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Abstract

We develop a theory of agenda-setting in a legislature. A proposer supports a

platform comprised of several policies. Policies are divisible and can be bundled —

the proposer can slice each policy into parts, and she can aggregate the various policy

parts into bills. The proposer chooses an agenda, which is a collection of bills. The

legislature votes each bill up or down, and all the policy parts in each approved bill

are implemented. We address the following questions: In equilibrium, which agenda

is chosen? What are the consequences for voters? What are the implications for

institutional design?
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We revisit a classic question in legislative studies: the power of an agenda setter to pass

policies that are not favored by any majority of legislators.

Consider a legislature with a proposer who controls the agenda and a set of legislators

who vote on the proposals. The proposer supports a platform, which is a collection of poli-

cies. Our model does not rely on a spatial interpretation of the set of policies: we regard

each policy as an infinitely divisible unit mass of policy activity, and not as a point in space.

The proposer can slice policies into parts, and she can bundle these parts into bills that she

proposes to the legislature. Bills that gain a favorable vote from a majority of legislators

pass, and the policy activity contained in any bill that passes is implemented.

The proposer’s challenge is to pass policies that no majority of legislators wants. The

standard tool to achieve this is to bundle unpopular policies with popular ones into an

omnibus bill that can pass. We note that the proposer has a second degree of freedom: to

slice a policy, proposing only a fraction of the total activity that constitutes the policy.1

We call each fraction of a policy a “slice.” We assume that preferences are separable across

policies, and that policy preferences scale down to partial policies: if passing a policy in full

gives a legislator a utility ū, then the utility of passing a slice of this policy of size � 2 [0, 1] is

only �ū. For example, suppose the policy is to advance NASA’s space exploration program.

This policy can be sliced into parts, such as missions to Mars, Jupiter and the Moon. If a

mission to Mars is twice as important as a mission to the Moon, then a Mars mission is a

slice twice as big as a Moon mission. Similarly, missions can be sliced into larger or smaller

pieces — e.g., sending astronauts instead of rovers.

1See Krutz (2001) for a comprehensive study of omnibus bills in the US Congress, and Rundquist and
Strom (1987) for an account of how parts of initial proposals are dropped and others kept to craft bills.
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Slicing the policy first, and only then bundling the slices into bills makes it easier for the

proposer to construct bills that can pass. The following example illustrates our theory.

Example 1 Consider a legislature with a non-voting proposer, three voters, and simple ma-

jority rule. Assume that the proposer wants to pass a platform with three policies: education,

gun control, and taxes. Table 1 describes the payo↵ for each voter per unit of policy passed.

Policies
Education Gun Control Taxes

1 +3 -2 -2
voters 2 -2 +3 -2

3 -2 -2 +3

Table 1: Payo↵s from implementing each policy.

If the proposer introduces each of her policies in full one by one, all three policies fail

by a 1-2 vote. By bundling policies, the proposer can get two of her policies to pass. For

instance, if she bundles education and gun control into a single bill, this bill would pass with

the votes of voters 1 and 2.2 But if two policies are bundled, then the third one does not

pass alone, and there is nothing left to bundle it with. If all three policies are bundled into

a single bill, then all voters reject the bill. Thus, the best the proposer can do by bundling

is to pass two policies.

The proposer can do better by slicing policies before bundling them into bills. In our

example, the proposer can get her entire platform to pass in three bills. A first bill, with half

of the education policy and half of the gun control policy, yields a strictly positive payo↵ to

voters 1 and 2, who vote to pass the bill. A second bill, with half of the education policy and

half of the tax policy, passes with the votes of voters 1 and 3. Finally, a third bill, with the

remaining half of the gun control and tax policies, passes with the votes of voters 2 and 3.

2Bundling has a similar e↵ect as log-rolling or vote trading by voters (see, for instance, Schwartz 1977).
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We generalize the intuition behind our example to address the following questions: In

equilibrium, which agenda is put to a vote? What is the legislative outcome? How does it

a↵ect all legislators? What are the implications for institutional design?

Related Literature: The power of an agenda setter depends on institutional features.

If the policy choice is unidimensional, the proposer’s power is constrained by the need to

satisfy the median legislator (Romer and Rosenthal 1978 and Baron 1996). With multiple

dimensions, a strategic agenda setter attains her ideal outcome if other legislators are not

sophisticated (McKelvey 1976), but the outcome is in the uncovered set if all legislators are

sophisticated (Shepsle and Weingast 1984).

In a divide-the-pie game with sequentially random proposers and policies that are irre-

vocable once approved, the first proposer obtains a little more than half the pie (Baron and

Ferejohn 1989) and ex-ante payo↵s depend on the probability of being recognized to make a

proposal (Kalandrakis 2006). With revisable policies, a finite horizon and a known sequence

of rotating proposers, the last proposer obtains most of the pie (Bernheim, Rangel and Rayo

2006). With a fixed proposer, an infinite horizon and revisable policies, other legislators can

limit the proposer’s power by voting down any proposal that would later be revised to an

unwanted outcome (Diermeier and Fong 2011).

We consider a finite number of proposals by a fixed proposer.3 We depart substantively

from the literature by considering a collection of policies that are divisible into slices. We

show that an agenda setter who can slice policies holds great power: she can get much of her

3In the US Congress, a “procedural cartel” composed of the most senior members of the majority party
controls the agenda (Cox and McCubbins 2005 and Gailmard and Jenkins 2007); this cartel is a fixed proposer
for a given legislative session. For a survey of other agenda-setting procedures, see Cox (2006).
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desired platform to pass, even if it harms most or all voters. We explore institutional design

features that curtain such power.

