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Abstract—Quorum sensing is a mechanism used by bacteria to
coordinate the expression of certain exofactors which are more
beneficial at higher cell densities. It has been argued that quorum
sensing is a way for bacteria to control gene expression where
some performance metric is being optimized. Herein, bacterial
growth via quorum sensing is studied under the lens of optimal
control theory. Under the assumption of perfect state observation,
it is shown that quorum sensing is an optimal control strategy
for an infinite horizon discounted reward function.

I. INTRODUCTION

Bacteria are simple unicellular organisms able to perform
complex collective tasks very effectively at high population.
This is achieved by means of a mechanism known as quo-
rum sensing (QS), where each bacterial cell secretes small
molecules in the environment called auto-inducers. Each bac-
terium is able to measure the concentration of auto-inducers
in the environment, which allows it to estimate the population
of the bacterial colony. Once the population exceeds a certain
threshold, the cells start producing exofactors responsible for
certain tasks such as: degrading antibiotics, metabolizing food,
luminescence and biofilm formation.

Consider, for example, the case when QS is used to regulate
the production of enzymes responsible for metabolizing food.
The production of this exofactor is costly to the cell but, once
released in the environment, it benefits the entire colony. In this
context, when the concentration of enzymes (public-good) is
high enough, more food will be available for every cell in the
colony and therefore, the colony will be able to achieve a larger
population (public benefit). This scenario is akin to problems
of (human) population growth in the Economics literature, e.g.
[1]. However, the mathematical model for bacterial population
growth is unique [2], and classical results from the existing
literature in this area are not applicable to our problem.

Our goal is to formulate and solve a discrete-time sequential
optimization problem where each cell in the colony decides
at each time step whether to engage or not in the production
of a costly exofactor that leads to the long term increase in
the maximum achievable population. Under the assumption of
perfect observation of the state of the system, the problem
introduced herein admits an analytical solution through opti-
mal control theory. We show that the optimal growth curve is
attained by employing a threshold policy on the population,
where the optimal thresholding variable is computed in closed
form as a function of parameters of the system.
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A. Literature review and summary of contributions

Quorum sensing was discovered in 1970 in the context of
growth of luminous bacteria Aliivibrio fischeri [3]. Since then,
quorum sensing has been found to be a general strategy for
coordinating group behavior in many species of bacteria [4]. A
survey of the of the history of QS and a summary of the main
results in this research area can be found in [5] and references
therein.

There exist many mathematical models for QS. The classic
approach used in the literature consists in describing the
evolution of the concentration of chemical signal, enzymes
and bacteria in the environment, using coupled deterministic
differential equations. An alternative stochastic model that uses
Queuing Theory has been proposed to analyze QS systems in
[6]. A growing portion of the recent QS literature assumes that
each bacterium can be considered as a decision-making unit
with the goal of optimizing the performance of the colony
[7]. Within this new paradigm, the optimization of certain
parameters of the QS system have been studied under different
performance metrics.

The optimization of the “sensing potential” was studied in
[8], where the overall fitness of the cells in a colony is defined
as the benefit gained minus the cost incurred from producing
exofactors. A similar approach was used in [9] where QS was
modeled as a networked decision system, where each cell is
an agent whose actions have local costs but global impact on
“fitness” of the colony. The fitness of the colony is proportional
to the growth rate of its population. Early frameworks to
study such optimization problems were introduced in [10] and
[11] where dynamics is considered, but optimality was solely
measured in terms of the instantaneous population at a given
time. We argue that in order to properly perform optimization
in a sequential decision making model of QS, it is necessary
to define a reward function that takes into account not only the
present, but also future populations. The proper mathematical
tool to analyze such problems is optimal control theory, e.g.
[12].

The key contributions of this work are to:

• Provide a QS model that incorporate dynamics and se-
quential optimization of population growth that resembles
classic problems from Economics, but are tailored to
bacterial colonies.

• Solve the problem analytically, under the assumption of
perfect observation on the current population, obtaining
a structural result on the optimal control policy as a
threshold policy.

