
Graphically Speaking

Editor: Miguel Encarnação

88 March/April 2006 Published by the IEEE Computer Society 0272-1716/06/$20.00 © 2006 IEEE

I EEE Computer Graphics and Applications has a long
tradition of addressing CAD/CAM problems, a tra-

dition that extends even beyond the well-known spe-
cial issue on solid modeling edited by Herb Voelcker
and Ari Requicha in March 1982. Here, we discuss the
conversion of a standard representation for a solid
object (for example, a boundary representation) into a
set of complex message-passing instructions for man-
ufacturing the object by a distributed system—a swarm
of robots.

Our work’s motivation comes from the need to
develop methods for building devices and systems at the
nanoscale. Nanotechnology is currently hampered by a
lack of manufacturing processes capable of both high
throughput and high resolution. Direct-writing systems
such as electron beam or scanning-probe microscopy
are serial and slow but achieve high resolution, whereas
various lithographic techniques are parallel and fast but
typically have resolutions on the order of the tens of
nanometers. Self-assembly, that is, the spontaneous
assembly of components into the desired structures, is
a promising concept that might lead to a revolution in
nanomanufacturing. Self-assembly processes are all
around (and inside of) us. For example, atoms arrange
themselves into crystals, and biomolecules assemble
themselves into organelles, cells, and tissues. Many of
these processes are driven by thermal agitation, which
brings components to positions and orientations where
they contact others and are recognized by them.
Molecular recognition often plays an important role in
these processes.

Our approach
Several groups are studying artificial, synthetic self-

assembly systems—for example, Len Adleman’s at the
University of Southern California and Erik Winfree’s at
the California Institute of Technology—but the structures
built thus far tend to be symmetric and not suitable for
many of the envisaged applications in nanoelectronics,
nanoelectromechanical systems, or nanobiotechnology.
The components used in this work are passive, that is,
their motion is random and caused by the environment,
and their actions are limited to attaching themselves to
other components when certain interface conditions are
satisfied. At USC’s Laboratory for Molecular Robotics, we
have been studying an alternative paradigm, called active

self-assembly, in which the components are simple robot-
ic agents. Our agents also execute environment-driven
random walks, but can sense other agents, move in sim-
ple ways, attach and detach themselves to and from other
agents, execute simple computational rules, and—impor-
tantly—send messages to other agents with which they
are in contact. These are characteristics we can reason-
ably expect future nanorobots to have.

We have shown that active self-assembly can build
arbitrary polygons in the plane, and we believe that we
can extend this approach to three dimensions. The
resulting polygons are approximated by spatial enu-
merations, that is, by sets of pixels on an orthogonal
grid.1 We assume that the agents are square and that
each occupies exactly one pixel. Each agent initially exe-
cutes a random walk, and when it encounters another
agent, it might attach itself to it and exchange messages.
All of the agents are identical and have the same pro-
gram, which consists of a set of rules. (This program can
itself be considered a process-oriented or procedural
representation of the desired shape.)

We have investigated two approaches to active self-
assembly. The first approach programs the agents as
finite-state machines (FSMs), and the second one uses
purely reactive agents without memories. The two
approaches can both build the same structures, but the
second has the interesting properties of self-repair and
(to a limited extent) self-reproduction. We also have
built two compilers, one for each type of agent, which
convert a CAD representation of the desired polygon
into a program for the self-assembling agents. We out-
line the two approaches later, and details appear else-
where, as well as in Arbuckle’s PhD dissertation, which
is in preparation.2-4

Finite-state machine agents
Figure 1 shows several stages in the construction of a

polygon’s boundary by an FSM-controlled agent swarm.
Different colors denote the states: gray is a random
walking or wandering state, red is a seed state, and blue
is a boundary state. The figure pictorially shows the
applicable FSM rules on the right. Build edge rules are
indicated by B1, B2, B3, and so on—one for each edge.
Build rules have one integer parameter, which is a hop
count that determines an edge’s length. As an edge pro-
gresses, the hop count is decremented.

Ari Requicha
and Daniel
Arbuckle

University of
Southern
California

CAD/CAM for Nanoscale Self-Assembly ______________

IEEE Computer Graphics and Applications 89

Let’s follow the construction in Figure 1 by applying
the rules shown. We outline the process briefly as follows:
The structure begins with a seed (see Figure 1a). The seed
continuously sends a build message, per rule 1. The para-
meter 2 in the build message is the length of the edge to
be built. When a wandering agent contacts the seed (see
Figure 1b), it receives the build message, attaches itself to
the seed and forwards another build message with a
lower hop count (see Figure 1c), according to rule 2.
Figure 1d is an intermediate stage in the construction. A
vertex is reached when the hop count is zero (see Figure
1e). Then, a new edge is started with a length specified in
the rules, for example, a (B1,0) message will trigger a
(B2,2) message by rule 3, where the parameter 2 is the
length of the second edge. The process continues (see
Figure 1f) until we build the square shown in Figure 1g.
(Rules similar to 1 through 4 are used to complete the
square’s boundary.) The compiler automatically builds
these rules. If an agent contacts another agent that is not
attempting to communicate outward from the contact
side, there will be no permanent attachment.

