
Revised September 2020

EE 599 Parallel Programming
Units: 4
Lecture: MW 5-650pm
Discussion: TBD on Fridays, 1 hr 50 mins

Note: This course has been approved by the CS
department to count towards MS CS program
requirements. No additional approval needed.

Location: Virtual

Instructor: Viktor K. Prasanna
Office: EEB 200C
Office Hours: TBD

Contact Info: prasanna@usc.edu

Teaching Assistant: Yuan Meng
Office: EEB 242
Office Hours: 9:30-10:30 AM on Fridays
Contact Info: ymeng643@usc.edu

mailto:prasanna@usc.edu

Syllabus for EE 599, Page 2

Course Description
This graduate level course focuses on parallel and distributed computing using various programming models.

Topics covered in this course will include parallel computation models, message passing and shared
memory paradigms, data parallel programing, performance modeling and optimization, memory system
optimization techniques, fine grained computation models and High Level Design Tools for programming
parallel platforms, communication primitives, stream programming models, emerging heterogeneous
computing and programming models.

This course will study the abstractions for parallel programming as well as provide students with hands-on
experience with state-of-the-art parallel computing platforms and tools including large scale clusters, edge
devices and data center scale platforms. A course project will enable students to study various computing
platforms and design efficient parallel algorithms on them, evaluate their performance and learn
performance tuning.

Learning Objectives and Outcomes
- Understand the key parallel computational models
- Write parallel programs using message passing and shared memory paradigms
- Implement key algorithms using data parallel programming model
- Understand basic principles of performance modeling and optimization
- Understand memory system optimization techniques
- Implement key algorithms using fine grained computation models and High Level Design Tools
- Understand communication and coordination issues in parallel computing
- Implement key algorithms in a stream programming model
- Understand heterogeneous computing and programming models for accelerator enhanced parallel
computation

Prerequisite(s): Background in high level programming (for ex. using C, C++) at the level of EE455x

Co-Requisite(s): None

Concurrent Enrollment: None

Recommended Preparation: EE 457 or EE 451

Course Notes
Copies of all course notes will be posted on Blackboard.

Required Readings and Supplementary Materials
Portion of the course will be based on the later chapters in the book - Introduction to Parallel Computing,
Grama, Karypis, Kumar, Gupta; 2nd Edition (January 1, 2003); Publisher: Pearson College Div; ISBN-10:
0201648652; ISBN-13: 978-0201648652. Recent research publications and survey articles will be used to
covered advanced materials after the 6th week of the semester. This book has lot of materials; advanced
materials regarding programming models and examples will be covered from this book. Details will be
provided in the lectures as well as in the discussion sessions. A sample of relevant literature is included in
the appendix.

Description and Assessment of Assignments
This course will have a midterm and class project. There will also be 6-8 homework assignments as well as
programming homeworks. Student accounts will be created on USC HPC GPU Cluster
(https://carc.usc.edu/user-information/user-guides/high-performance-computing/using-gpus). For Cloud
access, Amazon Web Services (AWS) and other educational services offered by cloud service providers (for

https://carc.usc.edu/user-information/user-guides/high-performance-computing/using-gpus

Syllabus for EE 599, Page 3

example, AWS Educate, https://aws.amazon.com/education/awseducate/) that offer cloud access at no
cost to the students will be employed. The class project will begin after the midterm and be broken into
three phases:

Phase 1: entails problem definition and project proposal submission. Students will submit a written report
(6-8 pages, single spaced) detailing the context, related work, problem definition, project hypothesis, tools
to be used and evaluation methodology.
Phase 2: The students individually or in groups of upto 3 will design and implement the project using
various software and tools covered in the discussion sessions, evaluate the performance of their design and
fine tune the software if needed.
Phase 3: will include project presentation and reporting. It will include a required report (10-12 pages,
single spaced) and class presentation (about 20 mins and 5 mins for Q and A using power point or other
tools) that will be graded for both content and clarity. All students are expected to participate in the class
presentation. If needed due to time constraints some presentations will be held outside of normal class
times. Templates for presentation and the final report will be provided.

Project Grading Rubric

The course project will be graded as follows:

Project Proposal: 30%
The project proposal will be assessed for context (10%), problem definition (20%), hypothesis (20%),
software and tools to be used (50%).
Project Presentation: 20%
Presentation will be judged for both content (75%) and delivery (25%).
Final Report: 50%
The project final report will be assessed for description of the approach and design methodology (50%),
results obtained (25%) and description and comparison with state of the art (25%).

