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Abstract

Interactive manipulation of nanoparticles by mechanically pushing
them with the tip of an Atomic Force Microscope (AFM) is now per-
formed routinely at many laboratories around the world. However, a
human in the loop introduces significant inaccuracies and results in
a very slow process, mostly because of the need to locate the parti-
cles before and after the manipulation operations in the presence of
large spatial uncertainties, which are often comparable to the size
of the particles. In this paper we describe the nanomanipulation sys-
tems developed at USC’s Laboratory for Molecular Robotics during
the last decade, culminating in a fully automatic system that is ca-
pable of accurately positioning small nanoparticles, with diameters
of around 10 nm. This system uses software compensators for the
non-linearities inherent in the piezoelectric actuators used in most
AFMs. The planner and execution systems are described, as well as
the software architecture of the systems. Experimental results are pre-
sented that validate the approach and show that nanoparticle pat-
terns that would take hours to build interactively can now be built in
minutes. Automatic operation makes it possible to use manipulation
to construct much more complex nanostructures than those built in the
past.

KEY WORDS—nanorobotics, nanomanipulation, Atomic
Force Microscopy, nanoscale automation

1. Introduction

Scanning Probe Microscopes (SPMs) have provided a unique
window into the nanoworld since their invention in the mid
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1980s. They have remarkable imaging and measurement ca-
pabilities, which range from atomic-resolution topographical
(i.e. height) images of surfaces, to density-of-states images, to
the measurement of electrostatic, magnetic and bond-breaking
forces to name a few. SPMs can not only probe materials, but
also modify them at the nanoscale, and have been widely used
by the nanorobotics community for manipulating nanoparti-
cles, nanowires, nanotubes, and other objects that may serve
as building blocks for the bottom-up assembly of nanostruc-
tures.

Atomic manipulation was demonstrated soon after the in-
vention of the SPM. It can provide new insights into nanoscale
phenomena, but it does not seem very useful for building de-
vices and systems at the nanoscale. Typically, atomic manip-
ulation, performed in an Ultra High Vacuum (UHV) at tem-
peratures near 0 K, is too slow for engineering applications
since it relies on placing a single atom at a time to build a
nanostructure, and has difficulties ensuring that intermediate
constructions are stable.

The manipulation of nanoparticles or other objects with
dimensions comparable to those of large molecules, at room
temperature and in an ambient environment, is a more promis-
ing fabrication process. It is potentially useful for building pro-
totype devices, repairing structures fabricated by other means,
or constructing molds or templates for other nanofabrication
processes such as nanoimprinting or templated self-assembly.
The Atomic Force Microscope (AFM), which is a specific type
of SPM, is normally the “robot” of choice for nanomanipu-
lation, since it operates both on conductive or insulating sur-
faces, in air or in a liquid, and is relatively inexpensive. Build-
ing nanostructures by AFM manipulation compares favorably
with other techniques, such as electron-beam lithography, in
cost, repeatability, accuracy, and resolution. AFM robotics is
akin to classical macroscopic robotic manipulation, as used,
for example, in the automotive industries, but differs from it
because the minute spatial dimensions at which the AFM op-
erates have strong scaling implications. The dominant phys-
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ical phenomena are different, and require new strategies and
approaches.

Today, most software systems for AFM nanomanipulation
are interactive. This is sometimes advantageous, for example,
for exploratory investigations. However, interactive operation
is very slow and labor-intensive for nanostructure fabrication.
Automation is obviously desirable, but it has been elusive until
recently.

We describe below, in Section 2, an interactive system de-
veloped at USC’s Laboratory for Molecular Robotics (LMR).
This serves to introduce the major problems that lie on the path
to automation. The remainder of the paper is devoted to the
automatic planning and execution system designed and imple-
mented at the LMR. The planner is described in Section 3.
Next, the execution system, which compensates for the spatial
uncertainties inherent in AFM operation, is introduced in Sec-
tion 4. Section 5 discusses the software architectures of our
implementations. The results are presented in Section 6, and
conclusions are drawn in the final section. More detailed in-
troductions to AFM manipulation and surveys of the research
in the field are available in Requicha (2003, 2008).

