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Abstract—Manipulation of nanoparticles with Atomic Force 

Microscopes (AFMs) has been under development for a decade, 
and is now well established as a technique for prototyping 
nanodevices and for other applications. Until now, the 
manipulation process for particles with sizes of a few nanometers 
has been very labor intensive. This severely limits the complexity 
of the structures that can be built. Particle sizes on the order of 
10 nm are comparable to the spatial uncertainties associated with 
AFM operation, and a user in the loop has been needed to 
compensate for these uncertainties.  

This paper addresses thermal drift, which is the major cause 
of errors for AFMs operated in ambient conditions. It is shown 
that drift can be estimated efficiently by using Kalman filtering 
techniques. This approach has firm theoretical foundations and is 
validated by the experimental results presented in this paper. 
Manipulation of groups of 15-nm particles is demonstrated under 
program control, without human intervention, over a long period 
of time, in ambient air and at room temperature. Coupled with 
existing methods for high-level motion planning, the 
manipulation capabilities introduced here will permit 
assembling, from the bottom up, nanostructures much more 
complex than those being built today with AFMs. 
 

Note to Practitioners—Nanomanipulation with Scanning Probe 
Microscopes (SPMs) has potential applications in nanodevice and 
system prototyping, or in small-batch production if multi-tip 
arrays are used instead of single tips. However, SPM 
nanomanipulation is still being used primarily in research labs. A 
major obstacle to its wider use is the labor and time involved in 
the process. These are due largely to spatial uncertainty in the 
position of the tip (which is analogous to a robot’s end effector) 
relative to the sample being manipulated. Today, a skilled user is 
needed to determine where the tip is, and to correct manipulation 
errors due to inaccurate positional estimates. The major cause of 
this spatial uncertainty is thermal drift between the tip and the 
sample. At the time scales relevant to manipulation, the drift can 
reach values comparable to the size of the objects, especially if 
these are below ~ 10 nm. The techniques discussed in this paper 
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compensate for the drift and enable automated manipulation, 
with associated savings in time and labor, and increased 
complexity of the resulting structures. 
 

Index Terms—Atomic Force Microscopes; Kalman filtering; 
nanomanipulation; nanoassembly; nanorobotics; Scanning Probe 
Microscopes; spatial uncertainty. 
 

I. INTRODUCTION 
TOM manipulation with Scanning Probe Microscopes 
(SPMs) was first demonstrated in the early 1990s, and 

manipulation of particles with sizes on the order of a few nm 
to the tens of nm soon followed—see [1, 2] and references 
therein. Today, particles with diameters of ~ 10 nm are 
manipulated routinely with Atomic Force Microscopes 
(AFMs) at USC’s Laboratory for Molecular Robotics (LMR) 
and elsewhere. (The AFM is a specific type of SPM that 
exploits interatomic forces between a sharp tip and a sample.) 
Nanomanipulation operations are used to prototype nanoscale 
devices, and to repair or modify nanostructures built by other 
means.  

Manipulation of small nanoparticles (with diameters below 
~ 30 nm, say) in ambient conditions, i.e., at room temperature, 
in air or in a liquid, and without stringent environmental 
controls, requires extensive user intervention to compensate 
for the many spatial uncertainties associated with AFMs and 
their piezoelectric drive mechanisms. Uncertainties are 
introduced by phenomena that range from non-linearities in 
the voltage-displacement curves that characterize the piezos, 
to creep, hysteresis, and thermal drift. The latter is the major 
cause of spatial uncertainty in our lab, and is due primarily to 
thermal expansion and contraction of the AFM components. 
For example, a one degree change in temperature will cause a 
50 nm change in the length of a mechanical part that is 5 mm 
long (assuming a typical expansion coefficient of 10-5 /°C).  

