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Bacterial quorum sensing as a networked decision system
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Abstract—Quorum sensing plays a significant role in infection,
biofilm production and potentially can impact the design of
microbial fuel cells in the future. Herein, a production of
public-goods interpretation is employed to introduce a novel
optimization-based model for bacterial quorum sensing. In this
model, each bacterium cell act as a decision-maker seeking
to maximize a pay-off function under the uncertainty on the
concentration of the colony population. First, the design of a
socially optimal strategy profile is considered, where all the cells
employ the same threshold strategy. Second, the probability of
not activating while the quorum is being formed is analyzed;
this phenomenon is known in the literature as cheating. Lastly,
preliminary results are presented that establish a connection
between the new decision-making model with experimental data.

I. INTRODUCTION

Bacteria are simple unicellular organisms and one of the
earliest forms of life on Earth. Despite their apparent sim-
plicity, bacteria use a sophisticated communication system to
coordinate global behavior known as quorum sensing [1], [2].
Understanding and controlling this communication mechanism
may have huge impact on new ways to prevent undesirable
bacterial infections [3], lead to new nano-fabrication methods,
and the design of nano-communication networks [4]. Since
bacteria have existed for billions of years, it is likely that quo-
rum sensing systems may have evolved and adapted to robustly
achieve optimal performance of the colony, which led to the
survival of the species through time. We investigate quorum
sensing systems under an optimization paradigm where the
cells act as decision makers as in [5].

A simplified version of a quorum sensing mechanism is
shown in Figs. 1 and 2 and can be succinctly described as
follows: each cell in a bacterial colony is able to produce
an enzyme responsible for special effects, named exofactors.
Typical examples of exofactors are fluorescence, virulence and
formation of biofilm. Each of these have its own role in the
overall fitness of the colony either directly or indirectly via
symbiosis with a host organism. However, this public-benefit
can only be experienced if enough cells decide to activate
simultaneously. In other words, the benefit from expressing an
exofactor is only reaped if a quorum is established, e.g., if at
least half of the population activates. Furthermore, this public-
benefit scales with the concentration of cells in the colony [6],
[7], which is unknown to the individual cells and cannot be
directly observed. In order to sense the environment each cell
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in colony produces signaling molecules named auto-inducers,
which are released and propagate in the environment. The
overall concentration of auto-inducers is proportional to the
density of the colony. Finally, each cell is capable of sensing
the environment by means of proteins called receptors that
bind to the auto-inducers forming complexes. Once the number
of complexes exceeds a certain threshold, the cell activates
the production of the exofactor. Notice that with this sensing
mechanism, each cell never has a perfect observation of the
true density of the colony, and can only form a crude estimate.

We model quorum sensing as a distributed decision mak-
ing mechanism consisting of multiple agents making partial
observations about the state of the environment. Based on its
observation, each agent makes a binary decision to activate
(or not) the production of a costly public good. The goal
of the agents in our model is to optimize a pay-off function
that consists of a public benefit and a local activation cost.
Interestingly, this optimization-based model coincides with
the following: based on its observation each cell forms a
local estimate of the population X̂i. Based on this estimate,
it chooses the action to activate or not the production of
exofactor. The model proposed here captures the essence of
the underlying decision-making mechanism that takes place
in quorum sensing, is simple enough in order to allow for
mathematical analysis, optimization and calibration of key
parameters.

The key contributions of our work are to:
• Provide a new networked decision theoretic model of

quorum sensing, where the agents optimize the overall
fitness of the colony.

• Provide a numerical analysis and threshold optimization
for several combination of parameters in the model.

• Calibrate our model with data collected from quorum
sensing experiments performed in laboratory.

This paper is organized as follows. Section II describes
the networked decision-making model for quorum sensing.
Section III provides the analysis of the system. In Section
IV, we employ experimental data to estimate the values of our
system parameters and perform model calibration. Section V
concludes the paper.