Before we embark on a discussion of AFM-based nanoma-
nipulation, which is the topic of this paper, it is worth noting
that there are alternative approaches to nanomanipulation. The
AFM is essentially a three-degree-of-freedom micromanipu-
lator with a very sharp tip (with an apex radius on the order
of a few nanometers) as an end-effector. It can be replaced by
other micromanipulators, which, for example, may provide ad-
ditional degrees of freedom. The increased flexibility afforded
by these degrees of freedom seems to have limited applicabil-
ity for the manipulation of spherical nanoparticles, but may be
important for other tasks.

The AFM serves both as a (tactile or force) sensor and as
an actuator, but it is usually difficult or impossible to use it
as both simultaneously. Thus, manipulation is normally car-
ried out “blind”. Visual feedback is obviously desirable and
can be achieved by placing the AFM (or an alternative micro-
manipulator) in the chamber of an Electron Microscope (EM).
This approach was pioneered by Sato’s group in Japan for mi-
croscopic objects (Sato et al. 1995� Miyazaki and Sato 1997),
and has been used successfully by several others (see, e.g., Yu
et al. (1999), Guthold et al. (2000), Dong et al. (2001), and
Fatikow et al. (2006)). Working inside an EM is not without
drawbacks: EMs are expensive instruments, they are less pre-
cise than AFMs, they require more elaborate sample prepa-
ration, and they normally operate in a vacuum environment,
which limits their applicability, for example, in biology.

In addition to the “mechanical” manipulation methods
mentioned above, there are other approaches as well, such
as optical traps, magnetic methods and dielectrophoresis. We
consider all these alternative approaches beyond the scope
of this paper, and focus on nanomanipulation by pushing
nanoparticles on a substrate surface with the tip of an AFM.

2. Interactive Manipulation

A typical approach to nanoparticle manipulation with the AFM
proceeds in three steps. First, we image the sample (or part
thereof) to find where the particle is. Second, we move the tip
of the AFM against the particle along a trajectory that passes
near its center, and change the AFM parameters from their
imaging values so as to increase the force applied to the par-
ticle, thereby pushing it. Third, we re-image to see where the
particle ended out. At the LMR, we have for the past decade
been successfully using a protocol in which the two imaging
steps above are done in dynamic force (i.e. “tapping”) mode,
and pushing is accomplished simply by turning off the z feed-
back. Without active feedback the tip moves horizontally and
runs into the particle, mechanically pushing it.

The imaging steps are needed because there are spatial un-
certainties associated both with the imaging and the manipu-
lation processes. If we image the sample and find a particle at
some position (x, y), and then instruct the AFM to move to that
position, most of the time we will not find the particle there.
With fixed voltages applied to the piezoelectric actuators used
by most AFMs, the tip keeps moving continually with respect
to the sample, as a result of the thermal drift that is caused
by slight fluctuations of temperature in a system composed of
several materials with different coefficients of expansion. A
full AFM image, typically 256� 256 pixels scanned at a 1 Hz
frequency, takes several minutes to acquire. During that time,
the tip may drift on the order of 10 nm or more. The diam-
eters of the particles we normally manipulate are 5–15 nm.
Therefore, ignoring drift would result in completely missing a
particle, and we need to search for the particle before pushing
it: hence, the first step above. In the LMR’s interactive system
we draw a straight-line segment on the image of the sample to
command the AFM to scan along that line. By drawing several
lines on the image near the approximate location of a particle
and examining the resulting single-line scans, it is easy to es-
timate the actual position of the particle’s center. Immediately
pushing in the center’s direction, without waiting for the drift
to become appreciable, normally produces the desired result.
The video in Extension 1 illustrates this process. A user moves
a red line, maintaining it parallel to itself and parallel to the
desired motion direction, near the estimated position of a par-
ticle, so as to find a scan with the maximum particle height,
which corresponds to the particle center. Then the user sets
two points along the scan line for turning the feedback off and
on, and instructs the AFM to execute the push command.

Drift is not the only cause of spatial uncertainty in an AFM.
Creep and hysteresis also have non-negligible effects and must
be taken into consideration when moving small nanoparti-
cles. The creep effects are significant when a relatively large
displacement of the tip takes place. The tip initially moves
quickly to a value near the intended one, but then starts mov-
ing slowly and approaches the final position approximately
along the tail of an exponential function, taking sometimes
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Fig. 1. Reliability plot, showing (on the y-axis) the actual dis-
tances traveled by 15 nm Au nanoparticles as a function of
the commanded pushing distances (on the x-axis). The dashed
line corresponds to the ideal operation, when actual and com-
manded distances are equal. c� 2007 IEEE.

several minutes to reach a final value. Waiting for the creep
to end slows down the manipulation process in an unaccept-
able manner. Not waiting can cause errors on the order of tens
of nanometers.

