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Abstract—Nanomanipulation with Atomic Force Microscopes 

(AFMs) for nanoparticles with overall sizes on the order of 10 nm 
has been hampered in the past by the large spatial uncertainties 
encountered in tip positioning. This paper addresses the compen-
sation of nonlinear effects of creep and hysteresis on the piezo 
scanners which drive most AFMs. Creep and hysteresis are mod-
eled as the superposition of fundamental operators, and their 
inverse model is obtained by using the inversion properties of the 
Prandtl-Ishlinskii operator.  Identification of the parameters in 
the forward model is achieved by a novel method that uses the 
topography of the sample and does not require position sensors. 
The identified parameters are used to compute the inverse model, 
which in turn serves to drive the AFM in an open-loop, feedfor-
ward scheme. Experimental results show that this approach ef-
fectively reduces the spatial uncertainties associated with creep 
and hysteresis, and supports automated, computer-controlled 
manipulation operations that otherwise would fail. 
 

Note to Practitioners—Manipulation at the nanoscale by using 
Atomic Force Microscopes (AFMs) as sensory robots is well es-
tablished in research laboratories, and has great potential as a 
process for prototyping nanodevices and systems, for repairing 
structures built by other means, and for small batch manufactur-
ing by using multi-tip arrays. However, precise (to ~ 1 nm, say) 
AFM nanomanipulation is currently very labor intensive, pri-
marily because of the uncertainty in the position of the AFM tip 
relative to the sample being manipulated. Positional errors are 
due to thermal drift and various nonlinearities exhibited by the 
piezoelectric scanners used by most AFMs. This paper describes 
a technique for compensating creep and hysteresis, which, after 
drift, are the major causes of spatial uncertainty in AFMs. The 
compensator introduced here has been tested experimentally and 
shown to reduce creep and hysteresis effects by more than an 
order of magnitude. The creep and hysteresis compensator in this 
paper, together with the drift compensation scheme discussed in 
an earlier paper by the authors, provide means to reduce spatial 
uncertainties to a level that enables automatic manipulation, 
without a user in the loop, and therefore promise to greatly in-
crease the throughput and accuracy of nanomanipulation opera-
tions. 

Index Terms—Atomic Force Microscopes; AFMs; automatic 
nanomanipulation; creep; hysteresis; nanolithography; nanoma-

nipulation; nanorobotics; nonlinearities; Scanning Probe Micro-
scopes; SPMs; spatial uncertainty. 
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I. INTRODUCTION 
ANOMANIPULATION with Atomic Force Microscopes 
(AFMs) is a relatively well established technology, 

which has been under development for over a decade—see 
e.g. [1], [2] and references therein. It has potential applica-
tions in device prototyping (for design validation, parameter 
optimization and sensitivity studies), repair of structures built 
by other means, building of templates such as stamps or 
molds, and for small batch fabrication by using multi-tip ar-
rays. Its primary drawback is its low throughput. This can be 
combatted by parallelism (using multi-tip arrays as noted 
above) and by automation, which bypasses the time-
consuming and labor-intensive interactive process that is typi-
cally used today to manipulate objects with overall dimen-
sions on the order of 10 nm or less.  
 There are many problems that arise in successfully automat-
ing nanomanipulation, ranging from sample preparation to 
real-time feedback. However, in our experience over the last 
decade we have found that the most pernicious of these are the 
spatial uncertainties associated with the motion of the AFM 
tip. The most fundamental robotic tasks, “Go to point A” and 
“Move in straight line from point A to point B”, typically have 
not been implemented with sufficient accuracy for automated 
operation. A user in the loop has been needed to find the posi-
tion of the tip relative to the particles or other objects being 
moved, to determine if a move was successful, and so on. This 
requires extensive imaging and is very time consuming. In 
addition, a user is normally forced to specify positions in pixel 
coordinates on the screen, and often this is not sufficiently 
accurate to ensure successful manipulation to the goal posi-
tion. 
 An AFM motion in the horizontal plane of the sample is 
commanded by applying voltages to the instrument’s piezo-
electric drive motors. In a traditional mobile robot, the odome-
try signal does not reliably measure the robot’s position. A 
similar situation arises in an AFM: the applied voltage signals 
are unreliable indicators of the tip’s position. The discrepan-
cies in the AFM case are due to drift, creep, hysteresis and 
other nonlinearities inherent in the piezos and overall system. 
In our experience, drift is the major cause of spatial errors for 
AFM operation in ambient air and at room temperature. Drift 
compensation was addressed in [3], [4]. Now we focus on 
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creep and hysteresis, which are the next major culprits. (We 
ignore other nonlinearities because vendors’ software and 
hardware usually compensate for them adequately.) Note that 
compensation must apply to “random”, arbitrary trajectories to 
be useful for nanomanipulation; compensation only for the 
forward and backward motions needed for scanning is insuffi-
cient. 