AFM vendor software usually compensates for piezo non-
linearities. Hysteresis effects can be greatly reduced by 
scanning always in the same direction, and creep effects can 
be nearly eliminated by waiting a few minutes after each large 
motion of the scanner (although this is very inefficient). In 
addition, modern, top-of-the-line instruments are equipped 
with feedback loops that claim positioning errors below 1 nm 
in the x,  y  plane of the sample [3]. Feedback can compensate 
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for non-linearities, hysteresis and creep, but not tip drift—see 
Section II.B below. Drift tends to increase with time, which 
implies that complicated assemblies cannot be completed 
without frequent user interaction. Moreover, most of the 
AFMs in use today either have no x, y feedback, or their 
feedback loops have noise levels of several nm, which are too 
large for manipulation of particles with sizes ~ 10 nm. These 
machines are normally operated open loop for the small scan 
sizes (< 1 µm) used in the manipulation of small 
nanoparticles, to avoid introducing additional noise through 
the feedback circuitry. With or without x, y feedback, drift 
compensation remains a crucial issue for successful 
nanomanipulation. 

Typical assemblies of small nanoparticles built by 
nanomanipulation today consist of some ten particles, and 
may take an experienced user a whole day to construct [13]. 
To move towards more complex assemblies requires that the 
manipulation process become more automated, and this in turn 
requires compensation of the spatial uncertainties associated 
with AFMs—especially drift, which is the most pernicious 
one, as we have argued above.  

 The remainder of this paper discusses the characteristics of 
drift, how to estimate it and compensate for it, our 

implementation of drift compensation, and experimental 
results. 

II. DRIFT CHARACTERIZATION 

A. The Problem 
Successive AFM scans of a sample without changing any of 

the scanning parameters will appear as translated versions of 
the sample surface, as shown in Fig. 1.a. This is the physical 
manifestation of drift in the x, y plane of the sample. There is 
also drift in the z direction but it will be ignored in this paper, 
because it usually is reasonably well compensated by the z 
feedback system and has little impact on nanomanipulation. 
Note that, unlike atoms, particles of the sizes we are 
discussing in this paper do not diffuse over the surface at 
room temperature; they are fixed with respect to the surface. 
Many experimental observations indicate that the drift is 
essentially a translation (no rotation is involved) and the drift 
velocity is approximately constant over periods of several 
minutes, but changes on a longer time scale. A drift-
compensated instrument would produce the same image in 
each of the panels of Fig. 1.a. The problem addressed in this 
paper is how to achieve drift compensation in such a way that 
not only images of the same region are constant in time, but 
other processes—in particular, programmed sequences of 
manipulation operations—also can be carried out as if drift 
did not exist. 

Several authors have reported simple approaches to drift 
compensation [4, 5, 6, 7, 8]. These approaches assume that the 
drift velocity is constant and compute it by comparing 
successive images. The major drawback of these procedures is 
their failure to adapt when the drift velocity changes. They 
can be used for correcting images taken over a period of time 
of approximately constant drift, but cannot support a sequence 
of nanomanipulation operations, which requires real-time 
compensation over relatively long durations. 

B. Spatial Analysis 
Consider a typical AFM, schematically shown in Fig. 1.b. 

For concreteness we assume that the sample is placed on top 
of the scanner and that the unloaded (i.e., undeflected) 
cantilever and tip (or their average positions when the AFM is 
operated in dynamic mode) are fixed in space, except for drift. 
This is the most common AFM configuration; other 
configurations in which the sample is fixed and the cantilever 
moves can be analyzed by trivial changes to the arguments 
below. Consider also a sample which consists of a flat surface 
with a very sharp asperity on it (a spatial impulse), as shown 
in Fig. 1.c. For simplicity we ignore the y coordinate in the 
following discussion and the figure. In an ideal situation, in a 
contact mode scan the tip remains at a fixed height touching 
the flat surface until it encounters the asperity. Then the 
scanner moves very quickly downward (it contracts) for the 
tip to remain in contact with the feature, maintaining the same 
applied force. If we record the height of the tip S
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Fig. 1.  (a) Four images from a 180 nm region of a sample, taken at 8 min 
intervals. The objects shown are Au nanoparticles with 15 nm diameters.   (b) 
A schematic diagram of an AFM machine. (c) A spatial asperity below the 
tip. 
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coordinate system attached rigidly to the sample (or, 
equivalently, to the top of the scanner) as a function of the S

Tx  
coordinate of the tip in the same system, this gives us the true 
topography of the sample, which is the desired output. (A 
similar argument holds also for vibratory, or dynamic mode 
operation.) 

