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Chaotic advection in the restricted four-vortex problem on a sphereI
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Abstract

The chaotic advection of tracer particles in the field of a perturbed latitudinal ring of point vortices on a sphere is considered. We consider
a restricted four-vortex problem where three vortices have equal strength, while the fourth has strength zero. The equal-strength vortices are
initially spaced evenly on a ring of fixed latitude in the northern hemisphere. The equilateral triangle formed by the vortices is known to be a
nonlinearly stable relative equilibrium configuration. When perturbed, the vortex motion induces chaotic particle advection analyzed by means
of stroboscopic Poincaré maps as a function of the dimensionless energy of the system, which can be related to the size of the perturbation from
equilibrium. A critical energy is identified which separates the vortex motion into two distinct dynamical regimes. For energies below critical,
the vortices undergo periodic partner exchange while retaining their relative orientation. For values above critical, the relative orientation of the
vortices changes throughout the periodic cycle. We consider how the streamline topologies bifurcate both as a function of the energy and during
the course of their evolution, as well as the role that the evolution of instantaneous streamline structures plays in the mixing and transport of
particles. The geometric extent of the mixing region on the full sphere is considered (measured as a percentage of the surface area of the sphere)
and dynamical properties in the region, such as mixing and stretching rates as well as computational evidence of ergodicity, are obtained. Global
mixing on the sphere does not seem to increase monotonically with energy, but appears to be maximized for values near critical.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The dynamics of point vortices moving on the surface
of a sphere is not as well understood as the corresponding
planar problem, despite the fact that the model is very
relevant both in atmospheric and oceanographic settings when
one considers large-scale phenomena where the spherical
geometry of the Earth’s surface becomes important. The full
spherical geometry, as opposed to its β-plane approximation,
is particularly important when considering global streamline
patterns generated by a given vorticity distribution, since the
Poincaré index theorem provides an important constraint on
allowable patterns [24]. These patterns, in turn, provide the
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dynamical templates by which one can begin to understand
the chaotic advection of particles in a vortex-dominated flow,
a topic closely related to the dynamics of point vortices. The
problem motivating the model studied in this paper is the
role the polar vortex plays in the transport and dispersion
of stratospheric particles [1,16]. It has been recognized that
transport in the stratosphere is dominated by advection from
large-scale structures and that, on a time scale of days to weeks,
the transport is quasi-horizontal, along isentropic surfaces [15],
i.e., on two-dimensional layers. Thus chaotic advection in a
vortex-dominated flow on a spherical shell offers a useful
paradigm for understanding how complicated spatial structures
can arise and evolve. Additional important geophysical effects
such as rotation [18,36] or vertical density stratification further
complicate these dynamical processes but are not considered
here.

In this paper, we formulate and study the simplest model
in which one can distribute vorticity in order to understand
its ability to transport and mix particles. Our overriding goal

http://www.elsevier.com/locate/physd
mailto:sdross@vt.edu
http://dx.doi.org/10.1016/j.physd.2006.08.012


P.K. Newton, S.D. Ross / Physica D 223 (2006) 36–53 37
is to identify and develop specific initial configurations whose
streamline patterns and evolution are topologically similar to
realistic atmospheric events, as identified in data sets. This is
motivated by the observation, as shown in the thesis of [42],
that when global weather patterns are viewed as daily or weekly
averages, their streamline patterns are surprisingly simple. In
fact, if one disregards their dynamics, their topologies are
typically not much more complex than those that the three-
or four-vortex problem is capable of producing, as categorized
in [24]. Our focus in this paper, therefore, is on the chaotic
advection of particles in the presence of three vortices — the
fewest necessary to generate chaotic particle trajectories.

In analogy with terminology borrowed from the gravita-
tional N -body literature, we study a configuration associated
with a restricted four-vortex problem where three vortices have
equal strength, while the fourth vortex has strength zero, and
hence is a passively advected particle. In celestial mechanics,
two bodies are necessary to generate chaotic particle advec-
tion [25]. The study of particle transport in a system of N mas-
sive bodies can be well approximated as a series of coupled re-
stricted three-body problems [13]. This analogy may carry over,
with modification, to vortex dynamics, where particle transport
in an N -vortex system can be decomposed into series of re-
stricted four-vortex problems.

The three-vortex problem on the sphere, a completely
integrable problem, is now well understood [6–8,22–24,40].
Our interest is in the motion of three identical vortices, evenly
spaced on a constant latitudinal ring in the northern hemisphere.
This configuration is a relative equilibrium configuration [30]
that is linearly [38] and nonlinearly stable [37] (see [2,4] for
a recent discussion). The vortex motion is parametrized by
a characteristic length scale and a vortex interaction energy,
which naturally divides the phase space into two regimes
in which one would expect the advected particle motion to
share certain dynamical characteristics. These characteristics
are topological and depend on how the vortices wrap around
one another during their evolution, which can be described
using braids [10].

The equilateral triangle is perturbed to an isosceles triangle
by a deformation parameter ε which takes the configuration
from an initial equilateral shape (ε = 0), to an isosceles
triangle (ε > 0), ultimately to the singular limit of a two-vortex
configuration (ε = 1) in which one of the vortices has twice the
strength of the other. The vortex motion generally consists of
quasi-periodic orbits.

We then consider the motion of passive fluid particles in
this system, which can be reduced to a periodically forced
Hamiltonian dynamical system, a system with 1 1

2 degrees of
freedom. The vortices play the role of stirrers, effectively
mixing the fluid in a multiply connected region of the sphere
we call the mixing region, following the terminology of [34,
26] which studied chaotic advection in the presence of three
vortices in the plane. We consider the extent of the mixing
region as a percentage of the surface area of the sphere, the
speed with which particles are transported, and the role that
the evolution of instantaneous streamline structures plays in this
complex process. The streamlines reveal that the two regimes of
motion correspond to (a) a situation in which there is sequential
pairing between the three vortices, i.e., partner exchange, and
(b) a situation where two of the vortices form a pair which rotate
around each other for all time, a 2+1 state. It is the first of these
regimes that provides for the most efficient mixing, particularly
for energies near a critical value corresponding to a great circle
state, an unstable equilibrium of the three vortices.

