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Abstract

We develop a theory of credible skepticism in organizations to explain the main

trade-offs in organizing data generation, analysis, and reporting. In our designer-

agent-principal game, the designer selects the information privately observed by the

agent who can misreport it at a cost, while the principal can audit the report. We

study three organizational levers: tampering prevention, tampering detection, and

the allocation of the experimental-design task. We show that motivating informative

experimentation while discouraging misreporting are often conflicting organizational

goals. To incentivize experimentation, the principal foregoes a flawless tampering de-

tection/prevention system and separates the tasks of experimental design and analysis.
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1 Introduction

Employees need to recognize that not all numbers are created equal—some are

more reliable than others.

Shah, Horne and Capellá, “Good Data Won’t Guarantee Good Decisions”,

HBR (April 2012)

The Digital and ICT revolution has made organizations awash with data by drastically

reducing the costs of data gathering, storage, access, and analysis. It has also changed

how managers make decisions, relying less on opinions and intuition and more on insights

derived from this data.1 In spite of these improvements, evidence shows that companies

are struggling to capture value from analytics (McKinsey and Co, 2018a). A key friction is

that organizations still need to rely on people to design the experiments, analyze the data

and report the results, and their preferences might not be aligned with the goals of the

organization. The information that reaches decision makers is then hampered by incentive

conflicts: conflicts of interest over decisions result in disagreement over which data to collect

and how to analyze it, and creates frictions when communicating its findings to decision

makers. In this paper, we study optimal organizational practices for managing data analytics

in the face of these frictions.

To illustrate our main insights, consider the following principal-agent scenario. A business

unit manager (agent) is proposing an “innovation” that he created. That is, he developed a

new design for a product or a new production process and would like the firm to adopt it.

A high-level executive in the firm’s headquarters (principal) must choose whether to adopt

the innovation (decision dH) or to toss it out and retain the status quo (decision dS). There

is uncertainty regarding the true consequences of adopting the innovation: compared to the

status quo product or process, the innovation has a higher quality (“high” state θ = 1) with

probability µ, and a lower quality (“low” state θ = 0) with probability 1− µ. The principal

1Brynjolfsson et al. (2011) and Brynjolfsson and McElheran (2016) report rapid and widespread adoption

of Data-Driven Decision Making (DDM) practices in organizations, where the rate of adoption is heavily

influenced by a series of complementary organizational practices. See also Goldfarb and Tucker (2019) for a

discussion on the type of cost reductions brought about by digital economic activity.
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would like to adopt the innovation if its quality is “high” and toss it out if it is “low”.

The key conflict of interest is that the agent is biased as he prefers the firm to adopt his

innovation and, consequently, he is inclined to overstate its quality.2 How can the principal

acquire more information to make a better decision?

At first glance, the recent advancements in data analytics and easier access to data could

be a solution to this problem—KMPG (KPMG, 2016) and McKinsey (McKinsey and Co,

2017) highlight the importance of using data to counterbalance biases, and advocate the

adoption of a data-driven, test-and-learn culture.3 In a frictionless world, the principal would

be able to directly design and run experiments to learn about the quality of the innovation

and then decide whether to adopt it.

As a motivating example, the principal could run an A/B test contrasting the new and

old products. Differences in test design change what can be learned about the product: the

product could be tested by only using a sample of urban consumers, only using a sample of

rural consumers, or using a proportional sample of urban and rural consumers. Many other

characteristics of the test could be adjusted, such as the size of the sample and the set of

control variables used. The principal would like to implement the “most informative” test,

where we say that a test πA is more informative than a test πB if observing test πA allows

the principal to make better decisions (achieve a higher expected payoff).4

The first practical problem is that, typically, high-level executives cannot design and run

the experiments themselves: they must delegate experimentation to an agent (business unit

manager) with more time and expertise but whose preferences may not be fully aligned with

them.5 Delegation creates a second problem: even if a very informative experiment is fea-

sible, the agent might strategically select a less informative experiment in order to increase

2Business managers may favor the implementation of their own innovations because of a preference for

empire building, because their human capital is tied to this decision, or because this would increase their

visibility and improve their outside opportunities.
3Most data analytics is used for process or product improvement or is related to other types of innovation—

see Wu et al. (2020). Earlier work by Pfeffer and Sutton (Pfeffer and Sutton, 2006) promotes what they call

evidence-based management: organizations should encourage trial programs, pilot studies, and experimen-

tation.
4Therefore, our definition of “more informative” follows Blackwell and Girshick (1954).
5For large companies implementing a new analytics program, McKinsey (McKinsey and Co, 2017) suggests

coming up with as many as 100 possible use cases.
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the probability of obtaining an outcome that would convince the principal to adopt his in-

novation. In our example, the agent might choose to run the A/B test only using consumers

from urban areas because the new product has a better chance of success within this demo-

graphic, while the principal would prefer a more informative test using a proportional mix

of urban and rural consumers. Finally, a third problem is that the agent still needs to re-

port the outcome of the experiment to the principal. In this communication stage, the agent

might be tempted to tamper with the experiment and report a false outcome. With these

frictions in mind, we want to understand how the organization of data analytics can provide

incentives for agents to implement the most informative experiments and truthfully report

their outcomes.

We start with an overview of the main elements and timing of our model, which is illus-

trated by Figure 1. The principal first chooses the company’s data governance, comprising

two types of policies: a tampering prevention policy and a tampering detection policy. Tam-

pering prevention is captured by a cost distribution F (c), which defines how costly will be

for the agent to tamper with the result of the experiment. The principal can change the dis-

tribution F (c) by making it easier or harder to tamper with the experiment.6 Tampering

detection is captured by the variable λ ∈ [0, 1], which represents the firm’s auditing inten-

sity - the probability that the principal also observes the actual outcome of the experiment.

We see data analytics as comprising two tasks: the experimental design task specifies

which data to collect and how to process it, while the analysis task is the actual implemen-

tation of the experiment according to the specified design and the reporting of its outcome.

The principal must allocate these tasks: she can assign both tasks to a single agent (inte-

gration) or assign them to two different agents (separation).

After the principal announces the data governance policies and task allocation, the

agent(s) perform the two data analytics tasks. The agent responsible for the experimental

design (the “designer”) strategically designs an experiment π that reveals information about

the payoff-relevant state — as in Kamenica and Gentzkow (2011), KG henceforth.7 In our

6For instance, through a by-law that defines the punishment for tampering, or through data security

measures that make tampering more or less costly.
7While our experimental design task is similar to KG, our novel features are the agent’s possibility of

paying a cost to tamper and the principal’s ability to audit and design organizational features.
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Principal Chooses:
- Data Governance Policies (Tampering Prevention ! and Tampering Detection ")

- Task Allocation (Integration or Separation)

Experimental Design: Designer Chooses Experiment #

Analysis: Agent Observes Experimental Outcome $ and Tampering Cost %, 
Decides Whether to Tamper, then Sends Report &

Audit is Conclusive with Probability λ and Inconclusive with Probability 1 − λ

Principal Makes Decision *

Figure 1: Timing of Decisions

motivating example, the agent can design all the details of the protocol that will be used to

run the A/B test. Then, the agent responsible for the analysis (the same agent under inte-

gration or a different agent under separation) runs experiment π and privately observes its

outcome s. At this point, the agent observes how costly it would be to tamper with the ex-

periment: he observes the cost c drawn from F (c). The agent can truthfully report the out-

come of the experiment (send a message m = s) or can pay the cost c to tamper with the

outcome and send a false report (send a message m ̸= s). The audit takes place — with

probability λ the audit is conclusive and the principal observes both the message m and the

true outcome s; with probability 1 − λ the audit is inconclusive and the principal only ob-

serves the message m. Finally, the principal updates her belief and decides whether to adopt

the innovation or retain the status quo.

We first show that we can greatly simplify the designer’s problem: there exists an optimal

experiment taking the form of a pass/fail test with no type II error and an optimal rate α

of type I error. If the innovation has a high quality, then the test always results in a “pass”

outcome, interpreted as a recommendation to adopt it. If the innovation has a low quality,

then with probability α the result will be a “pass” (a false positive), while with probability

1 − α the result will be a “fail,” interpreted as a recommendation to retain the status quo.

The fundamental conflict of interest is that the principal prefers tests with a lower α (these

tests are more informative) while the agent prefers tests with a higher α (they imply a higher
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probability of a pass result). In our A/B test example, a test that correctly balances the

sample lowers the probability of a false positive, while strategically selecting a more favorable

sample increases the probability of a false positive. In equilibrium, if the audit is not perfect

(if λ < 1), then the agent will tamper (i.e., report a “pass” outcome when the actual test

outcome was “fail”) as long as his tampering cost c is sufficiently low.

First, consider what happens under integration (single agent). To understand equilibrium

strategies, we start by isolating the roles of tampering prevention and detection. Fix an

imperfect prevention policy8 and consider the principal’s choice of an optimal tampering

detection policy. If the experiment’s design was exogenously fixed — if α were exogenous

— then the principal would choose a perfect audit λ = 1 to eliminate any tampering.

However, this is not true when the design is endogenously chosen by the agent. Our first

result highlights the role of tampering detection: increasing auditing intensity reduces the

informativeness of the agent’s experiment (the endogenous α increases with λ). To wit,

agents may gather “just enough” evidence if decision makers find them more reliable. In

fact, a perfect audit λ = 1 deters tampering altogether but results in an experiment which

provides no valuable information to the principal — the chosen α is so high that when the

experiment recommends adoption, the principal is just indifferent between the two decisions

and hence gains no surplus from the experiment. With an imperfect audit, the agent will

be tempted to tamper after observing a negative result. The principal takes into account

this tampering and discounts adoption recommendations after an inconclusive audit. To

compensate for the tampering and partially offset the principal’s mistrust, the agent must

then select a more informative experiment (must lower the probability of a false positive).

Thus, by committing to an imperfect audit (λ < 1), the principal optimally trades-off the

increased tampering with the increased informativeness of the experiment.

Now fix an imperfect audit and consider the principal’s choice of an optimal tampering

prevention policy. Our second result shows that the principal prefers an imperfect prevention

policy that results in low tampering costs being sufficiently likely. This incentivizes tamper-

ing and provides decision makers with commitment power to reject self-serving recommen-

dations. The principal’s credible threat of rejecting an adoption recommendation leads the

8Prevention policy F (c) is imperfect if the agent tampers with a positive probability.
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agent to again design a more informative experiment (lower α).

We then turn to the optimal data governance (i.e., the joint design of tampering preven-

tion and detection policies). We argue that promoting a moderate sense of mistrust can cre-

ate a culture of “credible skepticism” in the organization: the principal can refrain from fol-

lowing the agents’ adoption recommendations issued with weak supporting evidence (high

α), forcing the latter to provide stronger evidence backing them. To credibly do so, the prin-

cipal both makes low tampering costs sufficiently likely and limits her auditing intensity—

tampering prevention and detection act as complements. Under this optimal scheme, the

agent always selects a fully informative experiment (α = 0) but tampers with positive prob-

ability. That is, organizations in our model would take actions to maximize experimenta-

tion while being subject to moderate levels of data misrepresentation. We show that this

optimal organization can be implemented through a decoupled internal-external audit sys-

tem (see Section 5.3 for details).