However, in a real AFM, when the tip contacts the top of a 
feature such as the spatial impulse of Fig. 1.c, what we 
measure is the voltage Vz applied to the vertical piezo motor 
versus the voltage Vx applied to the horizontal motor. If we 
ignore (or compensate for) hysteresis and creep, and assume 
that the AFM is properly calibrated and compensates for non-
linearities in the voltage-displacement curve, the voltages can 
be converted into piezo extensions Ez and Ex. But the x 
position of the scanner (or sample) with respect to the base of 
the instrument does not equal the piezo extension because 
there is drift between the sample and the base. Rather, the 
scanner position is B

Sx
B
S dxEx += , where B

Sdx  is the scanner 
drift. (We assume the drift is a translation, based on 
experimental observations, as noted earlier.) In other words, 
even with no applied voltages, the scanner is moving (drifting) 
with respect to the base. In addition, the tip is itself drifting 
with respect to the base. Thus the position of the tip with 
respect to the base is B

T
B
T dxx = . The position of the tip with 

respect to the sample, which is the desired topography signal, 
is the difference between the position of the tip and the 
position of the sample, both measured with respect to the base:  

 
 xx

B
S

B
T

B
S

B
T

S
T EdxEdxdxxxx −=−−=−= )(  (1) 

 
The combined effect of these two drifts, dx , is what we 

call simply AFM drift. To image the impulse of Fig. 1.c the tip 
must be on top of the feature, and therefore the tip position 
with respect to the sample must be constant. Since the drift 
varies with time, it follows from (1) that the piezo extension 
and corresponding applied voltage vary with time and so do 
the images. To stabilize the image and compensate for the 
drift, it suffices to change the origin of the x axis by dx . This 
can be done by changing the offset values associated with a 
scan, which is precisely what our system does, as we will 
show later. It is also clear from (1) that the drift between two 
instants of time t1 and t2 can be measured by subtracting the 
corresponding piezo extensions for an impulse feature. These 
can be read directly from the images of the feature taken at 
times t1 and t2. (In practice, the situation is more complicated 
because the features imaged are not pure impulses, as we will 
see below.) 

Feedback in the horizontal directions x, y is normally used 
in AFMs to ensure that the scanner is in the correct position 
with respect to the base. Therefore, x, y feedback can 
compensate (within the noise level constraints of the system) 
for non-linearities and scanner-base drift. However, it cannot 
compensate for tip-base drift.  

 

C. Statistical Properties 
The behavior of the drift depends on such factors as 

temperature, humidity, the construction of the instrument, and 
thermal expansion coefficients. In our lab, drift velocities tend 
to vary from 0.01 to 0.1 nm/s. Therefore, for 256x256 pixel 
images taken at a 1 Hz rate (these are typical values) the drift 
between two successive images can be as much as 25.6 nm, 
which is larger than the diameter of the particles we normally 
manipulate. 

Fig 2.a shows a time series of drift displacement values in 
the x and y directions, which was measured by comparing 
images of the same feature taken at sampling times 30 seconds 
apart. These measurements were performed after an initial 
period of two to three hours of AFM operation, to let the 
instrument stabilize; immediately after the AFM is turned on, 
the drift is considerably larger. The corresponding velocities 
inferred from the figures are approximately constant for 
several minutes, and then change in a seemingly random 
manner. The power spectra of the drift time series are shown 
in Fig 2.b and exhibit most of the signal power in the 
frequency band below 5×10-4 Hz, which corresponds to a time 
constant of about 30 minutes. The slow-varying character of 
the drift compared to the typical time required for a 
manipulation operation, which is at most a few seconds, 
makes it possible to estimate drift while performing a series of 
manipulations.  
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Fig. 2. (a) Measurement of drift in x and y directions over 215 minutes, with 
a sampling time of 30 seconds. (b) Corresponding power spectral density 
using the Welch method. Most of the signals’ power is concentrated in the 
frequency band below 5×10-4 Hz. 
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III. ESTIMATION AND COMPENSATION OF DRIFT 

A. Drift Measurement 
The basic method for the measurement of drift involves 

tracking a number of fixed features in the sample. We employ 
two methods depending on the sample type. 

The first method is applicable only when the objects to be 
manipulated have a known and simple shape. This is usually 
the case in our experiments, in which we manipulate spherical 
particles. For these particles, drift can be measured by tracking 
the center of a particle. 

