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The N-vortex problem on a rotating
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We study the evolution of N-point vortices in ring formation embedded in a background
flowfield that initially corresponds to solid-body rotation on a sphere. The evolution of
the point vortices is tracked numerically as an embedded dynamical system along with
the M contours which separate strips of constant vorticity. The full system is a
discretization of the Euler equations for incompressible flow on a rotating spherical shell,
hence a ‘barotropic’ model of the one-layer atmosphere. We describe how the coupling
creates a mechanism by which energy is exchanged between the ring and the
background, which ultimately serves to break up the structure. When the centre-
of-vorticity vector associated with the ring is initially misaligned with the axis of rotation
of the background field, it sets up the propagation of Rossby waves around the sphere
which move retrograde to the solid-body rotation. These waves pass energy to the ring
(in the case when the solid-body field and the ring initially co-rotate) or extract energy
from the ring (when the solid-body field and the ring initially counter-rotate), hence the
Hamiltonian and the centre-of-vorticity vector associated with the N-point vortices are
no longer conserved as they are for the one-way coupled model described by Newton &
Shokraneh. In the first case, energy is transferred to the ring, the length of the centre-
of-vorticity vector increases, while its tip spirals in a clockwise manner towards the
North Pole. The ring stays relatively intact for short times, but ultimately breaks-up on
a longer time-scale. In the latter case, energy is extracted from the ring, the length of the
centre-of-vorticity vector decreases while its tip spirals towards the North Pole and the
ring loses its coherence more quickly than in the co-rotating case. The special case where
the ring is initially oriented so that its centre-of-vorticity vector is perpendicular to the
axis of rotation is also examined as it shows how the coupling to the background field
breaks this symmetry. In this case, both the length of the centre-of-vorticity vector and
the Hamiltonian energy of the ring achieve a local maximum at roughly the same time.
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embedded dynamical system
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1. Introduction

We study the evolution of a ring of N-point vortices on a sphere embedded in a
background flow that initially corresponds to solid-body rotation. Our main goal
is to understand the nature of the coupling between the ring and the background
field in order to elucidate the mechanism by which such configurations, which
model the boundary between distributed coherent vortices and the backgrounds
in which they are embedded, are destabilized in much more complex settings.
The paper by McDonald (1999) provides an excellent discussion of many of the
key effects associated with geophysical vortices. We adopt a simple barotropic
vorticity model on the sphere (as in DiBattista & Polvani 1998) in order to
identify several key features of the interaction process in a pristine environment,
where definitive statements can be made based on careful numerical experiments
and comparisons with the simpler one-way coupled model developed in Parts I, II
and IV of this sequence (see Jamaloodeen & Newton 2006; Newton & Shokraneh
2006a,b). In particular, Part I in this sequence highlighted the importance of the
misalignment of the centre-of-vorticity vector associated with the N-point
vortices with the axis of rotation associated with the solid-body velocity field.
In this paper, we include the additional important physical mechanism of
coupling to the background flow and the subsequent generation of Rossby waves;
hence, we are able to understand the combined effects of the misalignment and
coupling when both act together. The strength of this approach is in our ability
to isolate the key mechanisms which lead to the ring breakup and loss of inte-
grable structure of the one-way coupled model that was established in Part I. Of
course, when analysing more complex systems such as Jupiter’s atmosphere
(Marcus 1993), the distinction between the vorticity associated with a coherent
structure, such as theGreatRed Spot, and the background vorticity is far less clear.
(a ) Summary of the one-way coupled model

We first summarize the one-way coupled model in order to contrast its main
features with the two-way coupled model studied in this paper. In Part I of this
sequence (see Newton & Shokraneh 2006a), we introduced a model for the
evolution of N-point vortices on a sphere with background solid-body rotational
velocity field. The dynamical system for the N-point vortices is given by

