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Abstract—Manipulation of nanoparticles with Atomic Force
Microscopes (AFMs) has been under development for a decade,
and is now well established as a technique for prototyping
nanodevices and for other applications. Until now, the
manipulation process for particles with sizes of a few nanometers
has been very labor intensive. This severely limits the complexity
of the structures that can be built. Particle sizes on the order of
10 nm are comparable to the spatial uncertainties associated with
AFM operation, and a user in the loop has been needed to
compensate for these uncertainties.

This paper addresses thermal drift, which is the major cause
of errors for AFMs operated in ambient conditions. It is shown
that drift can be estimated efficiently by using Kalman filtering
techniques. This approach has firm theoretical foundations and is
validated by the experimental results presented in this paper.
Manipulation of groups of 15-nm particles is demonstrated under
program control, without human intervention, over a long period
of time, in ambient air and at room temperature. Coupled with
existing methods for high-level motion planning, the
manipulation capabilities introduced here will permit
assembling, from the bottom up, nanostructures much more
complex than those being built today with AFMs.

Note to Practitioners—Nanomanipulation with Scanning Probe
Microscopes (SPMs) has potential applications in nanodevice and
system prototyping, or in small-batch production if multi-tip
arrays are used instead of single tips. However, SPM
nanomanipulation is still being used primarily in research labs. A
major obstacle to its wider use is the labor and time involved in
the process. These are due largely to spatial uncertainty in the
position of the tip (which is analogous to a robot’s end effector)
relative to the sample being manipulated. Today, a skilled user is
needed to determine where the tip is, and to correct manipulation
errors due to inaccurate positional estimates. The major cause of
this spatial uncertainty is thermal drift between the tip and the
sample. At the time scales relevant to manipulation, the drift can
reach values comparable to the size of the objects, especially if
these are below ~ 10 nm. The techniques discussed in this paper
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compensate for the drift and enable automated manipulation,
with associated savings in time and labor, and increased
complexity of the resulting structures.

Index Terms—Atomic Force Microscopes; Kalman filtering;
nanomanipulation; nanoassembly; nanorobotics; Scanning Probe
Microscopes; spatial uncertainty.

I. INTRODUCTION

ATOM manipulation with Scanning Probe Microscopes
(SPMs) was first demonstrated in the early 1990s, and
manipulation of particles with sizes on the order of a few nm
to the tens of nm soon followed—see [1, 2] and references
therein. Today, particles with diameters of ~ 10 nm are
manipulated routinely with Atomic Force Microscopes
(AFMs) at USC’s Laboratory for Molecular Robotics (LMR)
and elsewhere. (The AFM is a specific type of SPM that
exploits interatomic forces between a sharp tip and a sample.)
Nanomanipulation operations are used to prototype nanoscale
devices, and to repair or modify nanostructures built by other
means.

Manipulation of small nanoparticles (with diameters below
~ 30 nm, say) in ambient conditions, i.e., at room temperature,
in air or in a liquid, and without stringent environmental
controls, requires extensive user intervention to compensate
for the many spatial uncertainties associated with AFMs and
their piezoelectric drive mechanisms. Uncertainties are
introduced by phenomena that range from non-linearities in
the voltage-displacement curves that characterize the piezos,
to creep, hysteresis, and thermal drift. The latter is the major
cause of spatial uncertainty in our lab, and is due primarily to
thermal expansion and contraction of the AFM components.
For example, a one degree change in temperature will cause a
50 nm change in the length of a mechanical part that is 5 mm
long (assuming a typical expansion coefficient of 10” /°C).