So far we have focused on the case of integration: the same agent is responsible for the

tasks of experimental design and analysis. However, in many cases, these tasks can be dele-

gated to different workers. If the principal could delegate the experimental design role to an

unbiased data scientist—while the biased manager runs the experiment and possibly tam-

pers the result—then the principal would prefer to foster a culture of trust in analytics. The

trusted data scientist would design a fully informative experiment and the principal would

implement policies that ensure data accuracy and integrity—e.g., through regular examina-

tion of data, access management, and audit trails—or that prevent data tampering (or mini-

mize its effect).9 However, even if she could hire unbiased data scientists, empirical evidence

shows that firms cannot simply delegate experimental design to them—lack of visibility and

knowledge of the business unit forces firms to rely on the participation of business managers

when designing experiments.10 To circumvent this problem, analytics centers typically em-

9The adoption of new technologies such as blockchain can eliminate data tampering within organizations,

thus giving decision makers access to information that is known to be correct (Tapscott and Tapscott, 2017).
10 McKinsey (McKinsey and Co, 2017, 2018a) finds that if a firm’s analytics team works on an island,

isolated from business, then its impact might be very limited. Pilots carried out in small labs with limited

connection to the business typically fail to provide the needed answers. Data scientists might lack a deeper

understanding of the business. Consequently, effective delegation of the design of experiments requires the

involvement of employees with knowledge of the business unit. McKinsey recommends that the design of
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Business Unit

Agent:
Analysis Task (possibly tampers)

Figure 2: Integration versus Separation

ploy “translators”—employees sourced from the business units with business knowledge—

to work with the data scientists on the design of experiments (McKinsey and Co., 2018b).

Since these translators have a longstanding relationship with business units and their ca-

reers depend on the latter’s success, we consider them to have the same preferences as the

biased manager. Given that we observe firms using translators from business units, we want

to contrast the integration case — the same agent designs and analyses the experiment —

and the separation case — the design task is allocated to a designer (translator) outside the

business unit but with the same preference as the agent; see Figure 2. Does the principal

indeed benefit from separation?11

Our fourth result shows that the principal prefers to separate the design task from the

analysis task, even when the designer has the same bias as the agent. When tasks are

integrated, the agent incurs the tampering costs whenever he misrepresents negative results;

consequently, he prefers to design a less informative experiment, which reduces his temptation

analytics solutions needs to have business participation from the start.
11If the translator had the same preference as the principal, then the principal would optimally implement

a perfect audit λ = 1, the translator would choose a fully informative signal, and the agent would never

tamper. Separating tasks is then clearly optimal for the principal, who always learns the true state. We

focus on the opposite case: the translator has the same preference as the manager. Since translators are, by

definition, sourced from the business unit — they may even be former managers — it is reasonable to assume

that they have biases similar to managers. In this case, it is no longer clear ex ante whether the principal

can benefit from separation. In future work, it would be interesting to study the case in which translators

(or more generally, agents in the Analytics Centers) have a different type of bias from managers.
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to tamper and allows him to economize on tampering costs. In contrast, under separation,

the designer is willing to implement a more informative experiment since the agent will be

the one incurring the tampering costs. Moreover, in line with our previous results, imperfect

tampering prevention/detection policies continue to be optimal in the case of separation.

Our insights resonate with organizations that centralize the design of experiments in a Center

of Excellence (CoE) while coming short of implementing watertight auditing measures.12

We present the model in Section 2. Section 3 characterizes the equilibrium in the com-

munication subgame for a fixed organizational structure. Sections 4 and 5 cover our main

insights on the optimal organization of data analytics. Section 6 extends the model to allow

for tampering costs to be incurred only if audited and also studies the case of multiple deci-

sions. We conclude with a discussion of the related literature in Section 7. All proofs are in

the Appendices.

2 Model

To model the different tasks involved in data analytics in a parsimonious way, we introduce a

designer-agent-principal game in which the data designer (he) specifies what information the

agent (he) will privately observe and report to the principal (she) prior to making a decision.

Preferences and Prior Beliefs: Players are expected utility maximizers. To facilitate the

analysis, we consider a binary state-space with typical realization θ ∈ Θ = {0, 1}; players

hold a common prior µ = Pr[θ = 1]. The principal selects d from {dS, dH}, and has prefer-

ences characterized by u(d, θ),

u(d, θ) =

 q
H

for d = dS,

θ for d = dH ,

with 0 < q
H
< 1. In words, the principal either keeps the status quo dS, or “approves” the

innovation dH , selecting dH only when her posterior belief q does not fall below q
H
.

We capture the conflict of interest between the agents and the principal by positing that

the designer and the agent receive a state-independent payoff v(di, θ) = vi with 0 = vS < vH ,

12For instance, McKinsey and Co. McKinsey and Co. (2018b). reports on several firms centralizing data

analytics around a CoE tasked with homogenizing data analytics and supporting the different business units.
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so that they benefit from persuading the principal to approve dH . We focus on the more

interesting case where µ < q
H
–so that the principal retains the status quo in the absence of

any experimentation–and we let ∆ ≡ vH − vS be the designer/agent’s gain from inducing

their preferred decision dH .

Strategic Experimentation, Reporting and Tampering: All players process information

according to Bayes’ rule. We consider three stages.

First, in the experimental-design stage, the designer specifies which data to gather and

how it will be processed: he selects an experiment π, consisting of a finite outcome space

S(π) and a family of likelihood functions over S(π), {π (·|θ)}θ∈Θ, with π (·|θ) ∈ ∆(S(π)),

where ∆(S(π)) represents the set of probability distributions over S(π). We say that the

designer “experiments more” when he selects a Blackwell-more informative experiment (see

Blackwell and Girshick (1954)).

We make two assumptions regarding experimental design that are consistent with our

initial motivation—i.e., the drastic reduction in the costs of data gathering and storage (see

Goldfarb and Tucker, 2019). First, the designer can choose any experiment that is correlated

with the state. Second, experiments are costless to the designer. This can be the case, for

instance, if a perfectly informative experiment is originally available to the designer and he

can garble its outcome at no cost.

Second, the design stage is followed by an analysis/reporting stage. The agent privately

observes the outcome s ∈ S(π) and submits a report/message m ∈ S(π) to the principal,

which is subject to misrepresentation: the agent can tamper with the true outcome s by

reporting instead s′ ∈ S(π), s′ ̸= s. We will work with a reduced-form model of tampering:

the agent incurs a cost c if he tampers, with c unknown at the design stage and distributed

according to F (c), and independent of the experiment π. These costs are shaped by the

principal’s tampering prevention policies and can be physical costs—e.g., effort in “doctoring

the books” or “creating a credible alternative story”—or represent punishments if caught

misrepresenting—with the severity of the punishment varying with the tampering method—

or even psychic costs of misrepresentation.13 We let F̄ (c) ≡ 1− F (c) and f ≡ dF/dc be its

density, whenever it exists.

13Gneezy, 2005 and Abeler et al., 2019 show experimentally that individuals have some innate preference

for honesty.
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We make two assumptions regarding these tampering costs. First, they are always borne

by the agent when he tampers. In Section 6.1, we show that our main insights hold if the

agent incurs the cost c only if tampering is uncovered through auditing. Second, the agent

bears the same cost independently of the actual message sent. In other words, the decision of

how to misrepresent the experimental outcome only depends on the equilibrium inference of

the principal, rather than the costs/punishments specifically associated to different messages.

In the third stage, the decision making stage, the principal observes both the designer’s

chosen experiment and the agent’s report. Key in our model is the principal’s ability to

evaluate the truthfulness of this report, and undo the effect of any misrepresentation, by

auditing the experiment. We assume that with probability λ the audit is conclusive and the

principal observes s, while with probability 1 − λ the audit is inconclusive and she gains

no new information. Importantly, what can be learned from an audit is constrained by the

informativeness of π. Thus, auditing differs from seeking a “second opinion” in which the

principal may have access to a separate information source.14 To lighten the exposition, we

say that “the message/recommendation is (un)audited” when the audit is (in)conclusive.

Thus, when the message is audited the principal selects (a possibly mixed) dA(m, s) which

depends on the message m and the outcome s; if unaudited, she selects dU(m).

Organizational Design: Agents perform two tasks—experimental design and analysis—

and the principal has several organizational levers to incentivize them. First, she defines

the firm’s data governance comprising the tampering prevention and detection policies. In

terms of tampering detection, she sets the auditing intensity λ ∈ [0, 1]. For instance, she can

assign resources at the outset that are used later to audit the agent’s report, thus, dictating

the likelihood of a conclusive audit. In terms of tampering prevention, the principal can

enact data encryption and authentication systems to preserve data integrity, or security

measures to make access to data storage systems costly. Effectively, through these policies

the principal can specify any distribution of tampering costs F , including making tampering

arbitrarily costly.

Second, the principal can choose to either integrate design and analysis, by letting the

14See, for instance, Kolotilin (2018), Kolotilin et al. (2017), and Guo and Shmaya (2019) for information-

design models where the receiver is privately informed.
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same agent perform both tasks, or to separate them, by allocating each to a different agent.15

Let k denote the principal’s task allocation, with k ∈ (I,S). Instead of changing the number

of agents for each task allocation, we keep our designer-agent-principal game throughout all

task allocations and assume that the designer also bears the tampering costs incurred by

the agent under integration (k = I), while he does not bear them under separation (k = S).

In terms of organizational structure, task separation would correspond to a firm in which

experimental design is centralized in a corporate headquarters and the designer mandates

each operating unit which analysis to perform, while the actual data collection and reporting

is decentralized to those units.16

Commitment Experiment: An important assumption is that the principal can commit to

an imperfect audit, i.e., to λ < 1. To understand what happens if the audit were perfect

(λ = 1), and for future reference, consider binary (α, β)-tests π with S(π) = {S,H}, Pr[s =

H|θ = 1] = 1−β and Pr[s = H|θ = 0] = α. These are tests that recommend a decision (dS if

s = S and dH if s = H) and incur rates of type I and type II errors of α and β, respectively.