2. The motion of three identical vortices on a sphere

It is convenient to formulate the three-vortex problem on the
unit sphere in Cartesian coordinates, where the vector xi =

(xi , yi , zi ) ∈ R3 points from the center of the unit sphere to
the point vortex with strength Γi ∈ R on the spherical surface.
We will take the vortices to be of the same positive strength,
i.e., Γ1 = Γ2 = Γ3 = Γ > 0. Each point vortex moves under
the collective influence of all the others, and the equations of
motion are (from [35])

ẋi =
Γ
2π

3∑
j=1

′
x j × xi

l2
i j

, i = 1, 2, 3, (1)

‖xi‖ = 1,

where the denominator in the summation is the square of the
chord distance between vortices i and j ,

l2
i j = ‖xi − x j‖

2
= 2(1 − xi · x j ),

and the prime on the summation reminds us that the singular
term j = i is omitted. Initially, the vortices are located at the
given positions xi (0) ∈ R3, i = 1, 2, 3.

If we use spherical coordinates (θi , φi ) where the θi are
co-latitudes and the φi are longitudes, the system (1) can be
described as a Hamiltonian system with Hamiltonian

H = −
Γ 2

4π

∑
i< j

log(l2
i j ). (2)

With the coordinates qi =
√

Γφi and pi =
√

Γ cos θi the
system is put in canonical form

q̇i =
∂ H

∂pi
, ṗi = −

∂ H

∂qi
, i = 1, 2, 3.

Since the Hamiltonian, H , does not depend on time explicitly,
its value is a constant of the motion.

The center of vorticity vector is also conserved for the
system, given by

c =
M
S

, (3)

where

M =

3∑
i

Γi xi = Γ
3∑
i

xi

is the moment of vorticity and S =
∑3

i Γi = 3Γ is the total
vorticity.
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2.1. Relative dynamics

Following [22], the equations of the relative dynamics of the
vortices can be derived from the original system (1) and are
given by

d
dt

(l2
12) =

Γ V

π

(
1

l2
23

−
1

l2
31

)
(4)

d
dt

(l2
23) =

Γ V

π

(
1

l2
31

−
1

l2
12

)
(5)

d
dt

(l2
31) =

Γ V

π

(
1

l2
12

−
1

l2
23

)
, (6)

where V is the parallelepiped volume formed by the vectors
x1, x2, x3, as obtained from

V = x1 · (x2 × x3).

The system (4)–(6) has two fundamental invariants of
motion

C1 = Γ 2
∑
i< j

l2
i j , (7)

C ′

2 = −
Γ 2

4π

∑
i< j

log(l2
i j ), (8)

(arising from conservation of momentum and energy), where
the second quantity can be usefully exponentiated and written
as

C2 = exp(−4πC ′

2/Γ
3) = (l2

12l2
23l2

31)
1/Γ . (9)

For the identical vortices, it is convenient to introduce scaled
variables, for comparison with [34]. First, assuming C1 6= 0, we
can introduce an invariant characteristic length scale l, where

l2
=

C1

3Γ 2 ,

=
1
3
(l2

12 + l2
23 + l2

31).

The scaled length variables, from [35], are then

b1 =
l2
23

l2 , b2 =
l2
31

l2 , b3 =
l2
12

l2 . (10)

The equation for the invariant (7) then becomes

b1 + b2 + b3 = 3.

In the scaled length variables, the second invariant (8), in units
of Γ 2/2π , becomes

C ′

2 = −
1
2
(log b1 + log b2 + log b3),

= −
1
2

log(b1b2b3),

= − log
(

l12l23l31

l3

)
.

Fig. 1. (a) The initial positions of the three vortices of equal positive strength Γ
is shown on the unit sphere. The initial distances between the vortices form an
isosceles triangle of sides s, s, and s

√
1 − ε, with the equilateral configuration

for ε = 0. (b) As ε → 1, two of the vortices merge and we have a two-vortex
problem where the vortices have strengths Γ and 2Γ .

This is the same as the Hamiltonian (2) written in the scaled
units, and is the same as the value for the vortex interaction
energy E used by [34] for the corresponding planar problem,

E = − log
(

l12l23l31

l3

)
. (11)

In the limit when the vortices are close to each other compared
to the radius of the sphere (l � 1), we expect their behavior
to be the same as in the planar problem. We will treat the
dimensionless energy, E , as a key parameter of the system.

2.2. The overall motion as a function of energy and length scale

Unlike the planar problem, the overall motion of three
identical vortices on the sphere is a function of more than
just the energy E . This is because the geometry of the sphere
introduces a new length scale parameter s ∈ (0, 2). We will
consider the three vortices of unit strength (i.e., Γ = 1) to
be initially placed on the sphere in a triangular configuration,
shown in Fig. 1(a), such that

l12(0) = l31(0) = s,

l23(0) = s
√

1 − ε,

where the perturbation away from an equilateral triangle is
parametrized by the parameter ε ∈ [0, 1], which is a function
of the energy, i.e., ε = ε(E). Here E and ε are related via

E = −
1
2

log

(
(1 − ε)(
1 −

ε
3

)3
)

, (12)

since l = s
√

1 −
ε
3 . Note that E ∈ [0, ∞) for ε ∈ [0, 1]. The

parameter s can be related to the co-latitude. For ε = 0 we
have s =

√
3 sin θ . But as ε increases, the co-latitude changes,

as shown in Fig. 1(a). Fig. 2 shows the streamline patterns
associated with the triangular configurations of Fig. 1 as a
function of the energy for s = 1. Each case shown represents a
distinct topology which is made up of the fundamental building
blocks identified in Kidambi and Newton [24].

The overall dynamics of the three identical vortices can
be decomposed into a superposition of relative vortex motion
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Fig. 2. The streamline topologies for t = mod(t, T ) as a function of energy for s = 1. Note that each of the patterns is topologically distinct.
along with a global rotation of the whole system around
the center of vorticity (3). The relative motion, described by
the dynamical equations (4)–(6), is periodic with period T
and frequency ωrel = 2π/T . The global rotation can be
characterized by measuring the angular displacement 1φ0
about the center of vorticity between two configurations
separated by time T . The frequency of the global rotation can
be defined as

ωglob =
1φ0

T
.

The pair of frequencies (ωrel, ωglob) depend on the parameters
(s, E) and are generally incommensurate, implying that the
overall vortex motion is quasi-periodic. In Fig. 3 we show
the energy dependence of the frequencies when s = 1 which
were obtained by numerical integration of Eq. (1). We note the
agreement of the features of these curves with the similar curve
obtained in [34] for the plane, which corresponds to the s → 0
case.

