

Abstract—Control systems for Atomic Force Microscopes
(AFMs) tend to be specific to a particular model of device, and
further have a tendency to require that they be written to target
an inconvenient execution environment. This paper addresses
these problems by describing a high-level programming system
for an AFM in which the device-specific low level code has been
separated into a different process accessible across the network.
This frees the bulk of the code from the assorted constraints
imposed by the specific device, and also allows for the insertion of
an abstraction layer between the high level control code and the
device itself, making it possible to write device independent
control code.

Index Terms—Nanomanipulation, Atomic Force Microscopy,
High Level Control

I.INTRODUCTION

HERE is a great deal of potential benefit to be gained
from the controlled structuring of matter on the

nanoscale. Unfortunately, there are few techniques known for
achieving the level of precision that we desire. One of the
techniques that can achieve the desired precision is direct
manipulation of matter by pushing it with the tip of an Atomic
Force Microscope (AFM). For example, by pushing
nanoparticles with the AFM tip, it is possible to place them
with positioning errors of 1 nanometer or less.

T

Achieving such a degree of accuracy is no simple task,
though. When operating on that scale, an AFM is a relatively
clumsy manipulator, as thermal drift, actuator creep ,
hysteresis effects and other non-ideal behaviors all have a
tendency to decrease positioning accuracy. Add to that the fact
that an AFM tip is a single, somewhat round “finger” and that
it is both the means of sensing and the means of actuation, but
typically not both at once, and it is easy to see that controlling
the AFM for manipulation is a difficult endeavor. The space of
operating modes of AFM manipulation is a large one, and not
yet fully explored, and so the correct way to achieve a given
manipulation task is not always known. Finally, it is usually
difficult to predict which facilities will be useful in a research
environment, and a flexible development system that will
encourage experimentation is a must. For all of these reasons,

This research was supported in part by NSF grant
DMI-02-09678.

we need an AFM control framework which allows us to
quickly develop and deploy AFM control code; that
framework is what this paper describes.

II.ARCHITECTURE

The software is broken into two components, a client and a
server, which communicate with each other over TCP/IP. The
client, which constitutes the majority of the program, is written
in the agile language Python. This makes the development
process quick and easy, particularly when creating and testing
new control modules. The server could be written in any
environment that supported networking and direct control of
an AFM, but the one we have implemented is written in C++
and 16-bit Windows, targeting the Park Scientific (now
Veeco) AutoProbe CP-R microscope. A block diagram of the
complete system appears in Figure 1.

The client consists of a graphical user interface, a
management layer that implements the AFM control logic, and
a pair of threads which are responsible for performing network
I/O. The management layer is made up of control modules.
Control modules are composable, and so they can be used and
re-used as building blocks for the construction of more
complex control modules. The next section discusses control
modules in more detail.

The server should do as little as possible. Its task is to
receive the client's commands and do what it must to cause the
AFM to execute them, and no more. This usually entails high-
speed message handling, encoding and decoding data, and
possibly some real-time processing. The server implements a
small set of primitives for use by the client, and hides from the
programmer the complexities of the digital signal processor
code and other low-level aspects of the system.

The reason for splitting the client and the server across the
network is that this decoupling of components allows the
server to be written in whatever environment the AFM
necessitates, but leaves the client free to operate in a more
convenient and capable environment.

A High-Level Nanomanipulation Control
Framework

D. J. Arbuckle, J. Kelly and A. A. G. Requicha
(darbuckl | jonathsk | requicha@usc.edu)

Laboratory for Molecular Robotics
University of Southern California

Los Angeles, CA, USA

1

mailto:requicha@usc.edu

III.THE SERVER

Much of the complexity in our server implementation is due
to the necessity of targeting the Win16 Application
Programming Interface. This necessitates a single-threaded
event-driven architecture, using the Windows message queue
for communication and synchronization with the AFM's digital
signal processor driver. Internally, the server process
maintains a state machine, driven by events pulled from the
Windows message queue and from the network. This state
machine manages executing and interleaving the assorted
server-side operations.

The server's primary duty is to act as a thin wrapper around
the AutoProbe Application Programming Interface. As such it
spends most of its active time either receiving commands from
the network, unpacking them, and invoking the AutoProbe
API, or the reverse operation of receiving data from the
AutoProbe API, packing them for transmission across the
network, and transmitting them.

The AutoProbe Application Programming Interface is
quite general at the conceptual level, leading us to suspect that
it is similar to what a universal AFM API would look like. The
development of a set of primitive operations that constitute a
useful universal AFM API is a potential direction for future
research.