_xaZ
1

4p

XN
bZ1

0Gb

xb!xa

ð1Kxa$xbÞ
CUêz!xa ðaZ1;.;NÞ xa2R

3; kxakZ1: ð1:1Þ

The prime on the summation indicates that the singular term bZa is omitted
and, initially, the vortices are located at the given positions xa(0)2R

3,
(aZ1,., N ). The denominator in (1.1) is the chord distance between vortex
Ga and Gb since kxaKxbk2Z2 (1Kxa$xb). The first term on the right-hand side is
the discrete Biot–Savart law (see Newton 2001), while the last term represents a
solid-body rotational velocity field, with axis of rotation aligned with the North–
South polar axis (i.e. the z-axis). As emphasized in Part I, the solid-body rotation
affects the dynamics of the N-point vortices, but the vortices do not alter the
‘background’ flow, which remains in solid-body form. Hence, we called this a one-
way coupled model.
Proc. R. Soc. A (2007)
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The key to understanding this simplified model is the realization that the
centre-of-vorticity vector J associated with the point vortices, defined as

J Z
XN
aZ1

Gaxa Z
XN
aZ1

Gaxa;
XN
aZ1

Gaya;
XN
aZ1

Gaza

 !
Z ðJx ; Jy; JzÞ; ð1:2Þ

satisfies

_J ZUêz!J ; ð1:3Þ
as can be verified by multiplying (1.1) by Ga, summing over a and using the fact
that xa!xbZKxb!xa. Equation (1.3) is solved by applying the rotation matrix,
MU(t), to J(0),

JðtÞZMUðtÞJð0Þ: ð1:4Þ
MU(t) is given by

MUðtÞZ
cos Ut Ksin Ut 0

sin Ut cos Ut 0

0 0 1

0
B@

1
CA; ð1:5Þ

and is a unitary matrix with the property

MT
U ZMK1

U ; MUð0ÞZ I : ð1:6Þ
From this, we conclude that the length of J is constant since

kJk2 Z hJ ;JiZ hMUJð0Þ; MUJð0ÞiZ hMT
UMUJð0Þ;

Jð0ÞiZ kJð0Þk2;
ð1:7Þ

while the components break up into two conserved quantities,

J 2
x CJ2

y ZC1 Z const: ð1:8Þ

Jz ZC2 Z const: ð1:9Þ
The remaining important conserved quantity is the Hamiltonian, H, given by

H ZK
1

4p

XN
a!b

GaGblogkxaKxbk: ð1:10Þ

As the N-vortices evolve under their mutual interaction around J, it in turn
rotates with frequency U about the z-axis, maintaining a fixed angle g with
respect to the axis. See Part I for more details.

We made the simple observation that it is the misalignment of the centre-
of-vorticity vector with the axis of rotation (gs0) that is an important
ingredient in understanding the dynamics of the vortices. The key to
understanding the ramifications of the misalignment is to understand how the
unitary operator, LJ

UðtÞ, affects trajectories on the aligned (gZ0) non-rotating
(UZ0) sphere. The relation between solutions of the original rotating system,
Proc. R. Soc. A (2007)
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xa(t), and solutions of the aligned non-rotating system, za(t), is via the linear
operator LJ

UðtÞhMUðtÞMK1
z MK1

y

xaðtÞZLJ
UðtÞzaðtÞ: ð1:11Þ

The matrices My and Mz serve to align J(0) with the z-axis, hence are defined as

M z Z

cos gz Ksin gz 0

sin gz cos gz 0

0 0 1

0
B@

1
CA; ð1:12Þ

M y Z

cos gy 0 sin gy

0 1 0

Ksin gy 0 cos gy

0
B@

1
CA: ð1:13Þ

We note that the operator LJ
UðtÞ is time dependent, but more importantly

contains information on the original alignment of J with the axis of rotation. It
was emphasized that understanding the effects of this operator on time-
dependent trajectories was the key towards understanding the effects of rotation.
The shortcomings of this model are that the background rotational velocity field
is not altered by the presence of the N-point vortices, so there is no exchange of
energy between the N-vortex field and the background flow. As a result, the
system cannot support the propagation of Rossby waves which are known to be
an essential ingredient in many dynamical atmospheric processes (Hoskins 1973;
Pedlosky 1987; Majda 2003). In addition, the stability characteristics (see Cabral
et al. 2003) and integrability (Bogomolov 1977, 1979, 1985; Kidambi & Newton
1998, 2000; Newton & Shokraneh 2006a) of the pure N-vortex problem on the
non-rotating sphere remains largely intact in this one-way coupled model.