Several authors have studied the modeling and control of 
piezo actuators for accurate and fast positioning applications 
in Scanning Probe Microscopes (SPMs) [5]-[13]. For fast po-
sitioning, the higher vibrational modes of a piezo actuator are 
a crucial factor (typically at speeds above ~10 Hz). The vibra-
tional modes of a scanner are modeled with a linear system 
[5], [7] and an optimal inverse controller is designed for regu-
lating the desired output trajectory. In these cases an inverse 
feedforward controller is typically preferred over a feedback 
system due to the lack of positioning sensors or their low per-
formance at high scanning speeds [6], [7]. In contrast, in 
nanomanipulation applications the scanner typically works at 
low speeds, on the order of 1 µm/s, and frequencies under ~10 
Hz. Therefore the higher-frequency vibrational modes can be 
ignored, although the positioning accuracy is still substantially 
influenced by the creep and hysteresis effects.  

Different methods have been suggested for eliminating the 
effects of creep and hysteresis in piezo actuators. In [8] a 
charge-based controller is proposed, and in [9] a capacitor is 
added in series to the piezo actuator. These methods typically 
add more drift to the scanner and significantly reduce the 
course of piezo movement. In a recent work [10] these prob-
lems are addressed by utilizing a charge amplifier. Although 
these methods can be effective in reducing creep and hystere-
sis, they require modifications to the existing hardware.  

In [6] a cascade model for creep, hysteresis and vibrational 
dynamics of the piezo scanners is introduced, and the inverse 
dynamic is utilized to compensate for these effects in an open-
loop fashion. In this work each effect is identified separately 
using an optical sensor for each of the x and y directions. In 
[11] a systematic approach for designing an H∞ controller for 
high bandwidth and high resolution positioning of piezo stack 
actuators is adopted. This work exploits high precision LVDT 
(Linear Variable Differential Transformer) sensors and re-
duces the nonlinear effects to ~ 65 nm (0.14%).  

 While in many works such as [7], [11] a linear nominal 
model is assumed for the piezo actuator and the existing 
nonlinearities are dealt with as uncertainties, a wide range of 
research has approached hysteresis as a non-local memory 
effect (see II.B for the definition) and tried to parametrically 
model it [6], [12], [13], [17]-[19]. Hysteresis can be observed 
in such systems and materials as mechanical structures, ferro-
magnetic materials and piezoelectric ceramics. The two dis-
tinct characteristics of hysteresis, i.e., the memory effect and 
the occurrence of hysteresis loops, make it a genuinely nonlin-
ear phenomenon. In the early seventies a group of Russian 
scientists developed a new technique to model hysteresis 
based on a superposition of elementary hysteresis carriers 
called hysterons [14]. Since then, many mathematicians have 

contributed to the theory, and the important monographs of 
Mayergoyz [15] and Visintin [16] have appeared.  

The early research on the hysteresis of actuators is based on 
the Preisach model [17], [18]. It uses a fundamental Preisach 
operator and approximates the hysteresis of a system with a 
weighted sum of fundamental operators. This model is compu-
tationally expensive, and cannot be extended to account for 
creep in a straightforward manner for piezoelectric materials. 
A better approach is to consider both creep and hysteresis in a 
single model by using the Prandtl-Ishlinskii (PI) operator [19]. 
The idea here is again to employ a superposition of several 
fundamental operators, now called play operators. PI model-
ing is used in this paper because it has several advantages over 
its Preisach counterpart: it is better suited to piezoelectric ma-
terials, it is easily extended to include creep, and the PI opera-
tor has a unique inverse.  

The emphasis in this article is on the compensation of the 
spatial uncertainties associated with AFM creep and hysteresis 
for precise nanomanipulation. We introduce a new method for 
the identification of these effects using only information from 
the topography of a defined pattern on the surface—a 
nanoparticle pattern in our case. This method can be applied 
to the vast majority of AFM scanners in use today, where ei-
ther there are no lateral positioning sensors or the accuracy of 
the sensors is insufficient. Moreover, the identification 
method can be applied to the scanner regularly (to take into 
account aging or environmental changes of piezo scanner dy-
namics) without needing any additional hardware for sensing 
the scanner’s lateral movement. In essence, we use the SPM 
itself as its own lateral sensor, and we are limited primarily by 
the accuracy with which the SPM can measure features. This 
accuracy can be very high because SPMs can measure atomic 
and molecular features. The identified model is employed in 
an inverse-based feedforward compensator. Combining the 
creep and hysteresis compensator described here with the drift 
compensator introduced in [3], [4] yields a software-
compensated AFM platform for precise nanomanipulation. 