IV.THE CLIENT: CONTROL MODULES

The program provides a framework for the quick creation of
AFM control modules. Several features are provided to make
this a quick and easy task, including the ability to execute
AFM operations either in parallel or in sequence and the
ability to invoke other control modules in a nested fashion.
Even though the underlying system is a collection of event
handlers, the control module framework allows the controllers
to be written in the more convenient paradigm of a sequence of
imperative instructions with branches and loops.

For example, see Listing 1, which contains the complete code
of a simple control module. This particular module repeatedly
invokes a second module, so long as a flag is set. Note that the
repetition is coded as a simple WHILE loop, even though it
involves sending commands across the network to the server,
and waiting for the server to respond. There is a separate
thread that handles the actual communication, allowing control
modules such as this one to block until it is completed. It is
also noteworthy that the control module class to be invoked is
a parameter of LIBREPEATINGWAVE. The availability of classes
as first-class objects is one of the high-level features that
makes Python well suited to our needs for rapid and flexible
development.

For those not familiar with the Python programming
language, Listing 1 describes a single class called
LIBREPEATINGWAVE, which inherits from LIBBASE.
LIBREPEATINGWAVE has the two methods required of any AFM
control module: a constructor (__init__) and a main body
(execute). The constructor consists of boilerplate code which
varies little from one module to the next. The control module
framework is such that invoking the constructor will eventually
result in the main body being executed, either in the same
thread as the constructor or in a new thread, depending on the
value of the spawn parameter, which defaults to true. The self
parameter is equivalent to Java or C++ this, and block
structure is indicated by the degree of indentation.

Some of the more interesting control modules that we have
written are compensators for actuator creep, hysteresis and
thermal drift, modules for rectangular and single-line scans,
and building on top of those, modules for locating the center of
a particle and automatically pushing it to a desired location.

The drift compensation module cancels out the effects of
thermal drift between the AFM tip and the surface beneath it.
This is done by occasionally measuring the difference between
scans taken in what should be the same place, and using a
Kalman filter to track that offset. Then, when other modules
command AFM operations, the requested coordinates of those

2

Fig. 1 – Architecture of the AFM programming system

TCP/IP Network
(Internet)

Request Thread Response Thread

Remote AFM Manager
(Job control, data handling)

Graphical User Interface

Python Client

Request Handler Response Handler

AFM Manager
(Data retrieval, synchronization)

Windows Server

Veeco AFM API

AFM Digital Signal Processor Board

operations are modified by the Kalman filter's current
estimated value of the drift. This works quite well, and is
necessary in order to have any sort of precision in fine
nanoscale manipulation. This technique is discussed in detail
in [1, 2].

Actuator creep and hysteresis are compensated for by
another control module [3]. This module translates commands
that would be well-suited to an ideal AFM, experiencing no
creep or hysteresis effects, into more complex commands
which achieve the desired results while negating creep and
hysteresis.

The modules which perform rectangular or linear scans of
the AFM tip over the surface have the ability to do so by way
of the compensation modules, producing results which are
both accurate enough and consistent enough over time to allow
the scan data to be used as input to higher-level planning
software.

Building on top of the scanning modules are controllers for
high-level tasks, such as locating the center of a nanoparticle,
moving a nanoparticle to some desired position, or
automatically generating desired patterns of nanoparticles
from initially randomly distributed particles deposited on a
substrate surface.

Particle centers are located by repeatedly scanning the AFM
tip over the general area occupied by a particle. Each scan is
taken perpendicular to the previous scan, and crosses the path
of the previous scan at the location where the maximum height
was observed during that scan. Each repetition of this hill-
climbing behavior provides a better approximation of the
location of the true center of a particle, so long as the particle
is not excessively irregular. The center-finding control module
can perform this operation a fixed number of times, or until the
change in the estimate between iterations drops beneath a
threshold.

Particles can be pushed from one location to another by the
AFM tip. The general details of this technique have been
discussed in [4] and its references, as well as in [1]. In short,
the particle is located using the center finding control module,
a line between the actual particle location and the desired
particle location is calculated, the feedback which prevents the
AFM tip from impacting with the objects it is scanning over is
disabled, and the tip is moved along the calculated line. During
this operation the compensators are kept active, allowing the
operation to proceed without the need to explicitly take the
prominent sources of AFM positioning noise into account.

