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The N-vortex problem on a rotating sphere. I
Multi-frequency configurations

BY PAUL K. NEWTON* AND HOUMAN SHOKRANEH

Department of Aerospace & Mechanical Engineering and
Department of Mathematics, University of Southern California,

Los Angeles, CA 90089-1191, USA

The problem ofN-point vortices moving on a rotating unit sphere is considered. Through a
sequence of linear coordinate transformations, which takes into account the orientation of
the centre of vorticity vector with respect to the axis of rotation, we show how to reduce
the problem to that on a non-rotating sphere, where the centre of vorticity vector is
aligned with the z-axis. As a consequence, we prove that integrability on the rotating
sphere is the same as on the non-rotating sphere, namely, the three-vortex problem on the
rotating sphere is integrable for all vortex strengths, while the four-vortex problem is
integrable in the special case where the centre of vorticity is zero. Rigid multi-frequency
configurations that retain their shape while rotating about two independent axes with two
independent frequencies are obtained, and necessary conditions for one- and two-
frequency motions are derived. Examples including dipoles which exhibit global
‘wobbling’ and ‘tumbling’ dynamics, rings, and Platonic solid configurations are shown
to undergo either periodic or quasi-periodic evolution on the rotating sphere depending on
the ratio of the solid-body rotational frequency U to the rotational frequency u associated
with the rigid structure.

Keywords: N-vortex problem; multi-frequency solutions; rotating sphere;
integrable systems
Rec
Acc
1. Introduction

In this paper, we consider the N-vortex problem on a rotating unit sphere. It is
convenient to formulate the problem in Cartesian coordinates, where the vector
xa2R

3 points from the centre of the unit sphere to the point vortex with
strength Ga2R lying in the surface of the sphere, as shown in figure 1. Each
point vortex moves under the collective influence of all the others and rotation is
introduced by adding a solid-body rotational component to the velocity field.
The dynamical system we consider is given by

_xa Z
1

4p

XN
bZ1

0Gb

xb!xa

ð1Kxa$xbÞ
CUêz!xa; aZ 1;.;N ;

xa 2 R
3; jjxajjZ 1:

9>=
>; ð1:1Þ
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Figure 1. N-vortex diagram on a unit rotating sphere. J rotates around êz with frequency U.
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The prime on the summation reminds us that the singular term bZa is
omitted and initially, the vortices are located at the given positions xað0Þ2R

3,
aZ1,., N. The denominator in (1.1) is the chord distance between vortex Ga

and Gb, since kxaKxbk2Z2ð1Kxa$xbÞ. In what follows, the centre of vorticity
vector J (also known as the momentum map), defined as

J Z
XN
aZ1

Gaxa Z
XN
aZ1

Gaxa;
XN
aZ1

Gaya;
XN
aZ1

Gaza

 !
Z ðJx ; Jy; JzÞ; ð1:2Þ

plays a central role in our discussion.
There is, by now, a substantial and growing literature devoted to the N-vortex

problem on the non-rotating sphere (UZ0) and much is known regarding
integrability (see Borisov & Lebedev 1998; Borisov & Pavlov 1998; Kidambi &
Newton 1998, 2000) non-integrability (see Bagrets & Bagrets 1997) collisions (see
Kidambi & Newton 1998, 1999), fixed and relative equilibria (see Kidambi &
Newton 1998; Lim et al. 2001; Laurent-Polz 2002a,b; Aref et al. 2003), and
stability (see Polvani & Dritschel 1993; Pekarsky & Marsden 1998; Cabral et al.
2003; Kurakin 2004; Laurent-Polz et al. 2004). Monte-Carlo methods have been
developed which identify extremal states (see Lim et al. 2003a,b) and special
numerical techniques that retain accuracy on theoretically conserved quantities
are being developed (Pullin & Saffman 1991; Zhang & Qin 1993; Marsden et al.
1999; Newton & Khushalani 2002; Rowley & Marsden 2002; Rowley et al. 2004).
An overview of many of these topics can be found in Newton (2001), while a
recent comprehensive survey of equilibrium configurations can be found in Aref
et al. (2003). What motivates most of these efforts are applications to
atmospheric flows, traditionally treated under the b-plane approximation
(see Gill 1982). While b-plane models include Coriolis effects, they are local
Proc. R. Soc. A (2006)
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and only remain valid in a restricted latitudinal strip about which the tangent
plane approximation is invoked. Thus, when one is interested in tracking
vorticity over long distances, or when global velocity fields and streamline
patterns are of interest (Kidambi & Newton 2000) typically a full spherical
treatment is required. The problem has spawned several Ph.D. theses, both from
the geophysical fluid dynamics perspective (see Chern 1991; Neven 1993;
DiBattista 1997) as well as the nonlinear dynamics point of view (see Kidambi
1999; Jamaloodeen 2000; Laurent-Polz 2002a,b; Nebus 2003; Khushalani 2004).