Sample Projects
1. Ray tracing is one of the cores algorithms used in the film and graphics industry to create realistic

computer generated imagery. However, obtaining high quality images using ray tracing is
computationally intensive.
The objective of this project is to identify opportunities for parallelization in the ray tracing
algorithms and implement a parallel algorithm using programming tools and platforms studied in
the course. The success of the project will be evaluated by comparing the performance of the
parallel implementation against a baseline code using various performance metrics studied in the
course. Implementations on CPU, GPU using heterogenous programming models and interfacing
data parallel and task parallel approaches will also be studied.

2. Recently graph embedding techniques have been proposed for many machine learning
applications including personalized recommendation systems. Throughput as well as latency are
important metrics in implementing applications based on graph convolutional networks (GCN)
used in graph embedding. Many techniques have been proposed for GCN training. GCN models can
be deep and the input graphs can be very large. This project will explore techniques for
parallelization using task and data parallel paradigms for both full batch and mini batch inference
(embedding) and implement a complete application using accelerated GCN implementation.

Syllabus for EE 599, Page 4

Grading Breakdown

Assignment % of Grade

Homework 20%

Programming Homework 20%

Midterm 30%

Project 30%

TOTAL 100%

Assignment Submission Policy

Assignments will be submitted electronically on Blackboard. The file format will be C/C++ for CPU based
programs and CUDA for GPU based programs. Late assignments will be accepted with penalty, 5% per day,
unless otherwise announced.

Grading Timeline
Homework and midterms will be graded and returned within 2 weeks.

Additional Policies
None.

Syllabus for EE 599, Page 5

Course Schedule: A Weekly Breakown*

Week Topics/Daily

Activities

Readings /

Homework

Discussion

Section

Deliverable/

Due Dates

1

Introduction, Parallel Computation

Models (1): Parallel random access

models and variants, examples,

programming abstractions, simulations

Chapters 2.4.1

(Book suggested in

required reading)

Account setup

and lab

overview

2

Parallel Computation Models (2):

Synchronous and asynchronous models,

network models, performance analysis

HW 1 out

Chapters 2.4.3-

2.4.5, 2.5-2.7

PRAM

examples and

analysis

3

Shared Memory and Message Passing

programming models, illustrative

examples, OpenMP, MPI

HW 2 out

Chapters 6, 7

OpenMP

Programming

HW 1 out

HW 1 due

4

Data Parallel Programming: SIMT

models, programming abstractions and

examples, CUDA and related models

HW 3 out

Chapter 2.3.1

MPI

Programming

HW 2 out

HW 2 due

5

Performance Modeling and

Optimization of parallel programs, roof

line model, external memory and Logp

models.

Chapter5,

Appendix, item 3

CUDA

programming

(1)

HW 3 due/ PHW 1

due

6

Memory System Optimization (Data

Reuse, Data Layout, Replication for

Conflict Free Memory access)

HW 4 out

Appendix, item 18

CUDA

programming

(2)

PHW 1 due

7

Fine Grained Computation Models –

use of HLS for application acceleration,

Systolic Arrays, space time

computation

HW 5 out

Appendix, item 11 –

chapter 10.2.3,

Appendix, items 4, 6

HLS

Programming

HW 3 out

HW 4 due/ PHW 2

due

8

Communication bounds, trade offs and

parallel and distributed communication

avoiding algorithms

HW 6 out

Appendix, item 20

Midterm

Review

HW 5 due

9

Midterm / Introduction to Course

Project

 HW 6 due

10

Stream Programming Models,

Cloud programming, MapReduce and

high level models

HW 7 out

Appendix, items 12,

13

Streaming

Programming,

Programming

HW 4 out

PHW 3 due

Project Proposal

due

11

Heterogeneous Computing and

Programming Models (1): Accelerators,

interface mechanisms and performance

modeling.

Appendix, item 13 Heterogeneous

Computing

HW 7 due

12 Heterogeneous Computing and

Programming Models. Extensions to

OpenMP for accelerated computing.

OpenCL, OPAE, Vitis, etc.

HW 8 out

Appendix, item 9,

19,

Heterogeneous

Computing,

Programming

HW 5 out

PHW 4 due

13

Advanced Topics (DSL, real-time

programming, PGAS, SYCL)

Appendix, items

15,16, 17

Advanced

programming

topics

HW 8 due

14 Additional Advanced Lecture Materials

(Parallel shortest path).

Appendix item 21 Advanced

programming

topics

PHW 5 due

Syllabus for EE 599, Page 6

*Student project presentations will be conducted as much as possible during the final exam period but as there is not enough time, we

will allow to also schedule presentations during the last week. The actual schedule will depend on the number of projects and availability
of the students during the final exam period. Based on this, additional topics in the reading list will be covered in the last week of the

semester.

15 Course Project Presentations or

Possible guest lecture from industry

(Microsoft, Intel, Apple, Google, etc.)

and national labs.