If λ = 1, then the designer selects the experiment that minimizes the probability of retaining

the status quo, Pr[s = S] = µβ + (1 − µ)(1 − α), subject to the principal approving after

s = H, i.e., subject to Pr[θ = 1|s = H] ≥ q
H
. As shown in KG, the optimal experiment πC ,

which we will refer to as the “commitment experiment,” can be found by optimizing in the

smaller set of (α, β) experiments. In fact, πC sets Pr[θ = 1|s = H] = q
H

with β = 0 and

α =
µ/(1− µ)

q
H
(1− q

H
)
(≡ αH), (1)

which leads to a probability of retaining the status quo of

15A maintained assumption of our analysis is that task allocation does not affect the agents preferences

over decisions. That is, task allocation cannot be used to reduce the conflict of interest between principal

and agents.
16For instance, the design of customer surveys or the specification of which data to be collected by Enter-

prise Resource Planning (ERP) systems could be performed by an enterprise-wide data architect, while the

analysis of the results is performed at the divisional level. Integration would have both tasks been decentral-

ized to lower level units, so that local agents have discretion in deciding which data to collect and which anal-

ysis to perform. As an example in the public sector, David Cameron created the Behavioral Insights Team

(BIT) under the supervision of the Cabinet Office (see Alonso and Câmara, 2016a for details). In an example

of task-integration, the BIT would both design and conduct small-scale experiments for the UK Government.
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pCS ≡ Pr[s = S] =
q
H
− µ

q
H

= (1− µ)(1− αH). (2)

As the principal is indifferent between approving and retaining the status quo when s = H,

the experiment does not provide any valuable information regarding decision dH . If the

organization hopes to induce more experimentation, it must be able to limit the success rate

of an audit to λ < 1. Our interpretation is that further resources cannot be deployed once

the auditing intensity is announced, so that λ cannot be increased neither in reaction to

the chosen experiment, nor to the reported outcome. Note the importance of the principal’s

commitment to an imperfect audit: absent such commitment, and once the designer selects

an experiment, the principal can completely eliminate the effect of tampering by setting

λ = 1. In anticipation of a perfect audit, however, the designer would select an experiment

that provides no value to the principal.

Timing: The timing of the game is illustrated in Figure 1. The principal publicly selects

a task allocation k and data governance (λ, F ). Given (k, λ, F ), the designer publicly selects

π with outcomes S(π). The communication subgame follows: Nature draws θ and the agent

privately observes s ∈ S(π) and the cost c, generated according to π and F , and selects

m ∈ S(π). The principal observes the actual outcome s with probability λ and, given the

outcome of the audit and the agent’s message, she updates her beliefs according to Bayes’

rule, selects a decision, payoffs are realized and the game ends. We look for Perfect Bayesian

Equilibria for each (k, λ, F ).17

3 Equilibrium Experimentation and Reporting

We start the organizational-design analysis by studying equilibria in the designer-agent-

principal game corresponding to a fixed organizational structure. We work backwards and

first characterize equilibria in the communication subgame for any experiment π, which will

determine both expected tampering and the distribution over the principal’s decisions. We

then turn to the designer’s optimal choice by introducing the set of status-quo experiments—

a set of pass/fail tests which always contains a solution to the designer’s problem.

17Specifically, we look for profiles of strategies that constitute a weak Perfect Bayesian Equilibria for every

subgame.
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3.1 Equilibrium Tampering

The agent decides whether to tamper by comparing the gain from misrepresenting the ex-

perimental outcome to the realized tampering cost. Note that (1− λ)∆ is the maximum

gain from tampering in any equilibrium (both on- and off- the equilibrium path). Through-

out the paper, we consider data policies (λ, F ) that guarantee after every experimental out-

come the existence of tampering costs that make tampering unprofitable:

Assumption 1 (All messages on-path) The tampering prevention policy satisfies

F̄ ((1− λ)∆) > 0. (3)

Assumption 1 ensures a positive probability of truthful reporting for every potential ex-

periment chosen by the designer and limits the scope of the principal to discipline tamper-

ing by holding “optimistic or pessimistic” beliefs after an off-the-equilibrium-path message.

The agent that tampers sends a message that leads to the largest approval probability

after an inconclusive audit. Thus, if after different experimental outcomes the agent tampers

by sending different messages, then they all must induce the same unaudited decision (or

mixtures over decisions). This observation helps characterize tampering behavior in the

communication subgame.

Proposition 1. Let m∗(s, c) be the agent’s equilibrium reporting in the communication sub-

game following the choice of π with experimental outcomes S(π). Then,

(i) For each s ∈ S(π), there exists c̄(s), with F̄ (c̄(s)) > 0, such that m∗(s, c) = s if c > c̄(s)

and m∗(s, c) ̸= s if c < c̄(s);

(ii) Let MT (π) = {s ∈ S(π) : ∃(sz, c), m∗(sz, c) = s, sz ̸= s} be the set of “tampered out-

comes.” Then for every s, s′ ∈ MT (π), (a) dU(s) = dU(s
′), and (b) c̄(s) = c̄(s′) = 0.

Proposition 1-i shows that the agent’s tampering behavior is monotonic: he reports truth-

fully if the realized cost exceeds an outcome-dependent threshold, c̄(s), and will surely tam-

per if the cost falls below c̄(s). Proposition 1-ii(a) makes formal the above-mentioned prop-

erty that “tampered outcomes”—messages that are transmitted after some other outcome

with positive probability—may induce different posterior beliefs but must all lead to the

same unaudited approval probability; this is true as long as the principal does not condition

her audited decision on the agent’s message. Additionally, there shouldn’t be any gain from
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tampering after a “tampered-outcome”; that is, the agent reports truthfully after an out-

come that others would like to mimic. This is Proposition 1-ii(b).

3.2 Equilibrium Experimentation

To characterize the designer’s equilibrium experiment, we introduce the set of “status-quo”

experiments ΠS. These are binary experiments that recommend dH (outcome s = H) or dS

(outcome s = S), and such that Pr[s = H|θ = 1] = 1 but Pr[s = H|θ = 0] = α. Thus,

status-quo experiments are “pass/fail” tests with no false negatives when following a dS

recommendation, but with the rate of false positives when following a dH recommendation

set to α.

Definition (Status-quo Experiments) Define the set of status-quo experiments, ΠS,

ΠS = {πS(α) : s ∈ {S,H},Pr[s = H|θ = 1] = 1 and Pr[s = H|θ = 0] = α;α ∈ A} , (4)

where α ranges in the set

A =

[
max

{
0,

αH − F ((1− λ)∆)

F̄ ((1− λ)∆)

}
, αH

]
, (5)

with αH the type I error incurred under the commitment experiment–see (1).

Associated with each status-quo experiment πS(α) is the unique continuation equilibrium of

the ensuing communication subgame that pins down the designer’s payoff if he selects πS(α).

This equilibrium is characterized by tampering thresholds and approval probability18

F̄ (c) =
1− αH

1− α
, and τ =

c

(1− λ)∆
, (6)

alongside the principal’s decision making

dU (S) = dA (m,S) = dS; dA (m,H) = dH ; dU (H) = τdH + (1− τ)dS. (7)

A key property of status-quo experiments is that equilibrium tampering leads the princi-

pal’s posterior to q
H
after an inconclusive audit of an approval recommendation (m = H), so

18For a status-quo experiment, the agent tampers only if s = S. Abusing notation, we will refer to the

tampering threshold c with the understanding that c̄(S) = c and c̄(H) = 0.
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that she is indifferent between approving or retaining the status-quo.19 In equilibrium, she

selects dH with probability τ , and dS with probability 1− τ–see (7). This approval probabil-

ity must be consistent with the incentives to tamper—as given by the tampering threshold

(6)—which also dictate the probability F̄ (c) that the agent reports truthfully after s = S.

Importantly, the set ΠS depends on the auditing intensity λ–this can be seen in (5) as the

minimum type I error in ΠS increases with λ. For instance, if λ = 1 then the commitment

experiment is the only status-quo experiment —i.e, A = {αH}. Finally, all experiments in

ΠS are ordered according to their informativeness: trivially, an experiment with a lower type

I error α (equivalently, higher c or higher τ) corresponds to a Blackwell-more informative

experiment–see Footnote 4.

We now present our main equilibrium characterization of the designer-agent-principal

game. Given data governance policies (λ, F ) and task allocation k ∈ {S, I}, let vS(α) be

the designer’s equilibrium payoff in a communication subgame after he selects πS (α) ∈ ΠS,

and let

VS ≡ max
α∈A

vS(α), (8)

be his maximum expected utility from a status-quo experiment.

Proposition 2. Let λ > 0 and µ < q
H
. Then,

(i) there is always an equilibrium in which the designer selects a status-quo experiment,

(ii) if the designer obtains payoff V ∗ in some equilibrium, then V ∗ = VS.

Proposition 2 justifies our restriction to status-quo experiments when analyzing the prin-

cipal’s organizational-design problem. This is based on two observations. First, there is al-

ways an equilibrium in which the designer selects an experiment in ΠS. We prove this claim

in the appendix by constructing from an arbitrary experiment π′ a status-quo experiment

19Note that it can never be optimal for the designer to select an experiment such that, in equilibrium, the

principal has a posterior belief strictly above q
H

after an unaudited s = H. Indeed, the designer could move

to an experiment that after θ = 0 induces s = H slightly more often. This experiment would still generate an

unaudited posterior belief above q
H
–so that the principal still approves with probability one and the agent

faces the same tampering incentives– but would raise the probability of a high outcome, thus increasing the

designer’s payoff.
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that gives the designer a (weakly) higher payoff. For instance, if for π′ the principal’s pos-

terior is strictly above q
H
when approving an unaudited recommendation, then the designer

can increase the likelihood of this recommendation without sacrificing approval probability.

Second, all equilibria give the designer the same expected payoff; thus, to find this payoff we

can restrict attention to status-quo experiments.

For the remainder, let πS(α
∗) ∈ ΠS be the designer’s optimal experiment, with α∗ the

associated type I error and c̄∗ satisfying (6) for α = α∗ the induced tampering threshold,

where we omit the explicit dependence on the organizational design parameters {k, λ, F}.

Also, we will abuse notation and use α∗(x) to denote the designer’s optimal choice of α for

an x organizational lever (task allocation, auditing or tampering prevention).

3.3 The Impact of Tampering on the Designer’s Payoffs

If the principal perfectly audits the experiment (λ = 1), then tampering is inconsequential

but the designer selects the commitment experiment; the designer’s payoff is then
(
1− pCS

)
∆

where 1−pCS is the probability that the experiment recommends dH–see (2). A key property of

equilibria is that for any status-quo experiment πS(α) that generates s = H with probability

1− p(α), the agent nevertheless reports m = H with probability 1− pCS .
20 This observation

helps us write the designer’s payoff from an experiment that induces threshold c as21

vS(c) = (1− p(α (c)))λ∆+ (1− pCS )(1− λ)∆τ (c)− I{k=I}p(α (c))

∫ c

0

cdF (c). (9)

The first term in (9) is the designer’s payoff when the audit is conclusive–in which case, and

regardless of tampering, the innovation is approved iff s = H–while the second term is the

payoff when the audit is inconclusive and the last term captures the tampering costs when

tasks are integrated.