The papers of Bogomolov (1985), Klyatskin & Reznik (1989) and DiBattista &
Polvani (1998) treat the fully coupled ‘barotropic’ model on the sphere, where
the vortices influence the background rotation and in turn, the evolving
background field influences the vortices. This two-way coupling allows for the
generation of Rossby–Haurwitz waves on the sphere which are known, for
example, to trigger instabilities in the vortex configuration. However, because
the background vorticity is not localized, Bogomolov’s (1985) equations are
integro-differential equations which typically must be treated numerically.
Likewise, Klyatskin & Reznik (1989) resort to use a short-time approximation
(Taylor expansion) to show that an isolated point vortex, coupled to the
background field, moves along a northwesterly curved trajectory on the sphere,
in qualitative agreement with what is known about the trajectories of hurricane
paths in the Northern Hemisphere. The numerical study in DiBattista & Polvani
(1998) treats the interaction of a vortex dipole with a background distribution in
the form of constant vorticity strips on the sphere which initially model solid-
body rotation, while Polvani & Dritschel (1993) treats both wave and vortex
dynamics on the sphere using contour dynamics techniques. In our simpler
model, since the vortex motion does not affect the background velocity field,
which remains in solid-body form, the system retains its finite-dimensional
structure, much like the models that focus on the non-rotating sphere and thus
can be treated analytically. Our model can be considered a limiting case of the
two-way coupled model in the limit in which the background field is strong
compared to the strength of the embedded vortices. The price we pay is that this
one-way coupled system is not capable of generating Rossby–Haurwitz waves.

Our goal in this paper is to make a simple observation that seems to have been
missed previously. Namely, that the misalignment of the centre of vorticity
vector with the axis of rotation is an important ingredient in understanding
the dynamics of the vortices, and on its own can account for features such as the
‘wobbling’ and ‘tumbling’ modes seen previously in b-plane models (see §5). The
key to understanding the ramifications of the misalignment is to understand how
a certain time-dependent unitary operator, LJ

UðtÞ, affects trajectories on the
aligned non-rotating sphere. It is this feature that we will explore in this paper.

In §2, we transform system (1.1) to the corresponding equations for N-vortices
on a non-rotating sphere. In §3, we align the J vector with the z-axis through two
sequential linear transformations. We show that the general solution to (1.1) can
be related, via a sequence of three linear mappings which define LJ

UðtÞ, to
solutions on the non-rotating sphere, where J is aligned with the z-axis. From
this, we can conclude that, like the non-rotating sphere (Kidambi & Newton
1998), the three-vortex problem on the rotating sphere is integrable for all vortex
strengths. This is described in §4. Section 5 focuses on the conditions necessary
for the existence of rigidly rotating configurations which maintain the mutual
Proc. R. Soc. A (2006)
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distances between each pair of vortices on the rotating sphere. These solutions
contain two inherent frequencies (U, u) and hence represent either periodic
orbits (U/u rational) or quasi-periodic orbits (U/u irrational) of the original
system (1.1). We then describe the evolution of dipoles, rings and Platonic solid
configurations on the rotating sphere. In a companion paper (part II), we will
describe the Hamiltonian formulation for this system.
(a ) Solid-body rotation

Consider first, just the solid-body term in (1.1):

_x ZUêz!x Z ðKUy;Ux; 0Þ;

x2R
3; sxsZ 1:

)
ð1:3Þ

(1.3) can be solved by transforming the coordinates to a rotating reference frame
via the linear transformation x2R

