

Graves' Disease

- Most Common Cause of Hyperthyroidism in Children
- · Caused by antibodies to the thyrotropin receptor
- Presentation: goiter, poor weight gain, behavioral changes, restlessness, headaches, sleep disturbances, anxiety, and heat intolerance, exophthalmos
- ↓TSH, ↑Free T4, +TSH-Receptor Antibodies

- Treatment: Non-surgical
 Beta-blockers
- Anti-thyroidal Drugs: Methimazole, Propylthiouracil
 - May be poorly tolerated: autoimmune reactions, liver failure, leukopenia
 - Remission less common than in adults (<25%)
- Radioactive Iodine Ablation
 - For Children >10 yo
- Endocrinologist \rightarrow

13

Children's USC University of Hospital Southern California

Graves's Disease

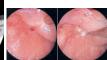
- · Treatment: Surgical
- Total or near-total thyroidectomy
- Euthyroid state preferable
- Beta-blockade (adrenergic symptoms)
- lodine pre-treatment (KI/SSKI/Lugol's) may be used
 - Decrease vascularity/intraoperative bleeding
 - Wolff-Chaikoff Effect : temporary effect

Children's USC University of USC University of Southern California

Another Hyperthyroid State

- · Adults Often Treated with RAI
- · Surgery usually recommended
 - RAI may be mutagenic for surrounding tissue
 - Some series described high rates of incidental malignancies

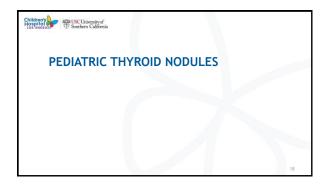
Toxic Nodules

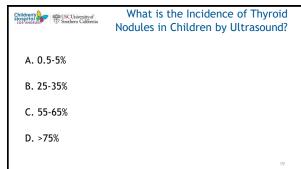

15

Children's USC University of USC University of Court Mospital Cost Angeles

Fourth Branchial Cleft Cyst

- · Not Thyroid Pathology...
- Fistula Course (often incomplete): Pyriform Sinus→Pierce Cricothyroid Membrane→Deep to SLN and Superficial to RLN
- Left Thyroid Lobectomy maybe required for dissection





Prophylactic Thyroidectomy

- MEN2A
 - Before Age 5(yo) (ATA-H category)
 - Start Calcitonin Screen q6 months (ATA-MOD)
- MEN2B
 - Before Age 1(yo) (ATA-HST category)

What is the Incidence of Thyroid Nodules in Children by Ultrasound?

A. 0.5-5%

B. 25-35%

C. 55-65% (upper limit of adult incidence)

D. >75%

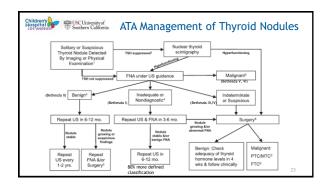
What is the Incidence of Cancer in Pediatric Thyroid Nodules?

A. 5%

B. 25%

C. 50%

D. 75%


What is Incidence of Cancer in Pediatric Thyroid Nodules?

A. 5% (adult)

B. 25%

C. 50%

D. 75%

Thyroid Cancer

Background:

- <1% of all pediatric malignancies are thyroid cancer (2.5% in adults)
 - BUT: Adolescents: 8th most common cancer, 2nd for females
- Carcinoma 5x more likely in females (3x in adult women)
- 20-25% incidence in thyroid nodules (vs 5-10%)
- Increasing incidence in all Stages of pediatric thyroid cancer
 SEER data

Thyroid Cancer

Background:

- Higher incidence of lymph node metastasis, pulmonary metastasis, extra-thyroidal extension
- Improved outcomes (Disease specific survival, Progression free survival)
- · Different tumor genetic profiles:
 - Kids: RET/rearrangements
 - · Adults: Point mutations BRAF
 - · Pediatric PTC more RAI sensitive

24

25

Thyroid Cancer

Risk Factors:

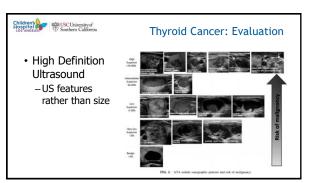
- · Radiation exposures
 - Younger children are particularly sensitive
 - Often survivors of other childhood cancers
- Iodine deficiency
- Family Hx
- · Autoimmune thyroiditis

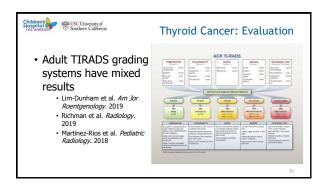
Children's Hospital WSC University of Southern California

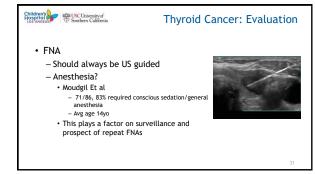
Thyroid Cancer

Hereditary Tumor Syndromes:

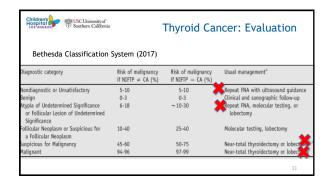
- APC Associated Polyposis (Familial Adenomatous Polyposis, Gardner and Turcot)
- DICER1 Syndrome
- PTEN hamartoma syndrome (Cowden Syndrome)
- Werner Syndrome
- Carney Complex
- ...


27


Children's USC University of LOS ANGELES Southern California


Thyroid Cancer: Adults vs Peds

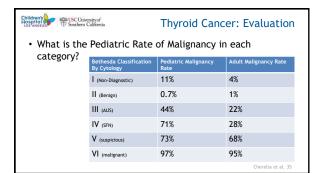
Guiding Differences in Evaluation and Management

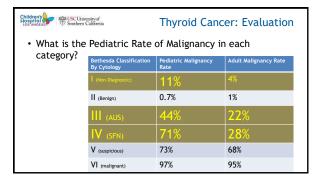

- Higher likelihood of malignancy
- Unique pathogenesis (gene rearrangements vs point mutations)
- · More judicious use of RAI
- · Relative lack of data

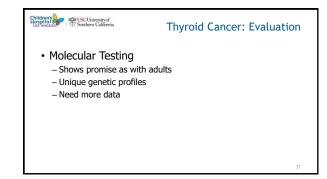
Thyroid Cancer: Evaluation
 Cytopathology
 Described using Bethesda system
 Common Language
 However different ROM rates have been shown

** What is the Pediatric Rate of Malignancy in each category?

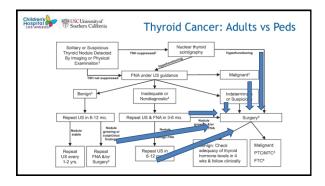
Thus: 4 Countains or Final Cytology with Heriodoxical Diagnosis in Pinalize and Adel 1 Tarrison Nomers


**Total Cytology of Pinalize (cf) Secret


**Total Cytology of Pinalize (cf) Secret


Total Revenued* Madignand

Total Revenued Madignand


**Total Revenued Madignand

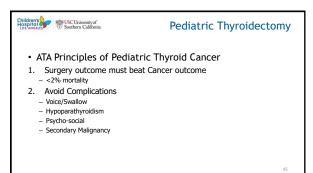
*Lower threshold for investigation
 *Any "suspicious nodule"
 Diffuse enlargement
 *Lower threshold for thyroidectomy
 *Toxic nodules
 *Indeterminate nodules
 *Growing nodules

Thyroid Cancer: Adults vs Peds

More aggressive surgery

Total Thyroidectomy vs Lobectomy
Higher incidence of multifocal/bilateral disease

Central Neck Dissection
Higher incidence of metastasis
May help avoid RAI



Thyroid Cancer: Adults vs Peds

- No validated staging system in children (AJCC, AMES, MACIS)
- ATA recommends 3-tier Pediatric Staging
 - Low risk: intrathyroidal tumor, "minimal" N1a or less
 - Intermediate risk: "extensive" N1a N1b
 - High risk: "extensive" N1b, ETE, distant mets