How does imperfect auditing and tampering affect the designer’s equilibrium payoff from

πS(α)? For comparisons with the case λ = 1, we can express (9) as

vS(c) =
(
1− pCS

)
ṽH + pCS ṽS, (10)

20This follows from the fact that any unaudited dH recommendation leads to the same posterior q
H

as in

the commitment experiment.
21α(c) denotes the type I error satisfying (6) for a given threshold c.
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Figure 3: Payoffs for the original game (solid line) and the equivalent “full commitment”

game (dotted line).

with

ṽH ≡ vH − (1− λ) (1− τ (c))∆, (11)

ṽS ≡ vS − λ∆
F (c)

F̄ (c)
− I{k=I}

∫ c

0
cdF (c)

F (c)
. (12)

The principal keeps the status quo with probability (1− λ) (1− τ (c)) after m = H –this

explains (11)– but also when the agent reports s = S or when he tampers and the report

is audited, which happens with probability λF (c) pCS /F̄ (c)—see (4)—this explains (12) for

k = S. Finally, tampering costs are incurred only if s = S – which occurs with probability

pCS /F̄ (c) – in which case the agent tampers if c ≤ c . This explains (12) for k = I.

Figure 3 compares the payoffs under perfect commitment to the equivalent payoffs in the

imperfect commitment using representation (11-12). These expressions capture the trade-off

that the designer faces: a higher approval probability increases the payoff after an unaudited

message m = H, ṽH , but a higher approval probability (higher τ) can only result from a

higher tampering threshold (higher c) and, thus, a higher likelihood of tampering. To keep

the principal’s posterior from falling below the approval threshold q
H
, the designer must

select a more informative experiment (lower α), thus, increasing the likelihood of observing
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an unfavorable outcome s = S and lowering ṽS.

4 Organizational Design: Task Allocation

We now turn to the organizational design problem. To understand the trade-offs that the

principal faces, consider her expected utility from an status-quo experiment that leads to

posterior q after an unaudited approval recommendation :

U (λ, k) = q
H
+ Pr [s = H]λ(q − q

H
). (13)

The principal benefits from this experiment only after auditing an approval recommen-

dation so that the more convincing the evidence in favor of dH (the larger q − q
H

is) the

greater her gain. Given equilibrium tampering behavior (6), her expected utility increases

with both the auditing intensity and with the odds of tampering,

U (λ, k) = q
H
+
(
q
H
− µ

)
λ
F (c̄∗)

F̄ (c̄∗)
. (14)

This expression showcases our main insight: fostering experimentation while discourag-

ing tampering are conflicting goals. The principal can always eliminate frictions in communi-

cation by perfectly auditing the experiment, or by making tampering sufficiently costly—she

would certainly set λ = 1 if the experiment were exogenous (fixed α) and auditing costless.

However, setting λ = 1 would reduce the information she obtains because the designer would

then resort to an experiment with a higher type I error knowing that the agent would not

tamper with the outcome. In fact, a fallible data governance allows her to credibly withhold

approval if the evidence in favor of dH is not convincing, forcing the designer to provide more

compelling evidence. Thus, she would like to incentivize tampering by having a “shadow of

a doubt” on the claims of the agent, but such skepticism can only be credible if λ < 1.

4.1 Optimal Task Allocation

Expression (14) clarifies that, given equilibrium behavior, the principal is always willing

to trade-off distortions in communication for more informative experimentation.22 How do

22Indeed, for a fixed auditing intensity, U(λ, k) increases with the odds of tampering F (c̄∗)/F̄ (c̄∗).
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the different organizational levers help her motivate experimentation? First, for a fix data

governance policy, the principal benefits from task separation as this leads the designer to

experiment more.

Proposition 3. The designer selects a more informative experiment if tasks are separated;

i.e., we have α∗(S) ≤ α∗(I).

The intuition is straightforward: assigning the tasks of experimental design and analysis

to the same agent forces him to economize on tampering costs when choosing an experiment;

reducing tampering costs can only be achieved through a reduction in approval probability,

leading to a less informative experiment.23

In other words, when tasks are integrated, the agent incurs the tampering cost when-

ever he misrepresents negative results; consequently, he prefers to design a less informative

experiment, which reduces his temptation to tamper. In contrast, under separation, the de-

signer is willing to implement a more informative experiment since the agent will be the one

incurring the tampering costs.

5 Organizational Design: Tampering Prevention and

Detection

We now consider optimal data governance policies. We discuss the optimal choice of tamper-

ing detection and prevention policies separately before considering the optimal joint design.

5.1 Tampering Detection

Consider a fixed tampering prevention policy F . The standard rationale for auditing data

analytics is both to ensure data integrity and to dissuade tampering. This remains true

in our model and implies that, for a fixed experiment, increasing λ can only increase the

information that reaches the principal. Once experimental design is delegated, however,

varying λ also changes the designer’s incentives to experiment. Indeed, reducing λ both: (i)

23Decreasing approval probability lowers both the equilibrium tampering threshold and the likelihood that

a tampering outcome occurs, leading to lower expected tampering costs.
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changes the set of status-quo experiments, allowing for more informative experiments–see

(5)–and (ii) (weakly) reduces the principal’s approval probability as the agent’s incentives

to tamper increase when the audit is less likely to uncover it–see (6). Both effects lead the

designer to experiment more in response to reductions in audit intensity.

Proposition 4. Fix a task allocation k ∈ {S, I}. Then, type I error α∗(λ) is non-decreasing

in λ, implying that lowering auditing intensity leads the designer to select a more informative

experiment.

To understand Proposition 4, consider the effect on the designer’s payoff in (9) of increas-

ing λ. We can rewrite (9) in terms of the likelihood of a high outcome, Pr[s = H] = 1−p(α),

for an experiment inducing threshold c

vS(c) = Pr[s = H]λ∆+ (1− pCS )c− I{k=I} Pr[s = H]

∫ c

0

cdF (c).

For a fixed experiment, approval probability must increase if the principal audits more of-

ten to keep the same tampering incentives–thus the second and third term above remain un-

changed and the marginal effect of a higher λ is equal to ∆Pr [s = H]. Intuitively, the de-

signer benefits from more intense auditing as, facing the same tampering incentives, the prin-

cipal approves the innovation more often when the outcome is s = H. As this gain is pro-

portional to Pr [s = H], which is larger for less informative experiments, the designer gains

more from increased auditing when the experiment is less informative. Put differently, the

complementarity between informativeness and auditing implies that the incentives to exper-

iment are lower for higher λ. Moreover, auditing also reduces the set of status-quo experi-

ments. Proposition 4 shows that the combined effect of a higher λ unambiguously discour-

ages experimentation.

5.1.1 The Optimality of Lax Auditing

From (14), setting λ = 1 leads to an experiment from which the principal derives no value.

Therefore, the principal gains from data analytics only if lax auditing leads to more experi-

mentation. This motivates the notion of the designer’s responsiveness to auditing.

Definition (Responsiveness) The designer is responsive to auditing if for some k ∈ (I,S),

α < αH , and 0 < λ < 1, he strictly prefers experiment π(α) to π(αH).
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We thus reach one of our main results: if auditing is costless and the designer is responsive

to auditing, then the principal optimally commits to an imperfect audit, i.e. λ∗ < 1.

Proposition 5. Suppose that the principal can select λ at no cost, and let λ∗ denote her

optimal choice. Then, λ∗ < 1 if and only if the designer is responsive to auditing. In

particular, if she separates tasks and f(0) > 0, then λ∗ < 1.

Note that the conditions for λ∗ < 1 are not too stringent: if the tampering prevention

policy allows for a positive probability of low tampering costs, the optimal audit should be

imperfect.

5.1.2 Optimal Auditing

How much should the principal audit the agent’s report if she separates tasks? To derive her

optimal audit, we first characterize the designer’s equilibrium experiment for any λ ∈ (0, 1).

To this end, define L(c) ≡ f(c)/
(
F̄ (c)

)2
and c̄FI implicitly by F̄ (c̄FI) = 1−αH , so that c̄FI

is the threshold induced by a fully informative experiment.

Lemma 1. Fix λ ∈ (0, 1) and suppose that L(c) − (ϕS/λ) is single-crossing in [0,∆], from

negative to positive, with ϕS ≡ (1− (1− µ) (1− αH)) /((1 − µ) (1− αH)∆). Then, the de-

signer under separation selects α = αH (i.e., c̄∗ = 0) if L(0) ≥ ϕS/λ. Otherwise, he selects

an experiment that induces tampering threshold

c̄∗ = min
[
L−1(ϕS/λ), (1− λ)∆, c̄FI

]
. (15)

Consistent with Proposition 4, as auditing intensifies the designer’s optimal experiment

leads to less tampering, but is less informative—the equilibrium tampering threshold (15)

decreases with λ. The single-crossing condition on L(c) guarantees that the designer’s ex-

pected utility is quasiconcave in the tampering threshold and is always satisfied, for in-

stance, if the hazard rate f(c)/F̄ (c) is increasing. The equilibrium threshold c̄∗ is the mini-

mum of three possible choices. The term c̄FI corresponds to a fully informative experiment;

(1− λ)∆ corresponds to the case that the principal always rubber-stamps (i.e., automat-

ically approves) the agent’s unaudited recommendation; and the first term in (15) reflects

the designer’s choice when it leads to a lower approval probability. In fact, if L(c) is large—

21



Uq* t*

Uq*

l ll

l ll

t*

Optimal Experiment Approval Probability t Principal’s payoff

Optimal Experiment Approval Probability t Principal’s payoff

(a) Good Prospect: 1 − 𝑝!" /𝑝!"=2 

(b) Poor Prospect: 1 − 𝑝!" /𝑝!"=1/2 

Figure 4: Equilibrium experimentation as a function of auditing for (a) a good prospect, and

(b) a poor prospect.

in particular, L(0) ≥ ϕS/λ—then the principal only approves when she audits and the de-

signer’s experiment induces c̄∗ = 0, i.e., he selects the commitment experiment. Therefore,

imperfect, albeit intense, auditing—specifically, when λ ≥ ϕS/f(0)—can still completely

crowd-out valuable experimentation. This imposes an upper bound on the range of auditing

intensities that the principal might entertain.

From (14), the principal’s problem for a fixed prevention policy is

λ∗ ∈ arg max
λ∈[0,1]

λ
F (c̄∗)

F̄ (c̄∗)
, with c̄∗ given by (15). (16)

The optimal audit will, in general, be sensitive to the firm’s prevention policy F and the

preferences of agents. To illustrate (16), we study a case where F leads to tampering costs

that are uniformly distributed.

Example: Uniform Distribution. Let ∆ = 1 and suppose that c is uniformly distributed

in [0, 1], so that F̄ [(1− λ)∆] = λ. From (9), the designer’s utility under separation when
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the experiment induces c ∈ [0, 1− λ] is

vS(α (c) , µ) = λ+ c−mS(c)
(
q
H
− µ

)
= λ+ c− (1− µ)(1− αH)

(
c+

λ

1− c

)
,

which is concave in c. Denote by ccrit ≡ 1−
√

λ (1−µ)(1−αH)
1−(1−µ)(1−αH)

= 1−
√
λ

pCS
1−pCS

–see (1) and (2)–

its unconstrained maximum. Then, mirroring (15), the designer’s optimal experiment leads

to a tampering threshold

c∗ = min {max {0, ccrit} , 1− λ, αH} .