31w2R
3, where

x ZMUw; ð1:4Þ

where MU is the rotation matrix about the z-axis:

MU Z

cos Ut Ksin Ut 0

sin Ut cos Ut 0

0 0 1

0
B@

1
CA: ð1:5Þ

For future reference, we note that MU(0)ZI and that MU is a unitary matrix,
hence has the property

MT
U ZMK1

U : ð1:6Þ

Inserting this into (1.3) yields

_x Z _MUwCMU _w ZUêz!ðMUwÞ: ð1:7Þ

A straightforward calculation shows that

_MUwZUêz!ðMUwÞZUêz!x: ð1:8Þ

Thus, (1.7) reduces to

MU _w Z 00w Zwð0ÞZ xð0Þ; ð1:9Þ

and the solution to (1.3) then becomes

xðtÞZMUxð0Þ: ð1:10Þ

(b ) The centre of vorticity vector

Central to our approach is the centre of vorticity vector (1.2), in particular its
orientation with respect to the axis of rotation. We first consider its evolution
Proc. R. Soc. A (2006)
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equation by multiplying (1.1) by Ga and summing over a:

XN
aZ1

Ga _xa Z
XN
aZ1

XN
bZ1

0GaGb

xb!xa

ð1Kxa$xbÞ
C
XN
aZ1

Uêz!Gaxa; ð1:11Þ

ZUêz!
XN
aZ1

Gaxa: ð1:12Þ

Thus, J satisfies
_J ZUêz!J ; ð1:13Þ

the same equation as (1.3). Hence, as in (1.10),

JðtÞZMUJð0Þ; ð1:14Þ
from which we conclude that its length is constant since

sJs2 Z hJ ;JiZ hMUJð0Þ;MUJð0ÞiZ hMT
UMUJð0Þ;Jð0ÞiZsJð0Þs2: ð1:15Þ

The components satisfy

J2
x CJ 2

y ZC1 Z const., ð1:16Þ

Jz ZC2 Z const: ð1:17Þ
A general configuration is depicted in figure 1. As the N-vortices evolve under

their mutual interaction, the J vector rotates with frequency U about the z-axis,
maintaining a fixed angle g with respect to the axis.
2. Transformation to a non-rotating sphere

To treat the full system (1.1), we first move to a rotating reference frame to
absorb the solid-body rotational term, hence substitute (1.4) into (1.1). Noting
that

xa$xb Z hxa; xbiZ hMUwa;MUwbi ð2:1Þ
Z hMT

UMUwa;wbiZ hwa;wbi ð2:2Þ

and that
xa!xb Z ðMUwaÞ!ðMUwbÞZMUðwa!wbÞ; ð2:3Þ

we obtain

_wa Z
1

4p

XN
bZ1

0Gb

wb!wa

ð1Kwa$wbÞ
; wað0ÞZxað0Þ; aZ 1;.;N : ð2:4Þ

Hence, transformation (1.4) takes solutions on the rotating sphere to solutions
on the non-rotating sphere. The centre of vorticity vector transforms as

J Z
XN
aZ1

Gaxa Z
XN
aZ1

GaMUwa ZMU

XN
aZ1

Gawa ZMUĴ ; ð2:5Þ
Proc. R. Soc. A (2006)
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Figure 2. Alignment of J with the êz -axis is obtained via a rotation through angle gz about the
z-axis followed by a rotation through angle gy about the y-axis.
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where

Ĵ Z
XN
aZ1

Gawa Z ðĴ x ; Ĵ y; Ĵ zÞZJð0ÞZ const: ð2:6Þ

The initial configuration wa(0)Zxa(0), aZ1, ., N defines the constant
vector Ĵ .
3. Alignment

We now rotate Ĵ, so that it is aligned with the z-axis as shown in figure 2. First,
we multiply by the matrix Mz which rotates Ĵ around the z-axis so that it lies in
the (x, z) plane, then we multiply by My which rotates the vector around the
y-axis. Hence

M yM z
~Jh ~J Z ð0; 0; ~JzÞ; ð3:1Þ

where

M z Z

cos gz Ksin gz 0

sin gz cos gz 0

0 0 1

0
B@

1
CA; ð3:2Þ

M y Z

cos gy 0 sin gy

0 1 0

Ksin gy 0 cos gy

0
B@

1
CA: ð3:3Þ
Proc. R. Soc. A (2006)
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Letting za hM yM zwa, wa hðM yM zÞTza gives the aligned system