A. Related literature

Quorum sensing was discovered by Nealson et al. and first
reported in [8], spurring a very diverse body of literature.
Most of the mathematical models of quorum sensing seek to
capture the dynamical behavior of the concentration of the
different quantities over time. The work of Michelusi et al. [9]
uses a queuing based model to study the evolution of quorum
sensing systems. Popat et al. [10] investigate the interaction
of two different coexisting colonies that use quorum sensing
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Fig. 1. Basic quorum sensing system of a bacterium cell. The cell releases
auto-inducers at a rate λ and receive them at a rate λX , where X is the
unknown density of the bacterial colony. Once enough auto-inducers are
received, the cell expresses the gene to the corresponding exofactor.
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Fig. 2. The activation of cells depends on the concentration of auto-inducers
in the environment, which is proportional to the density of cells.

to coordinate behavior. Game theoretic models have also been
used to model quorum sensing and study social interactions
among different colonies [11]. More recently, Michelusi and
Mitra have studied quorum sensing from an estimation theo-
retic point of view [12], [13]. Among the many mathematical
models available in the literature, our work is closest to the
model of Heilmann et al. [14]. However, our work focuses on
a static optimization problem under uncertainty, rather than the
deterministic dynamic model in [14]. This uncertainty in the
population concentration of bacteria has also been explored in
a recent paper by Noel et al. [15], but for a different model
than the one considered here.

Networked decision systems consist of multiple agents, who
make local measurements, communicate over a shared network
and make decisions with the goal of achieving a common
or individual objectives [16]. We argue that this framework
is appropriate for modeling quorum sensing systems similar
to the approach taken by Einolghozati et al. in [17], where
the goal is to coordinate a global behavior based on local
measurements and under uncertainty on the density population.
We do not emphasize the role of the shared communication
network in this paper because our problem formulation ad-
dresses quorum sensing among a single bacterial colony. In
practice, hundreds of colonies coexist in the same environment
and it is known that molecular signals emitted by different
colonies may interfere with each other either by causing signal
destruction or cross-talk [18]. However, in order to study more
general quorum sensing systems in this framework, we need
to understand the simpler case with a single colony.

II. THE MODEL

In this section we describe the Bayesian decision-making
framework used in this paper. We assume that there is a certain
number of cells per unit of volume in the colony and that each
of these cells act as a decision maker.

A. State-of-the-world

From the perspective of an individual cell, the most fun-
damental unknown quantity in a quorum sensing system is
the concentration of cells in the colony, also known as the
population density. The concentration is defined as the number
of cells per unit volume occupied by the bacterial colony
and corresponds to the state-of-the-world in the Bayesian
decision problem. The population density is represented by
a nonnegative random variable X , with a known continuous
probability density function fX supported on [0,∞), i.e.,

X ∼ fX(x). (1)

In this paper we will assume that the population density is
Gamma distributed with parameters k, θ > 0, i.e.,

fX(x) =
xκ−1 · exp

(
−xθ
)

θκ · Γ(k)
, x ≥ 0. (2)

For this distribution, E[X] = κθ and V[X] = κθ2.
Remark 1: Our choice of modeling the concentration of

bacteria as a Gamma random variable comes from the fact that
this distribution subsumes many other classes of distributions
on the non-negative real line as particular cases, e.g. expo-
nential and chi-squared. Furthermore, it allows for tractable
analysis when paired with the Poisson observation model
that we will introduce next. Finally, this prior distribution
has been previously used for Bayesian estimation of bacterial
concentration in a substance from microbial count data in [19].

B. Measurements

The concentration is unknown to each cell and is not directly
observed by any of the cells in the colony. In quorum sensing,
a cell probes the concentration of bacteria in the surrounding
environment by indirectly measuring the concentration of
auto-inducer molecules. Each cell in the colony secretes auto-
inducers in the environment at a rate λ > 0. The global
concentration of auto-inducers is proportional to the number
of cells in the colony. Auto-inducers are discrete entities,
which are produced by proteins named synthases. During the
signaling process, the auto-inducers in the environment bind
to proteins called receptors to form complexes. We model that
the number of auto-inducers received and bound to receptors
is distributed according to a Poisson probability mass function,
whose arrival rate is proportional to the concentration of cells
in the colony X .

Let the observation of the i-th cell in the colony be
represented by Yi. Therefore, given X = x, we have

Yi ∼ P(λx), i ∈ {1, 2, · · · , bx · volc}, (3)

where vol is the volume occupied by the colony. Therefore,

P(Yi = k | X = x) =
(λx)k

k!
e−λx, k = 0, 1, 2, · · · (4)
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Finally, for the sake of tractability of our model, we as-
sume that conditioned on X = x, the measurements Yi,
i ∈ {1, · · · , bx · volc} are mutually independent. Without loss
of generality, for the remainder of the paper we will assume
that vol = 1.