To gain a global view of the motions possible, we can
consider the bifurcation diagram of the system in (s, E) space.
For s ∈ (0,

√
3), there is a single critical energy, Ec > 0, which

separates two regimes of motion: partner exchange for E < Ec
and a 2 + 1 regime for E > Ec.

The regimes can be defined by considering the time profiles
of l12, l23, and l31 over one period of relative motion. In the
partner exchange regime, the three curves are related by phase
shifts, l31(t) = l23(t − T/3) = l12(t + T/3). The evolution of
the instantaneous streamlines reveal that initially vortices 2 and
3 form a close pair with a figure of eight streamline connecting
them. At t = T/6, a partner exchange takes place. Vortices 3
Fig. 3. Energy dependence of the angular velocity corresponding to the global
rotating (ωglob) and relative (ωrel) motion of a system of three identical vortices
when s = 1. The right branch of ωrel(E) grows monotonically in the region not
shown, i.e., for ω > 0.8.

and 1 then form a close pair, connected by a figure of eight
streamline in the interval t ∈ (T/6, T/3), and so forth. The
vortices never pass through a great circle state for this regime.

In the 2 + 1 regime, vortices 2 and 3 form a close pair for all
time and we have l31(t) = l12(t + T/2) and mint∈[0,T ) l31(t) >

maxt∈[0,T ) l23(t). The vortices pass through a great circle state
twice every period of relative motion.

The critical value E = Ec corresponds to a special kind of
motion, a convergence to a great circle state of the vortices,
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Fig. 4. (a) The unstable relative equilibria at the critical value of energy which
separates the partner exchange and 2+1 regimes of vortex motion. The vortices
lie along a great circle, and rotate about the central vortex located at the north
pole, the center of vorticity vector c. (b) The minimum energy unstable relative
equilibria correspond to another kind of constant rotational motion where all
vortices are along a great circle. The vortices move on cones around the
center of vorticity vector c. The top two vortices are on the same cone. Note
that although |c| ≤ 1 we show it coming out of the sphere for illustrative
convenience.

the spherical analogue of the collinear state for the planar
problem. The motion of the vortices is an unstable relative
equilibrium [37], with constant rotation around the central
vortex located at the north pole as shown in Fig. 4(a). The
value of Ec for the spherical problem changes with s, but
asymptotes to (log 2)/2 as s → 0, corresponding to the planar
problem [34].

Using the above criteria, we can compute the curve of critical
energies starting with small s and using numerical continuation.
The resulting curve is shown in Fig. 5. The curve of critical
energy is double valued for some small range of s beginning at
√

3 and ending at s = s∗ where s∗ is approximately 1.82034.
For a given s in this range, we speak of the upper critical energy
value as E (u)

c and the lower value as E (l)
c . For s > s∗, there is no

partner exchange regime, only the 2 + 1 regime. Qualitatively
speaking, we can understand this situation by considering the
geometry of the vortices on the sphere. As s gets very close to
2 (the diameter of the sphere), the close pair will stay close to
each other.

A forbidden regime (dark) is shown on the right side of
the figure. For a given s >

√
3, there is a minimum ε > 0

(and thus minimum E > 0) needed for the three vortices to
be on the sphere [5]. Any energy below this is not a possible
configuration for the vortices. This minimum corresponds to a
great circle state, distinct from the critical energy state(s) above,
and is given simply by

εmin = s2
− 3.

The situation is shown in Fig. 4(b). This minimum energy state
is also a nondegenerate (i.e., c 6= 0) relative equilibrium which
is nonlinearly unstable [37].

We can summarize the bifurcation diagram as follows. For
s <

√
3, we have a single branch of relative equilibria which are
Fig. 5. The (s, E) plane can be partitioned into regions where the three vortices
exhibit a partner exchange or 2+1 behavior. These regions are separated by the
curve of critical energies Ec .

great circle states and unstable. At the point (s, E) = (
√

3, 0),
we have a fixed equilibrium equilateral triangle which is a
degenerate (i.e., c = 0) great circle state and nonlinearly
stable [37]. Two branches of great circle equilibria are born
at (s, E) = (

√
3, 0) as s increases. The lowest branch is

the minimum energy branch. The other branch is part of the
previously discussed critical energy curve which separates the
two vortex motion regimes, and corresponds to an unstable
relative equilibrium great circle state. This branch of equilibria
does not extend past s = s∗.

To illustrate the different motions as we vary E for a fixed
value of s, let us restrict ourselves for the moment to the
case s <

√
3. Beginning at E = 0, the vortices form an

equilateral triangle of edge length s which rotates uniformly
around the center of vorticity without relative motion, i.e.,
ωrel(0) = ωglob(0), where

ωglob(0) =
3

2πs2

√
1 − s2/3.

At small positive energies, the vortices exhibit an oscillation
around the equilateral configuration, which to leading order in
ε has the frequency

ωrel(E(ε)) =
3

2πs2

√
1 − s2/(3 + ε)

√
1 + ε/3
1 − ε

for ε � 1,

where E and ε are related by (12).
In general, for 0 < E < Ec, the triangle spanned by

the vortices oscillates between two isosceles triangles. This
oscillation in the shape of the vortex triangle is accompanied
by the cyclic permutation of the vortices. The system can never
pass through a great circle configuration, so the orientation
of the triangle remains unchanged in time, i.e., the vortices
1, 2, and 3 appear in anticlockwise order, viewed from the
north pole. Because of this, the braid structure is trivial: there
are no twists. In Fig. 6, we show the trajectories of the three
vortices in a frame co-rotating around the center of vorticity
with frequency ωglob(E) for E just slightly below Ec.
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Fig. 6. (a) Trajectories of the three vortices on the sphere viewed from the co-
rotating frame. The innermost curves are for E = 0.13 and the outermost curves
are for E = 0.29, just below Ec . The triangles formed by the three vortices at
t = 0 (dashed) and t = T/4 (solid) are shown for E = 0.29. (b) The same
vortex trajectories on the sphere are shown from an angle to reveal the three-
dimensionality of the curves. The central points are located at the vertices of
the equilateral triangle configuration.