_za Z
1

4p

XN
bZ1

0Gb

zb!za
ð1Kza$zbÞ

; zað0ÞZM yM zxað0Þ; ð3:4Þ

~J Z
XN
aZ1

Gaza Z ð0; 0; ~JzÞ; ð3:5Þ

where
~Jz Z Ĵ z Z Jz Z const:
4. Integrability

The relation between solutions of the original rotating system, xa(t), and
solutions of the aligned system za(t), and in some sense the key result of this

paper, is via the linear operator LJ
UðtÞhMUðtÞMK1

z MK1
y

xaðtÞZLJ
UðtÞzaðtÞ: ð4:1Þ

This operator is time-dependent, but more importantly contains information
on the original alignment of the J vector with the axis of rotation. Central to the
question of integrability is the rate of separation of the vortices as measured by
kxaKxbk2 on the rotating sphere and kzaKzbk2 on the non-rotating aligned
sphere. The two quantities are equal since

sxaKxbs
2 Z hxaKxb; xaKxbiZ 2ð1Khxa; xbiÞ
Z 2ð1KhMUðtÞMK1

z MK1
y za;MUðtÞMK1

z MK1
y zbiÞ

Z 2ð1KhM yM zMUðtÞK1MUðtÞMK1
z MK1

y za; zbiÞZ 2ð1Khza; zbiÞ
ZszaKzbs

2:

For the aligned non-rotating system, we know from Kidambi & Newton (1998)
that the three-vortex problem is integrable for all vortex strengths. From this
result and (4.1) follows.

Proposition 4.1 (Integrability on the rotating sphere). The three-vortex
problem on the rotating sphere (1.1) is integrable for all vortex strengths. The
four-vortex problem is integrable if the centre of vorticity vector JZ0. All
solutions on the rotating sphere are mapped to solutions on the aligned non-
rotating sphere via the linear transformation (4.1).

The proof for the non-rotating sphere can be found in Borisov & Lebedev
(1998), Borisov & Pavlov (1998) and Kidambi & Newton (1998), with discussions
in Newton (2001). At first glance, this result is somewhat surprising in view of
Noether’s theorem and the fact that the rotating problem has one less
conserved quantity than the non-rotating problem (e.g. J 2

x CJ 2
y , Jz compared

with Jx, Jy, Jz). However, the proof of integrability for the non-rotating problem
relies solely on the conservation of the three independent and involutive
quantities J 2

x CJ 2
y , Jz, as well as the underlying Hamiltonian and never makes

use of the fact that Jx and Jy are each conserved.
Proc. R. Soc. A (2006)
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5. Rigid configurations

We now examine the evolution of rigid configurations on the rotating sphere,
which we define as those in which distances between each pair of vortices remain
fixed, i.e. kxaKxbk2Zconst. Note that since

hxa; xbiZ hwa;wbiZ hza; zbi ð5:1Þ

configurations that are rigid on the non-rotating sphere (aligned or non-aligned)
are also rigid on the rotating sphere, hence, in what follows, we will use equation
(2.4) to draw conclusions regarding rigid configurations on the rotating sphere. In
particular, taking the dot product of (2.6) with wa along with the condition that
hwa, wbiZconst. gives

wa$Ĵ Z const:; ð5:2Þ

i.e. the angle between each vortex and the centre of vorticity vector remains
fixed. Next, using system (2.4) along with the ansatz that each vortex moves with
the same frequency around the same axis, i.e. _wa hu!wa, we obtain

u!wa Z
1

4p

XN
bZ1

0Gb

wb!wa

ð1Kwa$wbÞ
: ð5:3Þ

Then, multiplying by Ga and summing over a gives the condition

u!Ĵ Z 0: ð5:4Þ

Thus, on the non-rotating sphere, non-degenerate ðĴs0Þ rigid configurations
that rotate around the Ĵ-axis with frequency u move on constant latitudinal
planes perpendicular to Ĵ. Hence, on the rotating sphere we have the following.