 Course Project

Presentations

based on student

availability and

schedule or

Advanced

programming

topics

FINAL

Exam

Period

Course Project Presentations based on

student schedule

 Final report due

according to

University’s final

exam schedule

Syllabus for EE 599, Page 7

Statement on Academic Conduct and Support Systems

Academic Conduct:

Plagiarism – presenting someone else’s ideas as your own, either verbatim or recast in your own words – is
a serious academic offense with serious consequences. Please familiarize yourself with the discussion of
plagiarism in SCampus in Part B, Section 11, “Behavior Violating University Standards”
policy.usc.edu/scampus-part-b. Other forms of academic dishonesty are equally unacceptable. See
additional information in SCampus and university policies on scientific misconduct, policy.usc.edu/scientific-
misconduct.

Support Systems:

Student Health Counseling Services - (213) 740-7711 – 24/7 on call
engemannshc.usc.edu/counseling
Free and confidential mental health treatment for students, including short-term psychotherapy, group
counseling, stress fitness workshops, and crisis intervention.

National Suicide Prevention Lifeline - 1 (800) 273-8255 – 24/7 on call
suicidepreventionlifeline.org
Free and confidential emotional support to people in suicidal crisis or emotional distress 24 hours a day, 7
days a week.

Relationship and Sexual Violence Prevention Services (RSVP) - (213) 740-4900 – 24/7 on call
engemannshc.usc.edu/rsvp
Free and confidential therapy services, workshops, and training for situations related to gender-based
harm.

Office of Equity and Diversity (OED) | Title IX - (213) 740-5086
equity.usc.edu, titleix.usc.edu
Information about how to get help or help a survivor of harassment or discrimination, rights of protected
classes, reporting options, and additional resources for students, faculty, staff, visitors, and applicants. The
university prohibits discrimination or harassment based on the following protected characteristics: race,
color, national origin, ancestry, religion, sex, gender, gender identity, gender expression, sexual orientation,
age, physical disability, medical condition, mental disability, marital status, pregnancy, veteran status,
genetic information, and any other characteristic which may be specified in applicable laws and
governmental regulations.

Bias Assessment Response and Support - (213) 740-2421
studentaffairs.usc.edu/bias-assessment-response-support
Avenue to report incidents of bias, hate crimes, and microaggressions for appropriate investigation and
response.

The Office of Disability Services and Programs - (213) 740-0776
dsp.usc.edu
Support and accommodations for students with disabilities. Services include assistance in providing
readers/notetakers/interpreters, special accommodations for test taking needs, assistance with
architectural barriers, assistive technology, and support for individual needs.

USC Support and Advocacy - (213) 821-4710
studentaffairs.usc.edu/ssa

https://policy.usc.edu/scampus-part-b/
http://policy.usc.edu/scientific-misconduct
http://policy.usc.edu/scientific-misconduct
https://engemannshc.usc.edu/counseling/
https://engemannshc.usc.edu/counseling/
https://engemannshc.usc.edu/counseling/
http://www.suicidepreventionlifeline.org/
http://www.suicidepreventionlifeline.org/
http://www.suicidepreventionlifeline.org/
https://engemannshc.usc.edu/rsvp/
https://engemannshc.usc.edu/rsvp/
https://engemannshc.usc.edu/rsvp/
https://equity.usc.edu/
http://titleix.usc.edu/
http://sarc.usc.edu/
http://sarc.usc.edu/
https://studentaffairs.usc.edu/bias-assessment-response-support/
https://studentaffairs.usc.edu/bias-assessment-response-support/
https://studentaffairs.usc.edu/bias-assessment-response-support/
http://dsp.usc.edu/
http://dsp.usc.edu/
http://dsp.usc.edu/
https://studentaffairs.usc.edu/ssa/

Syllabus for EE 599, Page 8

Assists students and families in resolving complex personal, financial, and academic issues adversely
affecting their success as a student.
Diversity at USC - (213) 740-2101
diversity.usc.edu
Information on events, programs and training, the Provost’s Diversity and Inclusion Council, Diversity
Liaisons for each academic school, chronology, participation, and various resources for students.

USC Emergency - UPC: (213) 740-4321, HSC: (323) 442-1000 – 24/7 on call
dps.usc.edu, emergency.usc.edu
Emergency assistance and avenue to report a crime. Latest updates regarding safety, including ways in
which instruction will be continued if an officially declared emergency makes travel to campus infeasible.

USC Department of Public Safety - UPC: (213) 740-6000, HSC: (323) 442-120 – 24/7 on call
dps.usc.edu
Non-emergency assistance or information.

https://diversity.usc.edu/
https://diversity.usc.edu/
https://diversity.usc.edu/
http://dps.usc.edu/
http://emergency.usc.edu/
http://dps.usc.edu/

Syllabus for EE 599, Page 9

Appendix – Sample materials from Relevant Literature
1. Hai Jin, Wenchao Wu, Xuanhua Shi, Ligang He, and Bing B. Zhou. "TurboDL: Improving CNN

Training on GPU with Fine-grained Multi-streaming Scheduling." IEEE Transactions on Computers
(2020).