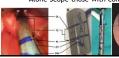
Surgery Video

Pediatric Thyroidectomy

- Technique similar to adult
- Para thyroids are even smaller
 - (higher rate of HypoPara)
- Beware of Thymus in level 6 dissection
- Avoid drains or non-absorbable sutures
- Central Neck Dissection more commonly performed
- Remote Access Techniques not commonly used in children

46

Children's USC University of Hospital Southern California


Pediatric Thyroidectomy

- Rapid Frozen Analysis for Indeterminate Cytology
 - Not useful for follicular tumors
 - May help avoid secondary surgery

Pediatric Thyroidectomy

- RLN Monitoring
 - Medtronic NIM tube (Largest tube is 5.0 (7.8mm O.D) or 6.0)
 - Neurovision/Dragonfly surface electrodes wrapped ET tube
 - Use needle electrodes placed near vocal cords (sticker/hookwire)
 - ATA guidelines Recommend For:
 - · Revision Cases/High Risk Cases
 - · Alone Scope those with complaints

HypoParathyroidism

- Post-op HypoPTH, ~30% of patients
- Numbers in literature range widely
- $-\,\%$ in cancer cases are higher
- Permanent HypoPTH ~1-3%
 - Calcium dependent
- CHLA Thyroid Cancer: ~80% / <1%
- Increased risk in young patients, concomitant neck dissection, graves

Yu etal 49

HypoParathyroidism

- Various post-op Calcium replacement regimens described
 - Standard dose vs PTH driven
- Unique Challenges in Children
 - Recurrent Lab Draws
 - High Dose Oral Supplementation
- CHLA
 - Standard routine postoperative calcium, calcitriol

⁄u etal 50

Adjuvant Therapy

- · Radioactive Iodine
 - Historically used routinely in all cases for thyroid remnant ablation
 - Clear indication for distant/pulmonary metastases
 - No consensus for intermediate risk cases

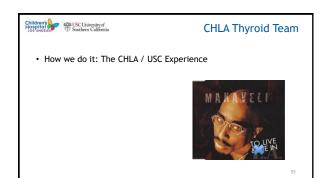
51

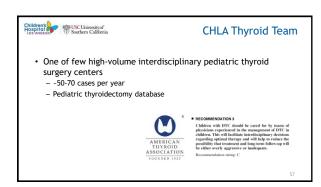
Adjuvant Therapy

Table 3 Short-term and long-term risks of ¹³¹ l therapy	
Short Term	Long Term
Sialadenitis, xerostomia, dental caries, stomatitis, ocular dryness, nasolacrimal duct obstruction	Lifelong xerostomia, dental caries, salivary gland malignancy
Gonadal injury, transient amenorrhea, and menstrual irregularities	Increase in infertility, miscarriage, birth defects
Acute bone marrow suppression	Rare long-term bone marrow suppression
	Increased risk of secondary malignancy, increased mortality Pulmonary fibrosis

E2

Adjuvant Therapy


- TSH Suppression
 - Based on risk profile
 - Generally normalized after long term remission
 - Poorly studied
- Principal: TSH stimulates both normal thyroid tissue and malignant thyroid tissue, so suppressing will reduce chance of recurrence


Adjuvant Therapy

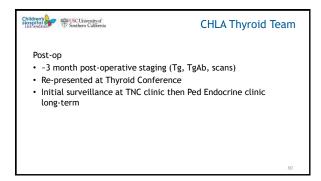
- Tyrosine Kinase Inhibitors / Systemic Therapy
 - Reserved for iodine refractory progressive disease
 - Very rarely used
 - Poorly studied

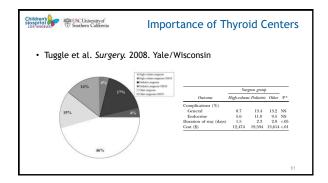
4

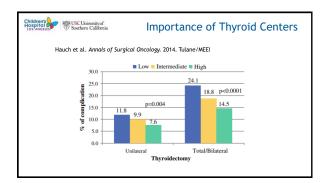
CHLA Thyroid Team

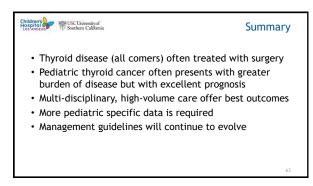
Pre-op / Evaluation

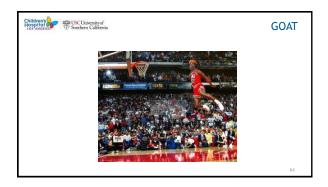
- All referrals screened through Dr. Austin, the leader and "gate-keeper"
- All nodules/surgical cases have in-house high resolution US with concurrent US-FNA under GA
- All cases reviewed at multi-disciplinary thyroid conference / tumor board
- Consultation at multi-disciplinary TNC clinic