Proposition 5.1 (Rigid configurations). Rigid configurations on the rotating
sphere that rotate around the J-axis with frequency u move on a constant
latitudinal planes perpendicular to J. The centre of vorticity vector J rotates
around the z-axis with frequency U. When uZ0, the rigid configurations have
one frequency U, but in general they are made up of two independent frequencies
(U, u). The general case is shown in figure 3.

The one-frequency solutions are fixed equilibria on the non-rotating sphere,
while the two-frequency solutions are relative equilibria on the aligned non-
rotating sphere in view of the relation (4.1). Note also that it is sufficient
to consider only the orientation range 0%g%p, as trajectories in the range p!
g!2p can be obtained by symmetry. In the region 0%g!p/2, the rigid body
moves in the same direction as the solid-body rotation (eastward), whereas in the
region p/2!g%p it moves in the opposite direction (westward). In what follows,
we will look at the representative values gZp/4, p/2, 3p/4.
(a ) One-frequency solutions

To obtain necessary conditions for the one-frequency solutions on the
rotating sphere, let _zaZu!za in (3.4), take the cross-product with Gaza and
Proc. R. Soc. A (2006)



Figure 3. Rigid configurations on the rotating sphere are made up of rotations around two
independent axes, with two independent frequencies. The vortices are layered on constant
latitudinal planes that are perpendicular to the J-axis.
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sum on aXN
aZ1

Gaza!ðu!zaÞZ
1

4p

XN
aZ1

XN
bZ1

0GaGb

za!ðzb!zaÞ
1Kza$zb

Z
1

4p

XN
aZ1

XN
bZ1

0GaGb

ðzbKzaðza$zbÞÞ
1Kza$zb

Z
1

4p

XN
aZ1

XN
bZ1

0GaGbza Z
1

4p
S ~JK

XN
aZ1

G2
aza

 !
; ð5:5Þ

where SZ
PN

aZ1 Ga is the total vorticity. Hence, a necessary condition for a
fixed configuration (uZ0) on the aligned non-rotating sphere, i.e. a one-
frequency rigid configuration on the rotating sphere is

S ~J Z
XN
aZ1

G2
aza: ð5:6Þ

It is interesting to note that the analogous condition for the existence of a
fixed equilibrium configuration in the plane is given by

S2 Z
XN
aZ1

G2
a; ð5:7Þ
Proc. R. Soc. A (2006)



Figure 4. One-frequency rigid Platonic solids on the rotating sphere oriented at angle g with
respect to the north pole. (a) Tetrahedron (four equal vortices): one vortex is placed at the top,
three are evenly spaced around the ring at the base; (b) octahedron (six equal vortices): four
vortices are evenly spaced around the middle ring, one is placed at the top and one is placed at the
bottom; (c) hexahedron (eight equal vortices): four vortices are evenly spaced around the top ring,
four are evenly spaced around the bottom ring which is aligned with the top ring; (d) icosahedron
(12 equal vortices): Five vortices are evenly spaced around the top ring, five vortices are evenly
spaced on the bottom ring which is staggered with respect to the top ring, one vortex is placed at
the top and one is placed at the bottom; and (e) dodecahedron (20 vortices): five equal strength
vortices (G1ZG sin q1) are evenly spaced along the outer top ring, five equal strength vortices (G1Z
G sin q1) are evenly spaced along the outer bottom ring staggered with respect to the outer top ring,
five equal strength vortices (G2ZG sin q2) are evenly spaced along the inner top ring, five equal
strength vortices (G2ZG sin q2) are evenly spaced along the inner bottom ring staggered with
respect to the inner top ring.
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as described in Aref et al. (2003). We show in figure 4, a family of one-
frequency solutions on the rotating sphere given by the Platonic solids
oriented at angle g with respect to the axis of rotation. The details are
described in the figure captions. Existence of these solutions as equilibria on
the non-rotating sphere are described in Aref et al. (2003) and are special
cases of some of the configurations studied in Lim et al. (2001) and Laurent-
Polz (2002a,b). We note that a recent result of Kurakin (2004) shows that on
the non-rotating sphere the tetrahedron, octahedron, and icosahedron are
Proc. R. Soc. A (2006)
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nonlinearly stable, while the cube and dodecahedron are unstable. It is not
clear whether the stability characteristics of these configurations are influenced
by the application of LJ