We search for the center of a spherical particle as follows. 
First we look for the highest point of a single line scan in the x 
direction (see Figure 3). Then we scan along a single line in 
the y direction and passing through the previously-found high 
point. We find the highest point of this y-scan, pass an x-line 
through it and find a new maximum, continuing the process 
until we reach a desired accuracy. (This process fails if the 
first line scan misses the particle altogether.) 

The second method uses a general approach, applicable to 
objects of arbitrary shapes, and involves correlating images, 
by using the three following steps. 
  

1) Selection of tracking window: We typically use a 64x64 
window, which can be scanned in a few seconds and normally 
contains enough features for successful tracking. The area is 
selected by maximizing an interest operator, defined in terms 
of the following characteristics [9, 14]. 

• Distinctness of features from immediate neighbors. 
• Global uniqueness of the features (in the whole image). 
• Invariance of features under expected distortions. 
In order to evaluate the optimality of the selected window 

in terms of these criteria, we first construct the matrix  

 ∑
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where 
ixf and 

iyf  are the gradients of the image in the x and 

y directions, and the sum is over all the pixels in the window.  
Assuming a constant noise level in the image, the optimum 

window is selected in regions in which the eigenvalues of N 
are approximately equal to each other. This ensures that the 
selected window does not contain a straight edge or a strongly 
oriented texture. We also require that the confidence ellipse 
(defined by trace N –1) be smaller than those obtained from 
neighboring windows. This ensures maximum local 
separability or distinctness of points in the selected window 
(for more details see [14]). Figure 4 shows a standard scan of 
nanoparticles and the optimum selected tracking window. 

2) Coarse computation of translation: The normalized 
cross-correlation between two images is a good measure of 
their similarity. It is defined mathematically as: 
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where I1 and I2 are the two images, assumed to have zero 
mean, and the summations are over the discretized values of x 
and y. If I2 is a perfect translation of I1 by (a,b), then the cross-
correlation exhibits a peak at (dx,dy)=(a,b), and the peak value 
is 1. In this case, the rest of the points in c(dx,dy) take values 
between 0 and 1, depending on how well the two images 
match at each (dx, dy) translation. In general the match is not 
perfect, and we use the dx, dy values that correspond to the 
maximum value of the correlation function as the measured 
translation, and the peak value as an indication of how well 
the two images match. The cross-correlation is computed 
efficiently in the frequency domain, by using the Fast Fourier 
Transform (FFT). 

3) Fine computation of translation: The cross-correlation 
computation is done with pixel accuracy, which may not be 
sufficient for successful nanomanipulation. Sub-pixel 
accuracies can be obtained by the following procedure [9]. 
First the cross-correlation method is used to find a coarse 
value for the translation, (dx0, dy0), say. Then I2(x, y) is 
expressed as a first-order expansion of I1: 
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Fig. 3. Successive single line scans for finding the center of particle. 
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Fig. 4. The optimal tracking window. Horizontal stripes in the image are due 
to line-by-line flattening. 
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where n is a noise term that includes higher-order effects, and 

dx∆  and dy∆  are subpixel translations. Next, a best estimate 
for the deltas is computed by least square estimation over the 
entire picture. Finally, the refined estimate for the translation 
is given by dxdxdx ∆+= 0  and dydydy ∆+= 0 . In our 
experience, by using this method accuracies in the order of 
1/10th of a pixel dimension can be easily achieved (for 
example, if we scan a 1 µm area in 256×256 pixel size, the 
drift can be measured with an error less than 0.4 nm). 

Observe that both techniques for measuring drift require a 
coarse estimate of the drift value. Without an approximate 
position for the spherical particle whose position we want to 
measure, the search procedure may fail, or produce grossly 
wrong values, because the first single-line scan may well miss 
the particle altogether, or, even worse, hit a different particle. 
The correlation-based technique also may fail if the images in 
the selected windows are too different. This may produce low 
correlation values or even spurious peaks that do not 
correspond to the translation we want to find.  

The particle-center search procedure is very fast. Travelling 
at ~ 1 µm/s, which is a relatively slow speed, good estimates 
require less than a second for particles ~ 10 nm. The 
correlation method takes longer, on the order of 10 s for a 
64x64 pixel window, but is more generally applicable. 