C. Actions

Once the measurements are made, the cells use a strategy
to decide whether to engage or not in the production of the
exofactor, which may correspond to a virulence attack, biofilm
formation, fluorescence, among others. The action of the i-th
cell is denoted by a binary random variable Ai ∈ {0, 1}, where

Ai =

{
1, if the exofactor is produced
0, if the cell remains idle.

(5)

The decision of the i-th bacteria is taken according to a
strategy denoted by γi : Z≥0 → [0, 1], where

P(Ai = 1 | Yi = y)
def
= γi(y). (6)

The collection of strategies γ def
= {γ1, · · · , γbxc} is called a

strategy profile. A particular class of strategies that is known
to play a fundamental role in quorum sensing systems is the
the class of threshold strategies. A threshold strategy is a
deterministic function parametrized by a single nonnegative
real number αi, and is defined as follows:

γi(y)
def
= 1(y ≥ αi). (7)

The action of producing the exofactor, when taken according
to a threshold policy, implies that the cell uses the number
of received auto-inducers as a proxy for the concentration of
bacteria in the colony.

D. Pay-off

Unlike the production of auto-inducers, which are ener-
getically cheap molecules, exofactors are costly. Moreover,
the production of a particular exofactor only pays-off once
a sufficient number of cells in the colony decide to activate
its production.

Definition 1 (Quorum size): Let τ ∈ [0, 1]. For a colony
with N cells, a quorum of size τN is established if at least
τN cells decide to activate, i.e.,

N∑
i=1

ai ≥ τN. (8)

We propose an individual pay-off function whose structure
consists of two terms: a public benefit term and a local
activation cost as follows

Ui(ai, a−i, x)
def
= τbxc · 1

 bxc∑
i=1

ai ≥ τbxc


︸ ︷︷ ︸

public benefit per cell

−
local cost︷︸︸︷
c · ai , (9)

where ai denotes the action of the i-th cell, and a−i denotes
the vector of actions of all the cells in the colony with the
exception of the i-th cell. We will elaborate more on each of
these terms.

1) Local cost: The local activation cost corresponds to the
energetic cost for producing the exofactor. This term is equal
to zero if the cell decides not to activate and is equal to a
nonnegative constant c otherwise.

2) Public benefit: For a colony of size bxc, the public
benefit is equal to zero unless a quorum of size τbxc is formed.
If the quorum is established, the public benefit equals the
quorum size. The interpretation behind this benefit function
is that a minimum number of cells needs to be active before
the colony starts to enjoy the public benefit. Since it is easier
to reach the quorum for lower values of τ , we assume that
the overall fitness of the colony is proportional to τ . Once it
is nonzero, the public benefit is constant in the actions of the
agents. Notice that since x is not known a priori, the cells do
not know exactly how much public benefit will be produced
by their actions. Finally, we remark that the true values for c
and τ for specific bacterial colonies are presently unknown.

E. Threshold optimization problem

In the remainder of the paper we will assume that all the
cells in the colony will use threshold strategies parametrized
by the same parameter α, i.e.,

αi = α, i ∈ {1, · · · , bxc}. (10)

We are now ready to state the main optimization problem
considered in this paper.

Problem 1: Given the parameters κ, θ, λ > 0, and c ≥ 0,
find α that maximizes the function Ji given by

Ji(α)
def
= E

[
Ui(Ai, A−i, X)

]
= J (α). (11)

Remark 2: The solution of Problem 1 can be understood
as the socially optimal threshold for the colony. It is unlikely
that this solution, when it exists, forms a Nash-equilibrium
strategy. However, this solution concept is a starting point for
analyzing the more general problem formulation in which a
Nash-equilibrium is sought.