• Compute the optimal threshold in closed form as a
function of the parameters of the system.



II. THE MODEL

We start with the discrete-time Logistic Population Growth
(LPG) model [13]. Let x[n] denote the concentration of popu-
lation at time n, such that x[n] ∈ R≥0 for all n ∈ {0, 1, · · · }.
We assume that samples are taken every hour. One can think
of n as the number of hours passed since an experiment
has started. According to LPG dynamics, the concentration
of population of the colony evolves as follows:

x[n+ 1] =

[
x[n] + λ · x[n]

(
1− x[n]

κ

)]+
, (1)

where [a]+
def
= max{a, 0}, a ∈ R. The dynamical system

in Eq. (1) is characterized by two parameters λ and κ,
which correspond to the intrinsic growth-rate and the carrying
capacity, respectively.

Quorum sensing is typically described by a pair of con-
trolled difference equations that describe the dynamics of the
signal s[n] and the enzymes e[n], where the control signal
u[n] is a number between 0 and 1 that represents the fraction
of active cells in the colony. The following equation describes
the evolution of the concentration of auto-inducer molecules:

s[n] = (1− γs)s[n− 1] + x[n]
(
1 + σsu[n]

)
. (2)

Notice that at every sample time n, the population injects
x[n] units of auto-inducer molecules in the environment (here
we will only consider normalized quantities). Auto-inducer
molecules degrade at a rate γs units per time step. One
interesting feature of QS mechanisms is that once activated,
the cells produce auto-inducers at a higher rate. This is
captured by the constant σs, also referred to as the positive
feedback rate. The second difference equation used to describe
a QS mechanism is:

e[n] = (1− γe)e[n− 1] + x[n]σeu[n]. (3)

In that equation, γe is the degradation rate of the enzymes
produced by the cells. It is assumed that enzymes are produced
at a rate σe units per time step only when the cells are active.

The control signal u[n] is computed according to a policy
U , which is a function of the observable signal s[n],

u[n] = U
(
s[n]

)
. (4)

However, under the assumption of homogeneous cells making
noiseless measurements of the concentration of auto-inducer
molecules s[n], the colony is either entirely active or inactive,
that is,

u[n] ∈ {0, 1}. (5)

In our model, we will assume that a social planner controls
the activation policy such as to optimize the performance of
the system. The goal of the social planner is to maximize a
discounted objective function of the form:

V(x0)
def
=

∞∑
n=0

βn
(
1− αu[n]

)
x[n], (6)

where β ∈ (0, 1) is the intertemporal discount factor, α ≥
0 captures the energetic activation cost, and x0 is the initial
population.

A. Public-goods and local activation cost

We adopt a production of public-goods interpretation to QS,
e.g. [11]. The public-goods are the enzymes that are being
released in the environment and are used, for instance, to
metabolize food. The enzymes act as public-goods because
once they are released in the environment, their byproduct will
be enjoyed by the entire colony. The production of enzymes
is costly and is reflected in the growth rate of our LPG model,
i.e., when the colony is active, it grows at a slower rate (λ
decreases). Therefore, let the controlled intrinsic growth rate
be defined as follows:

λ[n]
def
= ρ− cu[n], (7)

where ρ ∈ [0, 1] is the (normalized) autonomous growth rate
and c is a real number between 0 and ρ. The reason why
this is a realistic assumption is that the cells must spend a
considerable amount of energy to produce the enzymes and
thus less energy is available for cell division.

B. Public benefit

The consequence of having a higher concentration of public-
goods is that there will be more food available in the environ-
ment. In that case, the overall condition of the colony will be
improved by increasing the carrying capacity of the system.
Herein, the public benefit is the net gain in carrying capacity.
The carrying capacity is the maximum number of cells that
the environment is able to support for an extended period of
time. Typically, the public benefit function in these types of
problems are characterized by a few properties [11]:

1) The benefit is an increasing function of the concentration
of public-good.

2) The benefit does not increase indefinitely as the con-
centration of public-good increases; it saturates at some
finite value.