The remainder of the paper is organized as follows. Section 
II addresses the characteristics of the creep and hysteresis 
nonlinearities. In Section III, a nonlinear model is introduced, 
followed by a discussion of the inverse model and of an iden-
tification method. A topography-based estimation technique is 
presented in Section IV. The implementation and experimen-
tal results are described in Section V, and conclusions are 
drawn in the last section. 

II. CHARACTERISTICS OF PIEZO SCANNER’S NONLINEARITIES 

A. Creep 
When an abrupt change in voltage is applied to the scanner, 

the corresponding piezo dimensional change occurs in two 
stages: the first stage takes place in less than a millisecond, 
whereas the second one has a much longer time scale (see 
Figure 3.a). The second stage is known as creep. 

Figure 1 demonstrates the effect of creep. A voltage step 
corresponding to a 1,000 nm displacement was applied to the 
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scanner, and then successive images were recorded around the 
(nominal) end position. (All the nanoparticle images in this 
paper were obtained in tapping mode with a Veeco AutoProbe 
CP-R with a 5μm scanner; fast scanning was in the X direction 
and slow scanning in Y. The images are of gold nanoparticles, 
with a nominal diameter 15 nm, on a mica surface coated with 
poly-L-lysine.) The particles in the successive images appear 
to be moving, although in reality the particles are fixed rela-
tive to the substrate. The tip, however, is still moving slowly 
(“creeping”) after the 1,000 nm motion. An AFM image is 
built by assembling successive line scans, with each line being 
a plot of the height of the sample (typically measured by the 
voltage applied to the vertical piezo to keep the tip in contact 
with the sample) versus the voltage applied to the horizontal 
piezos. Therefore, when the tip is creeping the image appears 
to be moving. Creep effects can be noticeable for as much as 
20% of the total length of the motion, and can last several 
minutes. 

Quantitatively, the amount of creep can be expressed as the 
ratio of the second dimensional change to the first one. Typi-
cal values for the creep ratio are from 1% to 20%, and from 10 
to 100 seconds for the phenomenon’s time duration. In addi-
tion, the creep also manifests itself as a rate-dependent effect 

when the scanner is driven by triangular and other input wave-
forms rather than by a step function. 

B. Hysteresis 
Figure 2 illustrates the effect of hysteresis. A single line 

scan of a set of particles shows the particles in different posi-
tions, depending on whether the scan is in the forward or 
backward directions. Again, the effects can be large. In both 
Figure 1 and Figure 2 the motions occur within a few seconds 
and the effects of drift are negligible. Thus, even in a drift-
compensated AFM, creep and hysteresis cause spatial uncer-
tainties that are well beyond the threshold accuracy of a few 
nm that in our experiments we have found necessary for the 
successful manipulation of particles with sizes on the order of 
10 nm. 

Hysteresis in piezoelectric scanners is a non-local memory 
effect [15]. This means that the future values of the hysteresis 
output  for  depend not only on the current value of 
the output  but also on the past extremal values of the 
input signal as well, i.e., on the points at which the input 
changes from increasing to decreasing and vice versa. 
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Fig. 1.  (a) Successive images taken after a 1,000 nm step was applied to the 
scanner in the y direction. The scan size is 64x64 pixels, 100x100 nm, and 
the scanning speed 18 Hz. Due to the high speed scan the turnover effect of 
the tip appears as an artifact at the left side of the images. The horizontal 
“bands” in the image are an artifact of the flattening process used in imaging. 
(b) Changes in the y position of the particles for 180 sec. The observed rip-
ples in the curve are attributed to hysteresis because we alternately scan 
upward and downward in the slow scan Y direction.  
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Fig. 2.  Forward and backward traces over a set of 15 nm Au particles on 
mica. The length of the scan is 910 nm and the speed 2Hz. 
  

The amount of hysteresis in a piezoelectric scanner is de-
fined as the ratio of the maximum divergence between the 
ascending and descending curves to the maximum extension 
that a voltage can create in the scanner (see Figure 3.b). Hys-
teresis effects can be as high as 15% in piezoelectric scanners. 
In addition, because of creep, a rate dependent effect may be 
observed in the hysteresis loops. 

III.  MODELING OF SCANNER CREEP AND HYSTERESIS 

A. Forward Model   
Creep can be modeled as a linear combination of several 

fundamental creep operators plus a term proportional to the 
input, to account for sudden changes in the output, as in Fig-
ure 3.a. Each creep operator is defined as a linear first order 
system  

 )()()(1 tutxtx ii
i

=+
λ

 (1) 

with the poles located at 0<− iλ  for where  
represents the order of the creep model and  is the input 
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signal to the scanner. Thus, the discrete model of creep, as-
suming sampling period T , can be represented in the follow-
ing state-space form: 

   (2). 
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Here the xi denote the creep operator states and yC the out-
put. Hysteresis is modeled by using a similar idea, but with a 
nonlinear rate-independent fundamental operator called play 
operator. The input-output behavior of a play operator with a 
threshold value  is given by the hysteresis diagram de-
picted in Figure 4.a. 

