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Abstract—Self-assembly is expected to become a dominant 
fabrication technique for the nanodevices and systems of the 
future. Traditional, or passive, self-assembly techniques have 
great difficulty in producing the asymmetric structures needed 
by the applications. This paper discusses self-assembly methods 
that use active assembly agents (robots). It shows that swarms of 
such robots that communicate only by very simple messages can 
be programmed to form either wholly or partially specified 
structures, with the construction process possibly involving 
sacrificial components or scaffolds. The assembly agents have 
small memory and communication requirements, and interact 
only when they are in contact. They are good models for future 
nanorobots, which are likely to communicate chemically. 

Keywords-nanorobotics; distributed robotics; reconfigurable 
robotics; swarm robotics; intelligent self-assembly; 
nanofabrication; state-space reduction; partially specified 
structures; assembly from primitive shapes; sacrificial structures 

I.  INTRODUCTION 
Nanotechnology is widely recognized as a crucial 

technology for the 21st century. However, the fabrication of 
structures at the nanoscale (1-100 nm) remains a difficult 
problem. Most of the nanostructures and nanodevices built 
until now have been assembled by using nanomanipulation 
with Scanning Probe Microscopes (SPMs), or fabricated by 
electron-beam or SPM lithography [1]. All of these processes 
are inherently sequential and inappropriate for mass 
production. SPM methods may be parallelized by using multi-
tip arrays instead of single tips [2], but parallel SPM operations 
are still slow for industrial purposes. 

Complex systems are built in nature by self-assembly, a 
process in which components autonomously assemble 
themselves. For example, many life processes involve the 
construction of biomolecules from other molecules that 
recognize each other when they meet under thermal agitation. 
Assembly of larger components under surface tension is an 
interesting example of an artificial version of self-assembly [3]. 
The known examples of self-assembly rely on the environment 
to position the various components. These are passive, and are 
capable only of recognizing and attaching themselves to their 
mating components (thereby producing a configuration with 
lower energy). 

Self-assembly is inherently parallel, and therefore suitable 
(in principle) for the mass production of nanodevices and 
systems. However, the artificial structures produced by self-

assembly until now tend to be symmetric, while most 
applications (e.g., nanoelectronics) require asymmetric 
systems. For example, a typical self-assembled monolayer 
covers uniformly a given surface. In addition, the components 
of passive self-assembled systems are "programmed in 
hardware". In other words, the components themselves must be 
built with the right connecting sites for the desired system to be 
formed. In spite of very interesting work on the theory of self-
assembly by Len Adleman's group at USC [4, 5] and by others, 
it is still very difficult to design a set of components that 
produces a specified structure by self-assembly. To construct 
asymmetric structures, one might try to assemble a set of  
components on a pre-patterned surface. Unfortunately, this 
reduces the problem of constructing a nanostructure to that of 
patterning a surface at the nanoscale, which is not much 
simpler. 

The research reported in this paper is based on a simple 
idea: why not use self-assembling components that are active, 
i.e., not only they sense when they meet others, but also they 
propel themselves and make decisions? In other words, why 
not use robots? These robots (or a subset of them) move 
autonomously into a desired configuration and become the 
structure themselves. Active self-assembling components are 
programmable in the usual sense, which is a major advantage 
over their passive counterparts. This is an idea whose time has 
come, at least at USC, where three groups hit upon it largely 
independently: the distributed robotics group, under Maja 
Matarić and Gaurav Sukhatme [6], the reconfigurable robotics 
group under Wei-Min Shen and Peter Will [7], and the 
Laboratory for Molecular Robotics (LMR) under Ari Requicha, 
Bruce Koel and Mark Thompson. 

Additional motivation for this work comes from our desire 
to understand how to program swarms of nanorobots, and the 
capabilities and limitations of such systems. Nanorobots of the 
future are expected to have limited capabilities. An individual 
nanorobot, because of its minute size, will not be able to do 
much on its own, but complex behaviors may be achievable by 
the coordinated actions of many such robots. Nanorobots are 
most likely to be able to communicate only by using chemical 
signals, which is what their counterparts in nature normally do. 
Chemical communication requires contact between robots (or 
between robots and molecules secreted by other robots). This is 
a significant limitation of nanorobot swarms when compared to 
other systems such as current mobile robots, which can gather 
information about objects at a distance, without touching them. 
Can interesting behaviors still be achieved under such 
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limitations? How? These are the primary issues addressed in 
the remainder of the paper. 

II. 

III. 

IV. 

V. 

VI. 