Once a polygon’s boundary is complete, its interior is
filled in by using a simple rule: when a wandering agent
contacts a boundary agent, both move in by one unit,
and the inside agent is released and continues to wan-
der, until the whole interior is full. We use this same
approach to fill polygons built by the reactive scheme
introduced later.

Figure 2 shows a disconnected polygon built by the
FSM technique described here. Perhaps the major dis-
advantage of this approach is its dependence on a spe-
cial agent that serves as the seed. As a result, if the seed
is lost due to a malfunction or because the structure is
broken by some external disturbance, the process fails.
The reactive approach discussed next can regenerate a
structure from any of its parts and therefore is self-
repairing.

Reactive agents
Here the agents have no state. They are programmed

by a set of rules that tell them what to do when they
receive specific messages. The typical reaction is to send
one or more messages in the directions specified by the
rules. There are grow edge (GE), grow vertex (GV),
acknowledge edge (AE), and acknowledge vertex (AV)
messages. The messages in the simplified example of
Figure 3 (next page) have up to three parameters. Thus,
for example, in GE(X, 1, 2), X is the identity of the edge,
1 denotes the position of the agent within the edge, and
2 is the edge length. An edge of length 2 is composed of
three agents, with positions 0, 1, and 2; the vertices are
not considered part of the edge. As in the previous
approach, hop counters keep track of edge length. Figure
4 shows pictorially the rules relevant to this example.

Figure 3 reveals two sets of messages, growth and
acknowledgment messages, propagating along the
structure, in opposite directions, one set with increas-
ing hop counts and the other with decreasing hop
counts. This ensures that any connected part of the
structure is stable over time and will lead to the regen-
eration of the entire structure. To see why this is true
consider just the two first agents, A and B. Note that the

GE message sent from A to B triggers an AV message
sent back to A. This in turn causes the same GE mes-
sage to be sent to B again, and so on. The two agents
form a stable loop that will remain attached, exchange
messages indefinitely, and serve as a starting point for
building the whole structure. The same reasoning holds
for any other connected portion of the structure, and
therefore the structure will repair itself as long as at
least a pair of connected agents is available. In addi-
tion, if the structure is broken and the pieces moved
away, each stable pair will build an identical copy of the
original structure, in a process reminiscent of cell mito-
sis. Figure 5 illustrates this self-reproduction process.
The initial key-shaped structure was broken during con-

B1,1

B1,2 B1,0

B2,2

B1,2
B1,1

B1,2

B1,2

B1,1

B1,2 B1,0

B2,2

B3,2

B1,1

B1,2 B1,0

B1,1

B1,2 B1,0

B2,2

B3,2

B4,1

B1,2

⇒
B1,n

B1,n – 1

⇒
B1,0

B2,2

⇒
B2,0

B3,2

Rules

1

2

3

4

(a)

(b)

(c)

(d)

(e)

(f) (g)

1 Building a square’s boundary by using agents programmed as
finite-state machines. The states are shown by the agents’ colors.

2 A complex, disconnected polygon built by finite-state agents.

struction and two pieces moved away, resulting in self-
repair of the original structure and building of two addi-
tional copies.

The CAD/CAM link
A swarm of agents is a distributed manufacturing sys-

tem, albeit an unusual one. The agents might become
the desired structure once it’s finished, or serve as a scaf-
fold onto which the desired components can attach—
perhaps by passive self-assembly. The agent programs
are manufacturing instructions. Deriving such manu-
facturing instructions from a CAD model is the essence
of the CAD/CAM link, which is as important today as it
has ever been.

Since any common solid representation can be con-
verted into a boundary representation, we can assume
that the desired objects are defined by their boundaries.
Thus, in a 2D polygonal world, we assume that our
objects are represented by their edges. In the schemes
presented here, we first build an object’s boundary and
then fill its interior—using the filling process described
in the section on FSMs. The filling scheme is simple and
is equivalent to moving agents across the boundary.
(More efficient filling schemes exist, but they are more
complicated and will be ignored here.) Message pass-
ing with hop counters controls edge building, as implied
in the examples presented previously.

For concreteness, consider the reactive-agent scheme.
The following is a simplified description of the compil-
ing process that generates reactive rules from the CAD
data. Each edge in the polygon representation has a
label or identifier. For each edge we generate a build
rule with a hop counter that determines the edge’s
length. An agent that attaches itself to an edge’s end
knows it’s a vertex because it receives a message with a
zero hop count. Therefore, in addition to edge rules, we
need to generate vertex rules, so that a vertex at the end
of edge labeled X knows that it must start issuing build
messages for the edge Y that follows X in the boundary.
Of course, there are many complications, but the
essence of the process is simple.