Fig. 6(a) shows trajectories of the three vortices on the
sphere viewed from the co-rotating frame. Looking down at
the north pole (recall the center of vorticity vector is aligned
with the positive z-axis), the initial positions of the vortices
are marked by a dot. There are two energy cases shown, both
for s = 1. The trajectories are closed curves of period T =

2π/ωrel(E) and the sense of motion on each curve is clockwise.
The innermost curves are for E = 0.13. The positions at time
t = T/4 are also shown as dots. The outermost curves are for
E = 0.29 just below Ec. The dashed triangle is formed by the
three vortices at t = 0, with the vortices numbered 1, 2, and 3.
The triangle formed by the same vortices a quarter-cycle later
(t = T/4) is shown as solid.

Fig. 6(b) shows the same closed curves from a different
perspective to reveal the three-dimensionality of the curves. The
equilateral triangle configuration in the rotating frame is shown
as the dots. For all the specific cases of (s, E) given in this
paper, the vortices always remain in the northern hemisphere.
But as will be shown, for some cases an advected particle can
wander through much of the southern hemisphere.

For Ec < E < ∞ the orientation of the triangle is no
longer conserved and a new characteristic of the motion is that
two vortices remain closer to each other than to the third one.
The triangle spanned by the vortices oscillates between two
identical isosceles triangles having different orientations due to
the exchange of the two near vortices passing through the great
circle state twice in one period of the relative motion. Because
vortices 2 and 3 wind around each other, the braid of the three
vortices is such that 2 and 3 have two 180◦ anticlockwise twists
per period.

As E → ∞ the two vortices tend to coalesce and the
dynamics converge to the two-vortex problem where one of the
vortices has double strength (see Fig. 1(b)), and the rotation
period is

ωglob(∞) =
‖M‖

2πs2

=
3

2πs2

√
1 − 2s2/9.
3. Streamline topologies

The advection of passive tracer particles is determined by
the underlying velocity field. A particle can be considered a
vortex of zero strength with position x = (x, y, z) ∈ R3

where ‖x‖ = 1 constrains the particle to be on the sphere. The
equations of motion for a particle on the sphere in the presence
of three vortices of unit strength is

ẋ =
1

2π

3∑
j=1

x j × x

l2
j

(13)

where the denominator in the summation is the square of the
chord distance between the particle and vortex j ,

l2
j = ‖x − x j‖

2
= 2(1 − x · x j ).

Initially, the particle is located at the given position x(0) ∈ R3.
In spherical coordinates, the initial position is (θ(0), φ(0)) ∈

S2
⊂ R3.

3.1. Stereographic projection

It is useful to project the spherical equation (13) onto a plane
so that the Hamiltonian for the particle can be written out and
the instantaneous streamline topology can be determined. The
change of variable

r = tan
(

θ

2

)
,

results in a stereographic projection of the particle onto the
extended complex plane C which is tangent to the sphere at the
north pole. This point of tangency is at the origin of C, while the
south pole (θ = π ) maps to the point at infinity. The location of
the particle z ∈ C is given by z = x + iy where

x = r cos φ,

y = r sin φ,

and similarly for the locations of the vortices, z j ∈ C, j =

1, 2, 3.

3.2. Rotating frame Hamiltonian for the particle

Without loss of generality, we align the center of vorticity
c with the z-axis. The global rotation of the vortices is then
around the z-axis with frequency ωglob. In the rotating frame,
the Hamiltonian for the particle motion projected onto C is

Hp =
1

4π

[
3∑

j=1

log

(
‖z − z j‖

2

(1 + ‖z‖2)(1 + ‖z j‖
2)

)
+

8πωglob

1 + ‖z‖2

]
.

(14)

Hamilton’s equations can be written compactly as

ż∗
= −i

(1 + ‖z‖2)2

2

∂ Hp

∂z
, (15)

where ∗ denotes complex conjugation. These equations have a
time reversal symmetry with reflection. If the initial isosceles
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Fig. 7. Instantaneous streamlines in the co-rotating frame for s = 1 and E = 0 (first row), E = Ec (second row) and E = ∞ (third row). The constant streamlines
on the sphere are shown in a stereographic projection in the first column. The second and third columns show the streamlines on the sphere in a view from the north
pole and from an angle, respectively.
triangle of vortices is symmetric about the real axis of C, then
for every solution z(t), −z∗(−t) is also a solution. This is
because Eq. (15) is unchanged under the symmetry

z → −z∗, t → −t,

since

−z∗

1(−t) = z1(t), −z∗

2(−t) = z3(t),

−z∗

3(−t) = z2(t).

The advection problem corresponds to a periodically
forced Hamiltonian dynamical system. Because of the time
dependence of Hp, the number of effective degrees of freedom
is 1 1

2 , allowing in general for chaotic motion. Note that Hp
depends, in general, on the pair (s, E).
For the following study, we restrict ourselves to those cases
of vortex motion with s <

√
3 for which the vortices never

leave the northern hemisphere. For the special values of the
vortex interaction energy E = 0 or E = ∞, the vortices are at a
stable relative equilibrium and we have a stationary flow in the
co-rotating system. The particle dynamics is nonchaotic, as the
particles just follow streamlines (the Hp = const curves). The
case E = Ec is also special, as we have a stationary flow, but
an unstable one. The streamlines connected to saddle stagnation
points for the steady flows of these three cases are shown in
Fig. 7 for s = 1. As s → 0, the curves in the first column look
like the streamlines in the planar problem (see, e.g., [34]). Note
that the cases E = 0, Ec and ∞ have six, four and three saddle
points respectively.
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(a) t = 0. (b) t = 0. (c) t = T/12.

(d) t = T/6. (e) t = T/4. (f) t = T/3.

Fig. 8. Instantaneous streamlines in the co-rotating frame for s = 1 and E = 0.01 � Ec . The streamlines on the sphere for t = 0 are shown in (a) and the
stereographic projection is shown at various times: (b) t = 0, (c) t = T/12, (d) t = T/6, (e) t = T/4, (f) t = T/3. Due to the permutation of the vortices, the
relative motion is self-repeating for the rest of the period, with vortices permuted. We show only streamlines connected to saddle stagnation points. The vortices are
shown as small circles. Note the change in streamline topology during the portion of the cycle shown. We see a change in vortex pairing: the bottom two vortices
form a pair initially (a figure of eight streamline surrounds them both), but after the triplet halfway through the portion shown (at t = T/6), the upper two vortices
form a pair.
3.3. Dynamically evolving streamline topologies

In general, the streamlines change periodically in time.
In Fig. 8 we show the time dependence of instantaneous
streamlines for a representative case of 0 < E � Ec. We
show only streamlines connected to saddle stagnation points:
on the sphere in (a), and at various times in the stereographic
projection in (b)–(f). Due to the permutation of the vortices,
the relative motion is self-repeating for the rest of the relative
motion period T , with vortices permuted. Thus we only show
the streamlines up to T/3.

