR
B

) j(
q R

A q R
B

)n− j n!

j!(n − j)!
pR

Aq R
B

= (
pR

A pR
B + q R

A q R
B

)n
pR

Aq R
B . (12)

Using (12) in (11) and summing yields

pT
A =

5∑
j=0

pT
A(7, j) + pT

A(6, 6)pR
Aq R

B

[
1 − pR

A pR
B − q R

A q R
B

]−1
(13)

To calculate pT
A (i , j), we use the recursion formulas:

For 0 ≤ i , j ≤ 7:

if i − 1 + j = 0, 3, 4, . . . , 4n − 1, 4n, . . .

pT
A(i, j) = pT

A(i − 1, j)pR
A + pT

A(i, j − 1)q R
A

omit j − 1 term if i = 7, j ≤ 6

omit i − 1 term if j = 7, i ≤ 6 (14)

if i − 1 + j = 1, 2, 5, 6, . . . , 4n + 1, 4n + 2, . . .

pT
A(i, j) = pT

A(i − 1, j)q R
B + pT

A(i, j − 1)pR
B

omit j − 1 term if i = 7, j ≤ 6

omit i − 1 term if j = 7, i ≤ 6 (15)

Initial conditions:

pT
A(0, 0) = 1; pT

A(i, j) = 0 if i < 0, or j < 0. (16)

The solution of (14)–(16) is given in the Appendix.
Next we calculate pT

A by using the solution of (14)–(16) in (13). Now we
can calculate pS

A by using the solution of (7)–(9), and (10), with the result for
pT

A , in (6).
Figure 2 shows the probability of player A winning a set against player B

plotted as a function of pR
A ∈ [0, 1] for the full range values of pR

B in increments
of 0.1. The data shown are compiled from the 2002 U.S. Open Men’s Singles
event. Of the 117 completed matches played, there were 9 matches in which a
player (designated player B) had a value of pR

B = 0.50 ± 0.01, 33 matches in
which pR

B = 0.60 ± 0.01, and 20 matches with pR
B = 0.70 ± 0.01. Because each

match involves three, four, or five sets, it is necessary to combine data from
several matches to get meaningful statistics. Hence, each data point shown in
the figure represents a compilation of several matches grouped according to
corresponding values of pR

A . Each of the three data points associated with the
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Figure 2. The probability pS
A of player A winning a set plotted as a function of pR

A for
various values of pR

B . Compiled data from the 2002 U.S. Open Men’s Singles event are shown
for the values pR

B = 0.50 ± 0.01, pR
B = 0.60 ± 0.01, and pR

B = 0.70 ± 0.01.

curve marked pR
B = 0.50 represents three matches, each of the seven data points

associated with the curve marked pR
B = 0.60 represents approximately five

matches, while each of the three data points associated with the curve marked
pR

B = 0.70 represents a compilation of approximately seven matches. Given
the relatively small number of sets underlying each of the data points, the
data fits the theoretical curves reasonably well. Figure 3 shows the probability
of player A winning a tiebreaker against player B plotted as a function of
pR

A ∈ [0, 1] for the full range values of pR
B in increments of 0.1.

3.3. Serving or receiving first

In this section, we prove that there is no theoretical advantage to serving first by
showing that the probability of player A winning the set when serving first, pS

A, is
equal to his probability of winning the set when receiving first, qS

B. For this, we
need formula (6) for pS

A, along with the corresponding formula for qS
B given by
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Figure 3. The probability pT
A of player A winning a tiebreaker plotted as a function of pR

A for
various values of pR

B .

q S
B =

4∑
j=0

pS
B( j, 6) + pS

B(5, 7) + pS
B(6, 6)qT

B . (17)

We obtain the terms pS
B( j , i) in (17) from pS

A(i , j) given in the Appendix, by
interchanging pG

A ↔ qG
B , pG

B ↔ qG
A . From (A.1) and (A.6) it is immediate that

pS
A(6, 0) = pS

B(0, 6) (18)

pS
A(7, 5) = pS

B(5, 7). (19)

It is also clear from (A.7) that

pS
A(6, 6) = pS

B(6, 6). (20)

Thus, it remains to show that

4∑
j=1

pS
A(6, j) =

4∑
j=1

pS
B( j, 6) (21)
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250 P. K. Newton and J. B. Keller

and that

pT
A = qT

B . (22)

To prove (21), we show that

pS
A(6, 1) + pS

A(6, 2) = pS
B(1, 6) + pS

B(2, 6) (23)

and

pS
A(6, 3) + pS

A(6, 4) = pS
B(3, 6) + pS

B(4, 6). (24)

By using formulas (A.2)–(A.5), and replacing qG
A = 1 − pG

A , qG
B = 1 − pG

B ,
we can write

pS
A(6, 2n − 1) + pS

A(6, 2n) =
6+2n∑
i=0

6+2n∑
j=0

aS
ij (n)

(
pG

A

)i(
pG

B

) j
(25)

pS
B(2n − 1, 6) + pS

B(2n, 6) =
6+2n∑
i=0

6+2n∑
j=0

bS
ij(n)

(
pG

A

)i(
pG

B

) j
(26)

for n = 1, 2. Then, it can be shown that the coefficients of each are equal,
i.e., aS

ij(n) = bS
ij(n). The values are listed in the Appendix. Figure 4 shows

the probability of obtaining each of the scores that are independent of which
player serves first for the case of evenly matched players.