UðtÞ.
(b ) Two-frequency solutions

To obtain necessary conditions for two-frequency rigid rotations on the
rotating sphere, take the scalar product of equation (5.5) with u:

XN
aZ1

Gau$ðza!ðu!zaÞÞZ
1

4p
S ~J$uK

XN
aZ1

G2
aza$u

 !
: ð5:8Þ

Then use the fact that

u$ðza!ðu!zaÞÞZ ðza$zaÞðu$uÞKðu$zaÞ2: ð5:9Þ
Hence

XN
aZ1

Gaðszas2u2Ku2 cos2 qaÞZ
1

4p
S ~J$uK

XN
aZ1

G2
au cos qa

 !
; ð5:10Þ

where za$uZu cos qa. This gives a formula for the rotational frequency:

u
XN
aZ1

Ga sin
2 qa Z

1

4p
S ~JzK

XN
aZ1

G2
a cos qa

 !
: ð5:11Þ

The analogous formula for rotating relative equilibria in the plane is

u
XN
aZ1

Gajzaj2 Z
1

4p
S2K

XN
aZ1

G2
a

 !
; ð5:12Þ

described in Aref et al. (2003). Several examples of two-frequency solutions on
the rotating sphere are described next.
(c ) Dipole dynamics

A vortex dipole, shown in figure 5, is made up of two equal and opposite
strength vortices, G1ZG, G2ZKG, q1Zq, q2ZpKq, SZ0. The convention in this
figure and those that follow is that black point vortices are positive (i.e.
counterclockwise circulation) while white ones are negative (i.e. clockwise
circulation). Formula (5.11) then becomes

uZ
G

8p cos q
: ð5:13Þ

It is a fundamental result that on a non-rotating sphere, a dipole follows the
geodesic (i.e. great circle) that perpendicularly bisects the geodesic segment that
connects the two vortices (Kimura 1999). Motion of a dipole on the sphere for the
two-way coupled model was carried out in DiBattista & Polvani (1998) as an
initial value problem in which the background vorticity (i.e. all vorticity not
associated with the dipole) is placed initially in constant latitudinal strips in
order to model solid-body rotation. Both point vortex dipoles and distributed
Proc. R. Soc. A (2006)



Figure 5. Dipole motion on a rotating sphere as a superposition of rotations about two axes with
the two frequencies u and U. Orientation angle is given by g.

Figure 6. (a) Local (b-plane) wobbling mode (after Hobson 1991) associated with a vortex dipole
and (b) global wobbling mode associated with a vortex dipole moving eastward on the sphere with
orientation gZp/4.
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vortex dipoles were tracked numerically, showing, among other things, that
dipoles no longer follow geodesic paths, but move on more complicated
trajectories and in some instances can lose stability and tear apart. Because
they only consider the case in which the J vector is aligned with the axis of
rotation, they cannot distinguish between the effects of misalignment and the
effect of coupling to the background field. Dipole motion on the b-plane in a one-
way coupled model was studied by Hobson (1991) where two modes of motion,
‘tumbling’ and ‘wobbling’, were identified. Similarly, a one-way coupled b-plane
Proc. R. Soc. A (2006)



Figure 7. (a) Local (b-plane) tumbling mode (after Hobson 1991) associated with a vortex dipole
and (b) global tumbling mode associated with a vortex dipole moving westward on the sphere with
orientation gZ3p/4.