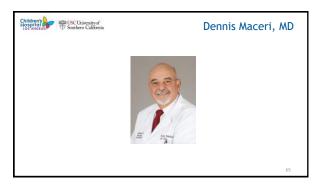

EO

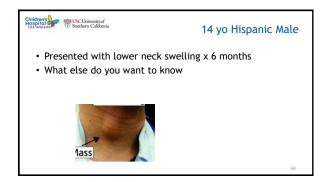


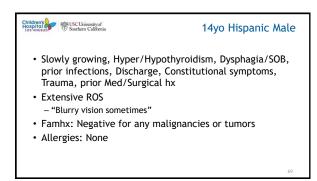

CHLA Thyroid Team

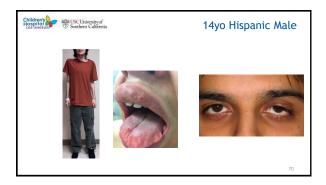

Surgery / Peri-operative

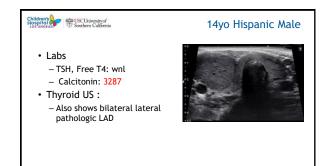

- 2-attending surgery (Peds ENT and Adult H&N ENT)
- · Nerve monitoring with neuro-diagnostics staff
- · Intra-operative rapid PTH
- If admitted, cared for by specialized Pediatric Hospitalist Team with ENT and Endocrine following











14yo Hispanic Male

- · Labs?
 - TSH, Free T4
 - Calcitonin
- · Thyroid and Neck US
- CT Neck?

Children's Hospital Los Angeles Southern California

14yo Hispanic Male

- FNA:
 - Results: Medullary Thyroid Carcinoma
- · Refer to Heme Onc, Genetics, Ophthomalogy, Endocrine
- · Present at Multi Disciplinary Tumor Board

Children's Hospital Southern California

14yo Hispanic Male

• Anything else needed prior to surgery?

Children's Hospital Southern California

14yo Hispanic Male

- Rule out concomitant Pheochromocytoma/Metastatic Disease
 - Urine Methanephrines
 - PET CT
- If found, Pheochromocytoma
- Txt Total Thyroidectomy, Bilateral Central and Lateral Neck Dissections, Tongue Biopsy (confirmed neuromas)
 - Calcitonin: 3286→64

Sources

- Baumgarten, Heron D., et al. "Surgical management of pediatric thyroid disease: Complication rates after thyroidectomy at the Children's Hospital of Philadelphia high-volume Pediatric Thyroid Chen, Yufei et al. "Pediatric Hyroidectomy in a high volume thyroid surgery center-risk factors for postoperative hypocalcemia. "Journal of pediatric surgery 50.8 (2015): 1316-1319. Hanba C, Svider PF, Slegel B, Sheyn A, Shkoukani M, Lin HS, Raza SM, Pediatric Thyroidectomy. Otolaryngol Head Neck Surg. 2017 Feb; 156(2):360-367. Hogan, Anthony, R, et al. "Pediatric thyroid cardiomas incidence and outcomes in 1753 patients." Journal of surgical research 156.1 (2009): 167-172.
 Francis, Garp. L, et al. "Management guidelines for children with thyroid nodules and differentiated cancer." Thyroid 25.7 (2015): 716-759.

- Nikiforov, Yuri, and Douglas R. Gnepp. "Pediatric thyroid cancer after the Chernobyl disaster. Pathomorphologic study of 84 cases (1991-1992) from the Republic of Belarus." *Cancer* 74.2 (1994): 748-766.