RELATED WORK 
The concept of active self-assembly was introduced by our 

USC colleagues in [6] and [7]. Previous work is well discussed 
in [6] where the term “Intelligent Self-Assembly” as used 
instead of “Active Self-Assembly”. Here we will provide a 
brief summary.  

Jones and Matarić [6] discussed a particular self-assembly 
technique that is applicable to any fully specified and fully 
connected structure in the plane. This technique places a state 
machine in each of the Assembly Agents. The Assembly 
Agents bind to one another when their states are compatible 
according to the transition rules of the state machine, and then 
transition to new states. The transition rules are automatically 
generated by a compiler which takes the desired planar 
structure as its input. The problem with this approach, from a 
nanotechnology perspective, is that it requires at least one state 
and associated transition rules in its state machine for every 
position of an Assembly Agent in the structure. For a complex 
structure, this results in an unacceptably large memory 
requirement being placed on the Assembly Agents.  

The present paper owes much to the concept of hormone-
based control as described for example in [8] and [9]. The 
"hormones" presented in these papers are messages which 
trigger different actions in different places. Although these 
papers discuss self-reconfigurable robotics rather than self-
assembly, the idea of hormone messages is very applicable to 
the domain of Active Self-Assembly. Wei-Min Shen, Peter 
Will and Berok Khoshnevis have applied hormone-based 
control to self-assembly, but in the context of spaceborne 
operation [7] where communication between non-neighbor 
Assembly Agents is practical, and complex Assembly Agents 
are acceptable. The work presented in this paper makes 
extensive use of hormones, but does so in a context where 
Assembly Agents must be simple and long-range 
communication is unavailable. 

There is also related work in the study of biological swarm 
intelligence, with perhaps the nearest analogue to the present 
paper being the SWARM-BOT of [10]. In many ways, the 
descriptions of pattern-forming behavior in insects and Active 
Self-Assembly are different ways of looking at the same 
phenomenon. See [11, 12] for more on this perspective. 

The general theory of self-assembly has seen a lot of work, 
for example [4, 5], as has assembly by teams of robots [13]. 

ASSEMBLY AGENT REQUIREMENTS 
For the class of algorithms described here to operate, each 

Assembly Agent must have the following capabilities: 

• Store and execute a finite state machine 

• Communicate the current state to adjacent Assembly 
Agents in the structure 

• Accept a message from an adjacent Assembly Agent 
and forward it to N adjacent Assembly Agents 

• Maintain a hop counter on messages 

• Physically attach to other Assembly Agents 

• Perform periodic actions 

• Perform a random walk 

The examples provided in this paper also make use of a 
further ability: the ability to move along the surface of the 
structure. This ability is not critical to the function of the 
system, but it can allow for faster construction by turning the 
whole surface of the structure into a collector that funnels 
Assembly Agents toward areas of active construction. 

TERMINOLOGY 
Assembly Agent: a single entity that takes part in the 

construction of a structure by actively becoming part of that 
structure. 

Swarm: A collection of Assembly Agents. Swarms are 
often considered as single objects. 

Seed: An Assembly Agent that is triggering the growth of a 
structure. Seeds can either be injected into the swarm a priori, 
or an Assembly Agent can become a seed when it senses a 
particular property of the environment. 

State Memory: The part of an Assembly Agent's memory 
that is time dependent. 

State Space: The set of meaningful values that can be stored 
in state memory. 

COMMUNICATION 
When Assembly Agents have the power to communicate 

with their neighbors, the swarm gains significant new 
capabilities. 

The current state of an Assembly Agent is always 
communicated to its connected neighbors. In addition, 
Assembly Agents can send messages. Messages are defined as 
nonstate information that is passed from one neighbor to 
another. The messages used in this paper are elements of a 
predefined subset of the counting numbers, but messages 
containing data fields are conceivable. 

Messages are distinct from communicated state in that 
individual Assembly Agents do not send the same message in 
all directions. Assembly Agents usually transmit messages to 
the neighbor on the opposite side from where the message 
originated. This provides the messages with a property of 
directionality that is necessary for the techniques in this paper 
to work. 

ADVANTAGES OF COMMUNICATION 
By allowing the Assembly Agents to locally pass messages, 

we enable a number of interesting capabilities. We have used 
communication to reduce the state memory requirements of 
Assembly Agents, to enable the assembly of partially specified 
structures, and to construct structures by building and 
disassembling a series of primitive shapes in a known 
sequence. 



A. Reducing the State Space of Assembly Agents 
We reduce the state space of Assembly Agents by dividing 

the state space into a number of non-overlapping sets of states 
and requiring the Assembly Agents to remember only in which 
set is their current state. From this point onward, when we say 
“state” we mean a unique value in state memory, which in our 
technique usually represents a set of physical states. This is a 
gain relative to Jones' and Matarić's work, since it allows 
several positions in the structure to be represented by a single 
value in state memory, as opposed to having several values in 
state memory for each position in the structure. 