To prove that pT
A = qT

B , we use the formula (11) for pT
A and the corresponding

one for qT
B

qT
B =

5∑
j=0

pT
B ( j, 7) + pT

B (6, 6)
∞∑

n=0

pT
B (n, n + 2). (27)

We obtain the terms pT
B ( j , i) in (27) from pT

A (i , j) given in the Appendix, by
interchanging pR

A ↔ qR
B , pR

B ↔ qR
A . From (A.14) it is clear that pT

A (6, 6) =
pT

B (6, 6). Furthermore, from the symmetry under exchanging pR
A ↔ qR

B , pR
B ↔

qR
A in (12), we have that

pT
A(n + 2, n) = pT

B (n, n + 2). (28)

Thus, it remains to show that

5∑
j=0

pT
A(7, j) =

5∑
j=0

pT
B ( j, 7). (29)

To prove this, we show that

pT
A(7, 0) + pT

A(7, 1) = pT
B (0, 7) + pT

B (1, 7), (30)

pT
A(7, 2) + pT

A(7, 3) = pT
B (2, 7) + pT

B (3, 7), (31)
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Figure 4. Set scores that are independent of which player serves first, plotted for two equal
players pR

A = pR
B . (a) pS

A(6, 0), (b) pS
A(6, 1) + pS

A(6, 2), (c) pS
A(6, 3) + pS

A(6, 4), (d) pS
A(7, 5),

and (e) pS
A(6, 6).

pT
A(7, 4) + pT

A(7, 5) = pT
B (4, 7) + pT

B (5, 7). (32)

By using formulas (A.8)–(A.13) and replacing qR
A = 1 − pR

A , qR
B = 1 − pR

B , we
can write

pT
A(7, 2n) + pT

A(7, 2n + 1) =
4∑

i=0

4∑
j=0

aT
ij (n)

(
pR

A

)i(
pR

B

) j
(33)

pT
B (2n, 7) + pT

B (2n + 1, 7) =
4∑

i=0

4∑
j=0

bT
ij (n)

(
pR

A

)i(
pR

B

) j
(34)

for n = 0, 1, 2. Then, it can be shown that the coefficients are equal, i.e.,
aT

ij (n) = bT
ij (n). The values are listed in the Appendix. Figure 5 shows the

probability of obtaining each of the tiebreaker scores that are independent of
which player serves first, for equally matched players.
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Figure 5. Tiebreaker scores that are independent of which player serves first, plotted for two
equal players pR

A = pR
B . (a) pT

A (7, 0) + pT
A (7, 1), (b) pT

A (7, 2) + pT
A (7, 3), (c) pT

A (7, 4) +
pT

A (7, 5), and (d) pT
A (6, 6).

The question of whether to serve or receive first has received some attention
in the literature. In an interesting combinatorial analysis of Kingston [16]
(followed by a note [17]), a simplified scoring system (which he calls a “short
set”) is considered in which player A serves the first game of a match consisting
of the best N of 2N − 1 games. His striking result is that it does not matter
whether the rules are such that the players alternate serves after each game, or
whether the winner of the previous game continues to serve the next game.
In either case, player A has the same probability of winning. At the end of
the article, he asks how many games need to be played to give two equal
players a reasonably equal chance of winning, whoever starts serving. As a
consequence of the central limit theorem, player A’s (approximate) probability
of winning a short set is 1

2 + 1
2 (pR

A − 1
2 )[πpR

A(1 − pR
A)(N − 1)]−1/2. Figure 2

in his paper shows the slow convergence to 1
2 as N → ∞, giving player A a

distinct advantage, for finite N , if he serves first and pR
A > 0.5. Thus, for best

N of 2N − 1 scoring, there is a theoretical advantage to serving first. For
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Probability of Winning at Tennis 253

tennis scoring, the paper of Pollard [8] considers both classical scoring (no
tiebreakers) and tiebreaker scoring, and implicit in his calculations (see, for
example, his Tables 2 and 3) is the fact that pS

A = qS
B, although the result is not

proven. There are other ways of proving and generalizing the result that do not
rely on the explicit solutions for pS

A and qS
B as our proof does. In fact, one can

prove that as long as the scoring system is such that the number of games
served by player A minus the number of games served by player B is 1, 0,
or −1, there is no advantage or disadvantage to serving first. Such scoring
systems are termed “service neutral” and are discussed in [18].