Figure 8. Dipole oriented at angle p/4, Northern and Southern Hemispheres. Trajectory of J vector
is shown in the Northern Hemisphere (small dashed circle). (a) 1 : 1 frequency ratio; (b) 2 : 1
frequency ratio; and (c) 3 : 1 frequency ratio.
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Figure 9. Dipole oriented at angle p/2, Northern and Southern Hemispheres. (a) 1 : 1 frequency
ratio; (b) 2 : 1 frequency ratio; and (c) 3 : 1 frequency ratio.
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model and the related modon solution were studied in Matsuoka & Nozaki
(1992). Our general configuration is shown in figure 5 and is governed by three
key parameters. The orientation angle, g, measures the angle between the J
vector and the axis of rotation around the North Pole. The frequency U is
associated with the solid-body rotation, while frequency u is associated with the
dipole motion in the absence of rotation, i.e. its frequency around a great circle as
given by formula (5.13). This is determined by the choice of vortex strengths,
which we take as G1Z1 and G2ZK1 and the dipole separation (chord distance),
which we take as dZ0.1Zsin q. In all cases, we take the initial centre point of the
dipole to lie on the equator at the front of the sphere (defined as longitude fZ0),
as shown in the figure. Figure 6 shows the b-plane wobbling mode of Hobson
(1991) (figure 6a) and the corresponding ‘global’ wobbling mode (figure 6b) on
the full sphere. The tumbling modes are shown in figure 7a,b. What distinguishes
the two cases is the orientation angle. When 0!g!p/2, the dipole moves in the
same direction as the rotation (eastward) and produces a wobbling trajectory.
When p/2!g!p, it moves initially opposite the direction of rotation
(westward) and produces a tumbling trajectory.

Figures 8–10 show the dipole trajectories on the rotating sphere with
orientation angles p/4, p/2 and 3p/4, respectively. When the frequency ratio
u/U is rational, the motion is periodic. Cases with frequency ratios u/UZ1–3 are
shown in the Northern and Southern Hemispheres, along with the trajectory of
the J vector (dashed circle). Note that the cases gZp/4 (figure 8) and gZ3p/4
Proc. R. Soc. A (2006)



Figure 10. Dipole oriented at angle 3p/4, Northern and Southern Hemispheres. Trajectory of J
vector is shown in the Southern Hemisphere (small dashed circle). (a) 1 : 1 frequency ratio; (b) 2 : 1
frequency ratio; and (c) 3 : 1 frequency ratio.

W

g

w
êzJ

Figure 11. Equal strength vortices evenly spaced on a constant latitude cap perpendicular to the
centre of vorticity vector on the rotating sphere.
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Figure 12. Four vortex ring oriented at angle p/4. Dashed circle shows the trajectory of the J
vector. (a) 1 : 1 frequency ratio; (b) 2 : 1 frequency ratio; and (c) 3 : 1 frequency ratio.

Figure 13. Four vortex ring oriented at angle p/2. Front of sphere is shown, dashed curve is the
path of the J vector. (a) 1 : 1 frequency ratio; (b) 2 : 1 frequency ratio; and (c) 3 : 1 frequency ratio.

Figure 14. Four vortex ring oriented at angle 3p/4, Southern Hemisphere only. Dashed curve is the
path of the J vector. (a) 1 : 1 frequency ratio; (b) 2 : 1 frequency ratio; and (c) 3 : 1 frequency ratio.
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(figure 10) are not related to each other via symmetries. In the first case, the
dipole moves initially in the same direction as the solid-body rotation, while in
the second case, it moves opposite to the direction of the solid-body rotation.
When the frequency ratio is irrational, the long-time trajectory densely covers
the available surface of the sphere allowed by the choice of the angle of
orientation g.
Proc. R. Soc. A (2006)



Figure 15. Same structures as in figure 4: (a) tetrahedron: G is placed at the top, KGs are evenly
spaced around the bottom ring; (b) octahedron: Gs are evenly spaced around the middle ring,
another is placed at the top, KG is placed at the bottom; (c) hexahedron: Gs are evenly spaced
around the top ring, KGs are evenly spaced around the bottom ring; (d) icosahedron: Gs are evenly
spaced on the top ring, KGs are evenly spaced on the bottom ring, another G is placed at the top
and KG is placed at the bottom; and (e) dodecahedron: G1ZG sin q1 are evenly spaced along the
outer top ring, G1ZKG sin q1 are evenly spaced along the outer bottom ring staggered with respect
to the outer top ring, G2ZG sin q2 are evenly spaced along the inner top ring, G2ZKG sin q2 are
evenly spaced along the inner bottom ring staggered with respect to the inner top ring.
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(d ) Rings