Hysteresis is another cause of spatial uncertainty. For exam-
ple, scanning a particle along the same line in the forward and
backward directions can produce images that differ by more
than the diameter of the particles we normally manipulate.

Drift, creep and hysteresis are successfully combated in the
interactive procedure outlined above and shown in the video in
Extension 1. While searching for the particle, we always scan
in the same direction, and move the probing line only slightly.
This helps to minimize hysteresis and creep. Once we find the
center of the particle, we push it immediately, so that drift does
not have time to grow significantly. Note that unidirectional
motion to combat hysteresis is needed only in the interactive
system discussed in this section. The automated system de-
scribed in the following sections compensates for drift, creep
and hysteresis and does not suffer from the limitations of our
interactive approach.

Why is the third step above needed? Figure 1 shows typi-
cal results of pushing 15 nm particles with our usual protocol.
The horizontal axis is the commanded push distance, and the
vertical axis is the distance actually traveled. It is clear that
commanded and actual distances are substantially the same for
motions below a few tens of nanometers, but the process per-
formance deteriorates for larger motions, on the order of 100
nm or more. Therefore, we have no guarantee that the manipu-
lation has the desired result, especially for larger motions, and
must search for the particle again after each push.

All of these search and correction operations are very time
consuming, especially the corrections that are needed when the
desired result is not achieved in one push. It can take a whole

day for a skilled operator to build a typical pattern of some
20 nanoparticles of small diameter (10 nm or so). The spatial
uncertainties discussed here pose a significant challenge for
efforts aimed at automating the nanomanipulation process. As
we will see below, one must compensate for the effects of these
non-linearities to be able to operate without a user in the loop.

3. Planning

The planning problem for automatic manipulation of nanopar-
ticles may be stated as follows: given an initial configuration of
nanoparticles on a surface (usually a random dispersion), and
a goal configuration, find a sequence of positioning and push-
ing trajectories that, when executed by the tip, will convert the
initial configuration into the final one. We solve this problem
in several steps, discussed in the following subsections.

3.1. Matching

We begin by deciding which particle in the initial confi-
guration should be moved into each target location in the goal
state. We want to ensure that the total distance traveled by the
tip during the pushing motions is as small as possible. This is a
known problem, called in the literature the bipartite matching
problem. We solve it by using the Hungarian algorithm, which
is optimal (Kuhn 1955� Munkres 1957). We consider only di-
rect, straight-line paths between the initial and final positions
of the particles, and use the lengths of these paths as the dis-
tances required by the Hungarian algorithm.

The matching step is illustrated in Figure 2. The filled
green (gray in the printed version of the article) circles in Fig-
ure 2(a) are the particles in their initial, random positions, and
the crosses denote the goal configuration. The Hungarian al-
gorithm produces the assignments shown in Figure 2(b). The
particles to be moved appear as blue (black in the printed ver-
sion of the article) disks, connected to the target positions by
the line segments, which correspond to the paths that the par-
ticles should follow during the pushing operations.

3.2. Sequencing

The set of pushing paths calculated in the previous (matching)
planner step does not suffice to accomplish our goal. Paths are
also needed to move the tip between the end of a push and the
start of the next one. This is also a form of bipartite matching,
but it is constrained, and does not appear to have been studied
in the literature. We solve it by a simple greedy algorithm. We
start with an arbitrary target location and find the particle to
be moved (blue disk) that is closest to that location. We con-
tinue the same procedure until all positioning paths have been
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Fig. 2. (a) Initial, random configuration of particles on a substrate surface (disks), plus goal configuration (crosses). (b) Matching
obtained by the Hungarian algorithm, which ensures minimal total path length.

Fig. 3. (a) Positioning motions computed by the greedy algorithm (red lines) combined with pushing motions produced by
the Hungarian algorithm (blue lines). (b) Results of the simulated execution of the operations shown in (a) (plus clearing of
extraneous particles: see the text).

computed. This algorithm is sub-optimal but in practice it pro-
duces good results. We tried to improve the process by using
the greedy algorithm as a first step, and then running an opti-
mization algorithm with the results of the greedy computation
as initial conditions. We tried simulated annealing, genetic al-
gorithms and ant-colony optimization and obtained only small
improvements with significant increases in computation time.
Therefore, we decided that the improvements were not worth
pursuing in our research.