4. Probability of winning a match

We now calculate pM
A , the probability that player A wins a match against player

B, with player A serving initially, and qM
A = 1 − pM

A . To do so we define
pM

AB(i , j) to be the probability that in a match, the score becomes i sets for A
and j sets for B, with A serving initially and B serving finally. We define
pM

AA(i , j) similarly, but with A serving initially and finally.
To formulate recursion equations for pM

AB(i , j) and pM
AA(i , j), we introduce

pS
AB, pS

AA, pS
BA, and pS

BB. Here, pS
XY is the probability that X wins a set when X

serves the first game and Y serves the last game, where X and Y are A or B.
To get an expression for pS

AA we note that when A serves the first and last
games, the total number of games must be odd. Then, by restricting the right
side of (6) to odd numbers of games, we get

pS
AA =

∑
j=1,3

pS
A(6, j) + pS

A(6, 6)pT
A . (35)

Similarly when A serves the first game and B serves the last game, the total
number of games is even. For even numbers of games, the right side of (6) yields

pS
AB =

∑
j=0,2,4

pS
A(6, j) + pS

A(7, 5). (36)

Then, (6) is written

pS
A = pS

AA + pS
AB. (37)

We also define qS
AA and qS

AB as

q S
AA =

∑
j=1,3

pS
A( j, 6) + pS

A(6, 6)qT
A , (38)

q S
AB =

∑
j=0,2,4

pS
A( j, 6) + pS

A(5, 7). (39)
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Then,

q S
A = q S

AA + q S
AB. (40)

To get pS
BA, pS

BB, qS
BA, and qS

BB, we interchange A and B in (35)–(40). Note that
because pS

A + qS
A = 1 and pS

B + qS
B = 1, we have

pS
AA + q S

AA + pS
AB + q S

AB = 1, (41)

pS
BB + q S

BB + pS
BA + q S

BA = 1. (42)

Now we can write the recursion equations satisfied by pM
AB(i , j) and

pM
AA(i , j) as follows, for i + j > 1:

pM
AB(i, j) = pM

AB(i − 1, j)pS
AB + pM

AA(i − 1, j)q S
BB

+ pM
AB(i, j − 1)q S

AB + pM
AA(i, j − 1)pS

BB, (43)

pM
AA(i, j) = pM

AB(i − 1, j)pS
AA + pM

AA(i − 1, j)q S
BA

+ pM
AB(i, j − 1)q S

AA + pM
AA(i, j − 1)pS

BA. (44)

The initial conditions are

pM
AA(0, 0) = 1; pM

AA(i, j) = 0 if i < 0 or j < 0 (45)

pM
AB(0, 0) = 1; pM

AB(i, j) = 0 if i < 0 or j < 0 (46)

pM
AB(1, 0) = pS

AB; pM
AB(0, 1) = q S

AB; pM
AA(1, 0) = pS

AA; pM
AA(0, 1) = q S

AA.

(47)

For the men’s format of three sets out of five, (43)–(47) must be solved for
i , j = 0, 1, 2, 3. When j = 3, the i − 1 terms must be omitted; when i = 3,
the j − 1 terms must be omitted. The probability that player A wins a three
out of five set match when serving first is given by

pM
A =

2∑
j=0

[
pM

AA(3, j) + pM
AB(3, j)

]
. (48)

For a match of two sets out of three, (35) and (36) must be solved for i ,
j = 0, 1, 2. When j = 2, the i − 1 terms must be omitted; when i = 2, the
j − 1 terms must be omitted. Then, the probability that player A wins a two
out of three set match when serving first is

pM
A =

1∑
j=0

[
pM

AA(2, j) + pM
AB(2, j)

]
. (49)
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256 P. K. Newton and J. B. Keller

By using the solutions of (43) and (44) for pM
AA(2, j) and pM

AB(2, j) and
taking advantage of (37) and (40), we can write (49) as

pM
A = pS

AAq S
B + pS

AB pS
A + pS

AA pS
BAq S

B + pS
AA pS

BB pS
A + pS

ABq S
AAq S

B

+ pS
ABq S

AB pS
A + q S

AAq S
BAq S

B + q S
AAq S

BB pS
A + q S

AB pS
AAq S

B + q S
AB pS

AB pS
A.

(50)

Note that because the probability of winning a set is independent of which
player serves first, the above formula (50) reduces to

pM
A = (

pS
A

)2 + 2
(

pS
A

)2
pS

B (51)

for the two out of three set format, and

pM
A = (

pS
A

)3 + 3
(

pS
A

)3
pS

B + 6
(

pS
A

)3(
pS

B

)2
(52)

for the three out of five set format.
Table 3 shows pM

A for a match of three sets out of five based upon (48), and
Table 4 shows pM

A for a match of two sets out of three based upon (40). In both
cases the results are shown as functions of pR

A and pR
B , ranging from 0 to 1 at

intervals of 0.1. Figure 6 shows the data from the 2002 U.S. Open Men’s
Singles event as well as the theoretical curves for pG

A , pS
A, and pM

A (three out of
five set format) corresponding to the value pR

B = 0.60. To obtain meaningful
statistics for the three data points associated with the pM

A curve, the 33 matches
were grouped in clusters of approximately 11 matches per cluster.

