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Interacting dipole pairs on a rotating sphere
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The evolution, interaction and scattering of 2N point vortices grouped into equal and
opposite pairs (N-dipoles) on a rotating unit sphere are studied. A new coordinate system
made up of centres of vorticity and centroids associated with each dipole is introduced.With
these coordinates, the nonlinear equations for an isolated dipole diagonalize and one directly
obtains the equation for geodesic motion on the sphere for the dipole centroid. When two or
more dipoles interact, the equations are viewed as an interacting billiard system on the
sphere—chargedbilliards—with long-range interactions causing the centroid trajectories to
deviate from their geodesic paths. Canonical interactions are studied both with and without
rotation. For two dipoles, the four basic interactions are described as exchange-scattering,
non-exchange-scattering, loop-scattering (head on) and loop-scattering (chasing)
interactions. For three or more dipoles, one obtains a richer variety of interactions, although
the interactions identified in the two-dipole case remain fundamental.
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1. Introduction

Vortex dipoles play an important role in the transport and mixing of particles
(both passive and active) in oceanographic and atmospheric flows, yet rarely do
they appear in complete isolation. Typically, they are forced to interact with a
background field, such as jet stream, ocean currents or other multipoles. See
McDonald (1999) for a general discussion of geophysical vortices and the main
important physical mechanisms, and DiBattista & Polvani (1998) for a more
focused study of a single dipole interacting with a background vorticity field.
Despite this fact, a study of their interactions on the rotating sphere has not been
carried out. In the unbounded plane, a pioneering study of the scattering process
between dipoles is described by Eckhardt & Aref (1988). Unlike the unbounded
plane, since the sphere is compact, the dipoles cannot escape to infinity and the
dynamics typically involves multiple ‘scattering events’ and orbits that are
closed or at least densely covering the accessible portion of the sphere over long
times. This means that for almost all initial conditions, a scattering event or
multiple scattering events will ultimately take place and play an important role
in the subsequent dynamics. In statistical studies of multi-vortex populations,
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such as that carried out by Dritschel & Zabusky (1996), these scattering events
can play a significant role in the interpretation of complex spectral signatures
and equilibrium and non-equilibrium kinetic theories based on point vortices,
such as those in Marmanis (1998), Newton & Mezić (2002), Chavanis (2007) and
Chavanis & Lemou (2007), must ultimately account for them.

When there is only one dipole on the non-rotating sphere (or on any surface of
constant curvature) it moves periodically along a closed geodesic as shown in
Kimura (1999), allowing the assignment of a ‘natural’ frequency, u. However,
when two or more dipoles interact, or when the sphere rotates, the dipole
trajectories are more complex. For these cases, it is useful to introduce coordinates
that capture both the geodesic flow and the interactions. We introduce such a
‘dipole coordinate system’ in this paper. For a general background on the
dynamical system we consider, in particular, the limitations and consequences of
our one-way coupled treatment of rotation, see Jamaloodeen & Newton (2006),
Newton & Shokraneh (2006), and Newton & Sakajo (2007). In §2, we describe the
dipole coordinate system that we use to analyse the scattering of multiple
dipoles. In §3, we focus on the most important case of two interacting dipoles and
identify the main scattering modes, which we call exchange scattering, non-
exchange scattering and loop scattering. When three or more dipoles interact (as
described in §4), since typically only two of the three interact at one time, these
same modes frequently appear. Occasionally, however, with three or more
dipoles, the initial conditions are just right so that a collision occurs involving
more than two dipoles. We show some examples of this non-generic situation as
well. Of course, generically we know that when three or fewer point vortices
interact on the sphere, the trajectories are either periodic or quasi-periodic
(Kidambi & Newton 1998; Newton 2001), whereas when four or more point
vortices interact, the trajectories are chaotic (Newton & Ross 2006). We start by
writing the system of 2N point vortices on the one-way coupled rotating sphere
(see Newton & Shokraneh 2006), preparing to group them into a system
of N-dipoles:
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Figure 1. Dipole coordinates on a rotating sphere for a single dipole. J1 is the centre-of-vorticity
vector, which cuts a spherical cap perpendicular to the axis of rotation, and J2 (t to J1) is the
centroid of the dipole, which traces a geodesic on the sphere in the absence of rotation. The overall
motion is a superposition of rotations about two axes, with two independent frequencies u, U.
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where aZ1,., N. The coordinates of the two point vortices constituting a dipole
are then ðxa;xaCN Þ, and U is the rotational frequency of the sphere about the
North Pole axis.
2. Dipole coordinates