0>r

To define the play operator mathematically we need to di-
vide the input trajectory into a set of monotone intervals (see 
Figure 4.b), where in each interval  (i=0,1,..N-1), 

is either monotonically increasing or decreasing. In Fig-
ure 4.a the top horizontal part of the loop corresponds to the 
value z

1+≤< ii ttt

)(tu

r(ti) when the input stops increasing and starts decreas-
ing. Similarly, the lower horizontal part corresponds to zr(ti) 
when the input stops decreasing and starts increasing. While u 
increases, zr(t) = max{zr(ti), u – r}, and while u decreases, we 

have zr(t) = min{zr(ti), u + r}. These two expressions can be 
combined to define the output of a play operator as 

0 2 4 6 8 10
-0.1
0   

0.1 
0.2 
0.3 
0.4 
5.0
5.1

5.2 
5.3 
5.4 

Time (sec)

 s
ca

nn
er

 e
xt

en
si

on
 ( μ

m
)

ΔY 

Ystep 
~~

0 2 4 6 8 10
-0.1
0   

0.1 
0.2 
0.3 
0.4 
5.0
5.1

5.2 
5.3 
5.4 

Time (sec)

 s
ca

nn
er

 e
xt

en
si

on
 ( μ

m
)

ΔY 

Ystep 
~~~~

 
(a) 

-30 -20 -10 0  10 20 30 
-40

-30

-20

-10

0  

10 

20 

30 

40 

scanner input (μm)

sc
an

ne
r 

ex
te

ns
io

n 
( μ

m
)

initial loading curve 

ΔY 

Ymax 

 
(b) 

Fig. 3.  (a) The creep effect observed from the scanner response to a 5.4 µm 
step function. (b) Hysteresis effect due to a triangular waveform. The scanner 
initially traverses a loading curve and after a few cycles it approaches a sta-
ble hysteresis loop. This initial behavior is observed every time the scanner 
takes a different starting point for a cyclic movement. These data were ac-
quired on a 100 µm scanner with a positioning sensor with RMS noise level 
of about 15 nm, which is not sufficient for accurate nanomanipulation. 
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(b) 
Fig. 4.  (a) Input-output behavior of a play operator with threshold r. (b) 
Dividing the input waveform into a set of monotone intervals.   

{ }{ } ).3(for      )(),(min,)(max)( 1+≤<+−= iiirr tttrtutzrtutz

In the discrete-time domain, the corresponding expression is 

 { }{ } ).4()(),1(min,)(max)( rkukzrkukz rr +−−=   
Alternatively, we can write: 
 

)1()()()1()(
).5()()()()1(

)()()()1(

−=⇒+<−<−
−=⇒−≤−
+=⇒+≥−

kzkzrkukzrku
rkukzrkukz
rkukzrkukz

rrr

rr

rr

 

 
The model approximates the behavior of the hysteresis in 

the piezo scanner by the superposition of a sufficiently large 
number of play operators: 
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where  is the order of the hysteresis model, and are 
the weights associated with the play operators. 
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By adding (2) and (6), the overall extension of the scanner 
can be defined as the sum of two terms, 
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The first term,  is a rate-dependent term which de-
pends on the past values of the input through the x

)]([ kuL

i terms in 
(2), and the second term, called a Prandtl-Ishlinskii (PI) opera-
tor, is a rate-independent term which depends on the current 
values of the input. 
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B. Inverse Model 
The hysteresis characteristics of the PI operator are com-

pletely defined by the so-called initial loading curve. It is a 
special branch traversed by  when driven by a 
monotonically increasing input with its state initialized to zero 
(i.e., ). The initial loading curve is defined through 

the weighting values  and the threshold values  as 
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In [19], [20] it is proved that the PI operator is piecewise 
continuous and invertible, and its inverse is also a PI operator 
expressed as 
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Hi

j

i

j
jj

i
i

Hji

i

j
jii

Ni
wawa

w
w

Nirrwrr

aa

,...,2,1     
))((

ˆ

,...,1,0   )()(ˆ

/1ˆ

1

1

1

0

=

++

−
=

=−==

=

∑ ∑

∑

=

−

=

=

ϕ  (10). 

In [19] it is also shown that for every continuous input sig-
nal, the PI operator is Liptschitz continuous and causally in-
vertible as long as the generator function )(rϕ  is monotically 
increasing (which is satisfied if  for i=1,2,…,N0,, >ii rwa H ). 
This means that, under the above condition, for every con-
tinuous function  there exist a unique input function  such 
that 

v u

   (11). )]([)( 1 kvPku I
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We always assume piecewise continuous functions for the 
output trajectory and use positive parameters that ensure that 

)(rϕ is monotonically increasing. Denote the desired output 
trajectory of the scanner by  and replace it in the left 

side of (7). We can rewrite (7) as 
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Fig. 5.  The piezo scanner can move in any of the 3 dimensions. The scan-
ner’s vertical extension is controlled by a separate circuitry, which keeps the 
tip at a fixed distance from the surface of the sample. The horizontal move-
ment of the piezo scanner is measured as the distance between the fixed 
coordinate system S on the scanner and the AFM’s tip. 
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To solve this equation for u we let  
       )]([)()( kuLkykv d −=                         (13) 