A.Application: automated construction
The problem of automatically transforming a random

distribution of particles into a specific predefined pattern is
one we are still exploring. Our current approach is as follows:

First, use the compensated scan module to get an initial
picture of the working area and estimates of the positions of
the particles in it. The particle positions that can be read from
that scan are not sufficiently precise for pushing, in spite of
being compensated, because each pixel of scan data represents
too large an area of the surface. That being the case, the
estimated particle positions are refined by applying the center-
finding mechanism.

Once the particle centers have been determined with sufficient
accuracy, the Hungarian Method [5, 6] is used to assign
specific particles to occupy specific positions in the target
pattern. This quickly makes a good assignment of particles to
positions, but it doesn't take into account that there may be
more particles within the target area than are necessary, and
those excess particles have to be removed. Thus, after the
assignment is made, unassigned particles are counted, and an
equal number of new target positions are added in the area
outside of the actual goal shape. A new iteration of the
Hungarian Method is then used to assign particles to the
targets, with this iteration considering only those particles that
were assigned to target in the previous pass or which are
within the target area.

That assignment of particles to positions takes no account of
the possibility that actually placing a particle into a position
might require that it move through one or more other particles,
which is impossible. For this reason, each planned pushing

from module_globals import *

class LibRepeatingWave(LibBase):

 def __init__(self,

 manager,

 initial_params,

 module,

 spawn = True,

 notify = True):

 LibBase.__init__(self, manager, notify)

 self.useLock = False

 self.spawn = spawn

 self.params = initial_params

 self.params.repeatFlag = False

 if spawn:

 self.thread.start()

 else:

 self.run()

 def execute(self):

 try:

 LibBase.execute(self)

 manager = self.manager

 manager.begin(self.useLock)

 while not self.terminateFlag:

 self.params.repeatFlag = False

 module(manager, self.params,

 False, False)

 manager.end(self.notify)

 finally:

 if self.spawn:

 thread.exit()

Listing 1: A simple AFM Control Module

3

path is check for collisions. If there are collisions, the particle
to position assignment that produced the collision is replaced
by a pair of new assignments; the particle that would be
collided with is reassigned to the target of the original
assignment, and the particle that the original assignment
specified us reassigned to the position occupied by the
interfering particle. Once all such reassignments have been
performed, the set of particle assignments constitute a plan for
pushing particles in order to construct the target pattern.

Finally, once the plan is determined, it is used to drive the
AFM tip, using the compensation, the single-line scan, and the
pushing control modules.

V.IN DETAIL: SCANNING ALONG A LINE

In this section, we present an example action, and follow it
in detail as it flows through each part of the system. The action
in question is to scan the AFM tip across the surface beneath
it, collecting the topographical data that it produces.

First comes the invocation of an AFM control module on
the client; we'll call it LIBSINGLELINE in this discussion. The
purpose of LIBSINGLELINE is to control exactly the action we are
interested in: scan the AFM tip along a single sweep across a
surface, and record the data so produced. Depending on the
spawn parameter of the LIBSINGLELINE constructor, the control
module may execute in either the calling thread or in a thread
of its own; we'll assume for this example that spawn has a
value of false, and so the module will run in the same thread
that invoked it. This ability to run control modules in either
serial or parallel mode as needed has proven to be very
convenient.

The LIBSINGLELINE constructor was also parameterized with
an assortment of values, notably the coordinates between
which we want to sweep the AFM tip. These coordinates are
provided in a global reference frame. If the drift compensator
is not running, this whole frame slowly moves relative to the
surface. We'll assume that the drift compensator is running,
though, and so the input reference frame can be transformed
into the surface-affixed reference frame fairly easily. Since
rotation between the frames is effectively precluded by the
nature of the hardware, the transformation is just a matter of
translation. The drift compensator, which is a singleton control
module, maintains the current translation in an accessible
location, and it is simple added to the start and end coordinates
by vector summation.

In order to achieve maximum precision, the LIBSINGLELINE
module must also employ the creep and hysteresis
compensator. This compensator works by adjusting in detail
the driving waveforms that are applied to the AFM's actuators,
and so it can not be run until after the gross transformation of
drift compensation has already been applied. The desired
endpoints of the scan, as transformed by the drift
compensation, are passed to the creep and hysteresis
compensator, which returns the correct driving waveforms.

Having completed the assorted preprocessing steps,
including the above described applications of the
compensators as well as generating a few other simpler control
waveforms, LIBSINGLELINE invokes the client-side remote
procedure call stub for the server's interface, passing it the

calculated control waveforms. The thread executing is then
blocked pending the return of an error code from the server.
Once the error code is received, if it does not signify an error,
the thread is again blocked until the requested data arrive.