Notice that the streamline topology evolves dynamically.
In particular, we can identify bifurcations from one pattern to
another as the vortices evolve. At any given moment, the pattern
of streamlines is made up of the building block patterns (or
primitives) achievable on the sphere given in [24].

We see a change in vortex pairing: the bottom two vortices
form a pair initially (a figure of eight streamline surrounds them
both), but after the triplet halfway through the portion shown (at
t = T/6), the upper two vortices form a pair.

In Fig. 8, a center and saddle near the origin merge at some
time between (b) and (c) to form a cusp and then disappear
altogether. The number of saddle points drops from six to five.
The number of centers nc (including the vortices) and that of
saddles ns are constrained by the Poincaré index theorem to
be such that nc − ns = 2. This is why the center and saddle
must merge and disappear, just as they emerge together again
between (e) and (f) in the figure.

The case illustrated in Fig. 8 is the only example shown
of a saddle–center merge and formation. The other cases have
a constant number of saddle points throughout the vortex
evolution. However, the number of saddle points depends on
(s, E). For the remaining s = 1 cases shown in Figs. 9 and 10,
there are four saddle points.

For all the cases, we notice that the number of critical
streamlines reaches a minimum as they merge halfway through
the portion of the cycle shown: at T/6 for E < Ec and at T/4
for E > Ec. In Fig. 9, we do not have a center and saddle
merging as was the case for E = 0.01. But we still see a change
in vortex pairing. In Fig. 10, where the energy is above critical,
there is no change in vortex pairing.

For s = 1.5, the E = 0.2 case has four saddle points,
seen in Fig. 11. This case has the interesting feature that two
streamlines seem to pass through each other near t = 0.053T ,
illustrated in (c). The limacon streamline attached to the bottom
saddle point in (b) becomes a figure of eight (lemniscate) in (d).
The streamline attached to the saddle point between the vortex
pair and the upper vortex undergoes the reverse bifurcation.
This bifurcation in streamline topology is not possible in the
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(a) t = 0. (b) t = 0. (c) t = T/12.

(d) t = T/6. (e) t = T/4. (f) t = T/3.

Fig. 9. Instantaneous streamlines in the co-rotating frame for s = 1 and E = 0.29 < Ec . The streamlines on the sphere for t = 0 are shown in (a) and the
stereographic projection is shown at various times: (b) t = 0, (c) t = T/12, (d) t = T/6, (e) t = T/4, (f) t = T/3. As before, the relative motion is self-repeating
for the rest of the period and we show only streamlines connected to saddle stagnation points. Vortex pair exchange occurs.
planar problem, being unique to the sphere, where the limacon
is a homotopic equivalent to the lemniscate, i.e., they can
be continuously deformed one into the other [24]. A similar
bifurcation will occur between (e) and (f) at t = T/3−0.053T .

As we keep s fixed at 1.5 and increase the energy to 0.3,
there are only three saddles. The case E = 0.3 is the only
one where a stable island around a center near the south pole
disappears, as will be shown below. As Fig. 12 shows, there
are no bifurcations for this case, even though, as will be shown,
this is the only case shown which allows transport between the
north and south polar caps.

4. Mixing, transport, and ergodicity

4.1. Chaotic particle motion

For s <
√

3, besides the special cases (E = 0, Ec, ∞),
we have a robust connected chaotic region on the sphere. In
the hydrodynamical context, a strong mixing of the fluid takes
place here, and therefore we will call such an extended chaotic
region a mixing region. To visualize the particle dynamics
we use a stroboscopic Poincaré map on which we represent
the position of the particle on the co-rotating sphere taking
snapshots with a time difference T , where T = 2π/ωrel is the
period of the forcing, i.e., the period of the relative motion of
the vortices.

In Fig. 13 we show the stroboscopic maps for different
representative energy values for s = 1. As can be seen, the area
of the sphere occupied by the mixing region depends on E . The
third column of Table 1 gives the fraction of the sphere occupied
by the mixing region for each case shown in Figs. 13 and
14. This area is estimated using an equal-area box partition of
the sphere and counting only those boxes which contain tracer
particles. Tracers initially in the mixing region were followed
for 2×105 iterates. Further details are in Section 5. When E �

Ec or E � Ec, the mixing region is restricted to the vicinity of
the separatrices in the integrable cases. As we depart from these
cases in energy, the mixing region extends significantly. The
most extended chaotic mixing region for s = 1 seems to appear
between E = 0.29 and 0.34, which are on either side of the
critical energy. Note that for the critical energy, the stroboscopic
map is undefined as T is infinite.

The relationship between the instantaneous streamlines and
the mixing region can be seen for E = 0.01 in Fig. 13(a)–(d).
For this energy, not too far from the equilateral triangle relative
equilibrium, the mixing region covers over a third of the sphere.
The region is roughly bounded by the saddle point streamlines
for the six saddle points which exist for this case. There are
stable regions around the vortices and the five other centers,
including the largest at the south pole and a small zone near
the north pole. However, some features are not captured by the
streamlines, such as the two stable regions on the sides, one
of which is shown in Fig. 13(c). This stable region is bounded
below by a thin mixing strip which is part of the mixing region.
How these other features arise is a question of future interest.

For E = 0.60 (Fig. 13(m)–(p)), we superimpose the
streamlines corresponding to the two-vortex case, E = ∞.
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(a) t = 0. (b) t = 0. (c) t = T/8.

(d) t = T/4. (e) t = 3T/8. (f) t = T/2.