(a ) Coordinate transformation

The new set of dipole-based coordinates ðJa;JaCN Þ are derived from the original
vortex coordinates ðxa;xaCN Þ via the linear transformation

Ja hGaðxaKxaCN Þ; ð2:1Þ

JaCN hGaðxa CxaCN Þ: ð2:2Þ

The vectors Ja represent the centres of vorticity of each of the N dipoles, while
JaCN are their centroids, as shown in figure 1 for the simplest case NZ1. The
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inverse transformation is given by
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In matrix form, the transformation is
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Ĵh

J1

«

JN

JNC1

«

J2N

0
BBBBBBBBB@

1
CCCCCCCCCA
; x̂h

x1

«

xN

xNC1

«

x2N

0
BBBBBBBB@

1
CCCCCCCCA

ð2:6Þ

and M is a 2N!2N matrix with block structure:
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In these coordinates, we have the following.

Theorem 2.1. Let the centre-of-vorticity vector associated with equation (1.1)

be defined as JZðJx ; Jy; JzÞZ
PN

aZ1 Ja. Then (i) kJkZconst., J 2
xCJ 2

yZC 1,

JzZC2 and (ii) JatJaCN .

Proof. The first part of the proposition in proven in Newton & Shokraneh
(2006) and is not repeated here. To see that JatJaCN , consider
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To obtain the evolution equations in the dipole coordinates, we differentiate
equations (2.3) and (2.4),
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Equations (2.15) and (2.16) are the full set of equations (aZ1,., N ) we use for the
system of N-interacting dipoles. To clarify why these new coordinates are so useful,
we first consider the case of an isolated dipole (NZ1) as shown in figure 1.
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(b ) NZ1: geodesic motion

The advantage of using these coordinates can be seen by noting that the
summation terms in (2.15) and (2.16) account for the dipole interactions, while
the preceding terms account for the natural tendency for each dipole to follow a
geodesic (Kimura 1999). This is brought out in theorem 2.2.

Theorem 2.2.

(i) For NZ1 and UZ0, the equations (2.15) and (2.16) decouple
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implying that kJ1kZconst., kJ2kZconst., J1tJ2, and J2 traces a periodic
trajectory on the sphere which is a great circle, with natural frequency given as

uZ
G2
1kJ1k

pð4G2
1CðkJ1k2KkJ2k2ÞÞ

: ð2:19Þ

(ii) For NZ1 and Us0, one obtains
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implying that kJ1kZconst., kJ2kZconst., J1tJ2. J1 traces out a spherical
cap, as shown in figure 1, while J2’s trajectory decomposes into a linear
superposition of rotations around the North Pole axis with frequency U and
rotations around J1 with natural frequency u given by (2.19).

Proof. (i) Taking the dot product of (2.17) with J1 and (2.18) with J2, along with
the fact that J2$J1!J2Z0, gives kJ1kZconst: and kJ2kZconst: By theorem 2.1

we know that J1tJ2. Since (2.18) is of the form _J2ZuðJ1=kJ1kÞ!J2, we know
that J2 executes solid-body rotation (see §1 of Newton & Shokraneh 2006) around
J1 with frequency given by (2.19). (ii) Taking the dot product of (2.20) with J1

and (2.21) with J2 yields zero on the r.h.s.s which implies that kJ1kZconst: and

kJ2kZconst:Again, theorem 2.1 implies that J1tJ2. Equation (2.20) implies that
J1 executes solid-body motion with frequency U around the North Pole axis, while
(2.21) implies that J2 executes a linear combination of solid-body rotations around
J1 with frequency u and the North Pole axis with frequency U. &
3. Charged billiard interactions