and apply the inverse PI operator (11) to v. Although v de-
pends on u, we can apply the previous equations recursively to 
find the input u that corresponds to the desired output yd. We 
proceed as follows. Given all the forward model parameters in 
(2) and (6)—see below how these parameter values are identi-
fied—we compute the inverse model parameters per (10). 
Next we compute xi(k) by using (2) and therefore obtain 
L[u](k). Observe that the expression for xi(k) in (2) uses only 
the previous values of the input, u(k-1), and these are avail-
able from the recursion. Subtraction from yd(k) yields v(k), per 
(13). Now we need to apply the inverse PI operator to v. To do 
this we compute the relevant zr(k) values by applying (4) with 
u replaced by v, and plug the results into (9). Per (11), the 
result is the u(k) that will produce the desired output when fed 
as input to the scanner. 

C. Estimation of Scanner’s Model Parameters 
Assume that there is a sample firmly attached to the scan-

ner, such that neither the sample nor the deposited material on 
the sample (nanoparticles, say) is sliding with respect to each 
other (Figure 5). For simplicity assume that the scanner moves 
horizontally in only one direction. The topography of the sam-
ple is measured with respect to a fixed coordinate system  
attached to the top of the scanner. If the extension of the scan-
ner is zero, the AFM’s tip always remains at a distance  
with respect to , assuming that the effect of drift has been 
eliminated. This argument is true even when the cantilever 
and the tip are oscillating vertically (for example, in tapping 
mode). 

S

0y
S

The scanner extends by yΔ when a voltage is applied to it, 
and the position of the tip with respect to the coordinate sys-
tem  is simply S yyy Δ+= 0 . (For simplicity of the equations 

yΔ  is assumed positive when the scanner extends to the left 
in Figure 5.) Along the line that is being scanned, the sample 
topography can be characterized by the function h(y), where h 
is the height of the sample. Note that the height h can be 
measured very accurately by the AFM, but the true extension 
y of the piezo is unknown; what is known is the input voltage 
u to the actuator. Estimation of the function  is discussed 
below, in Section IV, and involves finding the relationship 
between piezo extension and input voltage. For now, we as-
sume that h(.) is a known function. 

(.)h

The overall dynamics of the scanner can be represented by 
the following expression, 
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Here zm(k) denotes the height of the sample measured by the 
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AFM at time instant k. 
The identification parameters can be lumped together in the 

vector θ  as 

[ ] Hc
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There are  parameters to be identified. 222 ++ Hc NN
Since the model is highly nonlinear and may have numer-

ous local minima, we use a Recursive Least Square algorithm 
(RLS) with a covariance resetting scheme [21], [22]. The be-
havior of the system output is predicted based on the current 
estimates of the parameters. The predictor is simply the model 
in (14) using the current estimates of the parameters. We de-
note by the value of y computed by (14) using the pa-

rameter estimates . The predicted output is 

)(ˆ ky
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The prediction error is defined as the difference between 
the measured and the predicted output 
 ))(ˆ()(),( kyhkzk m −=θε . (17) 

The gradient of the prediction error with respect to each pa-
rameter is used as the regressor. It is a vector with the same 
dimension as θ  and computed by 
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Here a derivative with respect to θ is shorthand for a vector 
whose components are the derivatives with respect to the vari-
ous parameters in θ. 
 Since the function h(.) is known, its gradient is also known. 
Most of the components of the vector θ∂∂ /)(ˆ ky  can be easily 
derived from (2) and (14). The derivatives with respect to the 
hysteresis thresholds are more complicated but can be com-
puted by using (5): 
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 (19). 

Note that the values at time k – 1 of the various variables in 
(19) are available from the recursion. 
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Fig. 6. A typical hysteresis loop with the natural symmetry around the zero 
field. 
  

In the RLS algorithm, the information from the input signal 
to the scanner , and the measured topography  are 
used recursively to estimate the parameters in 

)(ku )(kzm

θ .The algo-
rithm can be summarized as [22]
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In these equations, P  denotes the covariance of the parameter 
estimates and . ))1(ˆ,()( −= kkk θψψ

When the minimum eigenvalue of the covariance matrix 
 becomes very small, we reset the covariance to a large 

number 
)(kP

IpkP 0)( = . This action is typically done with a pe-
riod , and prevents the identified parameter from getting 
stuck at a local minimum. 

0k

IV. ESTIMATION OF THE HYSTERESIS CYCLE 