Figure 3(a) shows the results of the greedy algorithm for
the example of Figure 2. The red line segments between target

locations and blue particles (black disks in the printed version
of the article) are the positioning paths. Combining the set of
positioning paths, which is the output of the greedy algorithm,
with the set of pushing paths found by the matching algorithm,
generates a continuous path for the tip, visiting all the target
positions and corresponding particles. Executing the sequence
of pushing and positioning commands thus obtained produces
the goal pattern shown in Figure 3(b) (see the discussion below
for caveats).
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Fig. 4. Handling collisions between particles.

3.3. Simulated Execution and Collision Handling

The example of Figures 2 and 3 is very simple. Executing the
prescribed sequence of commands does not cause any colli-
sions. However, in a general case, collisions between particles
may arise. The planner handles collisions by exploiting the fact
that all particles are assumed to be identical. It simulates the
sequence of operations previously computed, at each step up-
dating the state of the particle arrangement. If a collision is
detected, it swaps operations as shown in Figure 4. Suppose
that in the operation sequence the blue (black) particle is to be
moved from its initial position 1 to target position 1’, and later
on the green (gray) particle is to be moved from 2 to 2’. The
planner can either move the green (gray) particle from 2 to 2’
first or, alternatively, move the green (gray) particle from 2 to
1’, followed by moving the blue (black) one from 1 to 2 and
then to 2’. Both approaches work, provided that they are ap-
plied recursively, because solving one collision problem may
generate new ones. The modified path after collision handling
is the final output of the planner, and is passed on to the exe-
cution system.

3.4. Refinements

3.4.1. Extraneous Particles

Executing only the sequence of commands shown in Fig-
ure 3(a) does not produce the configuration shown on the right
panel of the figure. It places all the required particles on their
target locations, but it leaves a dozen or so (green/gray) parti-
cles in the middle of the pattern. This is usually undesirable. In
this example we simply cleared out these extraneous particles
manually, but the planner can do it automatically as follows.

First, a region of interest is specified. This can be done in-
teractively by a user, or automatically by the system, simply
by computing a rectangle that is slightly larger than the de-
sired pattern. After running the matching algorithm, several
unmatched particles are left inside the region of interest. For
each of these, we project its position onto the closest side of the
enclosing rectangle. This becomes a new target position, and is
added to the goal configuration. When this is done for all of the
extraneous (i.e. unmatched) particles, we have a new matching
problem. We again run the Hungarian algorithm, now with all

of the initial and added targets and all of the particles, extrane-
ous or not, which are within the enclosing rectangle.

Some of the particles that were initially considered extra-
neous may now become part of the pattern and vice versa. The
Hungarian algorithm ensures that the overall match is optimal.
However, moving extraneous particles out to the enclosing rec-
tangle is a heuristic that is reasonable but not optimal, and con-
sequently we can no longer claim optimality for the process of
selecting the pattern-building pushing paths.

3.4.2. Static Obstacles

Thus far we have assumed that the only obstacles present in the
manipulation area are the particles themselves. However, arbi-
trary fixed obstacles can be accommodated as follows. Firstly
we approximate the obstacles by polygons. Given a set of poly-
gons in the plane and the set of initial and final particle posi-
tions, we compute a collision-free path between every particle
and every target position. We do this by using the visibility
algorithm (Latombe 1991), which is optimal. This computa-
tion provides a set of minimal-distance, polygonal-line paths
and associated distances. These can be used instead of direct,
straight-line distances between the particles and targets in the
Hungarian algorithm. The remainder of the planning proce-
dure remains the same. Of course, computing the distances by
path-planning techniques is considerably more expensive than
just using direct, straight-line Euclidean distances between the
points in the plane.

4. Execution

The output of the planner is a sequence of primitive position-
ing and pushing operations, which are (possibly piecewise)
straight-line motions, with associated switching of the z feed-
back off and on for the pushing primitives. Unfortunately, exe-
cuting these primitive operations is not trivial. As we have seen
in Section 2, there are uncertainties associated with the ini-
tial positions of the various particles and also with their post-
manipulation positions. These uncertainties are so large that
the naïve execution of a manipulation plan without the com-
pensations discussed below almost always fails to achieve the
desired goal state.