For two or more dipoles, the interaction terms cause the centroid path of each to
deviate from its underlying geodesic trajectory; hence we view each ‘ballistic
element’ as a billiard (see Tabachnikov 1995) and we can think of (2.15) and
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(2.16) as a system of ‘charged billiard’ equations. Although billiard systems have
recently been studied on surfaces of constant curvature, such as a sphere (see
Gutkin et al. 1999), the closest related work seems to be the rather large and
growing literature on classical billiard systems in magnetic fields introduced by
Robnik & Berry (1985) and studied on surfaces of constant curvature by Gutkin
(2001). The integrability and ergodicity of these systems are studied in Berglend &
Kunz (1996). In our system, because the nominal distance kxaKxaCNk between
each of the point vortices which constitute a given dipole is no longer constant, it is
useful to think of each as represented by its centroid coordinate, JaCN, and
although the centres of vorticity, Ja, of each of these billiards is no longer a
conserved quantity, their sum over all the billiards is conserved. It is also noted
that in the limit when the distance between each pair of point vortices constituting
a dipole reaches zero (and their strengths are properly scaled), a point dipole
dynamical system can be introduced (see details in Newton 2005) where each point
moves along its centroid path.

(a ) NZ2: fundamental interactions

We start with the most important case of two interacting dipoles, whose
equations in the dipole coordinates are given by,

_J1 ZUêz!J1
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1

2

Figure 2. Schematic depicting the interaction parameters between two dipoles. (a) Symmetric
configuration in which the centre-of-vorticity vectors are aligned and g denotes the orientation
with respect to the equator. (b) Generic configuration where the centres of vorticity are not aligned,
which requires two angles (g1, g2) to specify the orientation.
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The centres of vorticity are represented by the coordinates (J1, J2), while the
centroid of each is given by (J3, J4). We use these coordinates to integrate the
system using a seventh/eighth-order variable time step Runga–Kutta method
which is quite accurate for the time scales we consider and throughout the
scattering phase. Our initial set-up is depicted in figure 2, where we show the
two dipoles at opposite sides of the sphere with their centroids initially located
at antipodal points along the equator. A special symmetric case is depicted in
figure 2a where the dipoles are headed directly towards each other. In this case,
their centre-of-vorticity vectors (J1 and J2) are aligned and the orientation of
the system with respect to the equator is denoted by the angle g. The more
generic case is shown in figure 2b where the centre-of-vorticity vectors are not
perfectly aligned, hence one requires two angles (g1, g2) to fully specify the
initial configuration.

(b ) Exchange scattering

The first and the simplest example of a scattering event is called exchange
scattering and is shown in figures 3 (non-rotating) and 4 (rotating). A
symmetric case of exchange scattering of two equal strength dipoles that
initially have orientation g1Zg2Zp/2 is shown. In this case J1CJ2hJZ0.
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Figure 3. Symmetric exchange scattering on non-rotating sphere for JZ0 equal dipoles. (a) Head
on exchange taking place at the North and South Poles, alternating periodically. (b) Dipole
coordinates of the event. The straight (dashed) curves represent the centre-of-vorticity variable,
while the solid curve represents the centroids.
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Figure 4. Symmetric exchange scattering on rotating sphere for JZ0 equal dipoles.With these initial
conditions, two exchange events take place at antipodal points during one periodic cycle. (a) u : UZ
1 : 1 frequency ratio, (b) u : UZ2 : 1 frequency ratio, (c) u : UZ3 : 1 frequency ratio, (d ) dipole
coordinates for (a). The dashed curves represent the centre-of-vorticity variable, while the solid
curves represent the centroids; (e) dipole coordinates for (b) and ( f ) dipole coordinates for (c).
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Two exchange events take place per cycle (i.e. the dipoles exchange partners) at
antipodal points on the sphere (when there is no rotation or when the antipodal
points lie on the axis of rotation). Figure 3a shows the vortex paths on the non-
rotating sphere, while figure 3b shows the corresponding dipole coordinates
Proc. R. Soc. A (2008)
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(c) (d )