Knowledge of the function  is crucial for the identifica-

tion process described in the previous section. If we move the 
tip along a specific line between two extrema, the AFM meas-
ures the height of the sample as a function of input voltage u 
along the line. However, the identification algorithms need the 
height as a function of the scanner extension y, not of the in-
put u. The required h(y) can be estimated if we determine the 
relationship between u and y that applies along the selected 
scan line. This can be done as follows. 

)(⋅h

We use a sample in which gold nanoparticles are deposited 
on a mica substrate coated with poly-L-lysine. Because of 
their nearly exact spherical shape, there are certain features of 
the nanoparticles that do not change during the scans and can 
be used to localize the scanner horizontally. These features are 
a particle’s center, or its peak height on a vertical plane that 
contains the scan line. 

Figure 2 shows two scans of such a sample, one in the for-
ward and the other in the backward direction along the same 
line. The effect of the scanner’s dynamics is apparent as a 
mismatch between the forward and backward traces. If all the 
nonlinearities in the scanner were compensated, then not only 
the forward and backward traces would coincide, but also all 
other input waveforms would produce the same topography.  

To relate input voltage to piezo extension we exploit the 
symmetry of a steady-state hysteresis loop [20], in which the 
effects of the initial loading curve are negligible. We divide a 
hysteresis loop into an ascending (forward) and a descending 
(backward) curves (Figure 6). These curves can be repre-
sented by a set of points  in the ascending curve and ),( a

i
a
i yu
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the corresponding symmetric pairs  in the descending 
curve.  The hysteresis loop in piezo materials is rotationally 
symmetric about the zero field (where the applied voltage to 
the scanner is equal to zero). If we call the center of symmetry 

 (which has been assumed to be zero in Figure 6) then 
we have 
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Therefore, if we define as the ascending function, the 

descending part satisfies 
)(ufa

  . (22) )2(2)( uufyuf s
a

s
d −−=

In practice, the function  is well approximated by a 
polynomial with degree .  

)(uf a

5≥
Because of this relationship between the ascending and de-

scending curves it is possible to estimate them using the in-
formation from the particles’ peaks in Figure 2. For each par-
ticle, the peaks in the forward and backward traces correspond 
to the same extension of the piezo scanner. Therefore, if we 
call the horizontal coordinates of these peaks in the forward 
and backward traces  and , respectively, then we have 

, which, together with (22) can be written as 

au du
)()( a

a
d

d ufuf =

  (23). sds
a

a
a yuufuf 2)2()( =−+

Assuming we have n particles in Figure 2, we will generate 
n equations from (23). This set of equations, together with an 
additional condition on the vertical scale of Figure 2, can be 
used in a least-squares fitting algorithm to find the coefficients 
of a polynomial approximation to  The vertical scale is 
related to the calibration of the scanner and is normally set 
such that  . Once the func-
tion  is computed, we can replace the values of u in the 
forward scan shown in Figure 2 by the corresponding values 
of y obtained by inverting . This is the desired h(y) func-
tion for the forward scan trajectory. Note that we have found a 
polynomial approximation for the hysteresis loop for a spe-
cific input waveform, but this cannot be used for arbitrary 
input signals.  

).(uf a

=− )()( minmax ufuf aa minmax uu −

)(ufa

)(ufa

V. IMPLEMENTATION AND EXPERIMENTAL RESULTS 
The procedure for the compensation of creep and hysteresis 

involves the following steps. (For simplicity of exposition, we 
consider only one of the principal directions, X, say.) 

1) Select a working area (1x1μm, say) and choose a line in 
the X direction that crosses a number of particles greater than 
the polynomial order of . The line should span the entire 
region in which manipulation operations will take place. 

)(uf a

2) Perform a few cycles of single line scans over the parti-
cles along the selected line. Once the cycles are stable, esti-
mate and h(y) using the procedure in Section IV. )(uf a

3) Scan along the same line with an input similar to that in 

Figure 7.a and record the measured heights and input 
signals . Use this information to recursively estimate the 
forward model parameters θ, by using the algorithms in Sec-
tion III.C. 

)(kzm

)(ku

4) Compute the inverse model parameters from (10), Sec-
tion III.B. 

5) Now, for any desired output trajectory , use the 
inversion procedure of Section III.B to find the required input 
signal and apply it to the scanner. 

)(kyd

)(ku
The recursive estimation procedures used in the approach 

just outlined require initial values, and it is not clear how to 
set them. We found experimentally that setting all initial con-
ditions to zero and running a few large cycles initializes the 