5. Probability of winning a tournament

5.1. The 128-player tournament

We now consider a single elimination tournament of 128 = 27 players numbered
i = 1, . . . , 128. We assume that we know the probability pM

ij for player i to
defeat player j in a match. We introduce the column vector of probabilities
p(n) ∈ R1×128;

p(n) =




p(n)
1

p(n)
2

p(n)
3
...

p(n)
128




. (53)

Here, p(n)
i is the conditional probability that player i wins a match in the nth

round, provided that he or she survives to that round of the tournament. From
(48) or (49), we know pM

ij , the probability that player i beats player j, which we
write more simply as Pij.

 14679590, 2005, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/j.0022-2526.2005.01547.x by U

niversity O
f Southern C

alifornia, W
iley O

nline L
ibrary on [19/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Probability of Winning at Tennis 257

T
ab

le
4

P
ro

ba
bi

li
ty

pM A
of

P
la

ye
r

A
W

in
ni

ng
a

M
at

ch
of

Tw
o

S
et

s
ou

t
of

T
hr

ee

pR A

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.
0

∗
1.

00
00

1.
00

00
1.

00
00

1.
00

00
1.

00
00

1.
00

00
1.

00
00

1.
00

00
1.

00
00

1.
00

00
0.

1
0.

00
00

0.
50

00
0.

85
39

0.
98

20
0.

99
95

1.
00

00
1.

00
00

1.
00

00
1.

00
00

1.
00

00
1.

00
00

0.
2

0.
00

00
0.

14
61

0.
50

00
0.

86
24

0.
98

98
0.

99
99

1.
00

00
1.

00
00

1.
00

00
1.

00
00

1.
00

00
0.

3
0.

00
00

0.
01

80
0.

13
76

0.
50

00
0.

89
09

0.
99

47
1.

00
00

1.
00

00
1.

00
00

1.
00

00
1.

00
00

0.
4

0.
00

00
0.

00
05

0.
01

03
0.

10
91

0.
50

00
0.

90
79

0.
99

61
1.

00
00

1.
00

00
1.

00
00

1.
00

00
0.

5
0.

00
00

0.
00

00
0.

00
01

0.
00

53
0.

09
22

0.
50

00
0.

90
79

0.
99

47
0.

99
99

1.
00

00
1.

00
00

P
R B

0.
6

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

39
0.

09
22

0.
50

00
0.

89
09

0.
98

98
0.

99
95

1.
00

00
0.

7
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

53
0.

10
91

0.
50

00
0.

86
24

0.
98

20
1.

00
00

0.
8

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
01

0.
01

03
0.

13
76

0.
50

00
0.

85
39

1.
00

00
0.

9
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
05

0.
01

80
0.

14
61

0.
50

00
1.

00
00

1.
0

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

0.
00

00
0.

00
00

∗
V

al
ue

s
of

pR A
ar

e
al

on
g

th
e

to
p

ro
w

an
d

va
lu

es
of

pR B
ar

e
do

w
n

th
e

le
ft

co
lu

m
n.

∗ I
nd

ic
at

es
th

at
th

e
m

at
ch

ca
nn

ot
en

d
fo

r
th

es
e

va
lu

es
.

 14679590, 2005, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/j.0022-2526.2005.01547.x by U

niversity O
f Southern C

alifornia, W
iley O

nline L
ibrary on [19/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



258 P. K. Newton and J. B. Keller
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Match data
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Figure 6. Theoretical curves for pG
A (dotted), pS

A (dashed), and pM
A (solid) corresponding to

values pR
B = 0.60. Compiled data from the 2002 U.S. Open Men’s Singles event are shown for

all matches in which pR
B = 0.60 ± 0.01.

p(n) satisfies the recursion formula

p(0) =




1
1
1
...
1


 , p(n) = Pnp(n−1) (n = 1, . . . , 6). (54)

Here, Pn is a 128 × 128 matrix with block diagonal structure made up of 27−n

blocks. We label them P(k)
n , 1 ≤ k ≤ 27−n , and then Pn is given by

Pn =




P(1)
n 0 0 . . . 0

0 P(2)
n 0 . . . 0

0 0 P(3)
n . . .

...
...

...
...

...
...

0 0 0 . . . P(27−n)
n




. (55)
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P(k)
n is a 2n × 2n off-diagonal block matrix:

P(k)
n =

[
0 P(n,k)

α,β

P(n,k)
α,β 0

]
, (56)

where α = (k − 1)2n + 1, β = k2n . The P(n,k)
α,β are 2n−1 × 2n−1 matrices of the

form

P(n,k)
α,β =




Pα,β+1−2n−1 . . . Pα,β−1 Pα,β

Pα+1,β+1−2n−1 . . . Pα+1,β−1 Pα+1,β

...
...

...
...

Pα+2n−1−1,β+1−2n−1 · · · Pα+2n−1−1,β−1 Pα+2n−1−1,β


 . (57)

The entries of this matrix, Pij, are obtained from (48) or (49).
As an example, for n = 1, (55) becomes

P1 =




P(1)
1 0 0 . . . 0

0 P(2)
1 0 . . . 0

0 0 P(3)
1 . . .

...
...

...
...

...
...