B. Dynamic Model of Drift 
We need a dynamical model of the drift to be able to 

estimate and predict it by using Kalman filtering techniques. 
We assume decoupled dynamics for the drift in x and y 
directions. Although in reality (especially in tube shape 
scanners) there is some correlation between the two 
directions, our assumption greatly simplifies the compensation 
system design and implementation and produces satisfactory 
results, as we will show later in section IV.E. 

The drift behavior is very similar to that of a maneuvering 
target, in which the velocity is approximately constant for a 
relatively large amount of time, and then changes randomly. A 
suitable model for such targets was introduced by Singer for 
radar tracking of manned air vehicles [12]. Singer’s model 
uses an acceleration that is correlated in time. Intuitively, this 
implies that if a target is accelerating at a time t, it is likely to 
be still accelerating at a time t+τ  , for sufficiently smallτ . 
We model the drift acceleration a(t) by a first-order Markov 
process governed by the first order differential equation 
 )()( )( twtata +−= α&  (5) 
with a corresponding exponential auto-correlation 

 [ ] 0    )()()( 2 >=+= − ασττ ταetataER m . (6) 
Here 2

mσ  and α/1  are the variance and time constant of 
acceleration, respectively, and )(tw  is white noise with a 

variance 22 mασ . 
Thus the state space formulation for the drift in the x 

direction is 
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where )(tx and )(tv  are the drift displacement and velocity, 
respectively. (Similar equations apply to the y direction in this 
uncoupled system.)  

The corresponding discrete-time equations for a sampling 
period T are 
 )()()1( kkFk uxx +=+  (8) 

where Tkakvkxk )]( )( )([)( =x , )(ku is a 3×1 process noise, 
and the transition matrix F  given by 
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In this model, the dynamics of drift can be expressed in 
terms of three parameters: the variance, or magnitude, of drift 
acceleration, the time constant, and the sampling interval.  

C. Kalman Filter Estimation of Drift 
The state of the drift defined in (8) can be estimated 

recursively, by Kalman filtering. (We consider only the x 
direction, because the system is decoupled; a similar treatment 
applies to the y direction.) Given the current state estimate 

)1|1(ˆ −− kkx  and the state error covariance )1|1( −− kkP , 
the filter predicts the state and covariance at the next time step 
by the standard equations 
 )1|1(ˆ )1|(ˆ −−=− kkFkk xx  (10) 

 )1( )1|1( )1|( −+−−=− kQFkkPFkkP T  (11) 
Here Q is the covariance of the process noise, which can be 

computed in terms of T, α and 2
mσ —see [11, 12] for the 

actual expressions. 
The measurement is modeled as a linear combination of 

drift state corrupted by uncorrelated noise, i.e. 
 )()( )( kkHkz ν+= x  (12) 
in which H = [1 0 0] and )(kν is a sequence of white noise, 
independent of the process noise )(ku , and with covariance 
R(k)=R0 δ(k).  

The drift displacement is measured by the techniques 
discussed earlier, in section III.A. We use the pre-
measurement estimate of the drift to change the origin of the 
coordinates when we position the first scan line (for the 
sphere center search) or the window used for the cross-
correlation computation. This change of origin ensures that we 
don’t miss the particle in the first line scan, or that the 
windows used in the correlation method are not too different. 
Thus the measured value is given by  
 δ++−= dzkzkz )1()(  (13) 
where δ  is the distance between the origins of coordinates 
used to make the two measurements, and is given by 
 )]2|1(ˆ)1|(ˆ[ −−−−= kkkkH xxδ  (14) 
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and dz  is the amount of measured drift as explained in III.A. 
The Kalman filter computes the Kalman gain and uses the 
measurement z(k) to update the state estimate )|(ˆ kkx and the 
error covariance )|( kkP  by the standard formulas [11]. 

IV. IMPLEMENTATION AND RESULTS 

A. System Architecture 
The overall system architecture is shown in Fig. 5. The 

filter maintains current estimates of drift displacement and 
error covariance. The drift displacement is written onto the 
offset registers of the controller. This is equivalent to a change 
of origin. For example, if the x offset is 20 nm and a tip 
motion to x = 10 nm is requested, the controller applies to the 
x piezo the voltage required to move the tip by 30 nm. If the 
drift estimate was perfect, this procedure would ensure that 
successive requests for scans from x = 0 to x = 500 nm, say, 
would produce always the same image. The filter also 
maintains the last acquired image or particle location 
(depending on which drift measurement technique is used), 
together with the corresponding offsets and sampling times. 