4.1. Drift Compensation

A decade of experimental work at the LMR has shown that
thermal drift in the x–y plane of the sample is a slow-varying
translation, and that the two principal directions can be treated
independently. Therefore, the effect of the drift is equivalent
to a continuous change of origin for the x–y coordinate sys-
tem, which can be implemented by adding suitably computed

 at UNIV OF SOUTHERN CALIFORNIA on March 26, 2009 http://ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com


Requicha et al. / Algorithms and Software for Nanomanipulation with Atomic Force Microscopes 517

offsets to the x and y coordinates immediately before every
motion is executed. Because the drift varies slowly and the
motions do not take much time, it is acceptable to keep the
offsets constant during the execution of a primitive operation.

We have built a drift compensator based on Kalman filter
principles. Details are given in Mokaberi and Requicha (2006).
Here we summarize the process. The Kalman filter has a sim-
plistic model of the drift, which it uses to predict the drift value
at any instant in time. As the model is not accurate, the error
between the predicted and real values increases with time. The
filter provides standard means for estimating the magnitude of
this error, by computing its covariance. When the covariance
increases beyond a specified threshold, the manipulation op-
erations are suspended and a drift measurement is scheduled.
The results of the measurement are combined with the previ-
ous estimates according to the usual Kalman filter equations,
and the process continues.

The drift is measured by tracking features in a small win-
dow, typically 64�64 pixels, which can be specified by a user
or automatically computed by the system. The translation that
takes place between two instants of time is computed by one
of the two following techniques. The first technique involves
taking two images of the small tracking window, correlating
them and using the largest peak of the correlation to estimate
the displacement value. This correlation technique is largely
independent of the type of sample being processed. The sec-
ond method is specific to samples containing approximately
spherical nanoparticles. It consists of determining the center
of a specified particle at the two instants of time being consid-
ered, by executing a few single-line scans. These can be along
parallel lines, as discussed in Section 2, or using a “butterfly”
search, in which we first scan along the x direction, find the
x value that corresponds to the maximum value of the height
image of a particle, then scan vertically at that x value to find
the y value that corresponds to the maximum value of the par-
ticle image, then scan horizontally again at that y value, and so
forth. A couple of iterations usually provide a good estimate
of a particle’s center. In either case, knowledge of the time in-
terval and the corresponding displacement gives us the drift
velocity needed for the drift estimation. Note that both tech-
niques need a reasonably good estimate of where the tracked
features are, or they will be missed entirely and the process will
fail. We ensure that a good initial position estimate is available
by using the predicted drift values computed by the Kalman
filter to update the tracking window and associated feature po-
sitions before performing a drift measurement.

Measuring drift requires motion of the tip, and therefore
cannot be executed during a primitive manipulation operation.
The sequence of positioning and pushing motions must be in-
terrupted for a measurement to take place. Our experience in-
dicates that one can perform manipulation operations for sev-
eral minutes just on the basis of the drift predicted by the filter.
Drift measurements are not needed very frequently. This is an
advantage of this approach, because predictions are computed

in fractions of a second, whereas measurements require mo-
tions of the tip, and typically take tens of seconds.

The videos in Extensions 2 and 3 show the effectiveness
of our approach. Both videos depict the evolution in time of a
small window within a full-size AFM image (the large window
image is not updated as time evolves). The objects shown in the
videos are 15 nm Au particles on a mica surface coated with
poly-L-lysine. The duration of the experiment is 45 minutes,
in both cases. In Extension 2 there is no drift compensation.
At the end of the 45 minute video, several of the particles have
moved out of the tracking window and the drift is large. On
the other hand, the video in Extension 3 was recorded with
the drift compensator on. Although the compensation is not
perfect and a small jitter is observable, the improvement over
the non-compensated case is dramatic.

4.2. Creep and Hysteresis Compensation

Drift compensation may suffice for effective nanomanipula-
tion with the latest, top-of-the-line AFMs, which have x–y sen-
sors and feedback loops with sufficiently low noise levels, be-
low approximately 1 nm. None of these, however, are able to
compensate for drift, to the best of our knowledge, because the
sensors do not directly measure the position of the tip relative
to the sample. Furthermore, most of the AFMs in use today ei-
ther have no x–y sensors, or their feedback loops are too noisy
for successful manipulation of small (around 10 nm) nanopar-
ticles. For example, the AutoProbe (Veeco) instruments we
normally use for manipulation at the LMR have x–y sensors,
but we prefer to use them in open loop mode when scanning
small areas because of the high level of noise introduced by
the feedback. Because of resolution issues, small-area scans
are needed when manipulating small particles. For example, a
typical 1 �m � 1 �m scan with 256 � 256 pixels has a pixel
size of around 4 nm, which is not small enough for the precise
manipulation of particles with diameters of 10 or 15 nm such
as those shown in the examples in this paper.