The Model

Overview: We model a game between a proposer and a group of n voters. The proposer

wants to implement a set of policies, but she needs voter approval. The proposer strategically

puts a list of bills to a vote. A bill is a collection of policy parts. Each voter chooses whether

to approve or reject each bill. Bills that receive at least q approval votes pass, where q 2

{1, ..., n} is the established voting rule. Any legislation in a bill that passes is implemented.

Players: A proposer 0 and n 2 N voters. Let N ⌘ {0, 1, ..., n}.

Policies: We define a platform J ⌘ {1, ...,m} as a finite set with m policies, with arbitrary

policy j 2 J . Each policy j is composed of a unit mass of policy activity.4

Bills: A bill is a vector b = (b(1), . . . , b(m)) 2 [0, 1]m. Each b(j) represents the mass of

policy j 2 J contained in bill b.

Agendas: An agenda is a finite list of bills. Let B denote an arbitrary agenda, and let bt 2 B

denote an arbitrary bill in agenda B. An agenda B is feasible if and only if
P

bt2B bt(j)  1

for each policy j 2 J . Let B be the set of all feasible agendas.

Preferences: Let vi(j) denote the per unit utility for player i 2 N of policy j. For each

player, normalize the utility of not passing anything to zero. We interpret J as the proposer’s

platform, so we assume that v0(j) > 0 for each policy in the platform.

4We consider policies with heterogeneous measures (mass) of activity in the online Appendix.
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If an agenda B passes, it yields to player i a payo↵

u(B, vi) =
X

bt2B

X

j2J

bt(j)vi(j). (1)

Timing: First, the proposer chooses an agenda B 2 B. Let T be the number of bills in

this agenda, B = {b1, . . . , bT}. Bills are considered sequentially: for each t 2 {1, . . . , T}, all

voters simultaneously vote on bill bt, observe the vote outcome, and then, if t < T , they

move on to bill bt+1. Let agenda B̂ ✓ B denote the subset of bills that receive q or more

votes. Agenda B̂ passes and payo↵s accrue.

Information: All information is common knowledge.

Rationality: All players are strategic and maximize their expected utility, and they do not

use weakly dominated strategies. To simplify the exposition, we assume that if a legislator

is indi↵erent between approving and rejecting a bill, then he votes for approval.

Solution concept: Subgame perfect Nash equilibrium.

Results

The proposer’s agenda setting problem is to choose a feasible agenda that maximizes her

expected utility, given the expected voting behavior of all other legislators. Fix any agenda

B 2 B. For t = T , each legislator i votes for bill bt if and only
P

j2J b
t(j)vi(j) � 0,

independently of the past history. By backward induction, the same holds for each t < T .

For any bill bt, define the indicator function I(bt) = 1 if at least q voters weakly prefer bill

b to pass, and I(bt) = 0 otherwise. The proposer’s problem then reduces to choosing an
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agenda in

argmax
B2B

X

bt2B

I(bt)
X

j2J

bt(j)v0(j). (2)

Problem (2) may appear di�cult to solve. Fortunately, we can appeal to the literature

to solve it for us. Alonso and Câmara (2016) (AC) introduce a voting model of Bayesian

Persuasion. As in the seminal theory by Kamenica and Gentzkow (2011), the main idea is

that an information designer chooses an experiment that generates signals about the state

of the world, and these signals shift the posterior beliefs of a receiver. The designer strategi-

cally chooses the experiment that is ex-ante most likely to generate posteriors desired by the

designer. In AC, the receiver is a committee and the designer needs to generate favorable

beliefs among at least q members of the committee.

While, substantively, our legislative agenda-setting model has nothing to do with exper-

imentation or information design, it turns out that, mathematically, it is identical to AC.

Lemma 1 The agenda choice problem (2) is isomorphic to the information designer’s ex-

periment choice problem in AC.

Proof. See the online Appendix.

What we mean by “isomorphic” and “mathematically identical” is that the two models

are the same, up to a reinterpretation of the variables and parameters: any result that is

true in AC’s is also true in ours, with the appropriate reinterpretation.5 Once we prove this

equivalence, we can import all of their results, suitably reinterpreted, without further proof.

In particular, we obtain the following:

5Our model stands in the same relation to AC as Downs’ (1957) model of electoral competition stands in
relation to Hotelling’s (1929) model of seller location in a linear market. Our model is also mathematically
related to the cheap-talk models of Schnakenberg (2015 and forthcoming).
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Proposition 1 There exists an optimal policy agenda B⇤ that solves the agenda choice prob-

lem (2) and contains, at most, min
n

m, n!
(n�q)!q! + 1

o

bills.

Proof. It follows from result (R2) in the online Appendix of AC.

Proposition 1 establishes that there exists an optimal agenda containing, at most, as

many bills as there are policies (m), and, at most, one bill targeted to each of the n!
(n�q)!q!

possible minimum winning coalitions of voters plus one bill that will not pass.

Preferences such that the whole platform J can pass as a single bill or such that no

bill can pass are trivial cases. The next restriction on voter preferences rules them out. It

also assumes that the proposer’s marginal utility is the same across all the policies in her

platform,6 and it assumes that voters have strict preferences over policies.

Assumption 1 (A1) Suppose that voters’ preferences are such that at least n�q+1 voters

strictly prefer the status quo over platform J , but there exists a bill b 2 [0, 1]m such that at

least q voters strictly prefer bill b over the status quo. Assume v0(j) = 1 for each policy j 2 J

and assume that vi(j) 6= vi(j0) for any two policies {j, j0} ⇢ J and any voter i 2 N\{0}.