0 0 0 . . . P(64)
1




. (58)

P(k)
1 is a 2 × 2 matrix:

P(k)
1 =

[
0 P2k−1,2k

P2k,2k−1 0

]
. (59)

Explicitly (59) yields

P(1)
1 =

[
0 P12

P21 0

]
, P(2)

1 =
[

0 P34

P43 0

]
, . . . , P(64)

1 =
[

0 P127,128

P128,127 0

]
.

(60)

The probability that player i ultimately becomes the tournament champion,
which we denote pTC

i , is the product of the conditional probabilities of winning
each of the rounds. In vector form, this is given by

pT C ≡




pT C
1

pT C
2

pT C
3

...

pT C
128




=




∏7
n=1 p(n)

1∏7
n=1 p(n)

2∏7
n=1 p(n)

3

...∏7
n=1 p(n)

128




. (61)
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260 P. K. Newton and J. B. Keller

The factors in the last column are obtained by solving (54). Note that the
components of the vector pTC must sum to unity.

5.2. Predicting the fate of the semifinalists

Suppose that after the quarterfinal round, we wish to predict the probability of
each of the four semifinalists becoming the tournament champion. We use
the preceding recursion method, introducing the vectors p(0), p(1), and p(2) of
probabilities of winning the quarterfinal, semifinal, and final round

p(0) =




1

1

1

1


 , p(n) =




p(n)
1

p(n)
2

p(n)
3

p(n)
4


 , (n = 1, 2). (62)

The matrices P1 and P2 are given by

P1 =




0 P12 0 0

P21 0 0 0

0 0 0 P34

0 0 P43 0


 , (63)

P2 =




0 0 P13 P14

0 0 P23 P24

P31 P32 0 0

P41 P42 0 0


 . (64)

The probability that player i wins a semifinal match is the ith component of

p(1) = P1p(0) =




P12

P21

P34

P43


 . (65)

The probability that player i wins the final match if he or she plays in it is the
ith component of

p(2) = P2p(1) =




P13 P34 + P14 P43

P23 P34 + P24 P43

P31 P12 + P32 P21

P41 P12 + P42 P21


 . (66)
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Probability of Winning at Tennis 261

The vector of probabilities that each semifinalist wins the tournament is
obtained by using (65) and (66) in (61):

pT C =




P12(P13 P34 + P14 P43)

P21(P23 P34 + P24 P43)

P34(P31 P12 + P32 P21)

P43(P41 P12 + P42 P21)


 . (67)

6. 2002 U.S. Open and Wimbledon data

We now use the results of the 2002 U.S. Open and 2002 Wimbledon Singles
events to show how the previous method can be applied to predict the
tournament champion after the quarterfinal round (n = 5), based on the
accumulated data through this round. Let αi (n) be the total number of points
won on serve by player i in round n, and let β i (n) be the total number of
points served by player i in round n. Then, the empirical probability of player
i winning a point on serve in round n is αi (n)/β i (n). The corresponding
probability of winning a rally on serve in rounds 1–n is

pR
i (n) =

n∑
j=1

αi ( j)

/ n∑
j=1

βi ( j). (68)

We use this with n = 5 in (5) for each player in the semifinals and then
compute their empirical probabilities of winning a match against any of the
other remaining players. This allows us to compute the entries of the matrices
P1 and P2 in (63), (64), and arrive at values for pTC in round n = 6 for each of
the four semifinalists. To calculate pTC for the two finalists after the semifinal
round match, we repeat the same steps for the two finalists, using (68) with
n = 6. The same method of calculating pTC could be applied after round n = 1,
and after each subsequent round as the tournament progresses to make running
projections regarding tournament outcomes. Other forecasting methods which
allow point by point updates as the match unfolds are described in [19].

6.1. Women’s Tennis Association (WTA) data

Figure 7 shows the 2002 U.S. Open Women’s Singles Draw from the semifinal
round. Under each player, we show the value of pR

i (5), pR
i (6), and pR

i (7).
Next to each player’s name is their empirical probability of winning the
upcoming match, Pij, as well as their empirical probability of becoming
the tournament champion, pTC

i . After the quarterfinal round matches, L.
Davenport would have been the slight favorite to win the tournament (pTC

2 =
0.3599), followed by V. Williams (pTC

4 = 0.3047), S. Williams (pTC
1 =

0.2872) and A. Mauresmo (pTC
3 = 0.0482), while after the semifinal round
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262 P. K. Newton and J. B. Keller

S. Williams   P  = .4582   p    = .287212 1

TC

p  (5) = 158/225 = .7022
1

R

L. Davenport   P  = .5418   p    = .3599

A. Mauresmo   P  = .2559   p    = .0482

V. Williams   P  = .7441   p    = .3047TC

21 2
TC

TC
34 3

43 4

p  (5) = 170/239 = .7113
2

R

p  (5) = 237/374 = .6337
3

R

p  (5) = 176/256 = .6875
4

R

p  (6) = 208/301 = .6910
1

R

p  (6) = 235/357= .6583
4

R

p  (7) = 240/349 = .6877
1

R

S. Williams   P  =  p    = .652714 1

TC

V. Williams   P  =  p    = .347341 4

TC

S. Williams     p    = 1
1
TC

Figure 7. The probability Pij of each of the four semifinalists in the 2002 U.S. Open
Women’s Singles tournament winning her match, and her probability pTC

i of becoming the
tournament champion.

matches, S. Williams (pTC
1 = 0.6527) was the favorite and ultimately won the

tournament. Figure 8 shows the 2002 Wimbledon Women’s Singles Draw from
the semifinal round. Here, V. Williams (pTC

1 = 0.4784) was the favorite to win
the tournament after the quarterfinal round match, followed by S. Williams
(pTC

4 = 0.3834), A. Mauresmo (pTC
3 = 0.1233), and J. Henin (pTC

2 = 0.0150),
while S. Williams (pTC

4 = 0.5866) was the favorite after the semifinal round
match and ultimately won the tournament.