Fig. 10. Instantaneous streamlines in the co-rotating frame for s = 1 and E = 0.34 > Ec . The streamlines on the sphere for t = 0 are shown in (a) and the
stereographic projection is shown at various times: (b) t = 0, (c) t = T/8, (d) t = T/4, (e) t = 3T/8, (f) t = T/2. As before, the relative motion is self-repeating
for the rest of the period and we show only streamlines connected to saddle stagnation points. Notice that for this case of energy (above critical), there is no change
in vortex pairing.
Table 1
Characteristics of the mixing region are shown for the eight cases illustrated in Figs. 13 and 14

s E Mixing region extent (%) Spatial fraction in NH (%) Time fraction in NH (%)

1 0.01 36.4 ± 1.2 86.0 ± 2.2 87.3
1 0.29 43.2 ± 1.0 100 100
1 0.34 39.4 ± 1.4 98.7 ± 1.3 99.9
1 0.60 17.9 ± 1.5 95.0 ± 5.0 93.3
1.5 0.1 79.0 ± 1.0 46.0 ± 0.7 39.0
1.5 0.2 82.1 ± 1.3 45.9 ± 0.6 46.4
1.5 0.3 74.9 ± 1.1 46.2 ± 0.7 44.3
1.5 0.6 17.7 ± 0.8 98.2 ± 1.8 97.2

The length parameter (s) and energy (E) label the cases. The third column shows the area of the mixing region as a percentage of the total sphere area, including an
accuracy estimate. See Section 5 for the area estimation procedure. The fourth column shows the percentage of the mixing region which is in the northern hemisphere
(NH) along with an accuracy estimate. The fifth column shows the fraction of time that a typical mixing region trajectory spends in the northern hemisphere. For this
calculation, a trajectory of 2 × 105 iterates initialized in the mixing region was used. Note that spatial and time fractions are nearly equal, suggesting that the mixing
region is nearly ergodic. The trajectory for the notable exception, (s, E) = (1.5, 0, 1), got caught around a sticky island [32,26] forming the southern boundary in
the southern hemisphere. For (s, E) = (1, 0.29), the entire trajectory was in the NH.
This energy is large enough that the streamlines are relevant.
Though the streamlines are not plotted for the remaining cases,
the situation is similar: stable regions around the centers are
seen.

At the energies shown in Fig. 13, the mixing region does
not extend close to the point vortices or below a certain latitude
near the equator. Each point vortex is surrounded by an island
of regular motion, where advected particles are trapped. This
behavior was noted in the planar case by, e.g., [3]. Note that for
E > Ec, the two near vortices are surrounded by a common
regular island. There are also regular islands which do not
surround a vortex.

To illustrate the dependence of the mixing region size on
s, we show the mixing region for representative energies for
s = 1.5 in Fig. 14. For a given energy, the larger s system
has smaller values for ωrel and ωglob. For this value, the mixing
region does not seem to end near the equator but extends further
south. There is a nonchaotic island around the south pole for
energies E = 0.1 and 0.2 which gets smaller as the energy
increases from E = 0.1 to 0.2. The E = 0.2 case also has
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(a) t = 0. (b) t = 0. (c) t = 0.053T .

(d) t = T/12. (e) t = T/6. (f) t = T/3.

Fig. 11. Instantaneous streamlines in the co-rotating frame for s = 1.5 and E = 0.2 < Ec . The streamlines on the sphere for t = 0 are shown in (a) and the
stereographic projection is shown at various times: (b) t = 0, (c) t = 0.053T , (d) t = T/12, (e) t = T/6, (f) t = T/3. As before, the relative motion is self-repeating
for the rest of the period and we show only streamlines connected to saddle stagnation points. A unique case of streamlines passing through each other is shown in
(c). The view is zoomed out in (d) to show the full streamlines, highlighting the interchange between limacon and lemniscate streamline curves, achievable only on
the sphere as compared to the plane.
the largest mixing region of the cases surveyed, encompassing
82.1% of the sphere.

From Figs. 11 and 12 we see that the number of saddle
stagnation points drops from four to three as we increase energy
from 0.2 to 0.3. Three is the smallest number of all the example
cases surveyed and interestingly, this is the only case where the
mixing region encompasses the south pole. Transport between
the north and south polar caps is possible, even though there
is a small regular island near the north pole. For E = 0.6,
that regular island grows in extent and encompasses the north
pole. The mixing region decreases considerably, down to less
than a quarter of the sphere. As we consider larger energies, the
mixing region area shrinks to zero and the advection pattern
approaches the regular advection in the field of two point
vortices on the sphere with strengths Γ and 2Γ .

To illustrate the speed of mixing for the interesting case
of (s, E) = (1.5, 0.3) we consider a few iterates of a cap
around the south pole. In Fig. 15(a), the boundary of an initial
spherical cap at a latitude of 20◦ from the south pole (co-
latitude θ = 160◦) is shown as a dashed line. The boundary
is represented as a material line with particles placed along
it. As the boundary is iterated, its resolution is preserved by
adjusting the number and distribution of particles (e.g., by
placing additional particles in regions of high curvature, [12,
17,45,27,11]). The second iterate of this boundary under the
stroboscopic map is shown as a solid line in (a). Due to the
area preservation of the stroboscopic map, the spherical areas
of the cap and its iterates are equal. The accuracies of the area
values are estimated as the difference in the area at each iterate
n compared to the initial area, a0 = 2π(1 − cos(20◦)), and are
shown in the last column of Table 2. We can compare the area of
the spherical cap with the overlap area of the cap and its iterates
to determine the transport of an ensemble of particles out of the
cap [29]. We can determine spherical areas bounded by curves
using Green’s Theorem for the sphere. We find that 67.04% of
the particles initially in the cap (at t = 0) have escaped by the
second iterate of the map, i.e., by t = 2T . All have escaped by
the fourth iterate, shown in (b). In (c), a northern hemisphere
view shows how the fourth iterate contains a long thin filament
that weaves around the sphere. A similar phenomenon of thin
spiral filaments has been seen in the transport of material out of
polar vortex regions on Earth [20].

Due to the nearly ergodic nature of the mixing region,
particles which escape the cap are likely to return intermittently.
Within a few more iterates, some portion of the area
will intersect the initial cap. This intersection region will
subsequently get folded and stretched, a basic mechanism for
the generation of chaos.

We can get a better handle on the features of the flow
which control transport by considering Fig. 16 showing the
area bounded by the fourth iterate of the cap in a stereographic
projection along with the instantaneous streamlines. The arrows
on the streamlines indicate the flow direction. As these
streamlines are attached to saddle stagnation points, they are
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(a) t = 0. (b) t = 0. (c) t = T/8.

(d) t = T/4. (e) t = 3T/8. (f) t = T/2.

