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Abstract 

We present a pair of techniques, one a reactive self-assembly technique 
intended for use in swarms of simple robots, the other a distributed method by 
which a swarm can determine a set of such self-assembly rules given that the 
swarm has been assembled by external forces into the goal shape. The self-
assembly technique recovers from the partial destruction of the assembled 
structure, both during and after construction, and has a compact representation 
allowing for the construction of large structures. The rule generation technique 
is able to produce local rules for a broad class of global shapes without recourse 
to any central knowledge or processing, and does so without requiring any more 
writable memory than that needed to store the complete rule set. 

1. Introduction 

Many of the objects that people use are defined primarily by their form. We are 
interested in the possibility that swarms of general-purpose self-assembling robots 
might be used to replace many such objects in daily life. These robots would need to 
be as simple as possible, re-usable and easy for non-technical people to use. They 
would also need to be able to reliably construct the desired forms, and if possible 
repair those forms when they are damaged. 

Guided by these goals, we have developed a software architecture for self-
assembly robots. Robots running our architecture are able to self-assemble into 
complex non-symmetric shapes, tolerate the failure of one or many of the robots 
making up a structure, repair the structure even after most of the constituent robots are 
damaged or destroyed, construct instances of a form that have been scaled to either a 
larger or smaller size, and learn the local rules needed to construct a global shape 
given an example of that shape built by external forces. All of these capabilities can 
be implemented in an extremely minimal robot with little processing power or 
memory. The work described here is related to the techniques described in [1], [2], [3] 
and their references. We assume that all robots are identical, square-shaped, and have 
exactly the same program (set of rules). Initially, they move randomly in the plane. 
They exchange messages only with other robots that come into contact with them, and 
may attach or detach themselves from adjacent robots. 



2. Self-Assembly and Self-Repair 

Self-assembly rules in our system take the form of reactive rules defining messages 
that a robot should transmit in response to the receipt of other messages. These rules 
implicitly define the shape of the desired structure, on the principle that a message 
cannot be successfully transmitted to a neighbor that does not exist. Following up on 
this idea, robot programs can be arranged so that any attempt to transmit a message to 
a particular neighbor implies that there should be a neighbor there to receive it. This 
allows the use of a simple actuation scheme that attempts to acquire or retain 
neighbors for each message being sent. Figure 1 illustrates this concept with an 
attached pair of robots (squares with a pair of “V” shapes on each edge). Arrows 
represent attempted transmission of messages. Since this pair is attempting to transmit 
messages to two positions in which there is no robot to receive them, the actuation 
will attempt to bind robots to the structure in those positions. 

 
Fig. 1. A pair of robots attempting to bind other robots on two edges 

This differs from a simple crystallization-analogue mechanism in that the need for 
neighbors can be time-varying as the flow of messages through the structure 
progresses, allowing the construction of temporary support structures, as well as 
ordered multistage construction. Another important feature of the technique is that the 
use of messages allows most of the robots to operate based on a few generic rules, 
confining the use of shape-specific rules to a tiny fraction of the total number of 
robots in a structure. This provides a dramatic decrease in the amount of memory 
required to represent a shape — in particular, the robots that are in the interior of the 
shape, and those that are part of a line segment between vertices of the shape, all 
execute only generic rules. Finally, having the robots respond reactively to messages 
instead of storing state facilitates self-repair, since it allows the robots to always act 
correctly, even when part of the structure has been destroyed or rendered inoperative. 
This fault tolerance is unfortunately not available during global-to-local learning of a 
shape, due to the storage of state in individual robots during that process. 

3. Global-to-Local Rule Generation 

The global-to-local process operates in several steps. It is assumed that a group of 
robots have previously been formed into an example of the desired solid two-
dimensional polygonal shape, and that one or more robots on the boundary of the 
shape receive an external signal to initiate the learning process. 



 

The first step of the global-to-local process is a simple message that propagates to 
all connected robots in the structure. On reception of this message, a robot records 
that it has a neighbor connected to it in the direction from which it received the 
message. Then, if it is aware of only that single neighbor, it retransmits the original 
message toward its other potential neighbors and sends an acknowledgment back to 
the known neighbor. The known neighbor, on receiving the acknowledgment, records 
that it has a neighbor connected in the direction from which it received the 
acknowledgment. 

This first pair of messages has the effect of informing each connected robot of the 
topology of its local neighborhood. If the robots have the capacity of directly sensing 
connectedness, those messages are not necessary. Connectedness information is used 
by the robots to deduce whether they are on an edge of the structure. 