Proposition 2 Assume (A1). If the voting rule is not unanimity (q < n), then at least

n�q+1 voters weakly prefer the status quo over the set of bills that pass. In particular, under

a simple majority, the collection of bills that pass makes a majority of voters weakly worse o↵.

Proof. It follows from Corollary 1 of AC.

Proposition 2 holds because the proposer wants to implement as much of her platform as

6This is merely a normalization on the measure (mass) of each policy. It is without loss of generality in the
scope of admissible preferences. If the proposer values policy j twice as much as policy j0, we can represent
this by v0(j) = v0(j0) and then assign measure 2 to the activity on policy j. See the online Appendix.
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possible. If at least q voters are strictly better o↵, then the proposer can include more of her

policies on the bills that pass. Therefore, at least n� q+1 voters must be weakly worse o↵.

To highlight the importance of controlling the agenda and the conflicts of interest between

proposer and voters, we next consider an assembly in which all voters agree on their ordinal

preferences over policies, and they all oppose certain policies favored by the proposer. Let

policy 0 denote the status quo, which yields utility normalized to zero to all agents.

Definition 1 Voters have homogeneous ordinal policy preferences if, for any pair of policies

j, j0 2 {0, ...,m} and any pair of voters i, i0 2 N\{0}, voter i prefers policy j to policy j0 if

and only if voter i0 prefers policy j to j0 (vi(j) � vi(j0) () vi0(j) � vi0(j0)).

We next present an example in which voters have homogeneous ordinal policy preferences,

and yet policies that voters don’t like pass, making voters strictly worse o↵. This is so because

voters disagree on bills in spite of their homogeneous ordinal policy preferences. The proposer

exploits this disagreement by properly slicing and bundling policies into di↵erent bills.

Example 2 There are two voters, and the voting rule is q = 1. There are three policies: one

policy (education) that both voters favor, and two policies (gun control and taxes) that voters

oppose to di↵ering degrees. Policy preferences are represented by the following utilities:

Policy v0 v1 v2
Education +1 +2 +2
Gun control +1 -1 -3

Taxes +1 -6 -5

The optimal agenda is B⇤ =
��

1
2 , 1, 0

�

,
�

1
2 , 0,

1
5

�

,
�

0, 0, 45
� 

.7 The first bill passes with the

vote of voter 1; the second bill passes with the vote of voter 2; and the third bill fails. The

7We provide a general algorithm to find the optimal agenda in the online Appendix.
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proposer slices the education and tax policies. She bundles a slice of the education policy

with a slice of the gun control policy into bill b1 to target voter 1, and she bundles a slice of

education policy with a slice of tax policy into bill b2 to target voter 2.

In Example 2, voters would like to collude to reject the proposals. However, in the sub-

game equilibrium, voters would be tempted to deviate from this deal. To create an enforce-

able commitment device, voters prefer to change the voting rule to unanimity, or to limit the

proposer to include a single bill in the agenda. Both of these observations generalize. First:

Proposition 3 Assume (A1) and homogeneous ordinal policy preferences. All voters weakly

prefer unanimity over any other q-voting rule.

Proof. It follows from Proposition 5 of AC.

In addition to importing AC’s results, new results arise that have no substantive inter-

pretation in AC’s theory. Suppose that we introduce a constraint, in the form of a cap  2 N

on the number of bills. Say that a feasible agenda is admissible if it contains, at most, 

bills, and suppose that the proposer can propose only admissible agendas.

Proposition 4 Assume (A1) and homogeneous ordinal policy preferences. Then, all voters

are weakly better o↵ if the number of bills in an admissible agenda is capped at  = 1.

Proof. See the online Appendix.

Voters are worse o↵ with higher caps because they allow the proposer to design bills

targeting di↵erent coalitions. Therefore, our result provides theoretical support for the use

of omnibus bills. This result has no analogue in AC because it would mean a limit on the

number of signal realizations of an experiment. Such a restriction makes no sense in their
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setting. In the context of a legislative body, a Constitution or a rules committee can impose

any restrictions it wishes on the nature of admissible agendas. Proposition 4 highlights that,

although our model and AC’s are isomorphic, the two theories address di↵erent questions

and provide distinct insights.

Conclusion

We present a theory of legislative policy making based on a new model of agenda formation.

We show that, by slicing policies and bundling the slices into bills, an agenda setter can pass

more legislation than had been previously understood. Other legislators prefer to curtail the

agenda setter by choosing a more stringent voting rule, or by capping the maximum number

of bills under consideration.

We consider a simple model, with assumptions that allow us to use existing mathemat-

ical tools to quickly characterize the equilibrium. Our main insights hold if we relax some

of these assumptions, at the cost of a more burdensome equilibrium characterization — e.g.,

if we impose limits on the proposer’s ability to slice policies. Our benchmark model can be

extended to study other important questions, such as: what is the equilibrium if there are

payo↵ externalities across policies? How do di↵erent legislative rules, such as an endoge-

nously elected proposer, a↵ect policy slicing and bundling? Finally, while there exists an

extensive empirical literature studying bundling of policies, we know less about the slicing of

policies. We hope that our theoretical insights can guide future empirical work on the topic.
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A Online Appendix

This online Appendix presents the proofs of Lemma 1 and Proposition 4, from the paper “Slicing and

Bundling,” SB henceforth. This Appendix is organized as follows. In Section A.1, we rewrite the agenda

choice model of SB. In Section A.2, we rewrite the experiment choice model of Alonso and Câmara (2016), AC

henceforth. In Section A.3, we prove Lemma 1 from SB — that is, the models of SB and AC are isomorphic.