Fig. 12. Instantaneous streamlines in the co-rotating frame for s = 1.5 and E = 0.3 > Ec . The streamlines on the sphere for t = 0 are shown in (a) and the
stereographic projection is shown at various times: (b) t = 0, (c) t = T/8, (d) t = T/4, (e) t = 3T/8, (f) t = T/2. As before, the relative motion is self-repeating
for the rest of the period and we show only streamlines connected to saddle stagnation points. There is no change in vortex pairing.
Table 2
Change in arc length of a material boundary is shown for the spherical cap and
its images shown in Fig. 15

n Boundary length Stretching rate Area error

0 1 n/a n/a
1 1.1482 1.1482 1 × 10−10

2 2.0095 1.7502 3 × 10−8

3 4.8643 2.4206 2 × 10−6

4 31.7483 6.5268 9 × 10−4

The arc lengths have been normalized by dividing by the initial area. The
stretching rates give the ratio of the boundary length at iterate n to that at n − 1
for n ≥ 1. The error in the area at each n (compared to the initial area) is given
in the final column to indicate the accuracy of the computation.

approximations of the stable and unstable manifolds of those
points. Stretching along the unstable directions is seen. The
long and folded area weaves around the manifolds of more than
one saddle point, leading to its complicated shape.

The change in the arc length of the boundary of the cap is
shown in Table 2 for iterates n = 0, . . . , 4. The arc lengths have
been normalized by dividing by the initial boundary length,
l0 = 2π sin(20◦). The stretching of the boundary is equivalent
to a weight average of finite-time Lyapunov exponents over the
set of particles distributed along it [15,9]. The stretching rate is
increasing monotonically as the blob of fluid gets entrained in
the region between the vortices.

For a given size of south polar cap, we ask what is the
minimum number of iterates necessary to reach a north polar
cap. Continuing the current example for a 20◦ south polar cap,
let us consider the time it takes to reach a 2◦ north polar cap.
We find the third backward iterate intersects the fourth forward
iterate of the south polar cap, as shown in Fig. 17. Thus, for
the sizes of caps used here, it takes only seven iterates for some
particles in the south polar cap to reach the north polar cap.

5. Numerical procedures

We describe briefly in this section some of the numerical
procedures used. Many of the procedures are novel implemen-
tations of algorithms currently under development in other con-
texts that required significant modification based on the spheri-
cal geometry of the problem.

5.1. Measuring the extent of the mixing region

The extent of the mixing region can be measured using a
box counting approximation [11]. This approach is also coarse-
grained, but does not require the explicit calculation of regular
island boundaries. It requires only that we have a sufficient
number of marks of tracer particles spread throughout the
Poincaré section to adequately approximate the area. It is a
quantitative extension of the qualitative pictures given by tracer
clouds in stroboscopic maps, as in Figs. 13 and 14.

5.2. Equal-area box partition

The flow field, in this case the sphere S2, is partitioned
into small boxes, or subsets. The problem of choosing the best
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Fig. 13. Stroboscopic maps obtained by trajectories in the mixing region of the flow for s = 1 and (a)–(d) E = 0.01, (e)–(h) E = 0.29, (i)–(l) E = 0.34, (m)–(p)
E = 0.60. Dots represent intersections with the Poincaré plane for a single chaotic tracer trajectory starting at the north pole. About 104 tracer points are shown
for each energy. From left to right, the views are from the north pole, south pole, the side, and from an angle, respectively. For the E = 0.01 case, we show the
streamlines for this energy superimposed. For the E = 0.60 case, we superimpose the E = ∞ streamlines.
box covering of the sphere is an unsolved problem related
to distributing a large number of points uniformly on the
sphere [31,33,21] — Smale’s 7th problem for the twenty-
first century [44]. As the flow field we are studying is area
preserving, we choose a partitioning of the sphere into nb equal-
area parts with small diameters [39]. For simplicity, we use
spherical coordinates, and denote the nb = nθ × nφ subsets
as D11, D12, . . . , Dnθ nφ . Lebesgue (area) measure on S2 is
denoted by σ , so that σ(S2) = 4π . Our partition is such that⋃
i, j

Di j = S2, Di j ∩ Dkl has empty interior if i 6= k and j 6= l,

σ (Di j ) = 4π/nb.

Each Di j is a square on the sphere bounded by two constant
co-latitude lines and two constant longitude lines,

Di j = [θi−1, θi ] × [φ j−1, φ j ].
In spherical coordinates, the area element is

dσ = sin(θ)dθdφ.

Integrating over Di j , we have

σ(Di j ) =

∫
Di j

dσ,

=

∫ φ j

φ j−1

∫ θi

θi−1

sin(θ)dθdφ,

= δφ

∫ θi

θi−1

sin(θ)dθ,

where δφ =
∫ φ j
φ j−1

dφ is the constant angular spacing between
longitude lines. These lines are given by φ0 = 0, φ j =

φ j−1 + δφ, j = 1, . . . , nφ , where δφ = 2π/nφ . In order to
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Fig. 14. Stroboscopic maps obtained by trajectories in the mixing region of the flow for s = 1.5 and (a)–(d) E = 0.1, (e)–(h) E = 0.2, (i)–(l) E = 0.3, (m)–(p)
E = 0.6. The particles for E = 0.1 to 0.3 began at the north pole, while for E = 0.6 the particle began at a co-latitude of 20◦. The views are the same as in Fig. 13.
About 104 tracer points are shown for each energy. Note the larger extent of the mixing region compared with those for s = 1 in Fig. 13. For E = 0.3, the transport
between the north pole and south pole is possible. For E = 0.6 there is an elliptic island encompassing the north pole.
have σ(Di j ) = 4π/nb, we need∫ θi

θi−1

sin(θ)dθ =
4π

nbδφ
,

=
2

nθ

.

The co-latitude lines are not equally spaced in θ for nθ ≥ 3.
They are given by θ0 = 0 and cos(θi ) = cos(θi−1) − 2/nθ ,
i = 1, . . . , nθ .

For a given nb, we want to pick the ratio of nφ/nθ

appropriately. We can determine this by setting the edge lengths
to be nearly equal near the equator. For boxes near the equator,
sin(θ) ≈ 1, so

∫ θi
θi−1

sin(θ)dθ is approximately the length of the
longitude sides of the box, δθeq. Requiring δθeq ≈ δφ gives us
nφ = bπnθc, where bxc denotes the largest integer not greater
than x .
Let P = {p1, p2, . . . , pN } denote the collection of N tracer
points on the sphere. P could be a cloud of tracer particles
initialized in the mixing region and followed for long times to
approximate the mixing region. Then let M = {Di j } denote
the box collection of all Di j such that P

⋂
Di j 6= ∅. In other

words, we keep boxes that contain points in the mixing region
and discard the others. An upper bound on the area of the
mixing region is then given by σ(M).