The image or scan line data that result from a measurement 
job are first pre-processed. The raw data from the tracking 
window are flattened line by line to remove the existing slope. 
Then a threshold is applied to the image for discarding the 
artifacts due to the image flattening. Finally the whole data 
from the window are offset to a zero mean. In the case of 
tracking a particle using its center, each single line scan is 
smoothed with a fourth order IIR filter.  

After the raw data are processed they are passed to the 
translation analyzer, which compares them with the previous 
image or particle position and computes the displacement, 
taking into consideration the changes of origin associated with 
the offsets. The Kalman filter uses the measured drift and the 
current estimates to update the state and the covariance. 

The scheduling of filter operation is performed according to 
the flowchart of Figure 6. Requests for drift measurements are 
made from the compensator to the AFM (see bottom of flow 
chart), and the AFM acknowledges the request. This indicates 
that a time slot has been assigned to the filter to perform any 
operation necessary for the drift measurement, i.e., either an 
imaging scan or a series of line scans. Observe that drift 
measurement requires tip motion, and therefore has to be 

scheduled by the AFM controller after the end of any 
executing process that also moves the tip. The Kalman filter 
starts the drift measurement procedure once it receives the 
acknowledgement from the AFM. The current estimates of 
drift are updated by using the measurement and provided as 
new x and y offsets to the AFM. From this point until the next 
measurement, the filter uses the prediction equations (10) and 
(11) to compute the most up-to-date estimates of x and y 
offsets at times c

kt , a given sampling interval apart. Typically, 
this prediction update sampling period is on the order of a few 
seconds and much smaller than the default measurement 
sampling interval T0, which can go from 30 sec to several 
minutes. During the inter-measurement period, the error 
covariance is also monitored (as a measure of uncertainty in 
the estimates) and once it exceeds a user-specified threshold a 
request for a new measurement is sent to the AFM machine. 
Otherwise, the measurements are scheduled at the periodic 
default measurement times, T0 apart.  

B. Hardware and Software 
The system is implemented on an AutoProbe CP-R AFM 

(Park Scientific Instruments, now Veeco Instruments). The 
drift compensation software runs on top of our own Probe 
Control Software (PCS) for nanomanipulation, which in turn 
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Fig. 6. Synchronization of the drift compensator with the AFM. 
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Fig. 5. Block diagram of the AFM and the drift compensator. 
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is implemented through the vendor supplied API (Application 
Programming Interface). (A version of PCS is now 
commercially available.) The API maintains its own job 
queue, with no preemptive scheduling. Before any job that 
involves tip motion is executed, we check for updated offset 
values, to ensure that we compensate for drift in all imaging 
and manipulation operations. 

C. Selection of Drift Model Parameters 
For a fixed-order Kalman filter to be optimal (in the sense 

of having minimum error covariance) the filter parameters 
have to be selected as close as possible to the real signal’s 
parameters. These parameters are measurement noise 
covariance R0, acceleration time constant 1/α and acceleration 
noise variance 2

mσ . Any mismatch between the filter 
parameters and the real parameters results in suboptimality of 
the Kalman filter gain [10].  

The estimation of measurement noise covariance R0 is 
based on the autocorrelation of the innovation sequence [15]. 
The innovation sequence is defined as 
 )1|(ˆ)()( −−= kkxHkzkε . (15) 
The innovation process for an optimal Kalman filter is white 
Gaussian noise. Using the algorithm of Mehra [15, 16], the 
autocorrelation of the innovation process is used to estimate 
R0 once the filter reaches a steady-state condition. This can be 
checked by looking at the state covariance, and in our case 
typically is achieved in 5-10 min. By using this method, the 
value of R0 is estimated to be about 1.2 nm2 for the set of data 
in Fig. 2.a.  

The estimation of 2
mσ  and α is more complicated. Since the 

number of samples in drift measurements is small (the typical 
sampling time is in the range of 30-120 seconds before the 
filter reaches the steady state condition, and thereafter may be 
higher) we have run a simulation for different values of 2

mσ  
and α using the measurement data in Fig 2.a The criterion for 
choosing these two parameters is the minimization of the 

mean square of the prediction errors, i.e., 

 ∑
=

=
N

k
mN k

N
RJ

1

2
0

2 )(1),,( εσα . (16) 

The procedure for the selection of 2
mσ  and α is as follows. 