In Section A.4, we present a simple algorithm to describe the procedure to use the results from AC to solve

for an optimal agenda in SB. In Section A.5, we normalize the measures (mass) for each policy as indicated

in footnote 6 in SB. In Section A.6, we prove Proposition 4 from SB — that is, voters benefit from a cap on

the number of proposals.

A.1 Model 1 - Slicing and Bundling

In this section, we rewrite the problem of the proposer in SB.

We first rewrite each players’ payo↵ as follows. Recall that the approval of bill b yields to player i a payo↵

X

j2J

b(j)vi(j), (A-1)

where vi(j) is the utility over policy j for player i. For each policy j 2 J , define

p(j) ⌘ v0(j)P
j2J v0(j)

. (A-2)

It is useful to decompose the utility term vi(j) into two terms. For each player i 2 N and each policy j 2 J ,

define

�i(j) ⌘
vi(j)

p(j)
. (A-3)

We then write the utility term vi(j) as p(j)�i(j). We interpret the term p(j) 2 (0, 1) as the relative importance,

salience or payo↵-weight that the proposer attaches to passing policy j. And for each voter we interpret �i(j)

as a preference parameter derived from vi(j) through a normalization given by p(j). We thus rewrite (A-1) as

X

j2J

b(j)p(j)�i(j). (A-4)

We next use backward induction to solve for the equilibrium. Consider any feasible agenda B 2 B, with T

bills. By backward induction, when t = T , each legislator i votes for bill bt if and only
P

j2J bt(j)p(j)�i(j) � 0,
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independently of the past history.1 Consequently, the same holds for each t < T .

Therefore, we can represent voters’ equilibrium strategies as a function g as follows. Let g(b, �i) = 1 if

voter �i approves the bill, and g(b, �i) = 0 if he rejects the bill:

g(b, �i) =

8
><

>:

1 if
P

j2J b(j)p(j)�i(j) � 0

0 if
P

j2J b(j)p(j)�i(j) < 0
. (A-5)

For any bill b 2 [0, 1]m, define the indicator function I(b) = 1 if at least q voters vote to approve the bill, and

I(b) = 0 otherwise:

I(b) =

8
><

>:

1 if
Pn

i=1 g(b, �i) � q

0 if
Pn

i=1 g(b, �i) � q
. (A-6)

Now consider the choice of the proposer. Recall that a bill is a vector b = (b(1), . . . , b(m)) 2 [0, 1]m; a

feasible agenda B is a finite set of bills such that
P

bt2B bt(j)  1; and B is the set of all feasible agendas.

Note that, for any agenda B with T bills, the proposer is weakly better o↵ by proposing an alternative agenda

B0 with T + 1 bills, where the first T bills are the same as in B, and bill

bT+1 ⌘ (1, ..., 1)�
 

TX

t=1

bt(1), ...,
TX

t=1

bt(m)

!

includes anything left in platform J that was not proposed by B. Therefore, without loss of generality, we

can focus on feasible agendas such that the entire platform is proposed. Moreover, if a bill bt is a vector of

zeros, than this bill is equivalent to no proposal. Therefore, without loss of generality, we can focus on feasible

agendas in which each bill is not a vector of zeros. Hence, define eB as the set of all feasible agendas such that
P

bt2B bt(j) = 1 for all j 2 J , and
P

j2J bt(j) > 0 for all bt 2 B.

The proposer’s problem (2) from SB is then equivalent to

argmax
B2 eB

X

bt2B

I(bt)
X

j2J

bt(j)p(j)�0(j). (A-7)

A.2 Model 2 - Persuading Voters

In this section, we briefly describe the model of AC. We change some of the notation used by AC to match

our notation.
1
Recall that we are focusing on equilibria in which players do not use weakly dominated strategies and in which, for each

legislator and each bill such that the expected utility for the legislator of passing the bill is equal to the expected utility of not

passing the bill, the legislator votes to approve the bill.
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Overview: AC consider a game between one information designer 0 and a group of n voters indexed by

i 2 {1, . . . , n}. The information designer supports one proposal (a new policy) and wants to persuade voters

to approve this proposal. There is uncertainty over the payo↵ from this proposal. The information designer

can influence voters’ decision by designing a policy experiment — a public signal that reveals information

about the payo↵ from the proposal. After voters observe the result of the policy experiment and update their

beliefs according to Bayes’ rule, each voter chooses whether to approve or reject the proposal. Voters cast

their ballots simultaneously. The proposal is implemented if it receives at least q approval votes, where q is

the stablished voting rule.

Payo↵s: We can normalize to zero the status quo payo↵ of all players — i.e., the payo↵ if the proposal

is not approved. The payo↵ from approving the proposal depends on the unknown state of the world ✓ 2

⇥ = {✓1, . . . , ✓m}, which takes a finite number m 2 N of values. Players have a common prior belief p =

(p(1), . . . , p(m)) in the interior of the simplex�(⇥). For each voter i, let �i(j) 2 R be the payo↵ from approving

the proposal if state ✓j is realized. Hence, we can represent voter i by his payo↵ vector �i = (�i(1), . . . , �i(m)).

Similarly define the information designer’s approval payo↵ vector �0, with �0(j) > 0 for all j 2 J ⌘ {1, . . . ,m}

(the designer always supports the proposal).