The goal of the current paper is to understand the effects of coupling the
background field to the point-vortex dynamics, with particular attention paid to
the misalignment of the J vector. We will elucidate the effect of the two-way
coupling to the dynamics of the N-point vortices, which are embedded in the
background field and are able to exchange energy with it. The model we adopt,
called a one-layer spherical barotropic model, was used in DiBattista & Polvani
(1998) to understand the evolution of dipoles. What was not emphasized in that
study is the role the misalignment plays in the overall dynamical processes. In fact,
if the centre-of-vorticity vector is initially aligned with the axis of rotation, then
this effect plays no role. To set the stage for the descriptions to follow, we show in
figure 1 the schematic diagram associated with the point-vortex ring and the
discretized background field described in more detail later. Note the initial
misalignment of J with the axis of rotation as characterized by setting gs0
initially. As the ring and the background strips evolve (as shown in figure 2), the
MK1 contours associated with the M strips deform and wrap around the point
vortices, while the ring is destabilized and ultimately destroyed. Details of this
process, with particular emphasis on the exchange of energy between the ring and
the background, follow in §§3 and 4 after a description of the numerical method.
Proc. R. Soc. A (2007)
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Figure 1. Initial configuration with N equal strength point vortices (G) evenly spaced around a
spherical cap which gives rise to the J vector as shown. (a) The size of the spherical cap is
characterized by the base half-angle q0, while the orientation with respect to the axis of rotation is
characterized by angle g. (b) Ten constant vorticity strips unZconstant with nine contours that
require tracking. The constant values un are chosen so that they approximate the vorticity
distribution corresponding to solid-body rotation around the z-axis. See text for more details.
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2. The numerical method

The numerical method we use is based on that described by DiBattista & Polvani
(1998). The vorticity on the unit sphere evolves according to the equation
Du/DtZ0, where uZx$(V!u) and u is the two-dimensional velocity field.
The incompressibility condition V$uZ0 implies the existence of streamfunction
j(x), where uZx!Vj, which gives rise to the relation uZDj. Inversion of this
expression gives rise to

jðxÞZ
ð ð

S
Gðx; x 0ÞuðxÞdA; ð2:1Þ

whereG(x, x0) is the Green’s function on the sphereG(x, x0)ZK(1/4p) logjxKx0j2.
As in Bogomolov (1977, 1979), we think of the vorticity field as being made up of
two parts, u(q, f)ZuNCuSB. uN is the vorticity due to the N-point vortices, i.e.

uN Z
1

sin q

XN
aZ1

GadðqKqa;fKfaÞ; ð2:2Þ

where (qa, fa) represents the position of the ath point vortex in spherical
coordinates. This gives rise to the velocity field

uvðxÞZ
G

4p

XN
aZ1

xa!x

1Kx$xa

: ð2:3Þ

The initial configuration of the misaligned N-vortex ring as in figure 1a is given
as follows. First, the N-vortex points are equally spaced along a line of latitude
Proc. R. Soc. A (2007)
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Figure 2. Evolution of ring configuration and contours with NZ4 and MZ10 and frequency ratio
4 : 1. Orientation gZp/4 and q0Zp/4. TZ0.00–12.00 in dimensionless units. Note that the
wrapping of the contours around the point vortices effectively increases their strength with respect
to the background. The ring stays relatively intact throughout the evolution.
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zZcos q0, then they are rotated around the x -axis by the angle g. The strength of
each vortex point G is determined so that the frequency ratio between the ring’s
rotation frequency and the solid-body frequency becomes m : n, namely