Figures 1 through 4 only show examples of orthogo-
nal edges, but this scheme can build polygons with
edges at nonorthogonal angles, as Figure 5 shows.
Building a nonorthogonal edge is similar to scan con-
verting a line segment, since the edge must be approxi-
mated by pixels (agents). Each edge is processed by the
compiler using a modified Bresenham algorithm.
Because our agents cannot be connected diagonally,
vertex to vertex, the Bresenham algorithm must be mod-
ified to ensure that connections are established only
between the sides of the square agents.

The compiler completely and automatically generates
the rules for driving the self-assembly process. In other
words, no human intervention is needed to convert the
CAD data into the manufacturing instructions.

Conclusion
It has been tacitly assumed until now that manufac-

turing at the nanoscale will be an extension of its macro-
or microcounterparts. But this assumption might be par-
tially or totally wrong. Instead, distributed systems such
as those described here might have an important role to
play. These systems exploit randomness rather than striv-
ing for deterministic, precise positioning of components,
and have some of the desirable characteristics of bio-

Graphically Speaking

90 March/April 2006

A B C D E

F

A B C D E

A B C D

A B C

GE(X,2,2)

A B

GE(X,1,2)

AV(X)

GE(X,2,2) GV(X)

AE(X,2,2)

GE(X,0,2)GE(X,1,2)

AE(X,1,2) AE(X,0,2)

AV(X′)

AV(X)

GE(X,2,2)

AE(X,2,2)

GE(X,0,2)GE(X,1,2)

AV(X)

GE(X,2,2) GV(X)

AE(X,2,2)

GE(X,0,2)GE(X,1,2)

AE(X,1,2)AV(X)

GE(X,2,2) GV(X)

AE(X,2,2)

GE(X,0,2)GE(X,1,2)

AE(X,1,2) AE(X,0,2)AV(X)

GE(X′,L′,L′)

GE(X′,L′–1,L′)

GE(X′,L′,L′)

3 Building an L-shape with reactive agents.

GE(X,P = L,L) GE(X,P – 1,L)

GE(X,P – 1,L)

AV(X)

AV(X)

GE(X,L,L)

AE(X,P + 1,L)

GE(X,0 < P < L,L)

GE(X,P = 0,L)

AE(X,P + 1,L)

GV(X)

GV(X)

AE(X,0,L)

GE(X′,L′,L′)

4 Reactive rules used for the example in Figure 3.

logical systems, for example, robustness and self-repair.
Traditional CAD models still seem appropriate for many
applications at the nanoscale, but the CAD/CAM link
must be rethought and adapted to the new and emerg-
ing manufacturing processes and constraints.

Our nontraditional approach to building objects is
independent of spatial scale but is most attractive at the
nanoscale. The major challenge we face toward imple-
menting active self-assembly today comes from the
hardware side: we need to build large numbers of small
robots. But micro and nanorobotics are progressing
rapidly and should come to the rescue in the not-too-
distant future. ■

Acknowledgments
This article is based in part on a keynote address titled

“And Now for Something Completely Different: Building
Shapes by Self-Assembly,” presented by Ari Requicha at
a joint session of the ACM Symposium on Solid
Modeling and Applications, and of the Shape Modeling
International Conference, Genova, Italy, 7–11 June
2004. This work was supported in part by the National
Science Foundation under grants IIS-99-87977, EIA-01-

21141, and DMI-02-09678, and Cooperative Agreement
CCR-01-20778; and by the Okawa Foundation.

References
1. A.A.G. Requicha, “Representations for Rigid Solids: The-

ory, Methods, and Systems,” ACM Computing Surveys, vol.
12, no. 4, 1980, pp. 437-464.

2. D.J. Arbuckle and A.A.G. Requicha, “Active Self-Assem-
bly,” Proc. IEEE Int’l Conf. Robotics and Automation (ICRA),
IEEE Press, 2004, pp. 896-901.

3. D.J. Arbuckle and A.A.G. Requicha, “Shape Restoration by
Active Self-Assembly,” Proc. Int’l Symp. Robotics and
Automation (ISRA) CD-ROM, IEEE Press, 2004, pp. 173-
177.

4. D.J. Arbuckle and A.A.G. Requicha, “Self-Repairing Self-
Assembled Structures,” to be published in Proc. IEEE Int’l
Conf. Robotics and Automation (ICRA), 2006.

Readers may contact Ari Requicha at requicha@usc.edu
and Daniel Arbuckle at daniel.arbuckle@usc.edu.

Readers may contact Miguel Encarnação at me@
imedia-labs.com.

5 (a) An intermediate stage of the construction of a key-like object. (b) Breaking the object into three pieces. (c) The three fully built
resulting objects.

(a) (b) (c)

By Lawrence Peters
Software Consultants Int.

Surprisingly, the most common
means of reviewing software
engineering professionals actually
have the effect of demotivating
them and reducing their perfor-
mance level. This ReadyNote
advocates an alternative method
for evaluating personnel based on
the Balanced Scorecard. $19
www.computer.org/ReadyNotes

Evaluating the Performance of Software Engineering Professionals

IEEE ReadyNotes