AFM vendor software usually compensates for piezo non-
linearities. Hysteresis effects can be greatly reduced by
scanning always in the same direction, and creep effects can
be nearly eliminated by waiting a few minutes after each large
motion of the scanner (although this is very inefficient). In
addition, modern, top-of-the-line instruments are equipped
with feedback loops that claim positioning errors below 1 nm
in the x, y plane of the sample [3]. Feedback can compensate
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Fig. 1. (a) Four images from a 180 nm region of a sample, taken at 8§ min
intervals. The objects shown are Au nanoparticles with 15 nm diameters. (b)
A schematic diagram of an AFM machine. (c) A spatial asperity below the

tip.

for non-linearities, hysteresis and creep, but not tip drift—see
Section II.B below. Drift tends to increase with time, which
implies that complicated assemblies cannot be completed
without frequent user interaction. Moreover, most of the
AFMs in use today either have no x, y feedback, or their
feedback loops have noise levels of several nm, which are too
large for manipulation of particles with sizes ~ 10 nm. These
machines are normally operated open loop for the small scan
sizes (< 1 wm) used in the manipulation of small
nanoparticles, to avoid introducing additional noise through
the feedback circuitry. With or without x, y feedback, drift

compensation remains a crucial issue for successful
nanomanipulation.
Typical assemblies of small nanoparticles built by

nanomanipulation today consist of some ten particles, and
may take an experienced user a whole day to construct [13].
To move towards more complex assemblies requires that the
manipulation process become more automated, and this in turn
requires compensation of the spatial uncertainties associated
with AFMs—especially drift, which is the most pernicious
one, as we have argued above.

The remainder of this paper discusses the characteristics of
drift, how to estimate it and compensate for it, our

implementation of drift compensation, and experimental
results.

II. DRIFT CHARACTERIZATION

A. The Problem

Successive AFM scans of a sample without changing any of
the scanning parameters will appear as translated versions of
the sample surface, as shown in Fig. 1.a. This is the physical
manifestation of drift in the x, y plane of the sample. There is
also drift in the z direction but it will be ignored in this paper,
because it usually is reasonably well compensated by the z
feedback system and has little impact on nanomanipulation.
Note that, unlike atoms, particles of the sizes we are
discussing in this paper do not diffuse over the surface at
room temperature; they are fixed with respect to the surface.
Many experimental observations indicate that the drift is
essentially a translation (no rotation is involved) and the drift
velocity is approximately constant over periods of several
minutes, but changes on a longer time scale. A drift-
compensated instrument would produce the same image in
each of the panels of Fig. 1.a. The problem addressed in this
paper is how to achieve drift compensation in such a way that
not only images of the same region are constant in time, but
other processes—in particular, programmed sequences of
manipulation operations—also can be carried out as if drift
did not exist.

Several authors have reported simple approaches to drift
compensation [4, 5, 6, 7, 8]. These approaches assume that the
drift velocity is constant and compute it by comparing
successive images. The major drawback of these procedures is
their failure to adapt when the drift velocity changes. They
can be used for correcting images taken over a period of time
of approximately constant drift, but cannot support a sequence
of nanomanipulation operations, which requires real-time
compensation over relatively long durations.

B. Spatial Analysis

Consider a typical AFM, schematically shown in Fig. 1.b.
For concreteness we assume that the sample is placed on top
of the scanner and that the unloaded (i.e., undeflected)
cantilever and tip (or their average positions when the AFM is
operated in dynamic mode) are fixed in space, except for drift.
This is the most common AFM configuration; other
configurations in which the sample is fixed and the cantilever
moves can be analyzed by trivial changes to the arguments
below. Consider also a sample which consists of a flat surface
with a very sharp asperity on it (a spatial impulse), as shown
in Fig. 1.c. For simplicity we ignore the y coordinate in the
following discussion and the figure. In an ideal situation, in a
contact mode scan the tip remains at a fixed height touching
the flat surface until it encounters the asperity. Then the
scanner moves very quickly downward (it contracts) for the

tip to remain in contact with the feature, maintaining the same

applied force. If we record the height of the tip zf in a
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Fig. 2. (a) Measurement of drift in x and y directions over 215 minutes, with
a sampling time of 30 seconds. (b) Corresponding power spectral density
using the Welch method. Most of the signals’ power is concentrated in the
frequency band below 5x10™* Hz.

coordinate system attached rigidly to the sample (or,

equivalently, to the top of the scanner) as a function of the x}9

coordinate of the tip in the same system, this gives us the true
topography of the sample, which is the desired output. (A
similar argument holds also for vibratory, or dynamic mode
operation.)