To illustrate this, consider the assembly of a square from 
Assembly Agents that are themselves square. While this task 
could certainly be performed by assigning several states to each 
position in the final square (for example, states that mean 
"waiting for a connection on the north side" or "waiting for a 
connection on the east side"), we would like to reduce the 
amount of state memory required. 

We can reduce the state space required to assemble a square 
by noting that a square can be recursively defined as what you 
get when you take a smaller square and perform a Minkowski 
dilation on two sides. In other words, a square consists of a 
nested set of L shapes and a single atomic square. (See Fig. 1)  

Since our Assembly Agents are themselves squares, we 
only need to provide for the L shapes in order to be able to 
create a square. An L can in turn be broken up into two rows of 
Assembly Agents, so the question becomes "how many states 
do we need to represent a row of N assembly agents?"  

At one end, we have a seed, which is periodically sending a 
message out of one face. We can interpret this message as 
meaning "build a row." Other Assembly Agents randomly 
attach to the structure. When one of these agents receives the 
"build a row" message, it transitions to a new state, which we 
can call "in the row." When an Assembly Agent that is "in the 
row" receives a "build a row" message with a hop counter 
equal to the desired length of the row (a parameter determined 
at the time of state machine creation), that agent can conclude 
that the row is complete. Thus, building a row requires only the 
seed, random movement and "in a row" states, though more can 
be added for convenience or to improve various features of the 
construction. 

The end result is that we can build a square using only three 
states. Similar reduction techniques can be used for other 
shapes (approximate triangles, rectangles, etc). These shapes 
can then be used as primitives for assembling more 
complicated shapes. We have built up a small library of these 

primitives. 

B. 

C. 

Assembling Partially Specified  
Structures 
In section VI.A, we had to add 

complexity to the Assembly Agents 
in order to fully specify the shape. In 
particular, the messages we sent had 
to have a hop counter attached to 
them, so that we could tell the 

specific length. If we stop using the hop counter, we lose the 
ability to say "build a line of length N" but we gain the ability 
to say "build a line, of any length." We then have a state 
machine that specifies not a single shape, but a set of shapes. 

This concept allows us to specify shapes that have 
connectivity requirements instead of positional requirements. 
In other words, message propagation without hop counting can 
specify shapes in terms of what is connected to what, instead of 
what is placed where.  

For an example of the utility if this idea, consider the task 
of self-assembling a road between two regions. We don't care 
about what shape the road takes, except that it is necessary that 
the road intersect both of the desired end regions and it cannot 
intersect any obstacles. It is in fact impossible for us to specify 
the precise shape the road is to take unless we know the precise 
locations of the end regions relative to each other. By 
employing partially specified self-assembly, we can describe 
the road well enough for the Assembly Agents to create it even 
without precise positional information. 

After an Assembly Agent has become a seed, it periodically 
sends out "direction" messages to its neighbors, which forward 
the messages further. This directionality is used to move 
Assembly Agents that have attached to the structure but which 
do not yet have a final location away from the anchored end of 
the path to one of the construction ends.  

Once these free Assembly Agents reach an end of the 
structure, they simply sit there until they receive a "direction" 
message, at which point they transition to a state meaning 
"finalized position." If an Assembly Agent in the "finalized 
position" state determines that it is in contact with the second 
endpoint for the path, it transitions into a state meaning "on the 
path." If an Assembly Agent in the "finalized position" state 
sends a "direction" message to an "on the path" Assembly 
Agent, it too transitions to "on the path."  

In this way a single unbranching path is traced backwards 
through the tree from destination to start. Because the 
Assembly Agents are unable to penetrate obstacles, the path is 
guaranteed not to intersect any obstacles. Finally, a message is 
sent out which causes those agents not "on the path" to revert to 
their original random walk state. When the process is over, a 
line of Assembly Agents which forms a path remains. Figs. 2 
(A, B & C) are sequential snapshots of this process in 
operation. 

Sequential Construction  and Sacrificial Structures 
Of particular interest in the road building scenario is that 

the self-assembly process has two stages: a first stage in which 
something that is a superset of the desired shape is built, and a 
second stage in which messages passed through the structure 
 
Figure 1.   Recursivly 

defined square 
Assembly Agents to build lines of a 
 
Figure 2.   Road building sequence 



cause unwanted pieces to remove themselves from the 
structure. 