system adequately and produces good results. 

In our implementation we normally use the input waveform 
in Figure 7.a for system identification. This waveform excites 
all the fundamental operators in the dynamic model, since it 
causes the tip to move over the entire scan length. An order 

2=cn  for creep and 8=Hn  for hysteresis were selected on 
the basis of experimental results. Time was quantized with a 
T=8 msec sampling interval. The first part of the waveform, 
indicated by A in Figure 7.a, is used to produce a stable hys-
teresis loop in order to estimate the function , and the rest (.)h
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Fig. 7.  (a) The input waveform used to estimate h(.), interval A, and to esti-
mate the parameters of the model, interval B. (b) The estimation error and 
several parameter estimates as functions of time in the computation. 
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of the input waveform, indicated by B, drives the parameter 
identification process. The estimation error (17) and several of 
the parameter estimates are depicted in Figure 7.b.  

To test the algorithm in one dimension (X), we used the de-
sired trajectory yd that is shown in Figure 8.a as the piezo ex-
tension as a function of time. First, we applied the desired 
trajectory directly as input to the scanner. The result is de-
picted in Figure 8.b as the measured height zm (the topography 
signal) versus the input signal, which in this case equals the 
desired extension yd. Observe that several distinct topography 
traces are obtained because of the scanner nonlinearities. Each 
trace corresponds to one of the ascending or descending ramps 
in the input waveform. 

Next we applied the compensation procedure. The first 
large cycle in the yd waveform serves to set the initial condi-
tions in the recursion calculations. Then from time about 1.9 
sec, the trajectory yd is used in the inversion procedure of Sec-
tion III.B to compute the input signal u that generates the de-
sired scanner’s extension waveform. The results are shown in 
Figure 8.c:  the measured topography signals (versus the de-
sired extension) that correspond to the various forward and 
backward motions prescribed in the waveform of Figure 8.a 
are nearly indistinguishable. This shows that the compensator 
is working very well. 

For two-dimensional motions of the tip, we assume a negli-
gible coupling between the dynamics in X and Y and use an 
independent identification procedure for each of the direc-
tions. Given any trajectory in the plane, we project it on the 
orthogonal axes X and Y, and apply the corresponding inverse 
models to determine the input signal to the scanner. Experi-
ments show that this procedure generates good results. 

To test the compensator in two dimensions, the AFM’s tip 
performed a series of straight-line motions given in the cap-
tion of Figure 9. The path is defined in such a way that the 
starting and ending points have (nominally) the same coordi-

nates: (0.3, 0.3) micrometers. Before starting the path, a 
253x253 nm image was scanned, and at the end of the path 
another image with the same scan size was acquired. By com-
paring the initial and final images using the cross-correlation 
method described in [4], the translation between the 15 nm 
gold nanoparticle images was computed. In the uncompen-
sated motion, there is a difference of about 14.3 nm between 
the starting point and the final position. This number was re-
duced to about 1.0 nm when we compensated for creep and 
hysteresis.  

We ran a series of experiments to analyze the performance 
of the compensator in more detail. In these experiments the 
AFM scans two different areas, A and B, each 117x117 nm in 
size. These areas are located at the distances  from each 
other given in Table I. In each experiment the tip starts by 
scanning area A and then moves to area B in a series of “ran-
dom” movements consisting of several straight line segments. 
Once the tip reaches the bottom-left corner of area B it per-
forms a scan in that area. After these two scans, the tip goes 
back to area A and repeats the same sequence of scanning and 
random movements. At the end of each experiment four im-
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Fig. 8.  (a) A desired trajectory, which corresponds to forward and backward 
motions along a line that intersects six particles. The initial cycle serves to 
adjust the initial conditions of the model. (b) The topography traces obtained 
by applying the desired trajectory directly as input to the scanner. (c) The 
topography of the sample versus the desired extension when the compensa-
tion procedure is applied. 
  

    Without 
Compensator 

      with 
compensator 

(a) (b) 

(c) (d)  
Fig. 9. The images are 253x253 nm scans of 15 nm Au particles. The initial 
images (a) and (c) were taken at the coordinates (0.3,0.3) micrometers. Then 
a sequence of tip movements was performed, visiting successively the points 
(0.3,0.3), (-0.5,-0.3), (0.45,0.45), (-0.4,-0.4) and (0.3,0.3). Thus, after travers-
ing an arbitrary path, the AFM’s tip is sent back to its initial position. The 