3) The benefit is zero when there is no public-good present.
One family that satisfies these properties is the class soft-

thresholding functions [11]. The class is characterized by three
parameters, bmax, τ and h and is defined as:

∆κh(e)
def
= bmax ·

(e/τ)h

1 + (e/τ)h
, (8)

where bmax ≥ 0, τ ≥ 0 and h > 1. The parameter τ is
defined as the quantity of public-goods that yields half of
the maximum benefit, bmax. The parameter h controls the
steepness of the transition from zero to maximum benefit.

III. A SEQUENTIAL OPTIMIZATION PROBLEM

The optimization problem posed in the previous section is
one of optimal control with partial observations of the system
state, x[n]. This is because the cells in a real QS system can
only measure s[n] and not x[n] directly. In order to obtain a
tractable sequential optimization problem and corresponding
analytical results, we make the following assumptions:

1) The system has no memory, i.e., the signal and enzyme
degradation rate constants are equal to one:

γs = γe = 1. (9)



This means that, at each time step, the signal produced
by the cells is completely degraded before the next
sample time.

2) There is no positive feedback in the signal equation, i.e.,

σs = 0. (10)

These two assumptions lead to the following pair of equations
for the signal and enzyme concentrations:

s[n] = x[n] (11)
e[n] = x[n]σeu[n]. (12)

This means that the state of the system is now directly
observed by the cells, admitting a direct analysis without the
use of an intermediate observer to estimate the system state
prior to computing the control signal.

Finally, for tractability, we will assume h =∞, so that the
public benefit in Eq. (8) becomes:

∆κ∞(e) = bmax · 1(e ≥ τ), (13)

which implies that the carrying capacity of the system is given
by:

κ[n] = κ0 + (κ1 − κ0)1(e[n] ≥ τ), (14)

where 1(·) denotes the indicator function1, and κ1 > κ0. The
interpretation is that once the concentration of enzymes in the
environment exceeds the threshold τ , the carrying capacity of
the system increases from κ0 to κ1.

Using Eq. (12), the controlled carrying capacity of the
system is given by:

κ[n] = κ0 + (κ1 − κ0) · 1(x[n]σeu[n] ≥ τ). (15)

Therefore, if u[n] = 0 (the colony is “off”):

κ[n] = κ0. (16)

And if u[n] = 1 (the colony is “on”):

κ[n] = κ0 + (κ1 − κ0)1(x[n] ≥ τ/σe). (17)

Lastly, plug in Eqs. (7) and (17) into Eq. (1) to define:

F(x, u) def
=

[
x+

(
ρ− cu

)
x

(
1− x

κ0 + (κ1 − κ0)1(xu ≥ m)

)]+

,

(18)
where m def

= τ/σe, resulting in the dynamical system:

x[n+ 1] = F
(
x[n], u[n]

)
. (19)

IV. ANALYSIS

In order to solve the optimal control problem, we must find
the solution to the following functional Bellman equation [12]:

V(x) = max
u∈{0,1}

{
(1− αu)x+ βV

(
F(x, u)

)}
. (20)

In this section, we present a closed form solution for the
optimal policy obtained from the solution of the Bellman
equation above when α = 0.

1The indicator function is defined as:

1(S)
def
=

{
1 if S is true
0 otherwise.

Theorem 1: Let m < κ0. If α = 0, the optimal solution for
the optimization problem under the assumptions in Eqs. (9),
(10) and (14) is a threshold policy of the form:

U∗(x) = 1(x ≥ x∗), (21)

where

x∗ =

{
m if c ≤ ρ(κ1−κ0)m

κ0(κ1−m)
cκ0κ1

(κ1−κ0)ρ+cκ0
otherwise.