u : UZ
GðNK1Þcos q0

4p sin2q0
:
1

2
Zm : n: ð2:4Þ
Proc. R. Soc. A (2007)
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The second part of the vorticity field, uSB, is thought of as the ‘background’
vorticity, which for our model initially corresponds to the solid-body rotation.
This is discretized by MC1 zonal strips of uniform vorticity separated
by latitudinal contours, which we track numerically (see figure 1b). Let Xa(q, t)
aZ1,., M represent the M contour curves, in which 0%q!2p is a parameter
along the contour curve and t is time. The initial position of Xa is given by

Xaðq; 0ÞZ
ffiffiffiffiffiffiffiffiffiffiffiffi
1Kz2a

q
cos q;

ffiffiffiffiffiffiffiffiffiffiffiffi
1Kz2a

q
sin q; za

� �
; aZ 1;.;M ; ð2:5Þ

where

za Z 1K
2a

M C1
: ð2:6Þ

The value of the uniform vorticity in each of the zonal regions is approximated
by piecewise constant, and the jump across the contour curve Xa, say ~ua, is
given by

~ua Z
1

2
ðzaK1KzaC1Þ; ð2:7Þ

in which z0Z1 and zMC1ZK1. The velocity field induced by the MC1 zonal
vorticity strips is represented by the boundary integral along the M contours (see
Dritschel 1989; Dritschel & Polvani 1992; Polvani & Dritschel 1993 for further
relevant discussions),

usðxÞZK
XM
aZ1

ua

ð2p
0

logjxKXaj2
vXa

vq
dq: ð2:8Þ

The numerical computation becomes unstable when the vortex points
approach very close to the contour curves. Thus, the interaction between the
vortex points and the vorticity strips is evaluated by a velocity field regularized
by the vortex blob method. Introducing a small dO0, the regularized velocity
fields are given by

uðdÞ
v ðxÞZ G

4p

XN
aZ1

xa!x

1Cd2Kx$xa

; ð2:9Þ

uðdÞ
s ðxÞZK

XM
aZ1

ua

ð2p
0

logðjxKXaj2 Cd2Þ vXa

vq
dq: ð2:10Þ

The regularization parameter d was successfully introduced to compute the long-
time evolution of a vortex sheet (Kransy 1986) and is described thoroughly in the
book of Cottet & Koumoutsakos (2000). The regularization stabilizes the
numerical computation and makes it possible to track the evolution of the vortex
points and contours. Let us briefly comment on the accuracy of the
computational results. As the interaction between the vortex ring and the
contours evolves, the contours roll up and form filamentary structures. In that
case, the contour surgery technique (Dritschel 1989) and a continual
redistribution of discretizing points are required to maintain high accuracy.
Since we are primarily interested in the interaction mechanisms which work
initially to destabilize the ring, we are able to get away without using the contour
surgery technique. We also take sufficiently many nodal points in our initial
Proc. R. Soc. A (2007)
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discretization of the contours, so redistribution of the points is not necessary. For
longer simulations, both of these procedures would be needed.

Accordingly, the equations we consider are
vxj

vt
Zu 0

vðxjÞCuðdÞ
s ðxjÞ; j Z 1;.;N ; ð2:11Þ

vXk

vt
ZusðXkÞCuðdÞ

v ðXkÞ; k Z 1;.;M ; ð2:12Þ
where u 0

v equals to the summation terms in equation (1.1). The boundary
integral along each of the contours is approximated by the trapezoidal rule with
4096 points. The temporal integration of equations (2.11) and (2.12) are carried
out with the fourth-order Runge–Kutta method, for which the time-step size is
DtZ0.01. The regularization parameter is fixed, dZ0.1. We have done numerical
computations for various values of d and confirmed that the qualitative
numerical results are relatively insensitive to changes in d.
3. Rings