This highlights two nice features of communication in self-
assembly. One of these features is that a global sequence can be 
imposed on the construction by means of messages passed 
from neighbor to neighbor. The other nice feature is that this 
self-assembly technique supports the creation and subsequent 
removal of sacrificial structures. 

Imposing a global ordering on the construction of a 
structure can be very important, because the order of 
construction can affect whether or not is it possible to complete 
a structure. For example, consider assembling the shape 
represented by the black area in Fig. 3 in a two dimensional 
space. If the assembly technique does not provide ordering, it is 
possible for the outer shell to be completed first, leaving too 
few Assembly Agents inside to complete the rest of the 
structure. There are many analogous structures in three 
dimensions.  

Communication is not unique in its ability to support global 
ordering ([6] supports it as well), but by using communication 
is it possible to consider global ordering on the more coarse 
(and thus less memory intensive) level of sequencing the 
construction of primitive shapes, instead of on the level of 
sequencing individual Assembly Agent binding events. Each 
primitive shape generates a message when it is complete, 
which can be used to command one of the Assembly Agents 
taking part in the structure at a uniquely identifiable location to 
become a seed for the next primitive shape to be added.  

On a square, the corners are such uniquely identifiable 
locations, because the agents in those positions can recognize 
that fact from local topology and message traffic. 

Using communication allows us to treat each of the 
primitive shapes we have thus far constructed as a modular 
component with attachment points for other components. The 
process of creating a state machine to assemble a structure 
made from these primitives is only a matter of stringing 
together the state machines, one after the other, by turning 
Assembly Agents into seeds when they receive the appropriate 
"shape completed" message. 

Related to the ability to perform global ordering is the 
ability to generate and then remove sacrificial structures. 
Sacrificial structures are structural elements that are needed 
during some phase of the construction but which are not 
intended to be part of the final structure. Scaffolds and 
temporary supports are examples of sacrificial structures. 
Sacrificial structures depend on the ability to globally order 
events, since a sacrificial structure that is not present when it is 

needed, or which remains present 
after it is no longer needed, results 
in a failure to construct the desired 
structure. 

The ability to build sacrificial 
structures expands the range of 
shapes that can be self-assembled. 
With sacrificial structures, it is 
possible to self-assemble objects 
that are not fully connected. For 

example, it is possible to construct the shape represented by the 
black area in Fig. 4 by using a sacrificial structural element to 
connect the two parts. Once both parts are built, the sacrificial 
element disassembles itself, leaving the desired structure in 
place. If they are not fully enclosed, the Assembly Agents that 
made up the sacrificial structure can wander away and take part 
in another construction project. 

VII. 

A. 

B. 

1) 

VALIDATION 
Several validations have been performed on the concepts 

presented in this paper. We have implemented state machines 
which perform partially specified road building in both discrete 
and continuous simulated environments, we have written state 
machines which result in the construction of primitive shapes, 
and we have connected the state machines representing 
primitive shapes together to form state machines that construct 
more complicated structures. 

Building roads 
We have created and tested a state machine that results in 

the creation of partially specified roads, as described earlier.  
This state machine has 16 states, and its transition table can be 
stored in 158 bytes.  

A state machine designed in the paradigm described in [6] 
to generate an optimal road in our test environment would have 
approximately twice as many state bits and twice as many 
bytes in the transition table. These factors increase as the 
distance between the end points increases, and the state 
machine is valid only when the end points have the precise 
relative positions that the state machine was designed for.  

Our state machine is smaller, has memory requirements that 
are independent of the size of the built structure, and is robust 
in that it builds a correct structure regardless of the relative 
positions of the endpoints.  

We have not evaluated the reliability of the system, but 
present as anecdotal evidence that we have never seen it fail 
except in cases where it was starved for Assembly Agents. 

Primitive Shapes 
We have created and tested state machines that construct 

the primitive shapes square, rectangle, and approximate 
triangle. The state and transition table memory requirements of 
each of these state machines are independent of the size of the 
built shape. The state machines can be parameterized to 
construct shapes of any size.  

Each of these primitive shapes has several locations that 
can become seeds when the construction of the primitive is 
finished. A portion of a state 
machine for constructing a 
primitive shape is detailed in the 
appendix.  

 
Figure 3.  Problematic 

structure 

 
Figure 4.  Disconnected 

structure 

Squares 
The state machine that creates 

squares causes the structure to grow 
from a seed in one corner of the 
square. In Fig. 5, the seed is in the 



square marked "S." The seed grows 
two perpendicular rows of Assembly 
Agents (in the up and right directions 
in Fig. 5), whose length is controlled 
by counting how many hops a 
message takes when it travels along 
them.  