However, in a real AFM, when the tip contacts the top of a
feature such as the spatial impulse of Fig. l.c, what we
measure is the voltage V, applied to the vertical piezo motor
versus the voltage V, applied to the horizontal motor. If we
ignore (or compensate for) hysteresis and creep, and assume
that the AFM is properly calibrated and compensates for non-
linearities in the voltage-displacement curve, the voltages can
be converted into piezo extensions E, and E,. But the x
position of the scanner (or sample) with respect to the base of
the instrument does not equal the piezo extension because
there is drift between the sample and the base. Rather, the
scanner position is x§ = E_+dxg , where dx§ is the scanner
drift. (We assume the drift is a translation, based on
experimental observations, as noted earlier.) In other words,
even with no applied voltages, the scanner is moving (drifting)
with respect to the base. In addition, the tip is itself drifting
with respect to the base. Thus the position of the tip with
respect to the base is xﬁ = deB . The position of the tip with
respect to the sample, which is the desired topography signal,
is the difference between the position of the tip and the
position of the sample, both measured with respect to the base:

xp =xE —x8 =(axf —dx8)-E =dx-E, (1)

The combined effect of these two drifts, dx, is what we
call simply AFM drift. To image the impulse of Fig. 1.c the tip
must be on top of the feature, and therefore the tip position
with respect to the sample must be constant. Since the drift
varies with time, it follows from (1) that the piezo extension
and corresponding applied voltage vary with time and so do
the images. To stabilize the image and compensate for the
drift, it suffices to change the origin of the x axis by dx . This
can be done by changing the offset values associated with a
scan, which is precisely what our system does, as we will
show later. It is also clear from (1) that the drift between two
instants of time #; and ¢, can be measured by subtracting the
corresponding piezo extensions for an impulse feature. These
can be read directly from the images of the feature taken at
times #; and #,. (In practice, the situation is more complicated
because the features imaged are not pure impulses, as we will
see below.)

Feedback in the horizontal directions x, y is normally used
in AFMs to ensure that the scanner is in the correct position
with respect to the base. Therefore, x, y feedback can
compensate (within the noise level constraints of the system)
for non-linearities and scanner-base drift. However, it cannot
compensate for tip-base drift.

C. Statistical Properties

The behavior of the drift depends on such factors as
temperature, humidity, the construction of the instrument, and
thermal expansion coefficients. In our lab, drift velocities tend
to vary from 0.01 to 0.1 nm/s. Therefore, for 256x256 pixel
images taken at a 1 Hz rate (these are typical values) the drift
between two successive images can be as much as 25.6 nm,
which is larger than the diameter of the particles we normally
manipulate.

Fig 2.a shows a time series of drift displacement values in
the x and y directions, which was measured by comparing
images of the same feature taken at sampling times 30 seconds
apart. These measurements were performed after an initial
period of two to three hours of AFM operation, to let the
instrument stabilize; immediately after the AFM is turned on,
the drift is considerably larger. The corresponding velocities
inferred from the figures are approximately constant for
several minutes, and then change in a seemingly random
manner. The power spectra of the drift time series are shown
in Fig 2.b and exhibit most of the signal power in the
frequency band below 5x10™ Hz, which corresponds to a time
constant of about 30 minutes. The slow-varying character of
the drift compared to the typical time required for a
manipulation operation, which is at most a few seconds,
makes it possible to estimate drift while performing a series of
manipulations.
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Fig. 3. Successive single line scans for finding the center of particle.

III. ESTIMATION AND COMPENSATION OF DRIFT

A. Drift Measurement

The basic method for the measurement of drift involves
tracking a number of fixed features in the sample. We employ
two methods depending on the sample type.