6.2. Association of Tennis Professionals (ATP) data

Figure 9 shows the 2002 U.S. Open Men’s Singles Draw. After the quarterfinal
round matches, P. Sampras was the heavy favorite to win the tournament
(pTC

1 = 0.6747), followed by L. Hewitt (pTC
4 = 0.1457), A. Agassi (pTC

3 =
0.0945), and S. Schalken (pTC

2 = 0.0851). Sampras’ chances of winning the
tournament increased after his semifinal round match (pTC

1 = 0.8856) and
he ultimately won the tournament. Figure 10 shows the results from the
2002 Wimbledon Men’s Singles event. After their quarterfinal round matches,
X. Malisse (pTC

3 = 0.4573) was favored to win the tournament, followed by
L. Hewitt (pTC

1 = 0.3364), T. Henman (pTC
2 = 0.1815), and D. Nalbandian

(pTC
4 = 0.0247). After the semifinal round matches, it was L. Hewitt, the

ultimate tournament champion, who was the heavy favorite (pTC
1 = 0.8698).
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            = 162/230 = 0.7043p
1

R
(5)

V. Williams   P  = .8896   p    = .478412 1

TC

J. Henin        P  = .1104   p    = .015021 2

TC

A. Mauresmo     P  = .3184   p    = .123334 3

TC

S. Williams   P  = .6816   p    = .383443 4

TC

p  (5) = 220/364 = .6044
2

R

p  (5) = 212/317 = .6688
3

R

p  (5) = 202/285 = .7088
4

R

V. Williams   P  =  p    = .413414 1

TC

S. Williams   P  =  p    = .586641 4

TC

S. Williams     p    = 1
4
TC

p  (6) = 200/286 = .6993
1

R

p  (6) = 232/323 = .7183
4

R

p  (7) = 276/390 = .7077
4

R

Figure 8. The probability Pij of each of the four semifinalists in the 2002 Wimbledon
Women’s Singles tournament winning her match, and her probability pTC

i of becoming the
tournament champion.

P. Sampras    P  = .8257   p    = .674712 1

TC

S. Schalken   P  = .1743   p    = .085121 2

TC

A. Agassi      P  = .4386   p    = .094534 3

TC

L. Hewitt      P   = .5614   p    = .145743 4

TC

p  (5) = 392/524 = .7481
1

R

p  (5) = 447/655 = .6824
2

R

p  (5) = 285/420 = .6786
3

R

p  (5) = 370/537 = .6890
4

R

P. Sampras    P  =  p    = .885614 1

TC

A. Agassi      P  =  p    = .114441 4

TC

p  (6) = 469/629 = .7456
1

R

p  (6) = 365/551 = .6624
4

R

p  (7) = 573/781 = .7337
1

R

P. Sampras      p    = 1
1
TC

Figure 9. The probability Pij of each of the four semifinalists in the 2002 U.S. Open Men’s
Singles tournament winning his match, and his probability pTC

i of becoming the tournament
champion.
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L. Hewitt      P  = .6039   p    = .336412 1

TC

T. Henman     P  = .3961   p    = .181521 2

TC

X. Malisse      P  = .8540   p    = .4573
34 3

TC

D. Nalbandian      P  = .1460   p    = .024743 4
TC

p  (5) = 336/477 = .7044
1

R

p  (5) = 405/590 = .6864
2

R

p  (5) = 389/553 = .7034
3

R

p  (5) = 389/614 = .6336
4

R

L. Hewitt      P  =  p    = .869814 1

TC

D. Nalbandian  P  = p   = .130241 4

TC

L. Hewitt        p    = 1
1
TC

p  (6) = 399/567 = .7037
1

R

p  (6) = 477/758 = .6293
4

R

p  (7) = 450/646 = .6966
1

R

Figure 10. The probability Pij of each of the four semifinalists in the 2002 Wimbledon Men’s
Singles tournament winning his match, and his probability pTC

i of becoming the tournament
champion.