Policy Experiment: Before voters cast their ballots, the information designer can influence their decision

by designing a policy experiment. The designer can choose any experiment that is correlated with the state,

as in Kamenica and Gentzkow (2011). An experiment ⇡ consists of a finite set S of signal realizations, with

generic element s 2 S, and a collection of probability distributions ⇡(s|✓).

Timing: At the beginning of the game, the information designer chooses a policy experiment ⇡. All voters

observe the realization s of experiment ⇡, and update their beliefs according to Bayes’ rule. Each voter then

chooses whether or not to approve the proposal. Voters cast their ballots simultaneously. The proposal is

approved and implemented if and only if it receives q or more approval votes. Payo↵s are realized and the

game ends.

A.2.1 Equilibrium

We next use backward induction to solve for the equilibrium — see AC for details.

Voters: Let µs,⇡ 2 �(⇥) be the posterior belief of players after observing realization s of experiment ⇡. Voter

�i approves the proposal if and only if it yields a non-negative expected payo↵,
P

j2J µs,⇡(j)�i(j) � 0. We

can then represent his equilibrium strategy as a function g̃ as follows. Let g̃(µs,⇡, �i) = 1 (voter approves the
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proposal) if
P

j2J µs,⇡(j)�i(j) � 0, and g̃(µs,⇡, �i) = 0 (voter rejects the proposal) if
P

j2J µs,⇡(j)�i(j) < 0.

Given the electorate {�1, . . . , �n}, we define the following indicator function, which indicates the posterior

beliefs such that the proposal is approved by at least q voters: let Ĩ(µs,⇡) = 1 if
Pn

i=1 g̃(µs,⇡, �i) � q, and

Ĩ(µs,⇡) = 0 otherwise.

Information designer: The information designer’s problem is to choose the experiment that maximizes her

expected payo↵, given the equilibrium strategy of voters. Let Pr[s|⇡] be the probability of observing realization

s of experiment ⇡. Without loss of generality, we focus on all experiments ⇡ with finite realization space S

such that Pr[s|⇡] > 0 for all s 2 S.2 Let ⇧ be the set of all such experiments. The designer’s problem is then

argmax
⇡2⇧

X

s2S

Pr[s|⇡]̃I(µs,⇡)
X

j2J

µs,⇡(j)�0(j). (A-8)

A.3 Equivalence

The agenda setting problem (A-7) in SB and the experiment design problem (A-8) in AC are mathematically

identical, up to a reinterpretation of the variables and the terms in each model. The mapping from one model

to the other is as follows.

• A policy j in SB maps to a state ✓j in AC. Thus, the platform J in SB maps to the set of all possible

states in AC.

• The payo↵-weight v0(j)/
P

j02J v0(j0) that the proposer in SB attaches to policy j maps to the prior

belief p(j) in AC.

• A bill bt in SB maps to a vector of probabilities in AC associated to a signal st. Specifically, for each state

✓j in AC, bt(j) in SB maps to zt(j) in AC, where zt(j) ⌘ ⇡(st|✓j) denotes the conditional probability

that state ✓j induces signal realization st. Just as a bill in SB is a vector with bits of mass of each policy,

a signal realization can be seen as a vector with bits of probabilities of each state in AC.

• A feasible agenda B in which the whole platform is proposed in SB maps to an experiment ⇡ in AC.

• In SB, the utility that a player i derives from a bill bt is additively separable across each component

bt(j), and within each component, it is linear in bt(j) with slope given by the marginal utility of policy j.

Analogously in AC, the expected utility of taking action given a signal st is additively separable across

2
If experiment ⇡ has a signal realization s0 2 S that occurs with probability zero, then ⇡ is payo↵ equivalent to an experiment

⇡0
that simply excludes realization s0 from ⇡.
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each state, and within each state, it is linear in the probability p(✓j)zt(j) that the state and signal occur,

with slope given by the marginal utility of taking action given state ✓j .

• A bill bt passes in SB if and only if the AC assembly votes to take the action given the signal st that bt

maps to. Therefore, setting an agenda B in SB is the same problem as designing an experiment in AC.

We now prove Lemma 1 of SB.

Proof of Lemma 1: Since (A-7) is equivalent to the proposer’s problem in SB and (A-8) is equivalent to

the information designer’s problem in AC, it su�ces to show that (A-7) is isomorphic to (A-8).

Rewrite the designer’s problem (A-8) as follows. First, rewrite any given experiment ⇡ as a set of vectors

representing the conditional probabilities of the signal realizations. Take any ⇡ 2 ⇧. Recall that experiment

⇡ has a finite number of signal realizations and Pr[s|⇡] > 0 for all s 2 S. For each st 2 S, construct

a corresponding vector zt = (zt(1), . . . , zt(m)), where zt(j) is the probability that the signal realization st

occurs, conditional on state ✓j being realized. Let Z be the set of all vectors zt constructed from the signal

realizations in S. By the definition of ⇧, it follows that Z is a finite set of vectors, with zt 2 [0, 1]m for all

zt 2 Z,
P

zt2Z zt(j) = 1 for all j 2 J , and each zt 2 Z is not a vector of zeros. Let Z be the set of all such

Z. Note that each experiment ⇡ 2 ⇧ can be represented by some Z 2 Z, and each Z 2 Z can be represented

by some experiment ⇡ 2 ⇧. Moreover, the set Z and the set of feasible agendas eB in Model 1 are isomorphic.