(a ) Two-way coupled ring dynamics: co-rotation

Consider the ring configuration shown in figure 1. The basic parameters defining
the ring are its angle g with respect to the z-axis, its opening angle q0, the
number of point vortices distributed along the spherical cap, N, and the number
of constant vorticity regions, M, used to represent the background field (see
DiBattista & Polvani (1998) for some discussion on the merits and accuracy of
choosing different values for M ). While all of these parameters play a role in the
details of the dynamical evolution of the system, our goal is to extract the main
features of the effect of the misalignment gs0 during the interaction process.
In Part I, figs 11–14 show the evolution of a ring in the one-way coupled model
for the case NZ4, with orientation angles gZp/4, p/2 and 3p/4 and frequency
ratios u : UZ1 : 1; 2 : 1 and 3 : 1. The trajectories of the vortices in this model
move on closed periodic orbits in all cases. Note that for the case gZp/4, the
ring co-rotates with the solid-body field, while for the case gZ3p/4, it counter-
rotates. The case gZp/2 is a special symmetric orientation which we will
describe later. The length of the centre-of-vorticity vector associated with the
ring is constant, as is the Hamiltonian energy.

As a first step in understanding the two-way coupled model, we highlight a
well-known fact (also seen nicely by DiBattista & Polvani 1998) that in the
absence of point vortices, the contours support the propagation (see fig. 4 in
DiBattista & Polvani 1998) of Rossby waves which move retrograde with respect
to the solid-body rotation. The general processes by which Rossby waves
propagate and lose stability are by now quite well documented (Hoskins 1973;
Pedlosky 1987), while the mechanisms by which their coupling to structures
embedded in the flow serve to break up these structures is far less understood.

Consider the sequence of simulations shown in figure 2 for the case NZ4,
MZ10, gZp/4 and q0Zp/4 and a frequency ratio 4 : 1. In this sequence, the
ring is initially co-rotating with the background field. As seen in the figures, as
the rings cut through the contours, they wrap around each of the point
Proc. R. Soc. A (2007)
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Figure 3. (a) Evolution of point vortices in a frame of reference rotating with the background
frequency of the one-way coupled model with a frequency ratio 4 : 1. Note that the ring briefly
reverses direction, but as the strength of the vortices increases, it regains its original rotational
direction and remains relatively intact. (b) Evolution of the tip of the centre-of-vorticity vector J
associated with the ring. Note that it rotates up towards the North Pole. (c) Evolution of the
length of the centre-of-vorticity vector kJk which is constant in the one-way coupled model but not
when the ring is coupled to the background flow. In this case, as the vortices increase their strength
by wrapping themselves in the contours, the length of J increases. (d ) The Hamiltonian is no
longer conserved when the ring is coupled to the background. In this case, since the ring is
co-rotating with the background, it is gaining energy from it.
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vortices, thus effectively increasing their strength and triggering an instability
that sets up wave propagation along the deforming contours. The effect of
these waves on the ring configuration is depicted clearly in figure 3. The ring
begins to rotate around its J vector, as shown in figure 3a, which depicts the
vortex paths moving in a reference frame with the solid-body frequency U and
shown so that the centre-of-vorticity vector is initially centred. The effect of
the retrograde motion of the Rossby waves causes the rotational direction to
briefly reverse with respect to this rotating frame. As the vortices increase
their strength by tightly wrapping the contours around their centres, the
length of the J vector associated with the ring increases and eventually the
ring becomes strong enough to overcome the temporary reversal of direction
caused by the incoming waves. It then assumes its original rotational direction
as evidenced by the S-shaped vortex paths depicted in figure 3a. The tip of the
Proc. R. Soc. A (2007)
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Figure 4. Evolution of ring configuration and contours with NZ8 and MZ10 and frequency ratio
4 : 1. Orientation gZp/4 and q0Zp/4. TZ0.00–12.00 in dimensionless units.
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J vector, as shown in figure 3b, no longer cuts a clean latitudinal cap as it did
in the one-way coupled model, but spirals up in a clockwise fashion towards
the North Pole. Its length increases (see figure 3c) and the Hamiltonian energy
associated with the ring (shown in figure 3d ) gains energy from the
background. This general sequence of events is quite robust to changes in
the number of point vortices making up the ring, as shown in the sequence of
figures 4 and 5 for NZ8.
Proc. R. Soc. A (2007)
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(b ) Two-way coupled ring dynamics: counter-rotation