We built a feedforward controller that compensates for the
joint effects of creep and hysteresis. Details appear in Mok-
aberi and Requicha (2008), and here we focus on the basic
principles. The fundamental idea is very simple. We construct
a model of the creep and hysteresis phenomena that is char-
acterized by the input/output relation O � f �I �, where f is
a non-linear function. Then we invert this function and imple-
ment f �1 in software. When we want to move the tip by an
amount that would correspond to a voltage X if creep and hys-
teresis did not exist, we first pass X through the inverse model,
and then apply f �1�X� to the piezo motors. This approach is
open-loop and relies on having a faithful and invertible model.

We construct a joint model of creep and hysteresis by us-
ing a Prandtl–Ishlinskii operator, which is guaranteed to be in-
vertible (Mokaberi and Requicha 2008). The creep is approxi-
mated by a linear term plus a superposition of exponentially
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Fig. 5. Input–output characteristic of a play operator used to
model hysteresis.

decaying terms, with different time constants. Hysteresis is
modeled by a superposition of play operators. A play oper-
ator has the input–output characteristic shown in Figure 5. It
is essentially a simple hysteresis loop with a threshold r. The
hysteresis model is a linear combination of several of these
operators, with different thresholds. The piezo extension is the
sum of the values of creep and hysteresis, and can be expressed
in terms of a Prandtl–Ishlinskii operator. The combined model
depends on several parameters, which can be estimated by an-
alyzing the AFM topography signal for a line scan. The line
should span the entire region in which the manipulations will
take place and cross several particles to ensure that the parame-
ters are valid for motions within the selected scanning window.

The videos in Extensions 4 and 5 show that the compen-
sation scheme is effective. Both were obtained by executing
a 1 �m motion, followed by scanning back and forth several
times along a 400 nm line that crosses two 15 nm Au parti-
cles. In Extension 4 the creep and hysteresis compensator is
off, whereas in Extension 5 it is on. There is a marked im-
provement in performance: the traces that correspond to the
various scans are nearly coincident when the compensator is
on. Quantitative tests show that there is a one order of magni-
tude improvement when using the compensator.

The compensated system does not suffer from the limita-
tions of the interactive approach of Section 2. For example,
unidirectional motion to combat hysteresis is no longer neces-
sary.

4.3. Manipulation with Feedback

Combining the two compensators described in the previous
subsections produces a software-compensated AFM that is ca-
pable of reliably moving between any two specified points.
However, this is not sufficient to successfully accomplish ma-
nipulation operations because the manipulation itself is unreli-
able for large displacements, as we have seen in Section 2 and
Figure 1. Therefore, we break down any long pushing trajec-
tory into smaller segments, currently around 30 nm long� see
Figure 6. On the top of the figure is the desired task, pushing
a particle along a path about 60 nm long. We break it into two

Fig. 6. Breaking a long path into two short paths, and center-
finding before each motion. The first push was somewhat in-
accurate, stopping above the correct trajectory. The particle’s
measured center coordinates are used to update the second path
segment.

successive paths of approximate length 30 nm. Before start-
ing the push we measure the center of the particle by using
the center-finding procedure described earlier. At the end of
the first push we again run the center-finding routine, because
the first move may have been slightly inaccurate. Small er-
rors will still let us find the particle, and then the center can
be found accurately. (With a large error the procedure would
fail, or perhaps find the center of a different particle.) With the
new center coordinates we update the trajectory for the second
operation, and then execute the push. We emphasize that all of
this happens automatically, under program control and without
user intervention.

The technique just described uses feedback from a previous
push to correct the path for the following push. However, this is
not true real-time feedback, because the AFM cannot be push-
ing and center-finding simultaneously. In principle, it is pos-
sible to use real-time feedback by exploiting the behavior of
some of the signals that can be acquired by the AFM. We have
shown that with the LMR protocol the oscillation amplitude
used in the tapping mode decreases to zero during a successful
push, while at the same time the d.c. (average) deflection of
the cantilever increases up to a certain threshold (Baur et al.
1998). Monitoring these two signals would give us useful in-
formation to determine if the manipulation is proceeding nor-
mally. Unfortunately, to measure amplitude or deflection and
act upon the measured values while the tip is moving requires
substantial changes to the inner loops of the controller, and this
is usually impossible for the user of a commercial instrument.