(22)

Before proving Theorem 1 we need the following lemma.
Lemma 1: Let m < κ0. The value function V obtained as

the unique solution of Eq. (20) is strictly increasing.
Proof: We use a well known fact that the solution to the

Bellman equation can be found through a procedure called
value function iteration [12]. Start with a initial function
V(0)(x) and generate a sequence of functions according to
the following recursion:

V(n+1)(x) = x+ β max
u∈{0,1}

{
V(n)

(
F(x, u)

)}
. (23)

This sequence converges to a unique value function V
regardless of V(0). Our proof consists of initializing the
sequence with a strictly increasing function and showing that
every function V(n) generated through value function iteration
is also strictly increasing.

The proof is by induction on n. Let V(0)(x) = x, which
is strictly increasing. Assume that V(n) is strictly increasing.
Then, if follows that:

V(n+1)(x) = x+ βV(n)
(

max
{
F(x, 0),F(x, 1)

})
. (24)

It can be shown that F(x, 0) is strictly increasing on the
interval [0, k0], and F(x, 1) is strictly increasing on the interval
[0, k1]. Moreover,

F(x, 1) > F(x, 0), x ∈ [κ0, κ1]. (25)

Therefore, max
{
F(x, 0),F(x, 1)

}
is strictly increasing on

[0, κ1], which implies that V(n+1)(x) is also strictly increasing
on [0, κ1].

We argue that the limit of the sequence defined by Eq. (23),
V , is a strictly increasing function. Suppose that V were simply
increasing, then another iteration of Eq. (23) would produce a
strictly increasing function due to the addition of the strictly
increasing function x.

Proof of Theorem 1: If α = 0, Eq. (20) can be written
as:

V(x) = x+ βmax

{
V
(
x+ ρx

(
1− x

κ0

))
,

V
(
x+ (ρ− c)x

(
1− x

κ0 + (κ1 − κ0)1(x ≥ m)

))}
. (26)

From Lemma 1, the value function V is a strictly increasing
function, which implies that:

V
(
x+ ρx

(
1− x

κ0

))
=

V
(
x+

(
ρ− c)x(1− x

κ0 + (κ1 − κ0)1(x ≥ m)

))
(27)



if and only if

x+ ρx
(

1− x

κ0

)
=

x+ (ρ− c)x
(

1− x

κ0 + (κ1 − κ0)1(x ≥ m)

)
. (28)

After some algebra and rearranging the terms in Eq. (28), we
get:

cx =

(
ρ

κ0
− ρ− c
κ0 + (κ1 − κ0)1(x ≥ m)

)
x2 (29)

Let G be defined as

G(x)
def
=

(
ρ

κ0
− ρ− c
κ0 + (κ1 − κ0)1(x ≥ m)

)
x2. (30)

If x < m, then

G(x) =

(
c

κ0

)
x2. (31)

Since m < κ0, we have:

G(m) = cm

(
m

κ0

)
< cm. (32)

If x ≥ m, then

G(x) =

(
(κ1 − κ0)ρ+ cκ0

κ0κ1

)
x2. (33)

It is straightforward to show that if

c ≥ ρ(κ1 − κ0)m

κ0(κ1 −m)
(34)

then
G(m) ≥ cm. (35)

Therefore,
x∗ = m. (36)

On the other hand, if

c <
ρ(κ1 − κ0)m

κ0(κ1 −m)
(37)

then, the optimal threshold x∗ is the unique nonzero solution
of the following equation:

cx∗ =

(
(κ1 − κ0)ρ+ cκ0

κ0κ1

)
(x∗)2. (38)

i.e., (
c− (κ1 − κ0)ρ+ cκ0

κ0κ1
x∗
)
x∗ = 0. (39)

Therefore,
x∗ =

cκ0κ1
(κ1 − κ0)ρ+ cκ0

. (40)

The optimal solution for the case when α = 0 stated in
Theorem 1 does not depend on the discount factor β. This is
because the cost and benefit are experienced instantaneously
by the cells in the colony. Therefore, there is no intertemporal
trade-off in this instance of the problem. As we will show
in Section V, the dependence on β appears when α > 0.
However, in that case, Eq. (20) must be solved numerically.

n
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Fig. 1. Growth curves obtained for our model in Example 1. In that case,
α = 0 and the optimal threshold can be computed using the closed form
expression given by Theorem 1.