A case where the ring initially counter-rotates with respect to its background
is shown in figure 6 and should be contrasted with the previous sequence of
figures. The parameters for this case are the same as those in figure 2, but the
frequency ratio is now K4 : 1. As the contours wrap around the point vortices,
their effective strength decreases (in absolute magnitude), causing the ring to
diminish in strength relative to the background. Owing to this, it never regains
its original rotational direction, as shown in figure 7a which should be contrasted
with the corresponding figure 3a. In addition, the ring loses its coherence more
quickly than the co-rotating case, the tip of the J vector spins towards the North
Pole and decreases its effective length while losing energy to the background.

As a general observation, in all cases, the ring structure is broken (i.e. the ring
is unstable) due to its interaction with the background (in contrast with the one-
way coupled model), but in the case where the ring initially co-rotates with the
background field, the instability neither develop as quickly, nor is it as violent as
is the case when the ring counter-rotates with respect to the background.
(c ) gZp/2: breaking symmetry

The special case gZp/2 is worth considering separately, as there is symmetry
with respect to co- and counter-rotation since J is perpendicular to the axis of
Proc. R. Soc. A (2007)
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Figure 6. Evolution of ring configuration and contours with NZ4 and MZ10 and frequency ratio
K4 : 1. Orientation gZp/4 and q0Zp/4. TZ0.00–9.00 in dimensionless units. In contrast to the
co-rotating case, the wrapping of the contours around the point vortices causes their strength to
decrease (in absolute magnitude) relative to the background.
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rotation. As a result, we need to consider only the evolution associated with GO0.
This case in the one-way coupled model, where the J vector remains perpendicular
to the axis of rotation, is shown in fig. 13 of Part I (Newton& Shokraneh 2006a). For
the two-way coupled case, the evolution sequence is shown in figure 8. For this
orientation, the ring initially cuts the contours perpendicularly and there is no
Proc. R. Soc. A (2007)
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Figure 7. (a) Evolution of point vortices in a frame of reference rotating with the background
frequency of the one-way coupled model with a frequency ratio K4 : 1. In contrast to figure 3, the
original rotational direction of the ring is never regained and the ring loses its coherence much more
quickly. (b) Evolution of the tip of the centre-of-vorticity vector J associated with the ring. Note
that it still rotates towards the North Pole. (c) Evolution of the length of the centre-of-vorticity
vector kJk which decreases as the contours wrap around the vortex centres. (d ) The Hamiltonian
is no longer conserved when the ring is coupled to the background. In this case, since the ring is
counter-rotating with the background, it is losing energy to it.
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distinction between co- and counter-rotation. In the one-way coupled model, J
would remain perpendicular to the axis of rotation throughout the entire evolution,
as there is no mechanism by which this symmetry is broken. In this case, however,
the coupling to the background provides such a symmetry-breakingmechanism. As
the vortices within the ring wrap the contours around themselves, the perfect ring
structure and its orientation are destroyed immediately. The shape of the ring, the
evolution of the tip of J, its length and the evolution ofH for this case are all shown
in figure 9. Note that the characteristic S shape associated with the previously
discussed co-rotating states is shown in figure 9a. As the contours wrap around the
vortices, their strength relative to the background is able to overcome the initial
reversal of direction caused by the incoming Rossby waves. Figure 9b shows the tip
ofJ spiralling up towards theNorth Pole as before, but the evolution of its length, as
shown in figure 9c, and the Hamiltonian energy, as shown in figure 9d, are more
complex than any of the earlier cases. Initially, the length of both J and H increase
(thereby gaining energy from the background), but then reverse direction and
decreases, achieving a local maximum at roughly the same time.
Proc. R. Soc. A (2007)
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Figure 8. Evolution of ring configuration and contours with NZ4 and MZ10 and frequency ratio
2 : 1. Orientation gZp/2 and q0Zp/4. TZ0.00–10.00 in dimensionless units. For this orientation,
if the sign of G is reversed, the evolution of the system will be identical but in the opposite
hemisphere. Note that the wrapping of the contours around the point vortices effectively increases
their strength. The ring stays relatively intact throughout the evolution.
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4. Discussion