In the case of an isolated ring in which N-vortices of equal strength are
arranged around a constant latitude cap perpendicular to J as shown in figure 11,
we have GaZG, qaZq, SZNG and ~JzZNG cos q, and formula (5.11) reduces to

uZ
GðNK1Þ

4p

cos q

sin2 q
: ð5:14Þ

The stability of such configurations on the non-rotating sphere (as well as ones
with an additional polar vortex) have been studied in Polvani & Dritschel (1993),
Cabral et al. (2003) and Laurent-Polz et al. (2004), and it is known that a single
ring made up of N equal strength, evenly spaced point vortices is unstable for all
co-latitudes if NR7, whereas for N!7 there exist ranges of Lyapunov stability
when the ring is near a pole. In general terms, an additional polar vortex can
serve to stabilize or destabilize a ring; hence it stands to reason that the addition
Proc. R. Soc. A (2006)



Figure 16. Two-frequency tetrahedron oriented at angle p/4, Northern and Southern Hemispheres.
Dashed circle in the Northern Hemisphere marks the top of the configuration. (a) 1 : 1 frequency
ratio; (b) 2 : 1 frequency ratio; and (c) 3 : 1 frequency ratio.
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of solid-body rotation (Us0) may also alter the stability property of the ring,
although this question has not been addressed. Figure 12 shows the vortex paths
of a four-vortex ring with orientation angle p/4. The ring radius is rZ0.1 and the
trajectory of the J vector is shown as the dashed circle. Frequency ratios of 1 : 1,
2 : 1, and 3 : 1 are shown in the Northern Hemispheres as none of the vortices
crosses the equator. Figure 13 shows the same ring oriented at angle gZp/2.
Trajectories corresponding to frequency ratios of 1 : 1, 2 : 1 and 3 : 1 are shown
from the perspective of the front of the sphere. Figure 14 shows the same ring
oriented at angle gZ3p/4. In this case, the ring’s motion is opposite to the
direction of rotation and gives different trajectories than those shown in figure 12.
Frequency ratios of 1 : 1, 2 : 1, and 3 : 1 are shown in the Southern Hemispheres
as none of the vortices crosses the equator.

(e ) Stacked rings: the Platonic solids

More complex two-frequency rigid configurations on the rotating sphere are
given by the Platonic solids shown in figure 15, where the vorticities have both
positive and negative signs. Details are given in the figure captions. We show the
evolution of a two-frequency tetrahedron in figures 16–18. In particular, figure 16
shows the trajectories of the four vortices making up a tetrahedral configuration
oriented at angle gZp/4. The dashed curve marks the trajectory of the top
vortex, which in this case stays in the Northern Hemisphere. Frequency ratios of
1 : 1, 2 : 1 and 3 : 1 are shown. Figure 17 shows the same configuration oriented at
Proc. R. Soc. A (2006)



Figure 17. Two-frequency tetrahedron oriented at angle p/2, Northern and Southern Hemispheres.
(a) 1 : 1 frequency ratio; (b) 2 : 1 frequency ratio; and (c) 3 : 1 frequency ratio.

Figure 18. Two-frequency tetrahedron oriented at angle 3p/4, Northern and Southern Hemi-
spheres. Dashed circle in the Southern Hemisphere marks the top of the configuration. (a) 1 : 1
frequency ratio; (b) 2 : 1 frequency ratio; and (c) 3 : 1 frequency ratio.
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angle gZp/2 with frequency ratios of 1 : 1, 2 : 1 and 3 : 1. The top of the
tetrahedron in this case stays along the equator. Finally, figure 18 shows the
tetrahedral configuration oriented at angle gZ3p/4 with frequency ratios 1 : 1,
2 : 1 and 3 : 1. The top of the configuration now moves along the dashed circular
curve shown in the Southern Hemisphere.
6. Discussion

The one-way coupled model (1.1) is useful for separating out two distinct effects
that play a role in determining the long-time dynamics of vortices in fully
coupled models such as those mentioned earlier. The misalignment of the J
vector with the axis of rotation, on its own, can account for ‘wobbling’ and
‘tumbling’ dynamics, without the need for more complex explanations based on
coupling to background fields. This point had not been made previously, hence
none of the works that we are aware of keep track of the initial alignment of the J
vector associated with the vortex field. The stability and ultimate fate of the
rigid structures described in this paper, when fully coupled to the background
field, would certainly be a topic worth pursuing.

This work is supported by the National Science Foundation grants NSF-DMS 9800797 and NSF-
DMS 0203581.
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