III. ANALYSIS

We start by computing the conditional probability of activa-
tion of a single cell (local activation). Let i ∈ {0, · · · , bXc}.
Given X = x and assuming that every cell uses the same
threshold α ∈ R≥0, the probability of local activation is
defined as

p(x;α, λ)
def
= P(Ai = 1 | X = x) (12)

and is computed as follows

p(x;α, λ) = P(Yi ≥ α | X = x) =

∞∑
k=dαe

(λx)k

k!
e−λx. (13)

The next step is to compute the conditional probability
of global activation. Let L(X) denote the total number of
activated cells in a colony of density X , i.e.,

L(X)
def
=

bXc∑
i=1

Ai. (14)
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Conditioned on X = x and for given α and λ, each Ai
is a Bernoulli random variable with parameter p(x;α, λ).
Since the observations Yi, i ∈ {1 · · · , bxc} are conditionally
independent given X = x and that each decision variable Ai is
only a function of Yi, the random variable L(x) has a Binomial
distribution with parameters bxc and p(x;α, λ). Therefore,

P
(
L(X) = ` | X = x

)
=

(
bxc
`

)(
p(x;α, λ)

)`(
1− p(x;α, λ)

)n−`
.

(15)

Using these two probabilities we can express the objective
function as follows.

Proposition 1: Consider Problem 1. The pay-off function in
Eq. (11) can be explicitly computed according to

J (α)=

∫ ∞
0

[
τbxc

bxc∑
`=dτbxce

(
bxc
`

)(
p(x;α, λ)

)`(
1− p(x;α, λ)

)n−`
− c · p(x;α, λ)

]
fX(x)dx.

(16)
Proof: The result follows from iterated expectations first

conditioning on X , and using Eqs. (13) and (15).
Remark 3: Due to the intricate nature of the objective

function, it is unlikely that the optimization can be carried
out exactly in closed form. However, the function p(x;λ, α),
which is not smooth in α, can be well approximated by a
regularized incomplete Gamma function. This approximation
leads to a differentiable objective function.

A. Pay-off function and optimal thresholds

In order to illustrate the general shape of the pay-off
functions, consider the following set of parameters: Let θ = 50
and κ = 2, which implies that the average concentration of
cells in the colony is X̄ = 100 cells per unit volume; λ = 1,
and activation cost c = 50. For different values of the quorum
ratio τ , Fig. 3 shows the pay-off function. For these choices
of parameters, J (α) is unimodal and has a unique maximizer,
which are displayed in Table I.

Figure 4 shows the dependency of the pay-off function with
the local activation cost c. Here, we assume that θ = 50, κ = 2,
λ = 1, and τ = 0.75.

B. Probability of not activating while establishing a quorum
of ratio τ

In the recent quorum sensing literature, some articles have
identified and studied a phenomenon known as cheating [20].

TABLE I
MAXIMIZERS AND MAXIMA OF THE

PAY-OFF FUNCTIONS IN FIG. 3.

τ α? J ?

0.90 44 42.6989

0.75 61 30.9052

0.50 101 13.4081

0.25 191 2.0214

TABLE II
MAXIMIZERS AND MAXIMA OF THE

PAY-OFF FUNCTIONS IN FIG. 4.

c α? J ?

25 27 50.5373

50 61 30.9052

75 96 17.3499

100 138 9.0366
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Fig. 3. Pay-off function of the local activation threshold α for several values
of the quorum ratio τ .
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Fig. 4. Pay-off function of the local activation threshold α for several values
of the local activation cost c.

In the economics literature, a similar phenomenon is known
as free-riding. A cheater or free-rider is defined as a cell that
decides not to activate locally but enjoys the public benefit
resulting from the global activation. One of the features of
our mathematical model is that it successfully captures the
phenomenon of cheating. Furthermore, this phenomenon can
be observed and quantified in experimental setups where the
activation is visualized by fluorescence.

The probability of the i-th cell not activating given that
quorum of ratio τ was formed is defined as

Pfree(τ)
def
= P

(
Ai = 0 | L(X) ≥ τbXc

)
. (17)
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Fig. 5. Probability of not activating given that a quorum of ratio τ was formed
for several values of the local activation threshold α.

This probability can be computed in terms of quantities
previously defined in Eqs. (13) and (15).

Proposition 2: Consider the quorum sensing system of
Problem 1. The probability of the i-th cell not activating given
that a quorum of ratio τ is formed, can be computed as follows

Pfree(τ) =
E
[
P(
∑
j 6=iAj ≥ τbXc | X) ·P(Ai = 0 | X)

]
E
[
P(L(X) ≥ τbXc | X)

] ,

(18)
where the expectations are with respect to X ,

P(Ai = 0 | X = x) = 1− p(x;α, λ), (19)

and that given X = x,∑
j 6=i

Aj ∼ Binomial
(
bxc − 1, p(x;α, λ)

)
. (20)

Proof: The proof follows from iterated expectations,
Bayes’ rule and conditional mutual independence of Ai,
i ∈ {1, · · · , bXc} given X .