The first method is applicable only when the objects to be
manipulated have a known and simple shape. This is usually
the case in our experiments, in which we manipulate spherical
particles. For these particles, drift can be measured by tracking
the center of a particle.

We search for the center of a spherical particle as follows.
First we look for the highest point of a single line scan in the x
direction (see Figure 3). Then we scan along a single line in
the y direction and passing through the previously-found high
point. We find the highest point of this y-scan, pass an x-line
through it and find a new maximum, continuing the process
until we reach a desired accuracy. (This process fails if the
first line scan misses the particle altogether.)

The second method uses a general approach, applicable to
objects of arbitrary shapes, and involves correlating images,
by using the three following steps.

1) Selection of tracking window: We typically use a 64x64
window, which can be scanned in a few seconds and normally
contains enough features for successful tracking. The area is
selected by maximizing an interest operator, defined in terms
of the following characteristics [9, 14].

 Distinctness of features from immediate neighbors.

* Global uniqueness of the features (in the whole image).

* Invariance of features under expected distortions.

In order to evaluate the optimality of the selected window
in terms of these criteria, we first construct the matrix

m 2

N=Z fx,- fx,-fyi (2)
=\ fof SE

where f, and f, are the gradients of the image in the x and

y directions, and the sum is over all the pixels in the window.
Assuming a constant noise level in the image, the optimum

Fig. 4. The optimal tracking window. Horizontal stripes in the image are due
to line-by-line flattening.

window is selected in regions in which the eigenvalues of N
are approximately equal to each other. This ensures that the
selected window does not contain a straight edge or a strongly
oriented texture. We also require that the confidence ellipse
(defined by trace N ) be smaller than those obtained from
neighboring windows. This ensures maximum local
separability or distinctness of points in the selected window
(for more details see [14]). Figure 4 shows a standard scan of
nanoparticles and the optimum selected tracking window.

2) Coarse computation of translation: The normalized
cross-correlation between two images is a good measure of
their similarity. It is defined mathematically as:

D L (xe+dx,y+dy)- Iy (x, )

WX e Y By

where I; and [, are the two images, assumed to have zero
mean, and the summations are over the discretized values of x
and y. If I, is a perfect translation of /; by (a,b), then the cross-
correlation exhibits a peak at (dx,dy)=(a,b), and the peak value
is 1. In this case, the rest of the points in c¢(dx,dy) take values
between 0 and 1, depending on how well the two images
match at each (dx, dy) translation. In general the match is not
perfect, and we use the dx, dy values that correspond to the
maximum value of the correlation function as the measured
translation, and the peak value as an indication of how well
the two images match. The cross-correlation is computed
efficiently in the frequency domain, by using the Fast Fourier
Transform (FFT).

3) Fine computation of translation: The cross-correlation
computation is done with pixel accuracy, which may not be
sufficient for successful nanomanipulation. Sub-pixel
accuracies can be obtained by the following procedure [9].
First the cross-correlation method is used to find a coarse
value for the translation, (dx,, dyy), say. Then I(x, y) is
expressed as a first-order expansion of /;:

adl, ol

L(x,y) =1, (x+dxg,y+dvy) +—-Adx+—L-Ady+n  (4)
ox ay

c(dx,dy) =

€)
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where 7 is a noise term that includes higher-order effects, and
Adx and Ady are subpixel translations. Next, a best estimate

for the deltas is computed by least square estimation over the
entire picture. Finally, the refined estimate for the translation
is given by dx=dxy+Adx and dy=dy,+Ady. In our
experience, by using this method accuracies in the order of
1/10™ of a pixel dimension can be easily achieved (for
example, if we scan a 1 pm area in 256%256 pixel size, the
drift can be measured with an error less than 0.4 nm).

Observe that both techniques for measuring drift require a
coarse estimate of the drift value. Without an approximate
position for the spherical particle whose position we want to
measure, the search procedure may fail, or produce grossly
wrong values, because the first single-line scan may well miss
the particle altogether, or, even worse, hit a different particle.
The correlation-based technique also may fail if the images in
the selected windows are too different. This may produce low
correlation values or even spurious peaks that do not
correspond to the translation we want to find.