We can now fully characterize the equilibrium experiment–in terms of the induced threshold–

as a function of λ. Note that
(
1− pCS

)
/pCS are the approval odds when λ = 1. If λ ≥(

1− pCS
)
/pCS , then ccrit ≤ 0 and the designer selects c∗ = 0, i.e., selects the commitment ex-

periment. If λ ≤ pCS /
(
1− pCS

)
, then ccrit ≥ 1− λ and the designer selects the most informa-

tive status-quo experiment. This would lead to a fully informative experiment or to an ex-

periment for which the principal always rubber-stamps an (audited or unaudited) approval

recommendation. Finally, if
(
1− pCS

)
/pCS ≤ λ ≤ pCS /

(
1− pCS

)
, then c∗ = min [ccrit, αH ] and

the designer limits the informativeness of the experiment, leading to intermediate approval

probabilities after an inconclusive audit.

Figure 4 describes two cases, with
(
1− pCS

)
/pCS taking values 2 and 1/2.24 If

(
1− pCS

)
/pCS =

2, then the innovation idea is a good prospect : it is likely to be perceived after experimen-

tation as a profitable alternative to the current status quo. Then, the designer reacts to

more intense auditing by switching to experiments that are less informative (consistent with

Proposition 4) but that lead to a higher probability of approval. Figure 4-a shows the prin-

cipal’s utility, which is maximized for λ = 0.57. So, for good-prospect ideas, the principal

engages in somewhat intense auditing and the designer restricts experimentation as, for such

intense auditing, the principal is willing to rubber-stamp the agent’s recommendations.

If
(
1− pCS

)
/pCS = 1/2, then the innovation idea is a poor prospect : it is unlikely that ex-

perimentation will uncover evidence showing it to be more profitable than the status quo.

Again, the designer reacts to more intense auditing by experimenting less but approval prob-

ability is now non-monotonic: it increases for low values of λ−as the designer always selects

24In both cases, we take µ = 1/4. We have q
H

= 3/8 if
1−pC

S

pC
S

= 2, while q
H

= 3/4 if
1−pC

S

pC
S

= 1/2,
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a fully informative experiment and increased auditing simply raises approval probability—

but it monotonically decreases when the designer actually switches to a less informative ex-

periment. In fact, for λ > 1/2, the designer selects the commitment experiment so that ex-

perimentation creates no value for the principal. Figure 4-b describes the principal’s utility

which is maximized for λ = 0.39. So, for poor-prospect ideas, the principal seldom audits

the experiment and the designer in response does not reduce experimentation—i.e., the de-

signer’s experiment fully reveals the state. Nevertheless, such lax auditing implies that ap-

proval largely relies on the principal vetting the agent’s recommendation, as the probability

of approving an unaudited recommendation is small.

5.2 Tampering Prevention

Consider now a fixed auditing intensity λ and suppose that the principal is unconstrained in

her choice of F . Consistent with our theme of “credible skepticism” to motivate experimen-

tation, she will incentivize some tampering in equilibrium by selecting a prevention policy

that makes low tampering costs sufficiently likely.

Proposition 6. Fix 1/(2− q
H
) < λ < 1 and suppose that tasks are separated. Then,

(i) For any prevention policy, we have

α∗(λ) ≥ α(λ) with α(λ) ≡ 2λ− 1

λ
αH − µ(1− λ)

(1− µ)λ
. (17)

(ii) There is a multiplicity of prevention policies that achieve the bound in (17), all of them

satisfying the following inequality

F (c) ≥ c

c+ λ
pCS

1−pCS
∆

for c ≤ (1− λ)∆. (18)

We prove this proposition by solving an auxiliary problem: to find the maximum auditing

intensity that induces the selection of experiment π(α) for some cost distribution. The

solution is λ̃(α) = 1/(1 + (αH − α) /((µ1− µ)) − α)) which is obtained by ensuring that

switching to the commitment experiment is never profitable for the designer. Inverting this

relation, we then obtain the most informative experiment consistent with auditing intensity

λ—depicted in Figure 5(a).
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Figure 5: Minimum Type I error and optimal tampering cost distribution.

There are many different distributions that would lead the designer to select the experi-

ment with the lowest type I error α(λ). In all of them, F (c) must exceed some lower bound—

see the dotted line in Figure 5-b. That is, tampering for low cost realizations must be suffi-

ciently likely for the principal to commit to high approval rates only if experiments are suf-

ficiently informative. Our argument didn’t require the distribution to be smooth or to have

a density. One distribution that satisfies (18) is supported only on two cost realizations, 0

and (1 − λ)∆—see the solid-line F ∗
0 in Figure 5-b—and the agent only tampers if c = 0;

thus, expected tampering costs are zero.

5.3 Optimal Data Governance

Tampering prevention and detection are perfect substitutes when it comes to dissuading

tampering–the principal could achieve zero tampering by implementing a perfect detection

λ = 1 or a perfect prevention Pr[c > ∆] = 1. Can an organization improve its performance by

simultaneously controlling both? One of our main insights is that optimal data governance

calls for both a lax auditing intensity and a fallible tampering prevention system.
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Proposition 7. Consider the optimal join design of {k∗
opt, λ

∗
opt, F

∗
opt}.

(i) The principal sets a prior-independent auditing intensity

λ∗
opt =

1

2− q
H

. (19)

(ii) The designer selects a fully informative experiment.

(iii) There is a multiplicity of optimal tampering prevention policies but, among them, the

following minimizes expected tampering costs,

F ∗
opt(c) =

 αH for c ∈ [0,
1−q

H

2−q
H

),

1 for c ≥ 1−q
H

2−q
H

.
(20)

For this cost distribution, the principal is indifferent between separating and integrating tasks.

(iv) The principal can implement (20) through a dual internal-external audit: Tampering

is always costless, but an internal audit privately verifies the agent’s report with probability
q
H
−µ

q
H
(1−µ)

and rectifies a tampered report.

Our results show that an important principle in organizing data analytics is that, under

delegated experimentation, the organization must also allow, to some extent, tampering by

agents. To do so optimally, the organization both raises the likelihood of low tampering

costs and engages in lax auditing—the optimal auditing intensity (19) is always lower than

1, but higher than 1/2, and increases with the principal’s approval threshold q
H
.

We prove this proposition by appealing to Proposition 6 and optimizing over λ. We also

obtain that α∗(λ∗
opt) = 0—this is Proposition 7-ii. To wit, under an optimal organization,

the designer has no incentive to garble an experiment that reveals the underlying state and

the principal rubber-stamps any approval recommendation after an inconclusive audit. If

the organization wants to minimize the costs imposed upon agents—say because of concerns

with hiring costs—then the optimal prevention policy makes tampering either costless or

completely deters tampering (see Figure 5). This policy also makes task allocation irrelevant,

as expected tampering costs are always zero.

The optimal organization {k∗
opt, λ

∗
opt, F

∗
opt} that satisfies (20) can be afforded an intuitive

implementation: tampering is costless but the agent’s report is subjected to a decoupled

internal-external audit. First, the report is internally audited, albeit the probability of

elucidating the true outcome is restricted to
q
H
−µ

q
H
(1−µ)

. If the internal audit is conclusive,
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however, it ensures that the report is consistent with the experimental outcome. Second,

this report is subjected to an imperfect external audit, which is conclusive with probability

1/(2 − q
H
). In summary, the organization would adjust the internal auditing intensity to

their prior belief–i.e., conducting more intense audits for poor prospects that are unlikely to

be approved under a perfect audit—but commits to a prior-independent external audit.

Importantly, the outcome of the internal audit must be unknown to the principal. This

decoupling of audits is essential to incentivize experimentation: if the outcome of the internal

audit were instead known to the principal, the designer in anticipation would then select the

commitment experiment. Therefore, the presence of internal screens or firewalls between

auditing teams is key for the efficacy of this implementation. The accounting literature is

also concerned with the possible effects of internal control audits and, in particular, whether

the public disclosure of internal control audits should be mandatory. For example, Lennox

and Wu (2022) study the effects of regulation mandating the disclosure of internal control

audits in China. They present evidence that mandatory disclosure of internal control audits

can significantly reduce the quality of information.

Finally, our findings relate to insights in the optimal government regulation of markets

with externalities. This literature has pointed out that sometimes it is optimal for the gov-

ernment to simultaneously impose ex ante policies (e.g., safety standards), which constrain

what can be done before the externality is generated, and ex post policies (e.g., exposure to

tort liability), which defines what may happen after the externality is generated—e.g., Kol-

stad et al., 1990; Marino, 1988; Shavell, 1984a, 1984b. In our setup, the principal also finds

it optimal to use a combination of an ex ante policy (tampering prevention) and an ex post

policy (tampering detection).

6 Extensions

In this section we test the robustness of our insights by considering two extensions: tampering

costs are only incurred if the agent is caught tampering, and the principal may face a more

complex decision problem with a larger choice set.
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6.1 Tampering costs incurred only if audit is conclusive.

In some scenarios, a tampering prevention policy may only affect the agent’s payoffs if

tampering is uncovered. For instance, if it takes the form of punishments after an outcome

misrepresentation is exposed–that is, when tampering, the agent only incurs the cost c if the

audit is conclusive, which happens with probability λ. We can study this case by adjusting

our analysis and setting the expected tampering cost to λc when the cost realization is c. A

full analysis of this case can be found in the online Appendix B.

For a fixed λ < 1, Propositions 1 and 2 still apply, albeit with different threshold values.

To see how this affects the designer’s payoff, consider a status-quo experiment that induces

tampering threshold c. Then, it is still true that F̄ (c) (1− α) = (1− αH)–that is, equilib-

rium tampering must be such that the probability of sending message s = S is equal to pCS ,

see (6)–but now approval probability must be lower to account for the probability that tam-

pering goes undetected:

τ =
λc

(1− λ)∆

Nevertheless, our main results are still robust to this variation. For instance, separating

tasks or decreasing auditing intensity always increases experimentation. Moreover, the prin-

cipal prefers to separate tasks and to commit to an imperfect audit whenever the designer

is responsive to auditing—however, the conditions for designer responsiveness are now more

stringent. Finally, if the principal can freely shape {k, λ, F}, then the same organizational

design as in Proposition 7 remains optimal-see online Appendix B.

6.2 Data Tampering Policies in Complex Environments

A key finding of our binary-decision setup is that enacting policies that allow for some

tampering to go undetected leads to more informative experimentation. We show that a

qualified version of this finding is still true when the principal has more options available, the

qualification being needed as the designer may now select an experiment that recommends

different decisions when tampering prevention and detection policies are imperfect.

We provide a full analysis of this case in the online Appendix B; here we briefly outline

the main insights. To fix ideas, suppose that the principal now selects d from {dL, dS, dH},
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and has preferences characterized by u(d, θ), 25

u(d, θ) =



q
H

for d = dS,

θ for d = dH ,

αL for d =dL and θ = 0,

αL − I{αL≥q
H}

αL−q
H

q
S

for d =dL and θ = 1,

with 0 = q
L
≤ q

S
< q

H
< 1. That is, the principal either keeps the status quo dS, scales-up

operations by choosing dH , or scales-down by choosing dL, with q
i
the minimum posterior

belief for which the principal still selects di. Agents have state-independent preferences

v(di, θ) = vi with 0 = vL < vS < vH .