Given any Z 2 Z, signal realization st occurs with probability �t ⌘
P

j2J zt(j)p(j). Note that �t > 0,

since zt is not a vector of zeros. Bayes’ rule implies that, after observing realization st, players’ posterior belief

becomes µt = (µt(1), . . . , µt(m)), with µt(j) = zt(j)p(j)
�t . Consequently, after observing realization st, voter �i

approves the proposal if and only if
P

j2J µt(j)�i(j) � 0. Note that
P

j2J µt(j)�i(j) =
1
�t

P
j2J zt(j)p(j)�i(j).

Since �t > 0, the voter approves the proposal if and only if
P

j2J zt(j)p(j)�i(j) � 0.

Therefore, we can represent voters’ equilibrium strategy as a function ĝ as follows. Let ĝ(z, �i) = 1 if voter

�i approves the proposal, and ĝ(z, �i) = 0 if he rejects the proposal:

ĝ(z, �i) =

8
><

>:

1 if
P

j2J z(j)p(j)�i(j) � 0

0 if
P

j2J z(j)p(j)�i(j) < 0
. (A-9)

Note that ĝ in (A-9) is isomorphic to g in (A-5): we simply replace the bill b by the vector of conditional

probabilities z.

For any vector z 2 [0, 1]m, define the indicator function Î(z) = 1 if at least q voters vote to approve the
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bill, and Î(z) = 0 otherwise:

I(z) =

8
><

>:

1 if
Pn

i=1 ĝ(z, �i) � q

0 if
Pn

i=1 ĝ(z, �i) � q
. (A-10)

Since ĝ and g are equivalent, it follows that Î(z) in (A-10) is isomorphic to I(b) in (A-6): we simply replace

the bill b by the vector of conditional probabilities z.

Given any Z 2 Z, the proposer’s expected utility is
P

zt2Z �tÎ(zt)
P

j2J µt(j)�0(j). Since �tµt(j) =

�t z
t(j)p(j)

�t = zt(j)p(j), the term �t
P

j2J µt(j)�0(j) simplifies to
P

j2J zt(j)p(j)�0(j). Therefore, we can

rewrite the information designer’s problem as

argmax
Z2Z

X

zt2Z

Î(zt)
X

j2J

zt(j)p(j)�0(j). (A-11)

Since the indication function Î is isomorphic to I, we have that problems (A-11) and (A-7) are isomorphic.

We simply replace {b, B, eB} with {z, Z,Z}. Problems (A-8) and (A-7) are then equivalent, concluding the

proof.

Note that, in both models, the equilibrium behavior of voters is defined by the multiplicative term p(j)�i(j)

— see (A-5) and (A-9). The same holds for the proposer’s (information designer’s) problem — see (A-7) and

(A-11). Since the proposers’ payo↵ from each policy in her platform is positive, we can normalize the proposer’s

payo↵ to any strictly positive vector by appropriately rewriting the prior belief p and voters’ preferences —

e.g., see (A-2) and (A-3).

A.4 Algorithm

In this section, we present a simple algorithm to describe the procedure to use the results from AC to solve

for an optimal agenda in SB.

Step 1) Fix the fundamental parameters of SB: the set J of policies in the platform, the set of preferences

{v0, v1, . . . , vn}, and the value q of the voting rule.

Step 2) Construct an AC model as follows. Define the state space as ⇥ = {✓1, . . . , ✓m}, where state ✓j is

simply the label of policy j 2 J . Define the prior belief over states p = (p(1), . . . , p(m)) according to (A-2).

For each player i 2 N , define the preference vector �i = (�i(1), . . . , �i(m)) according to (A-3). Keep the same
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q voting rule.

Step 3)Given ⇥, p, {�0, �1, . . . , �n} and q, use the results from AC to solve (A-8) an find an optimal experiment

⇡⇤.

Step 4) Given ⇡⇤, for each signal realization st 2 S, construct a vector zt = (zt(1), . . . , zt(m)) of conditional

probabilities, where zt(j) is the probability that state ✓j induces signal realization st, conditional on ✓j being

realized. Let Z be the collection of vectors zt constructed from S.

Step 5) Policy agenda B = Z is then a solution to the proposer’s problem (A-7). That is, each vector zt 2 Z

becomes one bill bt 2 B.

We now present a simple example to illustrate our result.

Example: Consider a proposer who has a platform with three policies: education, gun control, and taxes.

There are two voters and the voting rule is q = 1. Preferences are described below.

Policy v0 v1 v2

Education +1 +2 +2

Gun control +1 -1 -3

Taxes +1 -6 -5

To solve for the optimal agenda, we write a persuasion model as follows. There are three states, ⇥ =

{✓1, ✓2, ✓3}, where state ✓1 represents education, ✓2 represents gun control, and ✓3 represents taxes. Using

(A-2), the prior belief over states becomes p = (1/3, 1/3, 1/3). Using (A-3), players’ preferences become

�0 = (3, 3, 3), �1 = (+6,�3,�18), and �2 = (+6,�9,�15). Same q voting rule as before. Figure 1 depicts the

simplex of posterior beliefs representing this persuasion game.