The particle-center search procedure is very fast. Travelling
at ~ 1 um/s, which is a relatively slow speed, good estimates
require less than a second for particles ~ 10 nm. The
correlation method takes longer, on the order of 10 s for a
64x64 pixel window, but is more generally applicable.

B.  Dynamic Model of Drift

We need a dynamical model of the drift to be able to
estimate and predict it by using Kalman filtering techniques.
We assume decoupled dynamics for the drift in x and y
directions. Although in reality (especially in tube shape
scanners) there is some correlation between the two
directions, our assumption greatly simplifies the compensation
system design and implementation and produces satisfactory
results, as we will show later in section IV.E.

The drift behavior is very similar to that of a maneuvering
target, in which the velocity is approximately constant for a
relatively large amount of time, and then changes randomly. A
suitable model for such targets was introduced by Singer for
radar tracking of manned air vehicles [12]. Singer’s model
uses an acceleration that is correlated in time. Intuitively, this
implies that if a target is accelerating at a time ¢, it is likely to
be still accelerating at a time ¢+ 7 , for sufficiently smallz .
We model the drift acceleration a(¢) by a first-order Markov
process governed by the first order differential equation

a(t)=—-a a(t)+w() ®)
with a corresponding exponential auto-correlation
R(®) = Ela(a(t+0)] =02 a>0. 6)

Here o2 and 1/a are the variance and time constant of
acceleration, respectively, and w(¢) is white noise with a
variance 2007 .

Thus the state space formulation for the drift in the x
direction is

x(1) =v(1)
V(1) = a(r) (7
a(t)=—-aa(t)+w(t)
where x(t) and v(¢) are the drift displacement and velocity,
respectively. (Similar equations apply to the y direction in this
uncoupled system.)
The corresponding discrete-time equations for a sampling
period T are
x(k +1) = Fx(k) +u(k) )
where x(k)=[x(k)v(k)a(k)]", u(k)is a 3x1 process noise,
and the transition matrix F given by
1 T (T -1+e )/ a?
F=0 1 (1-e Yy a |. 9)
00 e

In this model, the dynamics of drift can be expressed in
terms of three parameters: the variance, or magnitude, of drift
acceleration, the time constant, and the sampling interval.

C. Kalman Filter Estimation of Drift

The state of the drift defined in (8) can be estimated
recursively, by Kalman filtering. (We consider only the x
direction, because the system is decoupled; a similar treatment
applies to the y direction.) Given the current state estimate
X(k—1|k—1) and the state error covariance P(k—1|k—1),

the filter predicts the state and covariance at the next time step
by the standard equations

x(k|k-)=Fx(k—1]k-1) (10)

P(k|k=1)=F P(k=1|k=1)F" +Q(k -1) (11)

Here Q is the covariance of the process noise, which can be

computed in terms of 7, @ and o?—see [11, 12] for the

actual expressions.

The measurement is modeled as a linear combination of

drift state corrupted by uncorrelated noise, i.e.

z(k)=H x(k)+v(k) (12)
in which A =[1 0 0] and v(k) is a sequence of white noise,
independent of the process noise u(k), and with covariance
R(k)=R o(k).

The drift displacement is measured by the techniques
discussed earlier, in section III.LA. We wuse the pre-
measurement estimate of the drift to change the origin of the
coordinates when we position the first scan line (for the
sphere center search) or the window used for the cross-
correlation computation. This change of origin ensures that we
don’t miss the particle in the first line scan, or that the
windows used in the correlation method are not too different.
Thus the measured value is given by

z(k)y=z(k—-1)+dz+6 (13)
where ¢ is the distance between the origins of coordinates
used to make the two measurements, and is given by

5=H[x(k | k-1)-%(k—1]k-2)] (14)
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Fig. 5. Block diagram of the AFM and the drift compensator.

and dz is the amount of measured drift as explained in IIL.A.
The Kalman filter computes the Kalman gain and uses the
measurement z(k) to update the state estimate x(k | k) and the

error covariance P(k | k) by the standard formulas [11].