The probability of free-riding as a function of τ is shown
in Fig. 5 for a prior distribution with parameters κ = 2 and
θ = 50. We observe that Pfree is a decreasing function of
τ and is increasing in α. The probability of free-riding is
connected to the activation cost c in the following way: for
larger values of c, the optimal value of the activation threshold
α? is also larger, yielding a higher probability of cheating. In a
dynamic problem setting where the concentration of cells and
auto-inducers change with time, this probability allows us to
predict the fraction of the population that will activate within
a time-interval. Another benefit of being able to compute the
probability of cheating is that it is useful for estimating the
parameter τ from experimental data, as we will do in the next
section.
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Fig. 6. Probability of not activating given that a quorum of ratio τ is formed
for a prior distribution of parameters κ = 5.5780 and θ = 5.6770, and
activation threshold α = 70.

IV. MODEL CALIBRATION

In this section we discuss preliminary experimental results
on the validation of our mathematical model using the bacteria
strain E. coli ptd103 LuxI/R, which produces an fluorescence
exofactor. It has been documented, e.g. [18], that this strain
uses thresholds α = 70nM and its production rate of auto-
inducer molecules per cell is

λ = 2.3× 10−9nmol. (21)

In our experiments, the total volume occupied by the colony
was fixed to 5ml and the activity in colony can be observed
as in Fig. 8. Typically, the data collected in quorum sens-
ing experiments is a time series. Our one-shot optimization
problem formulation can be used to analyze the transition
from unactivated to activated states of the colony. Table III
shows the average concentration of cells over time. Using our
Poisson measurement equations, and assuming that the cells
use a threshold α = 70, we predict that the state transition
occurs at approximately t = 5h. Fitting a Gamma density to
our collected data, we obtain the parameters κ = 5.5780 and
θ = 5.6770 Billion cells/L. Since λX ∼ G(κ, λθ), we have

λX ∼ G(5.5780, 13.0572). (22)

From our experimental data, we counted the fraction of
cells that have activated at time t = 5h. Its complement gives
us an estimate of the probability of not activating given that
quorum was established, from which the quorum ratio τ can
be estimated, i.e.,

Pfree(τ) ≈ 0.14 =⇒ τ̂ ≈ 0.3, (23)

where the value of τ̂ was obtained from Fig. 6. Finally, the
last part in our model calibration is to estimate the value of
c. This is done by knowing that for this strain of bacteria the
optimal activation threshold is α? = 70. Looking for the value
of c that gives us this value of α?, we obtain ĉ ≈ 20.25.
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Fig. 7. Pay-off function that the bacterial colony studied in our experiments
is optimizing. According to our model, the local activation cost is equal to
c = 20.25.

Fig. 8. Our experimental data was collected from microscopic images such
as the ones above, where the total number of cells and the total number of
activated (fluorescent) cells is estimated.

V. CONCLUSION AND FUTURE WORK

This paper proposes a new optimization based framework
for studying quorum sensing as a networked decision system.
Our framework admits a simple description that at the same
time allows for mathematical analysis, captures many features
known to exist in quorum sensing systems and can be extended
to accommodate the interaction between multiple colonies.
Future work on this model will include: noncooperative game
theoretic formulations, where each bacteria uses different

TABLE III
EXPERIMENTAL DATA

t (h) X̄ (109 cells/L) σX (109 cells/L) λX̄ (nM) p

0 0.0465 0.0140 0.1070 0

1 0.0653 0.0011 0.1503 0

2 0.4267 0.0833 0.9813 0

3 0.6400 0.1637 1.4720 0.0135

4 4.0667 0.5033 9.3533 0.1038

5 31.6667 13.4079 72.8333 0.8538

6 147.3333 93.0017 338.8667 0.9953

7 262.6667 68.8573 604.1333 1

thresholds and seek a Nash-equilibrium solution; and sequen-
tial problem formulations, where the signaling population
dynamics and signaling play a major role on how information
is disseminated over the colony. We plan to use the insights
gained from this future analysis to mathematically show how
bacteria have developed quorum sensing mechanisms that
aggregate information in an optimal way.
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