7. Capturing non-iid effects

There are several papers documenting effects that cannot be captured with the
assumption that points are independent and identically distributed. For example,
Magnus and Klassen [20] analyze 90,000 points played at Wimbledon, and
find evidence of a “first game effect,” i.e., that the first game of a match is
the hardest one to break. This indicates that it may be desirable to allow pG

A
and pG

B to vary from game to game and perhaps depend on the specific pair
of players who are competing. Jackson and Mosurski [21] give compelling
evidence which indicates that points may not be independent. This includes
what is commonly called the “hot-hand” phenomenon in which winning a
previous point, game, or set, increases ones chances of winning the next, and
the opposite of this, called the “back-to-the-wall” effect in which playing
from behind can sometimes be a psychological advantage. From the analysis
of Klassen and Magnus [9], one can assume that although these effects
may be small when analyzing large heterogeneous data sets, they may be
more important when analyzing specific head-to-head match-ups between two
players, as, for example, the famous McEnroe–Borg series of matches [21] in
which a “back-to-the-wall” phenomenon seems to be present.
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A more refined analysis than the one described in this paper could incorporate
these and other higher-order effects by allowing pR

A and pR
B to vary from point

to point as the match unfolds, depending on the points “importance” [12]
or by taking into consideration more detailed player characteristics such as
rallying ability or strength of return of serve. For example, we could define the
probability that player A wins a point on serve as

p̂R
A = pR

A + δpR
AB(i, j),

(
0 ≤ p̂R

A ≤ 1
)

(69)

where pR
A is constant throughout the match, pR

AB(i , j) represents player A’s
probability of winning a point on serve against player B, when the score is i
points for A and j points for B, and δ 
 1 is a small parameter reflecting
the fact that, in most cases, the deviation from iid is small. The goal then
would be to calculate the corresponding formulas for game, set, and match for
each player, i.e., p̂G

A , p̂S
A, p̂M

A , and p̂G
B , p̂S

B, p̂M
B . The “leading-order” theory

(δ = 0) is the one described in this paper based on the iid assumption, while
“higher-order” corrections could be treated perturbatively.
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Appendix

The solution of (7)–(10) is

pS
A(6, 0) = (

pG
A qG

B

)3
(A.1)

pS
A(6, 1) = 3

(
pG

A

)3
qG

A

(
qG

B

)3 + 3
(

pG
A

)4
pG

B

(
qG

B

)2
(A.2)

pS
A(6, 2) = 12

(
pG

A

)3
qG

A pG
B

(
qG

B

)3 + 6
(

pG
A

)2(
qG

A

)2(
qG

B

)4

+ 3
(

pG
A

)4(
pG

B

)2(
qG

B

)2
(A.3)

pS
A(6, 3) = 24

(
pG

A

)3(
qG

A

)2
pG

B

(
qG

B

)3 + 24
(

pG
A

)4
qG

A

(
pG

B

)2(
qG

B

)2

+ 4
(

pG
A

)2(
qG

A

)3(
qG

B

)4 + 4
(

pG
A

)5(
pG

B

)3
qG

B (A.4)
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pS
A(6, 4) = 60

(
pG

A

)3(
qG

A

)2(
pG

B

)2(
qG

B

)3 + 40
(

pG
A

)2(
qG

A

)3
pG

B

(
qG

B

)4

+ 20
(

pG
A

)4
qG

A

(
pG

B

)3(
qG

B

)2 + 5pG
A

(
qG

A

)4(
qG

B

)5

+ (
pG

A

)5(
pG

B

)4
qG

B (A.5)

pS
A(7, 5) = 100

(
pG

A

)3(
qG

A

)3(
pG

B

)2(
qG

B

)4 + 100
(

pG
A

)4(
qG

A

)2(
pG

B

)3(
qG

B

)3

+ 25
(

pG
A

)2(
qG

A

)4
pG

B

(
qG

B

)5 + 25
(

pG
A

)5
qG

A

(
pG

B

)4(
qG

B

)2

+ pG
A

(
qG

A

)5(
qG

B

)6 + (
pG

A

)6(
pG

B

)5
qG

B . (A.6)

To obtain pS
A(i , j) from pS

A( j , i), we interchange pG
A ↔ qG

A and pG
B ↔ qG

B in
(A.1)–(A.6). Finally, pS

A(6, 6) in (6) is given by

pS
A(6, 6) = 1 −

[
4∑

i=0

(
pS

A(i, 6) + pS
A(6, i)

) + pS
A(7, 5) + pS

A(5, 7)

]
. (A.7)

The solution of (14)–(16) yields:

pT
A(7, 0) = (

pR
A

)3(
q R

B

)4
(A.8)

pT
A(7, 1) = 3

(
pR

A

)3
q R

A

(
q R

B

)4 + 4
(

pR
A

)4
pR

B

(
q R

B

)3
(A.9)

pT
A(7, 2) = 16

(
pR

A

)4
q R

A pR
B

(
q R

B

)3 + 6
(

pR
A

)5(
pR

B

)2(
q R

B

)2

+ 6
(

pR
A

)3(
q R

A

)2(
q R

B

)4
(A.10)

pT
A(7, 3) = 40

(
pR

A

)3(
q R

A

)2
pR

B

(
q R

B

)4 + 10
(

pR
A

)2(
q R

A

)3(
q R

B

)5

+ 4
(

pR
A

)5(
pR

B

)3(
q R

B

)2 + 30
(

pR
A

)4
q R

A

(
pR

B

)2(
q R

B

)3
(A.11)