Once each row is of the right 
length, its members change to a new 
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pattern of message flow that uniquely identifies a completed 
triangle harder. One solution is to make the hypotenuse edge of 
the triangle reflective to completion check messages. Then, a 
triangle can be known to be finished when two completion 
check messages with hop counters either a) equal to the edge 
length or b) equal to the edge length minus 1 are received by an 
Assembly Agent. At this point, the agent can declare the 
triangle finished and send the "shape completed" message for 
the triangle. These criteria are illustrated in Fig. 7.  

 

Figure 5.  Square 

completion criterion 
state in which they forward the seed's 
grow row" messages, with a modified hop count, along the 
xis perpendicular to their original direction of travel. This 
ecursively creates a square by creating nested perpendicular 
ows.  

The square is known to be completed when messages can 
ropagate along the two paths represented by arrows in Fig. 5. 
hen an Assembly Agent with two neighbors receives "check 

or completion" messages from both neighbors, it knows that 
he square is finished and that it may generate the "shape 
ompleted" message. 

2) 

3) 

4) 

VIII. 

Rectangles 
Rectangles grow outward from a seed at one end. The seed 

enerates a single row of Assembly Agents aligned with the 
ong axis of the desired rectangle. Once that row is in place, 
ayers are added to it on each side until the rectangle is of the 
ppropriate width. Width is measured by sending out messages 
erpendicular to the long axis of the rectangle from each 
ssembly agent in the center row, and checking the hop count 
n those messages. Each layer starts at the Seed end, so the last 
wo Assembly Agents to join the structure will be in the two 
orners of the rectangle that are furthest from the seed. 

The rectangle is known to be completed when a message 
an be sent from the seed along the length of the rectangle, then 
ent outward in both directions to the corners and back in to the 
iddle, as shown in Fig. 6.  When an Assembly Agent receives 

oth the version of the completion message sent "up" and the 
ersion sent "down," it knows that the rectangle is complete 
nd that it may send the "shape completed" message. 

Right Triangles  
Triangles grow from a seed in their right-angled corner. 

ike a square, a triangle grows by creating nested L shapes, but 
n the case of the triangle each arm of the L is two Assembly 
gents shorter than the one it is nested within, instead of being 
ne shorter as in the case of the square. Message propagation is 
andled in the same way as with a square; the difference is in 
ow the hop counter is modified when its direction is changed. 

Determining that a triangle is complete requires a bit more 
leverness than does determining that a square or rectangle is 
omplete, because its hypotenuse-edge is an even number of 
essage hops away from the seed when the length of the other 

edges is odd, and an odd 
number of hops away when 
the edge length is even. This 
makes finding a single 

Compound shapes 
We have aggregated state machines for primitive shapes 

into a state machine that generates a compound shape. This 
required the addition of a single extra transition to the system 
per joint between primitives. These extra transitions are 
triggered by the "shape completed" messages, and result in an 
Assembly Agent that is located at a uniquely identifiable 
location within the structure becoming a seed for a new shape. 

 The memory requirements of these aggregate state 
machines are equal to the sum of the requirements of the 
primitives that make them up, plus one transition table entry 
per primitive. For example, the memory required for a 
square+triangle compound shape is equal to the memory 
required for the square and the memory required for the 
triangle, plus a single extra transition entry to turn one of the 
members of the square into a seed for the triangle. 

CONCLUSIONS AND FUTURE WORK 
Swarms of very simple robots can be programmed ro self-

assemble into interesting structures such as wires between 
given shapes, primitive shapes including rectangles and 
triangles, and compositions of primitive shapes. The robots 
have small memories, simple execution mechanisms, and 
communicate with very few messages and only when they are 
in physical contact. These are characteristics that chemically-
communicating nanorobots of the future are expected to have. 
Therefore our work shows that it is likely that complex, 
asymmetric nanostructures may be built by active self-
assembly, which is an inherently parallel process well suited to 
mass production. 

There are many avenues for future research. The most 
exciting would be to demonstrate active self-assembly with 
physical nanorobots, but this must wait until the state of the art 
in nanorobotics has advanced significantly. Extensions that are 
possible now include 3-D self-assembly (in simulation), and 
CAD tools that allow a user to create structures by defining 
primitive shapes, positioning and scaling them, linking them to 
produce composite objects, and in turn linking these together, 
much like the mechanical CAD systems of today. The finite 
state machines and other information required to self-assemble 
the structures in the proposed CAD tool would be generated 
automatically 
by the tool. 

 

Figure 6.  Rectangle completion 

criterion 

Figure 7.  Triangle completion criteria 
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Figure A.1 Excerpt of state machine code for square 
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