AC solve a very similar game; see their Example 2 for details on how to solve the persuasion game. There is

an optimal experiment ⇡⇤ with three signal realizations, S = {s1, s2, s3}. Figure 1 depicts the posterior beliefs

induced by ⇡⇤. Realization s1 leads to posterior belief µ1 and voter 1 approves the proposal. Realization s2

leads to posterior belief µ2 and voter 2 approves the proposal. Realization s3 leads to posterior belief µ3 and

both voters reject the proposal. Experiment ⇡⇤ has the following matrix of conditional probabilities:

Z =

2

66664

1
2

1
2 0

1 0 0

0 1
5

4
5

3

77775
.
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Prior	Belief	

p

W1

θ3θ2

θ1

Voter	 δ1

Voter	 δ2

Win	Set	

µ1

µ 2

µ3

Figure 1: Representing the Optimal Agenda as a Persuasion Game

Each row of Z represents a state ✓j , and each column represents a signal realization st. Hence, state ✓1 induces

realization s1 with probability 1
2 , and so forth. Therefore, agenda B = Z maximizes the proposer’s payo↵ in

(A-7). The proposer optimally includes three bills in the agenda. The first bill b1 = ( 12 , 1, 0) is approved by

voter 1, while the second bill b2 = ( 12 , 0,
1
5 ) is approved by voter 2. No voter approves bill b3 = (0, 0, 4

5 ).

A.5 Policies with Heterogeneous Measures

In our benchmark model, we normalized the measure (mass) of each policy to one, so that vi(j) could be

identically interpreted as the marginal utility of policy j, and the total utility of implementing policy j in

full, for agent i 2 N. We now normalize the measure of each policy di↵erently. In Assumption (A1), we

assumed that the proposer’s marginal utility over each policy is the same across all policies. In footnote 6 in

SB, we claim that this assumption is without loss of generality in the domain of preferences. We use the new

normalization of the measure of each policy to prove this claim.

Let a(j) 2 R++ be the total measure (mass) of policy j 2 J . Let a = (a(1), ..., a(m)) be the vector of

measures for each policy. In the paper’s benchmark model, we assume a(j) = 1 for each j 2 J . Therefore, for

each policy j 2 J and each player i 2 N, the term vi(j) is both the marginal utility of policy j for player i,

and the total utility of implementing policy j in full for player i. With heterogeneous measures for each policy,

we need to di↵erentiate total and marginal utility from a policy. Let vi(j) keep its meaning as the marginal

utility of policy j for i. And let v̄i(j) denote the total utility of implementing policy j in full for i. We treat

v̄i(j) as a primitive that represents the preferences of player i, and we derive vi(j) endogenously.

We want to show that, for any proposer preferences represented by v̄0, we can find a vector of measures

of policies (a(1), ..., a(m)) such that v0(j) = 1 for each j 2 J (footnote 6 in SB). This is directly shown by

construction: since, by definition, v̄i(j) = a(j)vi(j) for each player i 2 N and each policy j 2 J, choosing
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a(j) = v̄0(j) we obtain v0(j) = 1 for each policy j 2 J, as assumed in (A1). Further, we also obtain

vi(j) =
v̄i(j)
v̄0(j)

for each voter i 2 N\{0}.

A bill is a vector b 2 [0, 1]m such that b(t) represents the fraction of the total mass of policy j that is

included in the bill. With the vector of measures a, if bill b is approved and implemented, then player i receives

a payo↵
X

j2J

b(j)a(j)vi(j) =
X

j2J

b(j)v̄i(j). (A-12)

If an agenda B passes, it yields to player i a payo↵

u(B, v̄i) =
X

bt2B

X

j2J

bt(j)v̄i(j) =
X

bt2B

X

j2J

b(j)a(j)vi(j). (A-13)

This is similar to expression (1) in the paper, except that in the paper v̄i(j) = vi(j) because a(j) = 1.

Moreover, optimization problem (2) in the paper,

argmax
B2B

X

bt2B

I(bt)
X

j2J

bt(j)v0(j), (A-14)

now becomes

argmax
B2B

X

bt2B

I(bt)
X

j2J

bt(j)v̄0(j) = argmax
B2B

X

bt2B

I(bt)
X

j2J

bt(j)a(j). (A-15)

Note that, despite the di↵erence in notation, we can solve problems (A-14) and (A-15) in the same manner.

Consider now Section A.1 in this online Appendix, with heterogeneous measures of policies. Instead of

defining p as in (A-2), for each policy j we now rewrite

p(j) ⌘ v̄0(j)P
j2J v̄0(j)

=
a(j)P
j2J a(j)

. (A-16)

Therefore, for each player i 2 N and each policy j 2 J , define

�i(j) ⌘
v̄i(j)

p(j)
. (A-17)

We can then rewrite the payo↵ (A-12) as (A-4). All our results then follow from (A-4).
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A.6 Preferences over Agenda Limits

In this section, we solve for the proposer’s optimal agenda when she is constrained: the proposer cannot

propose more than  bills. In this case, agenda B is feasible if and only if it contains at most  bills, and,

aggregating over all bills, it contains no more than a unit mass of each policy. Let B() be the set of all feasible

agendas with at most  bills.

Define p = (p(1), . . . , p(m)) according to (A-2). For each voter, define the preference vector �i = (�i(1), . . . , �i(m))

according to (A-3). For the proposer, �0 is a constant vector, and we can rescale utilities so that the constant

is one. Define g and I according to (A-5) and (A-6). Given , the proposer’s problem (A-7) becomes

max
B2B()

X

bt2B

I(bt)
X

j2J

bt(j)p(j)�0(j).

To simplify the exposition, in the rest of this section we assume that the proposer’s payo↵ is constant across

all policies, v0(j) = v0(j0) for all j, j0 2 J . If the proposer’s payo↵ is not constant across policies, then we use

(A-3) to define voters’ adjusted payo↵s �i. All the following results continue to hold by rewriting Assumptions

(A2) and (A3) in terms of these adjusted payo↵s �i.