We highlight the key sequence of events that take place due to the combined
effects of the misalignment of the J vector with the axis of rotation and the
coupling to the background field:
Proc. R. Soc. A (2007)



two-way
one-way

N(a)

(c) (d )

(b) N
le

ng
th

 o
f 

J 
ve

ct
or

0 2 4 6 8 10
time

2.088

2.092

2.096

2.1

2.104

en
er

gy
 o

f 
th

e 
ri

ng

time
1086420

0.1205

0.122

0.1235

0.125

Figure 9. (a) Evolution of point vortices in a frame of reference rotating with the background
frequency of the one-way coupled model with a frequency ratio 2 : 1 and gZp/2. For this symmetric
case, the ring briefly reverses direction, but as the strength of the vortices increases, it regains its
original rotational direction as in the previously discussed co-rotating cases. (b) Evolution of the tip of
the centre-of-vorticity vector J associated with the ring. (c) Evolution of the length of the centre-
of-vorticity vector kJk. As the vortices increase their strength by wrapping themselves in the
contours, the length ofJ evolves in amore complexmanner like either the co- or counter-rotating cases
discussed previously. Initially, its length increases but reverses direction. (d ) Evolution of the
Hamiltonian energy of the ring which achieves a local maximum at roughly the same time as kJk.
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—the ring triggers an instability in the background field setting up Rossby
waves which travel along the contours moving retrograde to the solid-body
rotation direction;

— these waves cause the ring to alter its rotational direction;
— the contours wrap around the point vortices, increasing their effective strength

in the case where the ring co-rotates with the background, decreasing it (in
absolute magnitude) in the case when it counter-rotates;

— the increase in strength in the co-rotating case allows the ring to overcome the
effects of the Rossby waves and reverse direction again, regaining its original
rotational direction;

— in the counter-rotating case, since the ring strength is effectively decreasing,
the ring never regains its original rotational direction;

— energy is continually exchanged between the ring and the background field
(i.e. H and kJk are no longer conserved) via this process of contour wrapping
and the stability and integrity of the ring is compromised;
Proc. R. Soc. A (2007)
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—in the special symmetric configuration when J is initially perpendicular to the
axis of rotation of the background field, the coupling provides a symmetry-
breaking mechanism not present in the one-way coupled model. The evolution
of kJk and H are non-monotonic, both reaching a local maximum at roughly
the same time.

A key feature of the one-way coupled model discussed in Part I was that the
integrability of the non-rotating problem (UZ0) and the rotating problem
(Us0) were identical. With the two-way coupled model, on the short time-scale,
the coupling to the background offers a mechanism by which the ring is
destabilized and loses its coherence. On a longer time-scale, since all of the main
conserved quantities (J and H ) are broken, it offers a natural mechanism by
which integrability is destroyed and we expect that the long-time evolution of the
vortices will be chaotic. Of course, tracking them accurately for long enough
time-scales to compute quantities such as Lyapunov exponents is far more
challenging than in the one-way coupled case. This is primarily owing to the
aggressive growth and wrapping of the many contours that must be tracked. In a
simpler setting, the growth of these types of interfaces and their connection with
the mixing and transport of passive particles has been studied by Newton & Ross
(2006) for a perturbed point-vortex ring on the sphere without rotation. In the
two-way coupled problem, it is the coupling to the background that causes the
ring perturbation. This, in turn, generates the Rossby waves which we identify as
the main physical mechanism responsible for breakdown of the integrability and
loss of coherence of the ring.
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