Figure 5. Non-exchange-scattering event between two equal strength dipoles. Each dipole retains
its partner throughout the event. (a) Non-rotating sphere (g1Z908, g2Z808), (b) long-time
trajectory (actual vortex paths) on the rotating sphere, (c) rotating sphere with u : UZ1 : 1
frequency ratio (g1Z908, g2Z08). Tips of the centre-of-vorticity vectors, and (d ) same as (c) but
shown are the tips of the centroid vectors.
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associated with the event. We note that the vortex trajectories in this case are
the same as those that would result from vortex motion in a wedge domain on
the sphere where each vortex is paired with its image vortex, as discussed in
Kidambi & Newton (2000) and Crowdy (2006). Figure 4a shows the exchange
scattering on the rotating sphere with a u : UZ1 : 1 frequency ratio, while
figure 4b,c shows the same event on the rotating sphere where the ratio of dipole
frequencies to rotation frequencies are (b) u : UZ2 : 1; (c) u : UZ3 : 1.
Figure 4d–f shows the same events but in the dipole coordinate system. The
centroid paths are solid.
(c ) Non-exchange scattering

The second scattering event, called non-exchange scattering is depicted in
figure 5 for two equal strength dipoles that retain their partners throughout the
cycle. Figure 5a shows the basic interaction on the non-rotating sphere in the
Proc. R. Soc. A (2008)
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(a) (b)

Figure 6. Loop exchange scattering (head on) events for unequal dipoles. The vortex trajectories
are depicted as solid curves while the centres of vorticity are depicted as dashed curves. (a) Non-
rotating and (b) rotating sphere with u1 : UZ1 : 1 frequency ratio.
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case where Js0. Although there is a clear interaction between the two dipoles as
indicated by the deviation of the dipoles from great circle paths, no partner
exchange takes place throughout the period and the dipoles avoid direct collision.
Figure 5b shows a long-time trajectory on the rotating sphere, while figure 5c
shows the tips of the centre-of-vorticity vectors during this event. Whether the
orbit shown in figure 5b ultimately closes up, or densely covers a portion of the
spherical surface crucially depends on the initial orientation of the two dipoles,
and both periodic orbits and quasi-periodic orbits coexist. Figure 5d shows the
centroid vectors for the rotating sphere where the frequency ratio is u : UZ1 : 1.
(d ) Loop scattering

Shown in figure 6 is an example of a loop-scattering interaction (head on) for
two unequal dipoles in which the frequency ratio is u1 : u2Z3 : 1. Figure 6a
shows a case with dipole strengths G1ZKG3Z1:0 and G2ZKG4Z3:0 with
orientations g1Zg2Zp/2 on the non-rotating sphere. The dipoles perform a
sequence of loops as they travel around the sphere; the number of loops depends
on the frequency ratio of the two dipoles. On each loop, one dipole loops inside
the other, which accommodates the passage by splitting around the inner loop.
Within the loop, the dipoles exchange partners, forming two new dipoles
comprising vortices of opposite sign but unequal magnitude. As a result, they
move along curved trajectories within the loop. Figure 6b shows the same
interaction on the rotating sphere. Shown is a case with unequal dipoles with
frequency ratio u1 : u2Z2 : 1 and u1 : UZ1 : 1. While the dipole trajectories are
relatively complex, the tips of the centre-of-vorticity vectors, shown as dashed
curves, move on closed periodic orbits. In this case, the overall trajectory is
periodic as these vectors execute closed loops. Figure 7 shows an example of a
loop-scattering interaction (head on) with a u1 : UZ1 : 1 frequency ratio. We
show the vortex trajectories (figure 7a), the centre-of-vorticity trajectories
(figure 7b) and the centroid trajectories (figure 7c) projected onto a plane.