2. Ta-yang Wang, Ajitesh Srivastava and Viktor K. Prasanna, “A Framework for Task Mapping onto
Heterogeneous Platforms.” IEEE HPEC 2020.

3. Yu Jung Lo, Samuel Williams, Brian Van Straalen, Terry J. Ligocki, Matthew J. Cordery, Nicholas J.
Wright, Mary W. Hall, and Leonid Oliker. "Roofline model toolkit: A practical tool for architectural
and program analysis." In International Workshop on Performance Modeling, Benchmarking and
Simulation of High Performance Computer Systems, pp. 129-148. Springer, Cham, 2014.

4. Zhi-Gang Liu, Paul N. Whatmough, and Matthew Mattina. "Systolic Tensor Array: An Efficient
Structured-Sparse GEMM Accelerator for Mobile CNN Inference." IEEE Computer Architecture
Letters 19, no. 1 (2020): 34-37.

5. Wonchan Lee, Manolis Papadakis, Elliott Slaughter, and Alex Aiken. "A constraint-based approach
to automatic data partitioning for distributed memory execution." In Proceedings of the
International Conference for High Performance Computing, Networking, Storage and Analysis, pp.
1-24. 2019.

6. Chen, Peng, Mohamed Wahib, Shinichiro Takizawa, Ryousei Takano, and Satoshi Matsuoka. "A
versatile software systolic execution model for GPU memory-bound kernels." In Proceedings of the
International Conference for High Performance Computing, Networking, Storage and Analysis, pp.
1-81. 2019.

7. Abdelrahman, Tarek S. "Cooperative Software-hardware Acceleration of K-means on a Tightly
Coupled CPU-FPGA System." ACM Transactions on Architecture and Code Optimization (TACO) 17.3
(2020): 1-24.

8. Kangas, Niko. "A Comparison of High-Level Synthesis and Traditional RTL in Software and FPGA
Design." (2020).

9. Kathail, Vinod. "Xilinx Vitis Unified Software Platform." The 2020 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays. 2020.

10. De Matteis, Tiziano, Johannes de Fine Licht, Jakub Beránek, and Torsten Hoefler. "Streaming
Message Interface: High-performance distributed memory programming on reconfigurable
hardware." In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, pp. 1-33. 2019.

11. Kastner, Ryan, Janarbek Matai, and Stephen Neuendorffer. "Parallel programming for FPGAs."
arXiv preprint arXiv:1805.03648 (2018).

12. de Assuncao MD, da Silva Veith A, Buyya R. Distributed data stream processing and edge
computing: A survey on resource elasticity and future directions. Journal of Network and Computer
Applications. 2018 Feb 1;103:1-7.

13. Alam, Md Imran, Manjusha Pandey, and Siddharth S. Rautaray. "A comprehensive survey on cloud
computing." International Journal of Information Technology and Computer Science 2.2 (2015): 68-
79.

14. Mittal, Sparsh, and Jeffrey S. Vetter. "A survey of CPU-GPU heterogeneous computing techniques."
ACM Computing Surveys (CSUR) 47.4 (2015): 1-35.

15. Portugal, Ivens, Paulo Alencar, and Donald Cowan. "A preliminary survey on domain-specific
languages for machine learning in big data." 2016 IEEE International Conference on Software
Science, Technology and Engineering (SWSTE). IEEE, 2016.

16. Kirsch, Christoph M., and Raja Sengupta. "The evolution of real-time programming." Handbook of
Real-Time and Embedded Systems (2006): 11-1.

17. Alpay, Aksel, and Vincent Heuveline. "SYCL beyond OpenCL: The architecture, current state and
future direction of hipSYCL." Proceedings of the International Workshop on OpenCL. 2020.

18. Panda, Preeti Ranjan, et al. "Data and memory optimization techniques for embedded systems."
ACM Transactions on Design Automation of Electronic Systems (TODAES) 6.2 (2001): 149-206.

19. Cross-Platform, F. P. G. A., and Application Developers. "Simplify Software Integration for FPGA
Accelerators with OPAE."

Syllabus for EE 599, Page 10

20. Demmel, Jim. "Communication avoiding algorithms." 2012 SC Companion: High Performance
Computing, Networking Storage and Analysis. IEEE, 2012.

21. Andoni, Alexandr, Clifford Stein, and Peilin Zhong. "Parallel approximate undirected shortest paths
via low hop emulators." Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of
Computing. 2020.