IV. IMPLEMENTATION AND RESULTS

A. System Architecture

The overall system architecture is shown in Fig. 5. The
filter maintains current estimates of drift displacement and
error covariance. The drift displacement is written onto the
offset registers of the controller. This is equivalent to a change
of origin. For example, if the x offset is 20 nm and a tip
motion to x = 10 nm is requested, the controller applies to the
x piezo the voltage required to move the tip by 30 nm. If the
drift estimate was perfect, this procedure would ensure that
successive requests for scans from x = 0 to x = 500 nm, say,
would produce always the same image. The filter also
maintains the last acquired image or particle location
(depending on which drift measurement technique is used),
together with the corresponding offsets and sampling times.

The image or scan line data that result from a measurement
job are first pre-processed. The raw data from the tracking
window are flattened line by line to remove the existing slope.
Then a threshold is applied to the image for discarding the
artifacts due to the image flattening. Finally the whole data
from the window are offset to a zero mean. In the case of
tracking a particle using its center, each single line scan is
smoothed with a fourth order IIR filter.

After the raw data are processed they are passed to the
translation analyzer, which compares them with the previous
image or particle position and computes the displacement,
taking into consideration the changes of origin associated with
the offsets. The Kalman filter uses the measured drift and the
current estimates to update the state and the covariance.

The scheduling of filter operation is performed according to
the flowchart of Figure 6. Requests for drift measurements are
made from the compensator to the AFM (see bottom of flow
chart), and the AFM acknowledges the request. This indicates
that a time slot has been assigned to the filter to perform any
operation necessary for the drift measurement, i.e., either an
imaging scan or a series of line scans. Observe that drift
measurement requires tip motion, and therefore has to be

Ty ¢ default sampling period
Py < covariance threshold

AT « prediction update interval

|
. Acknowledge
perform drift drift
measurement z(¢,,) measurement
ettt i--------------
1
! update drift state x(¢,, |Z,,) and !
1
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Fig. 6. Synchronization of the drift compensator with the AFM.

scheduled by the AFM controller after the end of any
executing process that also moves the tip. The Kalman filter
starts the drift measurement procedure once it receives the
acknowledgement from the AFM. The current estimates of
drift are updated by using the measurement and provided as
new x and y offsets to the AFM. From this point until the next
measurement, the filter uses the prediction equations (10) and
(11) to compute the most up-to-date estimates of x and y

offsets at times #;, a given sampling interval apart. Typically,

this prediction update sampling period is on the order of a few
seconds and much smaller than the default measurement
sampling interval T, which can go from 30 sec to several
minutes. During the inter-measurement period, the error
covariance is also monitored (as a measure of uncertainty in
the estimates) and once it exceeds a user-specified threshold a
request for a new measurement is sent to the AFM machine.
Otherwise, the measurements are scheduled at the periodic
default measurement times, 7} apart.

B. Hardware and Software

The system is implemented on an AutoProbe CP-R AFM
(Park Scientific Instruments, now Veeco Instruments). The
drift compensation software runs on top of our own Probe
Control Software (PCS) for nanomanipulation, which in turn
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is implemented through the vendor supplied API (Application
Programming Interface). (A version of PCS is now
commercially available.) The API maintains its own job
queue, with no preemptive scheduling. Before any job that
involves tip motion is executed, we check for updated offset
values, to ensure that we compensate for drift in all imaging
and manipulation operations.

C. Selection of Drift Model Parameters

For a fixed-order Kalman filter to be optimal (in the sense
of having minimum error covariance) the filter parameters
have to be selected as close as possible to the real signal’s
parameters. These parameters are measurement noise
covariance R, acceleration time constant 1/a and acceleration

noise variance o.. Any mismatch between the filter

parameters and the real parameters results in suboptimality of
the Kalman filter gain [10].