By contrast, a loop-scattering interaction that we call a ‘chasing’ mode is
shown in figures 8 and 9. Figure 8a shows two unequal dipoles initially aligned so
that one chases the other around the non-rotating sphere creating a smaller loop
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Figure 7. Loop exchange-scattering (head on) events for unequal dipoles on rotating sphere:
u1 : UZ1 : 1 frequency ratio. (a) Vortex trajectories, (b) centre-of-vorticity coordinates, and (c)
centroid coordinates.
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(a) Vortex trajectories and (b) dipole coordinates. The dashed curves represent the centre-
of-vorticity variable, while the solid curves represent the centroids.
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Figure 10. Scattering of two dipoles (unequal) as a function of interaction angle on a non-rotating
sphere. Both loop-scattering and non-exchange-scattering events are seen in these sequences.
(a) qZ08, (b) qZ208, (c) qZ408, (d ) qZ608, (e) qZ808, ( f ) qZ1008, (g) qZ1208, (h) qZ1408,
(i) qZ1608, and ( j ) qZ1808.
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during the interaction process than the head-on collision. Figure 8b shows the
dipole coordinates during the interaction. The same interaction on the rotating
sphere is shown in the sequence of figure 9a–c, with a u1 : UZ1 : 1 frequency
ratio. This interaction is analogous to the famous ‘leapfrogging’ behaviour whose
analysis in planar systems dates back to the classical work of Love (1894).
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The full gamut of interactions is shown in figure 10 where we depict the
scattering of two dipoles as a function of the interaction angle, varying this angle
in increments of 208. From this, we can see that we can have loop-scattering
interactions, non-exchange scattering or exchange scattering depending on the
angle at which the dipoles are initially oriented.
4. Three dipoles

When three or more dipoles interact, the scattering modes described earlier for
the two-dipole system remain central. This is because, unless the initial
conditions are chosen judiciously, only two of the dipoles within the system
will typically undergo a close interaction at any given time, thus the others affect
the interaction only through the far-field. As in the two-dipole case, a pure
exchange-scattering event can take place, as shown in figure 11a,b on the non-
rotating sphere. The three equal strength dipoles are aligned initially so that they
head for the North Pole. Note that the members of each dipole pair split off near
the North Pole and pair up with a member of another dipole as they head for the
South Pole. The dipole coordinates are shown in figure 11b. Again, the analogy
with vortex motion in wedge domains on the sphere as discussed in Kidambi &
Newton (2000) and Crowdy (2006) should be clear. Figure 12a,b shows an
interaction of three dipoles on a non-rotating sphere that involves both an
exchange event and a loop-scattering event. In figure 13, we show a sphere with
all of the previously documented interactions between two dipoles retained for
the three-dipole problem in a setting that combines them throughout a more
complex evolution. However, if all three approach each other so that they
interact simultaneously, as shown in figure 14, a much more complex process
occurs that cannot easily be interpreted as combinations of simpler interactions.
In a long evolutionary process of multiple dipoles, these types of interactions will
not be nearly as common as the simpler interactions between pairs.
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Figure 13. Three-dipole interaction on a sphere (non-rotating) which shows that the basic two
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evolution. (a) Non-exchange scattering, (b) exchange scattering, (c) loop chasing, (d ) exchange
scattering, (e) loop scattering, and ( f ) exchange and loop scattering.
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Figure 14. Interaction process of the three dipoles which includes aspects of the two dipole
interaction problem but is generally more complex. Shown are the point vortex paths on the sphere.
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5. Discussion

The interacting dipole equations (2.15) and (2.16) makes explicit the
correspondence between the motion of multiple dipoles and the billiard problem
and can be viewed as a system of interacting ‘charged’ billiards where the dipole
strength plays the role of the charge. Previous works, such as that of Kimura
(1999), brought to light the fact that the centroid of an isolated dipole on a
surface of constant curvature follows a geodesic path, as does a billiard on such a
surface (Gutkin et al. 1999). However, when multiple dipoles are present, the far-
field interactions play a central role in the governing dynamics and cause the
trajectories to deviate from great circle paths. Nonetheless, in these coordinates,
the equations for the interactions can be viewed as geodesic motion, modified by
the complex interaction terms due to the other dipoles. Typically, in a multi-
dipole population, only two will come into close contact at a time, hence a key to
understanding general interactions is to understand these most basic interactions
that we have focused on in this work.

We thank the National Science Foundation for support under the grant NSF-DMS-0504308.
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