5. Software Implementation

The LMR nanomanipulation systems have been implemented,
since the lab’s beginnings in 1994, on AutoProbe AFMs (Park
Scientific Instruments, then Thermomicroscopes, now Veeco).
In the mid 1990s, the AutoProbe was the AFM that offered the
most convenient programming interface. Even today, its Appli-
cation Programming Interface (API) is perhaps the most pow-
erful on the market, although it may be somewhat intimidat-
ing for users who are not computer scientists. We have devel-
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Fig. 7. Block diagram of PyPCS system.

oped two software systems for manipulation based on the Au-
toProbe API: the first is called Probe Control Software (PCS)
and the second Python PCS (PyPCS). We describe them briefly
in the following subsections.

5.1. PCS

The AutProbe API is a 16-bit library running under the Win-
dows operating system. Its operation is best explained by a typ-
ical example. Suppose that we want to move the tip in a straight
line to perform a single-line scan. Assuming that the API has
been initialized and the required parameter values have been
set, the single-line scan is initiated by calling a specific API
routine. These API calls are non-blocking: the API immedi-
ately returns control to the calling program, and provides it
with a job ID. The API internally maintains its own first-in,
first-out job queue. When the request for a single-line scan is
received, the job is enqueued. Execution does not take place
until the job reaches the beginning of the queue. Then a JOB
START message with the job ID is sent through the Windows
messaging system. When the job finishes, a JOB END mes-
sage is generated. It is the calling program’s responsibility to
process these messages, and retrieve the output data, if any,
generated by the procedure call. (The calling program also
needs to poll the job queue because sometimes there are race
conditions that interfere with the messaging process just de-
scribed.)

We built the interactive system described in Section 2 by
extending the API. Most of the images that have appeared in
LMR papers over the last decade have been generated with
this interactive system. The execution system discussed in Sec-
tion 4, including the drift, creep and hysteresis compensators,

was also implemented as a 16-bit extension to the API, and
used to produce the results presented below, in Section 6. We
refer to this system as PCS. The high-level planner of Section 3
has not been implemented in PCS and it is not seamlessly inte-
grated with it. It must be run separately and its output provided
to PCS.

PCS has served us well but it has major drawbacks: its
event-driven, Windows-based, 16-bit architecture makes soft-
ware development very inconvenient, and forces us to write for
the PC platform. These are serious problems, because research
software is continually evolving, and flexibility and ease of
development are very important attributes of a good research
tool. To facilitate further software development, we embarked
on a complete reimplementation, which is described in the next
section.

5.2. PyPCS

The new implementation is PyPCS. It has a client–server archi-
tecture, with a server written in C++ for the Windows 16-bit ar-
chitecture, and a client written in Python. The server must run
in the PC that controls the AFM and is built on top of the API.
The client can run in any machine that supports Python and
is connected to the server by Ethernet. Client–server commu-
nication uses standard interprocess communication primitives.
Python is a very convenient language for the rapid develop-
ment of research software. For example, new procedures may
be incorporated and tested without recompiling and linking the
system.

Figure 7 is a block diagram of the system. The server is a
thin wrapper around the API. Because of the API architecture,
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Fig. 8. (a) Initial configuration of 15 nm Au particles on a mica surface coated with poly-L-lysine, and pushing and positioning
paths computed by the planner. The crossed particles are extraneous and were removed by interactive manipulation. (b) The
resulting array. c� 2007 IEEE.

briefly described above, the server must listen to the Windows
queue, and poll the API internal queue as well. The server must
also decode requests from the client, and encode and package
data that become available for transmission to the client. All
the data going back and forth between the client and server are
encoded into standard XML (Extensible Markup Language).

The client consists of a Graphical User Interface (GUI),
a manager that implements control module logic, and two
threads, one for issuing server requests, the other for process-
ing responses. We have implemented control modules that re-
produce and extend the functionality of most of the original
PCS. For example, there are modules for executing single-line
and rectangular scans, finding particle centers, pushing parti-
cles, and so on. These modules can be composed: for example,
the center-finding module uses the single-line scan module.