images (b) and (d) were taken at the final position of the tip immediately 
after the motion. Without the compensator there is a displacement of about 
14.3 nm between (a) and (b), whereas with the compensator a displacement 
of about 1.0 nm is measured between (c) and (d). 
  

TABLE I 
STATISTICAL ANALYSIS OF COMPENSATOR 

d (nm)a Maximum Error without 
Compensator (nm)b

Maximum Error with 
Compensator (nm)c

645 6.45 ± 0.17 0.76 ± 0.22 

951 7.03 ± 0.84 0.78 ± 0.28 

1150 9.53 ± 0.88 1.01 ± 0.19 

 
a Distance d is measured between the centers of area A and B.  
b, c Data are averaged over 5 different experiments. The paths between A 
and B are similar for all different rows but scaled according to the dis-
tance d. 
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ages are obtained, two from area A and two from area B. The 
scans in each area are cross-correlated and the differences 
between the scans are computed as the two-dimensional dis-
placement between the particles. Table I shows the maximum 
errors averaged from 5 different experiments for each of the 
distances . The table shows that the compensator reduces 
the errors roughly by an order of magnitude. 

d

Figure 10 demonstrates the use of the compensator to ma-
nipulate 10 nanoparticles automatically (with no user in the 
loop) and form two five-particle structures that correspond to 
cells of a Quantum Cellular Automaton (QCA) [24]. Manipu-
lation was performed as described in [1], [2], by moving along 
a line passing through the center of each particle and turning 
off the Z feedback. The particles were manipulated in the nu-
meric order indicated in the left panel of the figure to maxi-
mize the distance that the tip travels between pushing opera-
tions, and therefore elicit large creep and hysteresis effects. 
Imaging was performed only before beginning the experiment 
and after all particles had been manipulated. In our experi-
ence, similar operations without the compensator fail most of 
the time. 

VI. CONCLUSION 
 
 Creep and hysteresis are the major causes of spatial uncer-

tainties in drift-compensated Atomic Force Microscopes 
(AFMs). In this paper we develop a joint model for scanner 
creep and hysteresis based on Prandtl-Ishlinskii (PI) operator 
techniques. The PI approach has advantages over the more 
traditional Preisach models: it can deal with both creep and 
hysteresis in an integrated fashion and PI operators have 
unique inverses. 

We introduce a new, adaptive, recursive method for the 
identification of model parameters that uses solely information 
from the topography of the sample and is suitable for the iden-
tification of a large number of parameters. This method is 
applicable to the vast majority of the AFMs currently in use, 
which either have no sensors on the horizontal plane of the 
sample, or have feedback loops that are too noisy for nanoma-
nipulation of small nanoparticles with overall sizes on the 
order of 10 nm. Our techniques are also applicable to other 
SPMs (Scanning Probe Microscopes) beyond AFMs, and are 
limited primarily by the SPMs’ ability to measure small fea-
tures. Because SPMs can reach atomic or molecular resolu-
tions, the techniques described here can be extended to very 
small spatial scales. 

The inverse model is used in an open-loop feedforward 
controller, which is shown experimentally to compensate ef-
fectively for creep and hysteresis. The same approach might 
also be used in the few of today’s AFMs that have low-noise 
feedback loops, so as to increase the performance of their con-
trollers, for example by using the inverse models developed 
here in feedforward components of their feedback systems. 

The creep and hysteresis compensation techniques de-
scribed here can be combined with their drift compensation 

counterparts introduced in [3], [4] to provide reliable imple-
mentations of the basic robotic primitive “Move from point A 
to point B”, as demonstrated in this paper. In turn, this opens 
new possibilities in automatic nanomanipulation. High-level 
planning algorithms such as those in [23] driving a compen-
sated AFM show promise of fully automatic operation. This 
will enable the construction of structures much more complex 
than those which can be built today.  
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Fig. 10. Automatic manipulation of 10 gold nanoparticles to form two sets of 
Quantum Cellular Automaton (QCA) structures [24] in the compensated 
environment. The sequence of operations was chosen to force the AFM tip to 
travel between the two cells before pushing each particle. The compensated 
trajectory was used to accurately find the particles during the automatic ma-
nipulation. The whole process was performed twice, the first for coarse posi-
tioning and the second for accurately positioning the particles at the desired 
locations. 
  

This paper was primarily concerned with nanomanipulation 
operations, but it is important to point out that compensation 
of scanner nonlinearities is useful not only for nanomanipula-
tion, but also for AFM-based nanolithography, and therefore 
may have wide applicability. 
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