With more decisions, the designer can still opt for a status-quo experiment that recom-

mends dH or dS, but he could now select an “up-or-down” experiment that recommends

dH or dL. For instance, if λ = 1, he selects an “up-or-down” experiment whenever pCL <

((vH − vS)/(vH − vL)) p
C
S –see KG. In this case, a reduction in auditing intensity may lead

the agent to switch from an “up-or-down” experiment to a (in this case less informative)

status-quo experiment. That is, under certain conditions, reducing auditing intensity may

reduce experimentation. The principal can however replicate the environment with binary

decisions if she could rule-out the intermediate option (in this case the status-quo). In fact,

the principal benefits from ruling out decisions–thus reducing her discretion when respond-

ing to the agent’s report–as now a lower auditing intensity always improves experimenta-

tion. If she can commit to ruling out certain decisions, then the optimal data governance in

proposition 7 still holds for this more complex environment.

7 Discussion and Concluding Remarks

In this paper, we develop a model of data analytics and argue that organizations that delegate

experimentation to their agents must also create a culture of “credible skepticism” by limiting

decision-makers’ ability to assess the truthfulness of the information they receive. We now

discuss these findings in the context of several strands of the literature, after which we

conclude.

25IA represents the indicator function of the set A; i.e., IA(x) = 1 if x ∈ A and IA(x) = 0 if x /∈ A.
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7.1 Related Literature

Literature on decision-making processes in organizations

Our analysis contributes to the study of decision making processes in organizations and,

in particular, to how organizations optimally react to the incentive conflicts that members

face (see Gibbons et al., 2013 and Bolton and Dewatripont, 2013 for excellent surveys of

this literature). For instance, in models of strategic delegation, the organization would like

to assign authority to a party whose preferences may differ from those of the organization

as these affects the production and communication of information (for instance, in Dessein,

2002, delegation to a biased intermediary can improve cheap-talk communication with ex-

perts).26 One recent example is Nayeem (2017), who quantifies the value of appointing a

decision maker that is harder to convince to approve a project —e.g., as his preference for

a “good project” are weaker than those of the organization. That is, there is value in ap-

pointing a “skeptic” for project approval. In our model, however, the principal cannot cred-

ibly delegate the decision to someone else nor commit to biasing decisions in favor of agents.

Skepticism arises not because of differing preferences, but as an attitude to (rationally) doubt

the claims made by others.

Our paper also contributes to the literature that studies how “light monitoring” of agents’

recommendations may avoid crowding-out their efforts to experiment. In Aghion and Tirole

(1997), principal and agent can each exert costly effort to learn about the return of various

projects and the information structures are fixed — if the principal or the agent acquire in-

formation, they either learn nothing or with probability equal to their effort learn the ex-

pected return to every project. The principal’s ability to directly acquire information re-

duces the agent’s incentives to engage in information acquisition. In our setup, the agent

can acquire information for free, can choose exactly which information to gather, and the

principal can only audit the agent’s experiment (cannot directly acquire information). When

the principal perfectly audits the experiment, the agent chooses the least informative exper-

iment that persuades the principal to approve the project. Hence, in both cases, the princi-

pal can spur more experimentation by the agent if she commits to acquire less information.

26More generally, decision makers may be able to commit to ex-post biasing decisions in favor of experts,

e.g., in a relational setting as in Alonso and Matouschek, 2007.
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Our setup seems more suitable to study the Digital and ICT revolution, since business man-

agers now have cheaper and more customizable access to information, while the increased

complexity and span of organizations makes it harder for higher level executives to directly

observe the true quality of new projects from the different business units. Our paper is also

related to Friedman et al. (2022). They consider a regulator who could mandate full disclo-

sure of a certain type of information but, under some conditions, chooses to mandate a less

informative report to avoid crowding out firm’s voluntarily disclosure of other information.

The literature on task allocation has emphasized that task separation can allow for the

provision of higher power incentives in each task (Holmstrom and Milgrom, 1991, Dewa-

tripont et al., 2000) or improve information acquisition (Dewatripont and Tirole, 1999).

Moreover, in sequential tasks, task separation may increase the information generated in the

first task to incentivize the second (Lewis and Sappington, 1997, Landier et al., 2009), or

can be optimal under effort externalities between tasks (Schmitz, 2013). We also find that

task separation allows for stronger incentives to experiment, even though we do not allow

for explicit incentives, as separation provides a “coarse” instrument to lower the costs of ex-

perimentation.

Literature on Information acquisition and Communication

We contribute to the literature that studies models of delegated expertise (Demski and

Sappington (1987))—in particular, models in which a decision maker relies on the informa-

tion actively gathered and communicated by experts. For instance, Pei (2015), Argenziano

et al. (2016), and Deimen and Szalay (2019) consider models where an agent decides what

information to gather if communication with the principal takes the form of cheap talk,

while Che and Kartik (2009) considers certifiable disclosure.27 Argenziano et al. (2016) and

Deimen and Szalay (2019) use the threat of off-path “bad” communication (e.g., a reversion

to a “babbling” equilibrium) if the expert acquires less information to motivate information

acquisition. In Pei (2015), communication is “frictionless:” the agent reveals all the infor-

mation gathered if acquiring a less informative signal is always feasible (and less costly) (see

27Our communication stage is also related to models of communication with lying costs—e.g., Kartik

et al. (2007) and Kartik (2009). Relative to these models, our communication model is simpler, as we

consider a message independent tampering cost, but we incorporate an information acquisition stage prior

to communication.
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also Gentzkow and Kamenica (2016)). In Che and Kartik (2009), incentives to acquire infor-

mation come from players having different priors: an expert has a stronger incentive to be

informed relative to the common prior case as he expects that better information will lead

the principal to, on average, embrace his point of view.28

A main insight in these papers is that frictions in communication can be used to discipline

agents if they underinvest in information acquisition.29 While this insight resonates with our

main finding, our mechanism is markedly different. In contrast to Pei (2015), Argenziano

et al. (2016), and Che and Kartik (2009), the agent faces no explicit cost in acquiring more

information in our model—this matches our main application where data becomes available

to the organization automatically through its normal operation. In contrast to Deimen and

Szalay (2019), we consider an explicit cost of misrepresentation when the agent communicates

the results, as well as the principal’s ability to audit the agent’s message and to allocate

tasks to different agents.

Theoretical literature on Bayesian persuasion.

Our paper contributes to the growing literature on Bayesian persuasion following KG.

Recent papers have applied versions of the Bayesian persuasion framework to study financial

disclosure (Szydlowski, 2021), marketing and sales (Drakopoulos et al., 2021, Boleslavsky et

al., 2017), the strategic disclosure of health-related information (Schweizer and Szech, 2018,

Alizamir et al., 2020, de Véricourt et al., 2021), among many other topics.

Our model is most closely related to papers that relax the sender-commitment assump-

tion in KG.30 Papers in this recent literature differ on the modeling of imperfect commit-

ment. For instance, Guo and Shmaya (2021) consider a model of costly miscalibration: the

sender decides the statistical properties of an experiment and can deviate from the “as-

serted” meaning for each outcome at a cost related to the difference between the asserted

meaning and its true meaning. That is, they allow for a sender’s private experimental design

rather than our public experimental design subject to private output-tampering. Min (2020)

considers the output-tampering case but tampering only occurs with some exogenous prob-

28Alonso and Câmara (2016a) also show that differences of opinion generically give rise to incentives to

persuade a principal.
29Frictions in communication can also improve information transmission, see e.g., Blume et al. (2007).
30See also the literature on strategic sample selection, e.g., Tillio et al. (2017), Tillio et al. (2021),Hoffmann

et al. (2020), Adda et al. (2020), Felgenhauer and Loerke (2017) and Libgober (Forthcoming).
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ability and explores the effect of changes in this probability in Crawford and Sobel (1982)

uniform-quadratic case. In these papers, there is no tampering or misrepresentation in equi-

librium.31 Instead, in our paper tampering is a generic equilibrium phenomenon resulting

from the principal’s choice of data governance. Perez-Richet and Skreta (2021) study test

design under costly state falsification: a designer selects a test and an agent can change its

input at a cost. That is, in contrast to our setup with output-tampering, the agent engages

in input-tampering. Fréchette et al. (2019) analyze experiments in which the level of com-

mitment can vary across treatments, albeit the ability to tamper is exogenously given, while

it is an equilibrium outcome in our paper.

Closest to our modeling of limited commitment are Lipnowski et al. (2022) and Nguyen

and Tan (2021). Lipnowski et al. (2022) consider an information design setup with output-

tampering described by a (possibly state-dependent) credibility function specifying the like-

lihood that the sender can tamper at no cost and provide an elegant geometric characteri-

zation of the sender’s value of persuasion. Similar to our result on credible skepticism, they

show that the receiver can benefit from a sender with limited credibility–see their discussion

on “productive mistrust.” The key difference between our setups is the nature of this cred-

ibility function: it is exogenously specified in Lipnowski et al. (2022)32 while in our setting

it endogenously arises from the equilibrium incentives of the reporting agent. That is, in

our setup the agent’s tampering/credibility must be consistent with the principal’s response

to his messages. Nguyen and Tan (2021) also study public experimentation subject to pri-

vate output-tampering. They consider a setup with a fixed experimental outcome space and

message space, and a communication technology where each message carries a cost that de-

pends both on the message and the experimental outcome. They focus on conditions on this

technology for the Sender’s preferred equilibrium to be supported without tampering (Con-

dition 1 in Nguyen and Tan, 2021). Out setup does not satisfy Condition 1 (as the tamper-

ing cost is the same regardless of the message sent) and, thus, we cannot apply their results.

31Tampering-proof equilibria are the focus of Min (2020), while Guo and Shmaya (2021) show that there is

always a Sender-optimal equilibrium with a calibrated strategy—i.e., such that receiver correctly anticipates

its meaning. See also Sobel (2020) for an analysis that distinguishes between “lying” and “deception”.
32The sender can invest to select a more favorable state-dependent credibility function–see the working

paper version Lipnowski et al. (2018)–albeit, once chosen, the likelihood of tampering is independent of the

receiver’s decision making.
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One overarching theoretical difference with this literature is that we endogenize the

sender’s commitment power by allowing the receiver to select among different organizational

practices; for instance, how much to audit the sender’s message. Thus, while the literature

shows that exogenously relaxing the sender’s commitment can be beneficial for the receiver,

we show the extent to which imperfect commitment is an equilibrium outcome of the re-

ceiver’s organizational practices.

Finally, one of our main contributions is to study how the principal (receiver) can opti-

mally adapt certain organizational practices (namely, task allocation and data governance

policies) to incentivize the sender to experiment more. Similarly, Alonso and Câmara (2016b)

study how a committee (group of receivers) can optimally select certain practices (voting

rules) to induce the sender to select more informative experiments. We believe that the ef-

fect of different organizational practices on endogenous experimentation is a promising re-

search area.