1) Take a series of drift measurements with some small 
sampling time (30 sec in our case). 

2) Divide these samples into a set of measurement-
prediction intervals in such a way that each measurement 
interval is followed by a prediction interval (in our case we 
used 5 min measurement and 10 min prediction). Run a filter 
simulation in which we use measurements 30 sec apart for 5 
min, do not measure for 10 min (use prediction only), then 
measure again for 5 min at 30 sec intervals, and so on. Do this 
for various values of the parameters, 

3) With the computed R0 from the Mehra’s method, search 
for the minimum value of (16). Figure 7 shows the contour 
plot of isolines of NJ  and its minimum at 2

mσ =0.048 
nm2/min4 and α=0.11 min-1.  

D. Sensitivity of Parameters 
The sensitivity of the Kalman filter with respect to a 

parameter θ  is defined as  
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Fig. 8. The sensitivity of JN  to parameters R0, 2

mσ  and α. In each curve the 
other two parameters have been kept constant at their nominal values of 
R0=1.2 nm2, α=0.11 min-1 and 2

mσ =0.048 nm2/min4. 

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

α  (min-1) 

σ
m2

 (n
m

2 /m
in

4 )

12
.64

12.8

12.8

13

13

13

13.2

13.2

13.213.2

13.4

13
.4

13.4

13
.4

13.4

13.9

13
.9

13.9
13.9

13
.9

13.9

14.4

14
.4

14.4

14
.4

14
.4

15
.6

15
.6

15.6

18

)(min  -1α

)
m

in
/

nm(  
4

2
2 m

σ

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

α  (min-1) 

σ
m2

 (n
m

2 /m
in

4 )

12
.64

12.8

12.8

13

13

13

13.2

13.2

13.213.2

13.4

13
.4

13.4

13
.4

13.4

13.9

13
.9

13.9
13.9

13
.9

13.9

14.4

14
.4

14.4

14
.4

14
.4

15
.6

15
.6

15.6

18

)(min  -1α

)
m

in
/

nm(  
4

2
2 m

σ

 
Fig. 7.  A contour plot of isolines of the cost function (16) versus 2

mσ and α. 

The minimum of JN  occurs at 2
mσ =0.048 nm2/min4 and α=0.11 min-1. 
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where θ  can be any of the parameters R0, α or 2
mσ  while the 

other two parameters are kept constant at their nominal values 
which correspond to the minimum of the cost function (see 
section IV.C).  Theoretically, the sensitivity vanishes at the 
extremum values of the cost function (16).  

By studying the sensitivity curves in Fig. 8, it is clear that 
choosing the parameters below their nominal values has a 
more negative impact on the performance than selecting 
higher values. However, it should be noted that higher 
parameter values imply a larger prediction error (16).   

E. Experimental Results 
The following results were obtained on the AutoProbe 

AFM with a sharp tip in dynamic mode, imaging and 
manipulating gold nanoparticles with nominal diameters of 15 
nm, deposited on a mica surface, covered with poly-L-lysine, 
in air, at room temperature and humidity. Filter parameters 
were selected at the nominal values computed as explained 
above. 

In order to assess the tracking capability of the filter we 
conducted two experiments. In the first experiment we 
measured the drift with the method explained in section III.A 
at time intervals 30 sec apart. At specific time instants several 
min apart, we switched the filter from a measurement state (in 
which the measurements are used to update the drift estimate) 
to a prediction state (in which the measurements are ignored 

and the state is updated by prediction only), and vice-versa. 
Figure 9.a depicts the measured values of drift in the x 
direction. Note that over a period of 160 min the total drift 
was over 500 nm or some 40 times the diameter of the 
particles being manipulated. The variance of the residuals, 
defined as the difference between the estimates and the 
measurements, during the measurement periods is about 1.14 
nm2. The drift error (residual) is plotted in Fig. 9.b, which 
shows a growing error once the filter is switched to the 
prediction state. This deviation depends on the amount of 
measurement time before the prediction and on the drift 
behavior. However, the prediction error is not growing faster 
than 0.5 nm/min while the speed of the drift in the same 
experiment can be as high as 6 nm/min. This implies an order 
of magnitude improvement in drift speed in a pure prediction 
mode. 