5.3. Adequate resolution

To obtain adequate spatial resolution of the mixing region
given a scattering of only N tracer points spread about the
sphere, we need to pick nb appropriately. This is a difficult
problem. We do not want boxes so large that we grossly
overestimate the mixing region extent. However, boxes which
are too small will grossly underestimate the mixing region. If
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Fig. 15. The boundary of a spherical cap around the south pole (dashed in
(a) and (b)) and some iterates under the stroboscopic map are shown. (a) The
second iterate is shown as a solid curve in this southern hemisphere view. (b)
The fourth iterate is shown. (c) Another view of the fourth iterate, showing the
northern hemisphere.

Fig. 16. The area bounded by the fourth iterate of a south polar spherical cap is
shown in this stereographic projection along with the instantaneous streamlines
with flow arrows.

the N tracer points were distributed uniformly over the sphere,
they would each occupy an area of 4π/N which we take as
our minimum scale αmin. As all the mixing regions measured
did not cover the entire sphere (e.g., the islands surrounding the
vortices in Figs. 13 and 14 are excluded), this is an upper bound
Fig. 17. The third backward iterate of a small north polar cap is shown along
with the fourth iterate of the south polar cap shown previously in Fig. 15(c). The
north polar cap is the small circle at the center and its third backward iterate is
the curve right of center which intersects the south polar cap fourth iterate.

on the average area surrounding each tracer point. We want the
boxes of our partition to be able to pick up features of this scale,
i.e., σ(Di j ) > αmin. Thus, we want nb = bN/kc, where k > 1.
On the basis of numerical experimentation, we find using k = 5
works well for N ≈ 105, yielding a close bracketing of the
supposed true area value (see the next paragraph). In Fig. 18,
we show the box covering M of N = 2 × 105 mixing region
tracers from Fig. 14(i)–(l) using k = 50 (a) and k = 5 (b). A
visual inspection reveals that the mixing region is fairly well
covered, even in (a). At least one regular island is discernible
in the lower right of (a) which is not picked up at the k = 50
resolution, revealing the approximate nature of the covering.

5.4. Accuracy

The accuracy of M as a covering of the mixing region can
be gauged by measuring the difference between the area ofM
andM, whereM =M \ ∂M and ∂M contains boxes on the
boundary of M. Considering Fig. 18, the boxes contained in
∂M are those surrounding the white regular regions. The region
M is then entirely contained within the mixing region. The
areas of two regions, σ(M) and σ(M), should bracket the true
value of the mixing region, σ(M). For the area measurements
given in Table 1, we used an average,

σ(M) =
1
2

(
σ(M) + σ(M)

)
,

where the accuracy is estimated as 1
2σ(∂M). The choice

mentioned above of k = 5 yields accuracies of about 1% when
using N ≈ 105. The actual accuracy value depends on how
large the boundaries are, or in other words, how many holes
are in the mixing region. The number of holes changes in a
complicated fashion with s and E .

A similar procedure, restricted to the northern hemisphere,
yields area estimates for the portion of the mixing region in that
hemisphere in the fourth column of Table 1.

Extensions of this method to systematically increase the
accuracy are needed. One approach applied to other problems
of physical interest is to use adaptive box sizes, using,
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(a) k = 50, 4000 boxes.

(b) k = 5, 40000 boxes.

Fig. 18. Box coveringM of N = 2 × 105 mixing region tracers from Fig. 14(i)–(l), where s = 1.5, E = 0.3. The initial box covering consists of about (a) 4000
boxes and (b) 40 000 boxes. The boxes in the upper and lower figures have equal area on the sphere, but their projections in spherical coordinates are smallest near
the equator and largest near the poles.
for example, efficient box subdivision algorithms along the
boundary ∂M [11].

6. Discussion and conclusions

The analysis performed in this paper of advection in the
flow field of three identical point vortices on the sphere has
illuminated a number of features which should be relevant in
the case of more general vortex-dominated flows on the sphere.
The case of three-vortex flow, as in the planar problem, is
a special case as it is the simplest such system generating
Lagrangian chaos. The motion of the vortices is in general
quasi-periodic, characterized by a frequency of relative motion
of the vortices and a global rotation of the vortices about
the center of vorticity vector. We parametrize the three-vortex
motion by an interaction energy and a characteristic length
scale, related to the average distance between the vortices
compared to the diameter of the sphere.

The vortex interaction energy naturally divides the advection
phase space for a tracer particle into two regimes of motion:
(a) sequential pairing between the three vortices, i.e., partner
exchange, and (b) two of the vortices form a pair which wrap
around each other for all time.

Using a stroboscopic map (at the vortex relative motion
frequency), we find the phase space of the advected particle
contains a large connected chaotic component, the mixing
region. The mixing region area is estimated using an equal-
area box partition of the sphere and counting only those boxes
which contain tracer particles. The mixing region covers the
largest portion of the sphere for energies on either side of
the critical energy, which corresponds to an unstable great
circle equilibrium. Computational evidence suggests the mixing
region is, for all practical purposes, ergodic. For some energy
ranges, particles in the north polar cap (defined by the center
of vorticity vector) can wander to the south polar cap, and vice
versa, via small-scale filamentary structures.

The instantaneous streamline patterns of the three-vortex
flow field undergo topological bifurcations both as a function of
energy and during the course of their evolution for fixed energy
values. Some bifurcations involve formation and disappearance
of stagnation points while respecting the constraints imposed
by the Poincaré index theorem [35]. Others involve homotopies
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due to the spherical topology. The streamline patterns reveal
some of the gross features of the phase space, particularly the
location of islands around centers.

Advection in a multi-vortex flow on a sphere provides an
important link between simple dynamical systems models and
much more complicated models of particle advection in global
geophysical flows, such as the polar vortex [16,43]. Taking
the point of view of building dynamically consistent simple
models, we can add additional vortices of various strengths,
along with realistic rotation models, all of which avoids the
trouble of interpreting results belonging only to a kinematic
model [15]. The flow field in the presence of four or more
vortices on the sphere will have general time dependence and
other techniques for quantifying transport can be used [14,
19,27,28,41], but the qualitative picture from the three-vortex
model can serve as a useful guide.
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