The estimation of measurement noise covariance R, is
based on the autocorrelation of the innovation sequence [15].
The innovation sequence is defined as

e(k)=z(k)—Hx(k | k-1). (15)
The innovation process for an optimal Kalman filter is white
Gaussian noise. Using the algorithm of Mehra [15, 16], the
autocorrelation of the innovation process is used to estimate
R, once the filter reaches a steady-state condition. This can be
checked by looking at the state covariance, and in our case
typically is achieved in 5-10 min. By using this method, the
value of R, is estimated to be about 1.2 nm? for the set of data
in Fig. 2.a.
The estimation of ¢ and a is more complicated. Since the

number of samples in drift measurements is small (the typical
sampling time is in the range of 30-120 seconds before the
filter reaches the steady state condition, and thereafter may be
higher) we have run a simulation for different values of o7
and a using the measurement data in Fig 2.a The criterion for
choosing these two parameters is the minimization of the
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Fig. 8. The sensitivity of Jy to parameters Ry, o> and a. In each curve the

m
other two parameters have been kept constant at their nominal values of
R=1.2nm’, =0.11 min" and &2 =0.048 nm’/min".

mean square of the prediction errors, i.e.,

N
@R =Y K. (16)
k=1

The procedure for the selection of ¢ and a is as follows.

1) Take a series of drift measurements with some small
sampling time (30 sec in our case).

2) Divide these samples into a set of measurement-
prediction intervals in such a way that each measurement
interval is followed by a prediction interval (in our case we
used 5 min measurement and 10 min prediction). Run a filter
simulation in which we use measurements 30 sec apart for 5
min, do not measure for 10 min (use prediction only), then
measure again for 5 min at 30 sec intervals, and so on. Do this
for various values of the parameters,

3) With the computed R, from the Mehra’s method, search
for the minimum value of (16). Figure 7 shows the contour
plot of isolines of J, and its minimum at o?2=0.048

nm?*/min* and ¢=0.11 min™".

D. Sensitivity of Parameters
The sensitivity of the Kalman filter with respect to a
parameter @ is defined as
9y (6)

Y a7

0=‘
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Fig. 9. (a) Drift measurements in the x direction with 30 sec sampling period.
(b) Drift error in the x direction, defined as the difference between estimated
and measured values. The measurements are used to estimate the state of drift
during the time intervals labelled “Measurement State” at the bottom of the
figure, whereas during the “Prediction State” intervals the estimates are
predictions only.

where 6 can be any of the parameters Ry, a or o2 while the

other two parameters are kept constant at their nominal values
which correspond to the minimum of the cost function (see
section IV.C). Theoretically, the sensitivity vanishes at the
extremum values of the cost function (16).

By studying the sensitivity curves in Fig. 8, it is clear that
choosing the parameters below their nominal values has a
more negative impact on the performance than selecting
higher values. However, it should be noted that higher
parameter values imply a larger prediction error (16).

E. Experimental Results

The following results were obtained on the AutoProbe
AFM with a sharp tip in dynamic mode, imaging and
manipulating gold nanoparticles with nominal diameters of 15
nm, deposited on a mica surface, covered with poly-L-lysine,
in air, at room temperature and humidity. Filter parameters
were selected at the nominal values computed as explained
above.

In order to assess the tracking capability of the filter we
conducted two experiments. In the first experiment we
measured the drift with the method explained in section III.A
at time intervals 30 sec apart. At specific time instants several
min apart, we switched the filter from a measurement state (in
which the measurements are used to update the drift estimate)
to a prediction state (in which the measurements are ignored

Fig. 10. Manipulation of 15 nm Au particles using the drift compensator and
an automatic manipulation procedure. The drift measurements are only
carried out before the manipulation of each set of five nanoparticles. The
sampling time for the measurements is 30 sec and the manipulation of each
particle takes about 40 sec, which includes waiting time to combat creep,
plus time for the particle-center search. The left panel is the initial, random
configuration, and the right panel is the final structure, proposed in [17] for a
QCA inverter.