In the second experiment, we used the drift compensator for 
the automatic nanomanipulation of particles. Manipulation 
needs accurate estimates for the position of particles, 
especially when their diameters are below ~ 15 nm. The 
procedure for integrating the drift compensator and the 
automatic manipulator is the following. We first scan and 
choose an appropriate area in the sample. The desired particles 
and their destinations are marked in the acquired sample area. 
The drift compensator is started with a default sampling time 
(30 sec) and it continues running until it reaches a stable 
condition (typically after 5-10 minutes). Then the AFM starts 
the manipulation process by using the prediction states 
provided by the Kalman filter. The manipulation process is 
terminated once the uncertainty in the drift estimate exceeds a 
certain limit, and new measurements are performed. 
Manipulation continues after the measurements, and so on. 

Figure 10 shows the automatic manipulation of particles 
using the drift compensator. In this experiment the drift 
measurements are only carried out before the manipulation of 
each set of five nanoparticles. Before each manipulation the 
tip waits about 30 seconds (to combat the effects of creep) at 
the approximate location of a particle computed using the drift 
value predicted by the filter. Then it searches for the center of 
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Fig. 9. (a) Drift measurements in the x direction with 30 sec sampling period. 
(b) Drift error in the x direction, defined as the difference between estimated 
and measured values. The measurements are used to estimate the state of drift 
during the time intervals labelled “Measurement State” at the bottom of the 
figure, whereas during the “Prediction State” intervals the estimates are 
predictions only.  
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Fig. 10. Manipulation of 15 nm Au particles using the drift compensator and 
an automatic manipulation procedure. The drift measurements are only 
carried out before the manipulation of each set of five nanoparticles. The 
sampling time for the measurements is 30 sec and the manipulation of each 
particle takes about 40 sec, which includes waiting time to combat creep, 
plus time for the particle-center search. The left panel is the initial, random 
configuration, and the right panel is the final structure, proposed in [17] for a 
QCA inverter. 
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the particle (using the center-search procedure discussed in 
Section III.A and Figure 3) in an area comparable to the size 
of the particle. After that, the particle is manipulated. Because 
large-distance manipulation motions typically are less accurate 
than short ones, we ran the whole process of manipulation 
twice, the first for a gross displacement of particles and the 
second for accurately placing the particles at their target 
positions. The final result is the structure proposed in [17] for 
a Quantum-dot Cellular Automaton (QCA) inverter. Similar 
experiments without drift compensation failed: particles were 
missed or moved to the wrong locations. 

The computational time for the filter operation in these 
experiments is associated primarily with scanning of the 
tracking window (about 8 sec for a 64×64 pixel window) and 
processing of the resulting image (less than 2 sec). The 
compensator is capable of predicting the drift state with an 
error less than 0.5 nm/min for at least 10 minutes. Therefore, 
drift compensation can be run as a background process while 
the AFM executes other tasks such as the manipulation of 
nanoobjects.  

V. CONCLUSION 
 Drift is a major cause of spatial uncertainty in AFMs. It 

causes distortion in AFM images, and it has even more 
deleterious effects on nanomanipulation, where it is often 
responsible for outright failure of the desired operations. Drift 
compensation in today’s instruments is done primarily through 
user interaction. 

This paper presents a Kalman filtering approach to drift 
estimation. The filter updates the origin of the AFM 
coordinates, scheduling measurements when the covariance of 
the error exceeds a given threshold. AFM tip motions are 
always executed in the updated coordinate system and become 
largely immune to drift.  

Sequential manipulation of nanoparticles over a relatively 
long period of time without user intervention is demonstrated 
experimentally. By using drift compensation it will be possible, 
for the first time, to perform manipulation tasks that last several 
hours without a user in the loop, and to construct by AFM 
manipulation nanostructures much more complex and useful 
than those which have been built until now.  

Future work in this area includes more accurate drift 
measurement methods (e.g., by removing the effect of tip 
convolution from the images), and compensation for other 
sources of spatial uncertainty such as creep and hysteresis. 
Coupling the results of this research with high-level planning 
algorithms such as those in [18] will lead to the fully automatic 
construction of complex nanoassemblies. 
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