7.2 Concluding Remarks

The ICT revolution—by lowering the costs of data acquisition, storage and processing—

has made managers more reliant on the insights derived from analyzing these data rather

than the intuitions and opinions of other members of the organization. It would then seem

that many of the trade-offs that drive the optimal organization to process information are

no longer relevant. We argue that unresolved conflict still makes organizational structure

meaningful as members handling data still decide which data to use and how to analyze it.

We show that this poses a fundamental trade-off: dissuading misrepresentation also reduces

data utilization, limiting the insights that agents derive from the data. Optimal organizations

are then based on a culture of “credible skepticism:” decision makers have limited ability

to audit the data and analytics behind the recommendations issued by agents, which invites

tampering and misrepresentation in equilibrium.

The adoption of new technologies such as blockchain can eliminate tampering by effec-

tively imposing an infinitely high tampering cost (Tapscott and Tapscott, 2017). Neverthe-

less, under delegated experimentation, this is never optimal for the firm as the optimal dis-

tribution of tampering costs must lead to some tampering in equilibrium. We showed that
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this optimal organization can be implemented through a decoupled internal-external audit:

tampering is costless, but an internal (imperfect) audit can limit its effect by rectifying the

tampered outcome with the true outcome. Then, an external audit is triggered with some

probability without knowing whether the internal audit rectified the report. This system

of consecutive audits strikes a perfect balance between experimentation and tampering and

minimizes the tampering costs of agents. Importantly, under an optimal internal-external

audit, the designer engages in full experimentation.

To focus on the trade-off between experimentation and misrepresentation, we offer a

streamlined model. In particular, decision makers do not have access to alternative sources

of information (i.e., they do not “seek a second opinion”) nor do they induce competition

between agents to persuade them. We see these extensions as promising and leave them for

future work.
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A Appendix

Proof of Proposition 1: Given π = {q,Pr [q]}q∈S(π), with type space S(π) which induces

posterior Pr[θ = 1|s = q] = q, consider a PBE of the communication subgame where the

agent’s reporting strategy is m∗(s, c), and which leads to decisions d∗A(m, s) and d∗U(m).

Proposition 1-i follows immediately as the gain from tampering is the same for all agents that

observe the same experimental outcome: if an agent finds it profitable to send s = qz ̸= q

instead of s = q after observing (q, c), he will strictly prefer to tamper after (q, c′) if c′ < c.

For part (ii), consider the set of tampered outcomes MT (π) defined in the proposition.

Suppose that q, q′ ∈ MT (π) but the distributions d
∗
U(q) and d∗U(q

′) lead to different expected
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payoffs for the agent.33 If q
H

/∈ S(π), then the principal never mixes after a conclusive audit

and the agent’s payoff in this event is independent of the message sent. This is also the case

if the audited decision d∗A(m, q
H
) is independent of m whenever q

H
∈ S(π). This implies

that the agent only benefits from tampering in the event that the audit is inconclusive, but

if d∗U(q) and d∗U(q
′) yield a different payoff, then m∗(s, c) cannot be part of an equilibrium.

Therefore, we must have that d∗U(q) = d∗U(q
′) for q, q′ ∈ MT (π). Finally, suppose that q ∈

MT (π), q ̸= q
H
. Then, the agent never gains from tampering, as the audited decision is

independent of m and the unaudited decision would be the same if he had instead truthfully

reported his type. ■

Proof of Proposition 2: (i) Consider an arbitrary finite experiment π̃ = {q,Pr [q]}q∈S(π̃)
with type space S(π) which induces posterior Pr[θ = 1|s = q] = q and the equilibrium re-

porting m∗(q, c). We show that there exists π̃S ∈ ΠS that (weakly) improves the designer’s

payoff relative to π̃. Therefore, if π∗ maximizes the designer’s payoff when restricted to ΠS,

then selecting π∗ is part of a PBE, as the designer’s expected utility cannot be improved by

any alternative π̃.

Define ST (π̃) as the set of tampering outcomes:

ST (π̃) = {q ∈ S(π̃) : Pr [m∗(q, c) ̸= q] > 0} , (A.1)

and recall that, from Proposition 1, MT (π̃) is the set of tampered outcomes. Thus, the

agent after observing s = q ∈ ST (π̃) will tamper with positive probability while reporting

s = q′ ∈ MT (π̃) with positive probability. Since d∗A(m, 0) = dS whenever s = 0 ∈ S(π),

Proposition 1 shows that ST (π̃)∩MT (π̃) = ∅. We first show that tampering types correspond

to low realizations of the experiment while tampered outcomes are associated with high

realizations, i.e.,

qST
≡ max {q : q ∈ ST (π̃)} < min {q : q ∈ MT (π̃)} ≡ qMT

. (A.2)

To see this, let d′U be the decision following an unaudited tampered outcome—see Propo-

sition 1-ii(a)—and suppose, by contradiction, that there are q′ < q′′ with q′ ∈ MT (π̃) and

q′′ ∈ ST (π̃). Assumption 1 implies that message m = q′′ is sent with positive probability

33As the principal only mixes after an inconclusive audit when her posterior is q
H
, the agent must obtain a

different expected payoff after an inconclusive audit when reporting q and q′ if these distributions are different.
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and, as q′′ /∈ MT (π̃), we must have that the posterior belief of the principal if the audit is

inconclusive must be q′′ after m = q′′. Since q′ < q′′ ≤ qST
, and Proposition 1-ii(b) shows

that the agent after s = q′ ∈ MT (π̃) sends m = q′, the principal’s posterior belief after an

unaudited m = q′ must be strictly lower than qST
. But then, we must have qST

/∈ ST (π̃) as

the agent prefers to induce decision dU (qST
) after observing s = qST

rather than tamper to

induce d′U , thus reaching a contradiction.

Next, partition S(π̃) into two sets XS(π̃) = S(π̃)∩[0, q
H
) and XH(π̃) = S(π̃)∩[q

H
, 1]. We

now show that (A.2) implies that all messages in Xi(π̃) lead to the same unaudited (mixture

over) decision(s)—which means that after any outcome in Xi(π̃) the agent faces the same

gain from tampering and must therefore have the same tampering threshold. Proposition 1-

ii(a) implies that this is true if all outcomes in Xi(π̃) are tampered outcomes, i.e., if Xi(π̃) ⊂

MT (π̃). We will show by contradiction that there cannot be tampered outcomes as well as

non-tampered outcomes in Xi(π̃). To see this, suppose that qMT
defined in (A.2) satisfies

qMT
∈ Xi(π̃) and there is some q′ ∈ Xi(π̃) with q′ /∈ MT (π̃). Then we must have q′ < qMT

,

but d∗U(q
′) = di as the posterior after an unaudited message q′ is precisely q′. However, the

posterior after unaudited m = qMT
∈ MT (π̃) must be strictly lower than qMT

. But then we

must have that d∗U(qMT
) = di, otherwise the agent tampering would send message q′ instead

of qMT
. Thus, for all q, q′ ∈ Xi(π̃), d

∗
U(q) = d∗U(q

′).

We now construct the binary experiment π̃c = {q̃XS , q̃XH} that in equilibrium gives the

designer the same expected utility as the equilibrium of π̃. We do so by replacing all outcomes

in Xi(π̃), i = S,H, with a single outcome s = q̃Xi that is its conditional expectation, i.e.,

q̃Xi =

∑
q∈Xi(π̃)

Pr [q] q∑
q∈Xi(π̃)

Pr [q]
, Pr

[
q̃Xi
]
=

∑
q∈Xi(π̃)

Pr [q] ,

and adjusting the equilibrium (mixture over) messages to

mc(q̃
Xi , c) =

∑
q∈Xi(π̃)

Pr [q]
(∑

j={S,H}
∑

q′∈Xj(π̃)
Pr [m(q, c) = q′] q̃Xj

)
∑

q∈Xi(π̃)
Pr [q]

.

That is, the probability that the agent sends message m = q̃Xj after observing s = q̃Xi

when his cost is c is the conditional probability that a type in Xi(π̃) would send a message

corresponding to a type in Xj(π̃). We complement the definition by having threshold type q
H

send message m = q̃XS whenever they were sending a message m ∈ XS(π̃). As all messages
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in Xi(π̃) led to the same unaudited decision, the same decision must now be optimal for the

principal with experiment π̃c, as the tampering threshold corresponding to q̃Xi is the same

as the threshold for q ∈ Xi. Thus, the designer’s expected payoff from π̃ and π̃c coincide.

Finally, we construct an experiment π̃S ∈ ΠS that weakly improves upon π̃c. First, we

can obtain an improvement whenever q̃XS > 0 by lowering q̃XS—thus raising the probability

of realization q̃XH—in a way that tampering incentives remain constant but this transformed

experiment raises the designer’s payoff by raising the probability of the favorable outcome

s = q̃XH .

Second, the designer can improve upon the binary experiment π with S(π) = {0, q}

whenever the unaudited posterior after m = q exceeds q
H
. To see this, define p ≡ Pr[s =

0] = (q − µ)/q and suppose that π induces an approval probability τ after an unaudited

m = q. The expected gain from tampering is then (1− λ) τ∆ and this establishes the

tampering threshold c̄ = (1− λ) τ∆. If τ > 0, this requires that the principal’s posterior

after an unaudited m = q must not fall below q
H
, so that Bayesian updating requires

(1− p) q

(1− p) + pF (c̄)
≥ q

H
,

which, giving the Bayesian consistency constraint (1− p) q = µ, implies pF̄ (c̄) q
H
≥ q

H
−µ,

and, using (2), can be expressed as

p
F̄ (c̄)

pCS
≥ 1. (A.3)

If this constraint is slack, then the unaudited posterior is strictly above q
H

and the

principal’s sequential rationality implies that τ = 1. But then, experiment π′ with S(π′) =

{0, q−ϵ} such that (A.3) is still slack (so that τ ′ = 1) leads to the same tampering thresholds

and decisions—implying that conditional on each realization the designer’s expected utility

has not changed—but the favorable outcome s = q − ε is now more likely. Note that every

status-quo experiment satisfies (A.3) with equality—this is also represented in (4). Therefore,

any binary experiment π with S(π) = {0, q} can be weakly improved upon by some status-

quo experiment.

(ii) The proof of part i shows that there is always a status-quo experiment with a unique

equilibrium that gives the designer a (weakly) higher payoff than any other experiment. This

establishes V ∗ = VS.
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For future reference, we express the designer’s expected payoff from a status-quo experi-

ment in terms solely of the induced equilibrium threshold c̄. Using (10) with (11) and (12),

we can write

vS(c) =
(
1− pCS

)
(vH − (1− λ) (1− τ (c))∆) + pCS

(
vS − λ∆

F (c)

F̄ (c)
− I{k=I}

∫ c

0
cdF (c)

F (c)

)
.