The stub packages the request for transmission to the server,
using a wire protocol implemented on top of XML-RPC [7].
The request package is transmitted to the server via normal
Internet protocols, and the server sends back an error code
through the same medium. The control module's thread is
unblocked and the error code is passed to the control module,
which then determines whether to block the thread again to
wait for data. We'll assume that everything went well and that
the control module re-blocked its thread.

On the server side, the server receives the request package
and unpackages it, then tries to interpret it as a call to the
underlaying API. If it can't figure out what call the package
represents, an error code is sent to the client and the server
goes back to waiting for requests.

In our example, the server recognizes the packet as
representing a request for a single sweep of the AFM tip, and
invokes the API function to perform that task. That API
function produces an error code or a job handle. In our
example we'll assume that a job handle is produced, which we
will transform into the “no error” code, and that error code is
then transmitted to the client, and eventually all the way up the
stack to the control module, which uses it to decide whether to
block waiting for data.

The API, in our case, is a 16-bit Windows library and an
associated driver for communicating with the digital signal
processor in the AFM. These two components of the API
communicate with each other via the Windows message queue,
which produces a somewhat unusual architecture by more
modern standards. The end result is that, for the duration of the
API call, the server must be listening to the Windows message
queue for messages indicating the receipt of data, and
periodically polling the API for those data as well. This
inconvenient system is one of the major sources of impetus in
our efforts to separate high-level and low-level AFM control
code.

Eventually, the data are acquired, either from a queued
message or from a periodic poll. At this point the server
packages them up, again using an XML-RPC wire format, and
transmits them to the client. The client unpackages them and
makes them available to the control modules, and
LIBSINGLELINE unblocks. Finally LIBSINGLELINE makes the data
available as its result, and terminates execution. It is only
possible to have one data-producing operation executing on
the server at a given time, so there is no ambiguity regarding
which control module should handle the data, in spite of the
fact that many control modules can be executing on the client
side at any given time.

VI.CONCLUSION

We have constructed a software environment that facilitates
experimentation with, and automation of, the controlled
manipulation of nanoparticles and similarly-scaled
nanostructures. This environment presents to the programmer
a comfortable and rapid way of creating and modifying AFM

4

control code. This environment allows the programmer to
write the code at progressively higher levels of abstraction,
building control modules by composing lower-level control
modules. We have also written a number of such control
modules, which boost the level of abstraction up to the point
where the common sources of noise in the positioning of the
AFM tip can be ignored, and where in fact an operation such
as “move particle X from location Y to location Z” can be
thought of as a single reliable primitive.

This software environment allows rapid progress in the
development of new nanomanipulation techniques and results.
Although nanomanipulation was our primary motivation for
system development, the facilities we provide are equally
useful for other tasks such as AFM nanolithography.

REFERENCES

[1] B. Mokaberi and A. A. G. Requicha, “Towards automatic
nanomanipulation: drift compensation in scanning probe microscopy”,
Proc. IEEE Int’l Conf. on Robotics & Automation (ICRA ‘04), New
Orleans, LA, pp. 416-421, April 25-30, 2004.

[2] B. Mokaberi and A. A. G. Requicha, “Drift compensation for automatic
nanomanipulation with scanning probe microscopes”, IEEE Trans. on
Automation Science & Engineering, Vol. 3, No. 3, pp. 199-207, July
2006.

[3] B. Mokaberi and A. A. G. Requicha, “Compensation of scanner creep
and hysteresis for AFM nanomanipulation”, accepted for publication,
IEEE Trans. on Automation Science & Engineering, 2006.

[4] A. A. G. Requicha, S. Meltzer, F. P. Teran Arce, J. H. Makaliwe, H.
Siken, S. Hsieh, D. Lewis, B. E. Koel and M. Thompson, "Manipulation
of nanoscale components with the AFM: principles and applications",
IEEE Int'l Conf. on Nanotechnology, Maui, HI, October 28-30, 2001

[5] Harold W. Kuhn, "The Hungarian Method for the assignment problem",
Naval Research Logistic Quarterly, 2:83-97, 1955

[6] J. Munkres, "Algorithms for the Assignment and Transportation
Problems", Journal of the Society of Industrial and Applied
Mathematics, 5(1):32-38, 1957 March

[7] Dave Winer, “XML-RPC Specification”,
http://www.xmlrpc.com/spec, June 2003

5

http://www.xmlrpc.com/spec

	I.INTRODUCTION
	II.Architecture
	III.The Server
	IV.The Client: Control Modules
	A.Application: automated construction

	V.In Detail: Scanning along a line
	VI.Conclusion