A brief (and slightly simplified) example will serve to il-
lustrate the basic functioning of PyPCS. Let us consider again
a single-line scan. The process begins on the client side with
a call to a single-line scan module. This control module, in
turn, invokes the corresponding client-side remote procedure
call stub for the server interface. The thread in which the mod-
ule is running blocks and waits for the data requested from the
server. The stub packages the request for transmission to the
server using a protocol built on top of XML Remote Proce-
dure Call (XML-RPC) (Winer 2003).

The server receives the request, unpackages it, and calls
the appropriate API function. It then listens for messages on
the Windows message queue and also polls the API. Eventu-
ally the requested job is executed and the data are acquired by
the server, which packages them using XML-RPC and sends
the information back to the client. The data are decoded on
the client side and made available to the single-line scan mod-

ule, which unblocks, terminates execution and returns the scan
data.

This example shows that PyPCS supports a simple, impera-
tive programming style, and hides the complexities of the API
event-driven 16-bit architecture, as well as the DSP (digital
signal processor) details.

PyPCS reproduces the functionality of the interactive part
of the original PCS and is much more convenient and extensi-
ble. It is also integrated with the high-level planner, which is
written primarily in Python.

However, we have found serious problems in implementing
in PyPCS the compensators described in Section 4, and orig-
inally implemented in PCS. There are timing issues that we
have not been able to resolve, and our current view is that the
compensators need to be implemented on the server side. We
have not yet done this.

6. Results

Figure 8(a) shows an initial, random dispersion of Au nanopar-
ticles with diameters of 15 nm, on a mica surface coated with
poly-L-lysine. The planner-computed paths are also shown.
Figure 8(b) is the nanoparticle pattern, a uniform array, which
results from executing in PCS the paths shown in Figure 8(a).

The video in Extension 6 depicts a construction task for
a triangular structure, starting from a random configuration of
15 nm Au particles. Firstly, a small window is selected for drift
measurements. The Kalman filter runs for a few minutes un-
til the covariance of the error is small. The pushing operations
are then started. The video shows the paths taken by the tip su-
perposed on the initial particle configuration. Several center-
finding “butterfly searches” are evident. Note that we do not
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have real-time images of the results of the pushing operations,
because this would require interrupting the manipulation for
a significant amount of time. After all of the manipulation is
done, we image the result, showing the desired triangular pat-
tern.

7. Conclusion and Outlook

The automated nanomanipulation system described in this pa-
per is capable of building structures such as those shown in
Figure 8 and Extension 6 in a matter of minutes, whereas the
interactive systems of the past would require several hours of
a skilled operator to construct similar, but usually less accu-
rate, patterns. Structures of unprecedented complexity, made
of nanoparticles with sizes on the order of a few nanometers,
can now be conveniently built by AFM nanomanipulation. The
full impact of this new capability is yet to be explored.

The manipulation speed in our experiments is on the or-
der of 1 �m s�1, which is comparable to the imaging speed
we normally use. The scanning speed of modern AFMs can
be considerably higher than these values. A higher scanning
speed might enable faster manipulation, but, as far as we know,
high-speed manipulation of nanoparticles with diameters of
around 10 nm has yet to be demonstrated. Extending our re-
sults to higher manipulation speeds is a worthwhile goal for
further work.

We showed that it is possible to compensate in software for
the non-linearities of the AFM drives. This is important not
only for manipulation but also for AFM-based nanolithogra-
phy, if accuracies on the order of the nanometer are desired.

Programmability of AFM software systems is essential for
the work reported here, and, more generally, for many inno-
vative applications of AFMs. Yet, commercial systems tend
to have very limited programmability, often aimed at giving
end-users, who are not computer scientists, a few useful ca-
pabilities. We contend that the ability to program and modify
just about any piece of the AFM control software is highly de-
sirable, and that these capabilities should be directed towards
teams such as ours that include computer scientists, control en-
gineers, and the natural scientists who are the main end-users.
Current AFMs are very sophisticated pieces of hardware, but
tend to have relatively primitive control schemes and software.
Building a generic, highly programmable and extensible AFM
controller would be a very worthwhile effort that would enable
research on novel control and software systems to support new
applications.
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Appendix: Index to Multimedia Extensions

The multimedia extension page is found at http://www.ijrr.org

Extension Type Description

1 Video Interactive pushing with PCS

2 Video Drift in a small window without com-
pensation

3 Video Drift-compensated image of small
window

4 Video Back and forth single-line scans
without creep and hysteresis com-
pensation

5 Video Creep and hysteresis compensated
single-line scans

6 Video Automatic construction of a triangu-
lar nanostructure
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