There are other scenarios where such intertemporal trade-
offs play a major role. Consider another version of our model,
where the decrease in intrinsic growth rate is experienced
instantaneously, but the higher capacity is experienced with
a unit delay, i.e.,

λ[n] = ρ− cu[n] (41)

and
κ[n+ 1] = κ0 + (κ1 − κ0)1(e[n] ≥ τ). (42)

The delay in Eq. (42) is accounted for the time it takes for the
enzymes to break down the food that will be consumed in the
future by the colony. This interesting case is currently under
investigation.

Notice that due to the structure of the problem, we were
able to solve the optimal control problem without explicitly
finding the value function V .

Example 1: In order to illustrate the result in Theorem 1, we
considered the following instance of our model with α = 0,
κ0 = 10, κ1 = 15, m = 5, ρ = 1, c = 0.5 and x[0] = 0.01.
Computing the optimal threshold in the statement of Theorem
1, gives:

x∗ = 7.5.

The optimal growth equation is given by the following expres-
sion:

x[n+ 1] = x[n] + (ρ− c1
(
x[n] ≥ x∗

)
×

x[n]

(
1− x[n]

κ0 + (κ1 − κ0)1(x[n] ≥ x∗)

)
, (43)

Figure 1 shows the optimal growth curve alongside the ones
obtained using the “on”

(
U(x) ≡ 0

)
and “off”

(
U(x) ≡ 1

)
policies. The corresponding values of each policy are listed in
Table I.



TABLE I
VALUE OF THE OBJECTIVE FUNCTION V(0.01) FOR α = 0.

β Voff Von Vqs

0.7 1.4384 0.3076 1.5626

0.8 6.4535 2.0898 7.5829

0.9 37.0031 24.3931 48.4066

TABLE II
VALUE OF THE OBJECTIVE FUNCTION V(0.01) FOR α = 0.1.

β Voff Von x∗ Vqs

0.7 1.4384 0.2769 8.6485 1.4871

0.8 6.4535 1.8809 8.3642 7.0527

0.9 37.0031 21.9538 8.1522 44.1733

V. THE GENERAL CASE

When α > 0, i.e., there is an explicit cost for activation
in the objective function, and a dependency on the discount
factor appears in the optimal threshold. However, the solution
of Eq. (20) needs to be computed numerically.

Consider Eq. (20) with α > 0:

V(x) = x+ βmax
{
V
(
F(x, 0)

)
,V
(
F(x, 1)

)
− α

β
x
}
. (44)

After computing the value function V as the unique solution
to Eq. (44), we can compute the optimal threshold by solving
the following equation:

V
(
F(x∗, 0)

)
= V

(
F(x∗, 1)

)
− α

β
x∗. (45)

Example 2: Consider the following instance of our model
with α = 0.1, κ0 = 10, κ1 = 15, m = 5, ρ = 1, c =
0.5. Using the numerical procedure outlined above, we can
compute the optimal threshold x∗ as a function of the discount
factor β, which is displayed in Fig. 2. Notice that the optimal
activation threshold when β ≤ 0.44 is equal to κ0 = 10. This
means that for values of the discount factor below 0.44, the
colony will not activate since κ0 is the carrying capacity of
the unactivated system. Table II lists the value of the “on”,
“off” and optimal policy for different values of β.

VI. CONCLUSIONS

We approach quorum sensing from the point of view of
optimal control theory. Our model consists of colony of
bacteria whose population grows according to a modified
logistic dynamics, where the rate of growth and the carrying
capacity are controlled. The goal is to optimize a discounted
objective function of the population of cells in the colony. We
show that, when the state of the system is perfectly observed,
the optimal control strategy has a threshold structure on the
population. We computed the optimal threshold in closed form
as a function of the parameters of the system. Future work will
address systems with partial observations; consider objective
functions with different structures; and validate our results
using experimental data.
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Fig. 2. Optimal threshold as a function of the discount factor β and the
parameters of the system from Example 2.
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