and the state is updated by prediction only), and vice-versa.
Figure 9.a depicts the measured values of drift in the x
direction. Note that over a period of 160 min the total drift
was over 500 nm or some 40 times the diameter of the
particles being manipulated. The variance of the residuals,
defined as the difference between the estimates and the
measurements, during the measurement periods is about 1.14
nm’. The drift error (residual) is plotted in Fig. 9.b, which
shows a growing error once the filter is switched to the
prediction state. This deviation depends on the amount of
measurement time before the prediction and on the drift
behavior. However, the prediction error is not growing faster
than 0.5 nm/min while the speed of the drift in the same
experiment can be as high as 6 nm/min. This implies an order
of magnitude improvement in drift speed in a pure prediction
mode.

In the second experiment, we used the drift compensator for
the automatic nanomanipulation of particles. Manipulation
needs accurate estimates for the position of particles,
especially when their diameters are below ~ 15 nm. The
procedure for integrating the drift compensator and the
automatic manipulator is the following. We first scan and
choose an appropriate area in the sample. The desired particles
and their destinations are marked in the acquired sample area.
The drift compensator is started with a default sampling time
(30 sec) and it continues running until it reaches a stable
condition (typically after 5-10 minutes). Then the AFM starts
the manipulation process by using the prediction states
provided by the Kalman filter. The manipulation process is
terminated once the uncertainty in the drift estimate exceeds a
certain limit, and new measurements are performed.
Manipulation continues after the measurements, and so on.

Figure 10 shows the automatic manipulation of particles
using the drift compensator. In this experiment the drift
measurements are only carried out before the manipulation of
each set of five nanoparticles. Before each manipulation the
tip waits about 30 seconds (to combat the effects of creep) at
the approximate location of a particle computed using the drift
value predicted by the filter. Then it searches for the center of
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the particle (using the center-search procedure discussed in
Section III.A and Figure 3) in an area comparable to the size
of the particle. After that, the particle is manipulated. Because
large-distance manipulation motions typically are less accurate
than short ones, we ran the whole process of manipulation
twice, the first for a gross displacement of particles and the
second for accurately placing the particles at their target
positions. The final result is the structure proposed in [17] for
a Quantum-dot Cellular Automaton (QCA) inverter. Similar
experiments without drift compensation failed: particles were
missed or moved to the wrong locations.

The computational time for the filter operation in these
experiments is associated primarily with scanning of the
tracking window (about 8 sec for a 64x64 pixel window) and
processing of the resulting image (less than 2 sec). The
compensator is capable of predicting the drift state with an
error less than 0.5 nm/min for at least 10 minutes. Therefore,
drift compensation can be run as a background process while
the AFM executes other tasks such as the manipulation of
nanoobjects.

V. CONCLUSION

Drift is a major cause of spatial uncertainty in AFMs. It
causes distortion in AFM images, and it has even more
deleterious effects on nanomanipulation, where it is often
responsible for outright failure of the desired operations. Drift
compensation in today’s instruments is done primarily through
user interaction.

This paper presents a Kalman filtering approach to drift
estimation. The filter updates the origin of the AFM
coordinates, scheduling measurements when the covariance of
the error exceeds a given threshold. AFM tip motions are
always executed in the updated coordinate system and become
largely immune to drift.

Sequential manipulation of nanoparticles over a relatively
long period of time without user intervention is demonstrated
experimentally. By using drift compensation it will be possible,
for the first time, to perform manipulation tasks that last several
hours without a user in the loop, and to construct by AFM
manipulation nanostructures much more complex and useful
than those which have been built until now.

Future work in this area includes more accurate drift
measurement methods (e.g., by removing the effect of tip
convolution from the images), and compensation for other
sources of spatial uncertainty such as creep and hysteresis.
Coupling the results of this research with high-level planning
algorithms such as those in [18] will lead to the fully automatic
construction of complex nanoassemblies.
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