= vH − (1− λ)∆ + c̄− pCS

(
λ∆

F̄ (c̄)
+ c̄+ I{k=I}

∫ c

0
cdF (c)

F (c)

)
. (A.4)

■

Proof of Proposition 3: Suppose that F admits a density so that
∫ c

0
cdF (c)/F (c) is

differentiable. Then, from (A.4), the difference in the designer’s marginal payoff from a

higher tampering threshold when moving from separation to integration is

∂ (vS(c; I)− vS(c;S))
∂c

= −pCS
d

dc

(∫ c

0
cdF (c)

F (c)

)
≤ 0.

Therefore, the optimal tampering threshold under integration is lower than under separation,

c̄∗(I) ≤ c̄∗(S), which implies α∗(I) ≥ α∗(S). ■

Proof of Proposition 4: First, consider experiment π(c) ∈ ΠS inducing tampering

threshold c, with S(π(c)) = {0, q (c)}. From (A.4), we have

∂vS(c)

∂λ
= ∆− pCS

∆

F (c)
= ∆Pr [s = q (c)] ,

which is non-increasing in c. Therefore, ∂2vS/∂ (−λ) ∂c ≥ 0.

Second, define the feasible set of tampering thresholds

CS ≡ [0, (1− λ)∆] ∩ [0, F
−1
(pCS /p

FI
S )], (A.5)

with pFI
S = Pr[s = 1] for the fully informative experiment. To understand CS, note that

c ∈ CS must satisfy two conditions. First, it must correspond to some approval probability

τ ∈ [0, 1]—from (6) this implies that c ∈ [0, (1− λ)∆] . Second, the experiment π(c) must

be feasible—i.e., q(c) ≤ 1—which requires F̄ (c) /pCS ≥ 1
1−µ

= 1/pFI
S —see (4).

We can write the designer’s problem in terms of selecting c∗ that solves

max
c

vS(c;λ), s.t. c ∈ CS. (A.6)
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The feasible set CS is increasing in the strong set order with respect to −λ and, from part

(i), vS(c;λ) is supermodular in (c,−λ). Theorem 4’ in Milgrom-Shannon (1994) then implies

that the set of maximizers of (A.6) increases in the strong set order sense with −λ. From

(4), for a fixed threshold c the experiment π(c) is independent of λ, so the set of optimal

experiments c∗(λ) decreases in the strong set order sense with λ, implying that the set of

designer-optimal Type I errors α∗(λ) increases in the strong set order sense with λ. ■

Proof of Proposition 5: Applying (13), the principal’s equilibrium expected utility is

given by (14). Note that for λ = 1 the designer always selects the commitment experiment,

thus, regardless of the task-allocation, c∗ = 0. By the definition of designer’s responsiveness

to auditing, there exists 0 < λ < 1 with α∗(λ) < αH–implying that c∗ > 0 and U (λ, k) >

U (1, k). Therefore, λ∗ < 1. Conversely, if λ∗ < 1, then for some k−allocation U (λ∗, k) >

U (1, k), which implies that α∗(λ∗) < αH and the designer is responsive to auditing.

We now show that if f(0) > 0, then the designer is responsive to auditing under sepa-

ration. If f(0) > 0, then whenever λ < 1 the principal never approves without a conclusive

audit if λ < 1 and the designer selects the commitment experiment. In other words, τ = 0

for experiment with α = αH and c = 0. Using (A.4), the designer’s payoff is then

vS(0) = vH − (1− λ)∆− pCS
λ∆

F (0)
.

We now study conditions such that (a) there exists an experiment that leads to a positive

approval probability, and (b) the designer’s incremental payoff from such experiment is

positive. These conditions ensure that the designer is responsive to auditing.

Consider first (a). The infimum tampering probability among experiments with τ > 0 is

F (0). The experiment that induces the highest posterior if unaudited is the fully informative

experiment for which Pr [s = 0] = 1 − µ ≡ pFI
S . Therefore, there exists an experiment with

a positive approval probability, iff

pCS
F (0)

< pFI
S ⇐⇒ F (0) >

pCS
pFI
S

(< 1) .

If F admits a density at zero, this condition is always satisfied for any λ ∈ [0, 1].

Consider now (b). Noting from (6) that c = τ (1− λ)∆, if F admits a density we can
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differentiate (A.4) to obtain

∂vS(τ)

∂τ

∣∣∣∣
τ=0

=
∂vS(c)

∂c

∂c

∂τ

∣∣∣∣
τ=0

=

∣∣∣∣∣(1− λ)∆

((
1− pCS

)
− pCS

f (c)(
F (c)

)2λ∆
)∣∣∣∣∣

c=0

.

Therefore, the condition ∂vS(τ)/∂τ |τ=0 > 0 translates to
(
1− pCS

)
/pCS∆ > λf (0)

(
F (0)

)2
and we can always find a 0 < λ < 1 satisfying this condition. ■

Proof of Lemma 1: Program (A.6) defines the designer’s problem and the feasible set

of tampering thresholds CS is defined in (A.5). Setting k = S in (A.4), then the marginal

payoff from increased tampering, whenever it exists, satisfies

∂vS(c)

∂c̄
=
(
1− pCS

)
− λpCS∆

f(c)(
F (c)

)2 = λpCS∆

(
ϕS

λ
− L(c)

)
.

The single-crossing condition implies that vS(c) is quasiconcave in c. Suppose first that

|∂vS(c))/∂c̄|c̄=0 = λpCS∆((ϕS/λ)− L(0)) ≤ 0, implying ∂vS(c))/∂c̄ ≤ 0 for c̄ ≥ 0. In this

case, we have c̄∗ = 0, and the designer selects the commitment experiment. Suppose now that

λpCS∆((ϕS/λ)− L(0)) > 0, and let c̄crit be the minimum threshold that satisfies ∂vS(c))/∂c̄ =

0 (and set c̄crit = ∞ if no such threshold exists). Then, the solution to the designer’s problem

satisfies

c̄∗(λ) = min [c̄crit(λ), (1− λ)∆, c̄FI ] .

■

Proof of Proposition 6: (i) For a fixed F and λ, suppose that the designer under

separation selects π ∈ ΠS, S(π) = {0, q}, with Pr [s = 0] = (q − µ)/q ≡ p.34 We first show

that there is an upper bound on λ that does not depend on F , namely

λ ≤ 1− pCS
1− pCS + p− pCS

≡ λ̃S(p). (A.7)

To see this, we express vS(c (p) ;S) as a function of p: using (4) we have F̄ (c(p)) = pCS /p

34Recall that, regardless of the cost distribution, the principal prefers to separate tasks—see Proposition 3.
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and we can write (A.4) for k = S as

vS(c (p) ;S) = vH − (1− λ)∆ + c(p)− pCS

(
λ∆

F (c(p))
+ c(p)

)
= vS + λ∆+ c(p)− λ

pCS∆

F (c(p))
− pCS c(p)

= vS + λ∆(1− p) +
(
1− pCS

)
F

−1
(pCS /p).

Designer’s optimality of πS requires(
F (c(p)) =

) pCS
p

≤ F ((1− λ)∆),

vS(c (p
′) ;S) ≤ vS(c (p) ;S) for p′ ∈

[
pCS , p

]
.

The first condition follows from c(p) ≤ (1− λ)∆, as the gain from tampering is bounded

by (1− λ)∆, while the second is the designer’s incentive compatibility constraint when

comparing π to status-quo experiments that are less informative than π.35 Setting p′ = pCS

above, and obviating the common term vS, incentive compatibility implies

λ∆
(
1− pCS

)
≤ λ∆(1− p) +

(
1− pCS

)
F

−1
(pCS /p) ≤ λ∆(1− p) +

(
1− pCS

)
(1− λ)∆,

from which we obtain (A.7). Inverting (A.7), any experiment that is induced with auditing

intensity λ > 1/(2− q
H
) must satisfy

p ≤ 2pCS − 1 +
1− pCS

λ
≡ p(λ)

Taking into account (6) and that (A.3) is satisfied with equality for status-quo exper-

iments, we can express the Type I error α associated with an experiment that induces

Pr [s = 0] = p as

α = 1− (1− αH)
p

pCS
.

Using (2), the minimum achievable Type I error with an auditing of λ, α(λ), is

α(λ) = 1− (1− αH)
p(λ)

pCS
= 1− p(λ)

1− µ

=
2λ− 1

λ
αH − µ(1− λ)

(1− µ)λ
.

35If τ(p) = 1, the designer cannot improve approval probability by switching to a status-quo experiment

that is more informative than π so that trivially vS(c (p
′) ;S) ≤ vS(c (p) ;S) for p′ > p. When implementing

π with auditing intensity λ̃S(p) we will look at cost distributions for which τ(p) = 1.
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(ii) We now derive the cost distributions that would lead the designer to select πS(λ)

with Pr[s = 0] = p(λ), when auditing is λ. Suppose that experiment πS(λ) leads to the

principal’s rubber-stamping–i.e., to τ = 1– so that c = F
−1
(pCS /p(λ)) = (1− λ)∆. Incentive

compatibility requires that for any p′ ∈
[
pCS , p(λ)

]
,(

1− pCS
)
F

−1
(pCS /p

′) ≤ λ∆(p′ − p(λ)) +
(
1− pCS

)
(1− λ)∆.

Using the identity F
−1
(pCS /p

′) = F−1(
(
p′ − pCS

)
/p′) and noting that p(λ) satisfies λ(p(λ) −

pCS ) = (1− pCS )(1− λ), we can simplify the previous expression to

p′ − pCS
p′

≤ F

(
λ∆

p′ − pCS
1− pCS

)
.

Alternatively, letting c = λ∆
(
p′ − pCS

)
/
(
1− pCS

)
, we have

F (c) ≥ c

c+ λ
pCS∆

1−pCS

for c ≤ λ∆
p(λ)− pCS
1− pCS

= (1− λ)∆. (A.8)

That is, the likelihood of low tampering costs must be sufficiently high to allow the principal

to approve with low probability if the experiment is not very informative. Note that our

argument didn’t require the distribution to be smooth or to have a density. One distribution

that satisfies (A.8) is supported only on two cost realizations, 0 and (1− λ)∆, with

Pr [c = 0] =
(
p(λ)− pCS

)
/p(λ), (A.9)

and, in equilibrium, the agent only tampers if c = 0 so that expected tampering costs are

zero. ■

Proof of Proposition 7: From (13), for each πS(λ), with S(πS(λ)) = {0, q(λ)} and

p(λ) = Pr[s = 0], auditing λ, and cost distribution satisfying (A.8), the principal’s utility is

U (πS(λ)) = q
H
+ (1− p)λ

(
q(λ)− q

H

)
= q

H
+

(
q(λ)− q

H

)
µ

2q − q
H

,

which is increasing in q(λ). Thus, the principal optimally sets q(λopt) = 1 which requires

λopt = 1/(2 − q
H
). Setting p(λ) = (1− µ) in (A.9), we obtain Pr [c = 0] = αH for the cost

distribution supported on 0 and c̃ = (1 − λopt)∆ = (1 − q
H
)∆/(2 − q

H
); this distribution

minimizes tampering costs among all those inducing a fully informative experiment. As this

distribution induces zero costs on the agent, the designer under integration and separation

would select the same experiment. ■
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