After local topologies and edge status have been discovered, a probe message is 
sent. Probe messages propagate from edge robot to edge robot though a parameterized 
number of hops. Probe messages have fields for position of the currently receiving 
robot relative to the robot that originally sent the message, measured in terms of how 
many robots the message has passed through in each axis. Each robot updates these 
hop count and relative position fields as it sends messages on to its neighbors. When a 
probe message is received with a hop count equal to 0, the receiving robot sends an 
echo message in the other direction. Probe messages are propagated around corners, 
as indeed they must be since their purpose is to identify which corners should be 
considered vertices of the shape. Figure 2 illustrates the behavior triggered by a probe 
message. Each message is represented in the figure with its name, parameters, 
direction of transmission, and the time at which it was transmitted. At time 0, the 
leftmost robot is transmitting a probe message with a hop count of 3, and a relative x, 
y position of the receiver of (1, 0). Similar messages are sent at times 1, 2 and 3, each 
with a decremented hop count and an incremented receiver position. When the probe 
message with a hop count of 0 is received, it causes the echo message to be 
transmitted at time 4. 

 
Fig. 2. A probe message being sent to the right, and after 4 hops triggering an echo message in 
the other direction. 

An echo message contains relative position fields similar to those stored in a probe 
message, but it also contains the relative position of the robot that received a probe 
message and emitted an echo message, hereafter called the distant robot. Each robot, 
on receiving an echo message, checks the relative positions stored in fields of the 
message to see if they are consistent with a line passing through the robot with 



relative position (0,0), which is the robot that initiated the probe. If the Manhattan 
distance from the position of the potential vertex robot to the line between the initiator 
and the distant robot is greater than two, the robot determines that it is at a vertex of 
the structure, in which case it initiates negotiation with the robot that sent the original 
probe message to determine the parameters of the line between them, and sends a new 
probe message back in the direction from which it received the echo message.  

If no robot finds itself off the line between origin and endpoint during the 
propagation of an echo message, the message continues to propagate until it reaches 
the robot that originated the probe message or until it reaches a hop count threshold 
(not represented in the example), whichever comes first. In either case a new probe 
message is sent, with a new and higher hop count threshold. In this way the probe 
messages reach further and further from a known vertex until they have reached far 
enough to prove that another robot is a vertex. Figure 3 illustrates the behavior 
triggered by an echo message. At time 0, the distant robot has received a probe 
message with hop count 0 and is emitting an echo message. At time 1 the echo 
message propagates. At time 2, the vertex robot has the information it needs to prove 
that it is a vertex, and so it begins the process of negotiating the line parameters 
between itself and the initiator while at the same time initiating a new probe. 

 
Fig. 3. The propagation of an echo message, and the probe and negotiation messages it triggers 

The hop count threshold on the echo messages represents a tradeoff between 
precision and speed: so long as it is less than infinity, this process can misidentify a 
robot as occupying a vertex position, because the true vertex was beyond the hop 
threshold. Having a finite hop count threshold puts a linear bound on the amount of 
time it takes to probe a line of robots. In our experience, the result of the system is not 



 

strongly dependant on the choice of hop count threshold, since even thresholds of 
only ten hops or so can err only in the case of very shallow angles. 

Once neighboring vertex robots have finished negotiating the parameters of the 
edge between them, they begin continuously updating each other, each with the rules 
that the other knows. In this way the full set of rules is shared among all of the robots. 

Once this has been achieved, the robots are able to construct further copies of the 
shape, including rescaled copies, and to repair those constructed shapes if they are 
damaged either during construction or after they are completed. 

4. Verification 

The construction technique mentioned here, and further described in [3], has been 
mathematically shown to correctly construct structures that approximate a polygon, 
given a set of vertices and edges describing the polygon. The proof for this hinges on 
showing that line segment approximations are correctly constructed, which can in turn 
be proved by showing that the constructed line segments are equivalent to those that 
would be drawn by Bresenham’s algorithm were the line segment rasterized to a 
video display. This has been done. The global-to-local rule generation has not been 
fully mathematically analyzed as yet. The technique has been tested extensively in 
simulation, and seen to reliably produce qualitatively good approximations of the 
input shape, as in Fig 4. The architecture is presently being ported for use on the 
Jasmine swarm robot [4], after which physically embodied demonstrations are 
anticipated. 

 
 (a) (b) (c) 

Fig. 4. (a) A hand-created structure, (b) The same structure after the learning process, 
with the vertex robots marked, (c) The self-assembled structure created by executing 
the learned rules 
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