pT
A(7, 4) = 50

(
pR

A

)4
q R

A

(
pR

B

)3(
q R

B

)3 + 5
(

pR
A

)5(
pR

B

)4(
q R

B

)2

+ 50
(

pR
A

)2(
q R

A

)3
pR

B

(
q R

B

)5 + 5pR
A

(
q R

A

)4(
q R

B

)6

+ 100
(

pR
A

)3(
q R

A

)2(
pR

B

)2(
q R

B

)4
(A.12)

pT
A(7, 5) = 30

(
pR

A

)2(
q R

A

)4
pR

B

(
q R

B

)5 + pR
A

(
q R

A

)5(
q R

B

)6

+ 200
(

pR
A

)4(
q R

A

)2(
pR

B

)3(
q R

B

)3 + 75
(

pR
A

)5
q R

A

(
pR

B

)4(
q R

B

)2

+ 150
(

pR
A

)3(
q R

A

)3(
pR

B

)2(
q R

B

)4 + 6
(

pR
A

)6(
pR

B

)5
q R

B . (A.13)

To obtain pT
A ( j , i) from pT

A (i , j), we interchange pR
A ↔ qR

A and pR
B ↔ qR

B in
(A.9)–(A.13). Finally, pT

A (6, 6) in (13) is given by

pT
A(6, 6) = 1 −

[
5∑

i=0

(
pT

A(i, 7) + pT
A(7, i)

)]
. (A.14)
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The nonzero coefficients aS
ij(n) = bS

ij(n) are given by

aS
20(1) = 6, aS

21(1) = −24, aS
22(1) = 36, aS

23(1) = −24, aS
24(1) = 6,

aS
30(1) = −9, aS

31(1) = 51, aS
32(1) = −99, aS

33(1) = 81, aS
34(1) = −24,

aS
40(1) = 3, aS

41(1) = −24, aS
42(1) = 60, aS

43(1) = −60, aS
44(1) = 21.

(A.15)

aS
10(2) = 5, aS

11(2) = −25, aS
12(2) = 50, aS

13(2) = −50,

aS
14(2) = 25, aS

15(2) = −5,

aS
20(2) = −16, aS

21(2) = 124, aS
22(2) = −336, aS

23(2) = 424,

aS
24(2) = −256, aS

25(2) = 60

aS
30(2) = 18, aS

31(2) = −198, aS
32(2) = 696, aS

33(2) = −1080,

aS
34(2) = 774, aS

35(2) = −210

aS
40(2) = −8, aS

41(2) = 124, aS
42(2) = −560, aS

43(2) = 1060,

aS
44(2) = −896, aS

45(2) = 280

aS
50(2) = 1, aS

51(2) = −25, aS
52(2) = 150, aS

53(2) = −350,

aS
54(2) = 350, aS

55(2) = −126.

(A.16)

The nonzero coefficients aT
ij (n) = bT

ij (n) are given by

aT
30(1) = 4, aT

31(1) = −16, aT
32(1) = 24, aT

33(1) = −16, aT
34(1) = 4,

aT
40(1) = −3, aT

41(1) = 16, aT
42(1) = −30, aT

43(1) = 24, aT
44(1) = −7.

(A.17)

aT
20(2) = 10, aT

21(2) = −50, aT
22(2) = 100, aT

23(2) = −100,

aT
24(2) = 50, aT

25(2) = −10

aT
30(2) = −24, aT

31(2) = 166, aT
32(2) = −424, aT

33(2) = 516,

aT
34(2) = −304, aT

35(2) = 70

aT
40(2) = 18, aT

41(2) = −166, aT
42(2) = 530, aT

43(2) = −774,

aT
44(2) = 532, aT

45(2) = −140

aT
50(2) = −4, aT

51(2) = 50, aT
52(2) = −200, aT

53(2) = 350,

aT
54(2) = −280, aT

55(2) = 84.

(A.18)
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aT
10(3) = 6, aT

11(3) = −36, aT
12(3) = 90, aT

13(3) = −120,

aT
14(3) = 90, aT

15(3) = −36, aT
16(3) = 6

aT
20(3) = −25, aT

21(3) = 230, aT
22(3) = −775, aT

23(3) = 1300,

aT
24(3) = −1175, aT

25(3) = 550, aT
26(3) = −105

aT
30(3) = 40, aT

31(3) = −510, aT
32(3) = 2200, aT

33(3) = −4500,

aT
34(3) = 4800, aT

35(3) = −2590, aT
36(3) = 560

aT
40(3) = −30, aT

41(3) = 510, aT
42(3) = −2750, aT

43(3) = 6750,

aT
44(3) = −8400, aT

45(3) = 5180, aT
46(3) = −1260

aT
50(3) = 10, aT

51(3) = −230, aT
52(3) = 1550, aT

53(3) = −4550,

aT
54(3) = 6580, aT

55(3) = −5620, aT
56(3) = 1260,

aT
60(3) = −1, aT

61(3) = 36, aT
62(3) = −315, aT

63(3) = 1120,

aT
64(3) = −1890, aT

65(3) = 1512, aT
66(3) = −462.

(A.19)
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