We consider two alternative assumptions regarding voters’ preferences:

Assumption 2 (A2) Voters rank policies j 2 J = {1, . . . ,m} in the same order: for each pair of policies

j, j0 2 J , we have vi(j) > vi(j0) for some voter i if and only if vi0(j) > vi0(j0) for every other voter i0. Without

loss of generality, suppose vi(j) strictly increases in j 2 J for all voters.

Assumption 3 (A3) Homogeneous ordinal preferences: for each pair of policies j, j0 2 {0, 1, . . . ,m}, we have

vi(j) > vi(j0) for some voter i if and only if vi0(j) > vi0(j0) for every other voter i0. Without loss of generality,

suppose vi(j) strictly increases in j 2 J for all voters.

Note that (A2) is a weaker assumption than (A3), and recall that assumption (A1) was defined in the

main text of SB. We next present a series of results.

Claim 1 Suppose (A1) and (A2) hold. Consider any constraint  2 N on the number of bills. Then,

in equilibrium, there exists a cuto↵ policy j such that all policies ranked above j are fully approved, and

no mass from policies ranked below passes. That is, if
P

t=1 I(bt)bt(j) > 0 for some policy j 2 J , then

P
t=1 I(bt)bt(j0) = 1 for all j0 > j.

Proof To see this, by contradiction, suppose that agendaB is optimal,
P

t=1 I(bt)bt(j) > 0 and
P

t=1 I(bt)bt(j0) <

1 for some j0 > j. We will construct a feasible alternative agenda B̂ such that the proposer strictly prefers B̂
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over B, yielding a contradiction.

Since
P

t=1 I(bt)bt(j) > 0, there exists at least one bill t̂ such that I(bt̂)bt̂(j) > 0. Moreover, since
P

t=1 I(bt)bt(j0) < 1, there exists a strictly positive measure of mass from policy j0 that was not proposed (or

proposed by a bill that is not approved by voters).

Construct alternative agenda B̂ as follows. First, let B̂ be equal to B. Now change bill bt̂ to a new bill

b⇤ as follows: Decrease bt̂(j) by ✏ and increase bt̂(j0) by ✏(1 + ↵), where ✏,↵ > 0. For each player i 2 N , the

di↵erence in payo↵s from the two bills is

X

j2J

b⇤(j)vi(j)�
X

j2J

bt̂(j)vi(j) (A-18)

=

2

4
X

j2J

bt̂(j)vi(j)

3

5+
h
✏(1 + ↵)vi(j

0)� ✏vi(j)
i
�
X

j2J

bt̂(j)vi(j) (A-19)

= ✏ [vi(j
0)� vi(j) + ↵vi(j

0)] . (A-20)

Given assumptions (A1) and (A2), we have that vi(j0)� vi(j) > 0 for every voter and vi(j0) = vi(j) > 0 for

the proposer. Therefore, there exits an upper bound ↵ > 0 such that all players strictly prefer bill b⇤ over bt̂

for any ↵ 2 (0,↵), independently of ✏ > 0. Moreover, for any fixed ↵ 2 (0,↵), the new agenda B̂ is feasible

for any su�ciently small ✏ > 0.3

Therefore, since bt̂(j) was approved by at least k voters, the new bill b⇤ is also approved by at least k

voters. Thus, the proposer is strictly better o↵, a contradiction to the optimality of the original agenda B.

Claim 2 Suppose (A1) and (A2) hold. Consider a constraint  on the number of proposals. Then, all voters

have single-peaked preferences over .

Proof From the previous claim, we know that the optimal agenda defines a cuto↵ j on the policies. Increasing

the limit  relaxes the constraint faced by the proposer, hence the cuto↵ j⇤ must weakly decrease with  —

the proposer is able to approve weakly more mass of policies in her platform if she is able to make more

proposals. Each voter i benefits from a lower j⇤ if vi(j⇤) > 0, and he is worse o↵ if vi(j⇤) < 0. Hence, each

voter has single-peaked preferences over cuto↵ j⇤, which is equivalent to single-peaked preferences over .

Claim 3 Suppose (A1) and (A2) hold. Given any k-voting rule, n� k+1 voters (weakly) prefer  = 1 over

any higher . If (A1) and (A3) hold, then all voters (weakly) prefer  = 1 over any higher .

3
Since I(bt̂)bt̂(j) > 0, we can decrease the mass from policy j included in the bill. Since

P
t=1 I(bt)bt(j0) < 1, we can increase

the measure of policy j0 included in the modified bill b⇤ by either including mass that was not previously proposed by any bill or

shifting mass from a bill that is not approved by voters to the modified bill b⇤.
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Proof Consider  = 1, and let b⇤ be the (single) optimal bill proposed by the proposer. It must be the case

that at most q � 1 voters strictly prefer b⇤ over the status quo — if q or more voters are strictly better o↵,

then the proposer could bundle more mass of policies into b⇤ and still get the bill approved, a contradiction

to the optimality of b⇤. Therefore, at least n � q + 1 voters weakly prefer the status quo over b⇤. Since an

optimal b⇤ defines a cuto↵ j⇤ on the policies, it must be the case that, for all of these n� q+1 voters, we have

vi(j⇤)  0. Therefore, increasing  would imply a decrease in cuto↵ j⇤, and these n � q + 1 voters would be

weakly worse o↵.

If (A3) holds, then all voters agree on which policies yield a positive payo↵ (relative to the status quo),

and agree on which policies yield a negative payo↵. Therefore, it must be the case that vi(j⇤) < 0 for all .

Hence, the payo↵ of all voters weakly decrease in  for all values of .

Claim 3 implies Proposition 4 of SB.
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