
Active Self-Assembly

Daniel Arbuckle and Aristides A. G. Requicha
Laboratory for Molecular Robotics
University of Southern California

Los Angeles, USA
darbuckl@usc.edu requicha@usc.edu

Abstract—Self-assembly is expected to become a dominant
fabrication technique for the nanodevices and systems of the
future. Traditional, or passive, self-assembly techniques have
great difficulty in producing the asymmetric structures needed
by the applications. This paper discusses self-assembly methods
that use active assembly agents (robots). It shows that swarms of
such robots that communicate only by very simple messages can
be programmed to form either wholly or partially specified
structures, with the construction process possibly involving
sacrificial components or scaffolds. The assembly agents have
small memory and communication requirements, and interact
only when they are in contact. They are good models for future
nanorobots, which are likely to communicate chemically.

Keywords-nanorobotics; distributed robotics; reconfigurable
robotics; swarm robotics; intelligent self-assembly;
nanofabrication; state-space reduction; partially specified
structures; assembly from primitive shapes; sacrificial structures

I. INTRODUCTION
Nanotechnology is widely recognized as a crucial

technology for the 21st century. However, the fabrication of
structures at the nanoscale (1-100 nm) remains a difficult
problem. Most of the nanostructures and nanodevices built
until now have been assembled by using nanomanipulation
with Scanning Probe Microscopes (SPMs), or fabricated by
electron-beam or SPM lithography [1]. All of these processes
are inherently sequential and inappropriate for mass
production. SPM methods may be parallelized by using multi-
tip arrays instead of single tips [2], but parallel SPM operations
are still slow for industrial purposes.

Complex systems are built in nature by self-assembly, a
process in which components autonomously assemble
themselves. For example, many life processes involve the
construction of biomolecules from other molecules that
recognize each other when they meet under thermal agitation.
Assembly of larger components under surface tension is an
interesting example of an artificial version of self-assembly [3].
The known examples of self-assembly rely on the environment
to position the various components. These are passive, and are
capable only of recognizing and attaching themselves to their
mating components (thereby producing a configuration with
lower energy).

Self-assembly is inherently parallel, and therefore suitable
(in principle) for the mass production of nanodevices and
systems. However, the artificial structures produced by self-

assembly until now tend to be symmetric, while most
applications (e.g., nanoelectronics) require asymmetric
systems. For example, a typical self-assembled monolayer
covers uniformly a given surface. In addition, the components
of passive self-assembled systems are "programmed in
hardware". In other words, the components themselves must be
built with the right connecting sites for the desired system to be
formed. In spite of very interesting work on the theory of self-
assembly by Len Adleman's group at USC [4, 5] and by others,
it is still very difficult to design a set of components that
produces a specified structure by self-assembly. To construct
asymmetric structures, one might try to assemble a set of
components on a pre-patterned surface. Unfortunately, this
reduces the problem of constructing a nanostructure to that of
patterning a surface at the nanoscale, which is not much
simpler.

The research reported in this paper is based on a simple
idea: why not use self-assembling components that are active,
i.e., not only they sense when they meet others, but also they
propel themselves and make decisions? In other words, why
not use robots? These robots (or a subset of them) move
autonomously into a desired configuration and become the
structure themselves. Active self-assembling components are
programmable in the usual sense, which is a major advantage
over their passive counterparts. This is an idea whose time has
come, at least at USC, where three groups hit upon it largely
independently: the distributed robotics group, under Maja
Matarić and Gaurav Sukhatme [6], the reconfigurable robotics
group under Wei-Min Shen and Peter Will [7], and the
Laboratory for Molecular Robotics (LMR) under Ari Requicha,
Bruce Koel and Mark Thompson.

Additional motivation for this work comes from our desire
to understand how to program swarms of nanorobots, and the
capabilities and limitations of such systems. Nanorobots of the
future are expected to have limited capabilities. An individual
nanorobot, because of its minute size, will not be able to do
much on its own, but complex behaviors may be achievable by
the coordinated actions of many such robots. Nanorobots are
most likely to be able to communicate only by using chemical
signals, which is what their counterparts in nature normally do.
Chemical communication requires contact between robots (or
between robots and molecules secreted by other robots). This is
a significant limitation of nanorobot swarms when compared to
other systems such as current mobile robots, which can gather
information about objects at a distance, without touching them.
Can interesting behaviors still be achieved under such

The research reported in this paper was supported in part by the NSF
under grants IIS-99-87977, EIA-01-21141 and DMI-02-09678, and
Cooperative Agreement CCR-01-20778.

limitations? How? These are the primary issues addressed in
the remainder of the paper.

II.

III.

IV.

V.

VI.

RELATED WORK
The concept of active self-assembly was introduced by our

USC colleagues in [6] and [7]. Previous work is well discussed
in [6] where the term “Intelligent Self-Assembly” as used
instead of “Active Self-Assembly”. Here we will provide a
brief summary.

Jones and Matarić [6] discussed a particular self-assembly
technique that is applicable to any fully specified and fully
connected structure in the plane. This technique places a state
machine in each of the Assembly Agents. The Assembly
Agents bind to one another when their states are compatible
according to the transition rules of the state machine, and then
transition to new states. The transition rules are automatically
generated by a compiler which takes the desired planar
structure as its input. The problem with this approach, from a
nanotechnology perspective, is that it requires at least one state
and associated transition rules in its state machine for every
position of an Assembly Agent in the structure. For a complex
structure, this results in an unacceptably large memory
requirement being placed on the Assembly Agents.

The present paper owes much to the concept of hormone-
based control as described for example in [8] and [9]. The
"hormones" presented in these papers are messages which
trigger different actions in different places. Although these
papers discuss self-reconfigurable robotics rather than self-
assembly, the idea of hormone messages is very applicable to
the domain of Active Self-Assembly. Wei-Min Shen, Peter
Will and Berok Khoshnevis have applied hormone-based
control to self-assembly, but in the context of spaceborne
operation [7] where communication between non-neighbor
Assembly Agents is practical, and complex Assembly Agents
are acceptable. The work presented in this paper makes
extensive use of hormones, but does so in a context where
Assembly Agents must be simple and long-range
communication is unavailable.

There is also related work in the study of biological swarm
intelligence, with perhaps the nearest analogue to the present
paper being the SWARM-BOT of [10]. In many ways, the
descriptions of pattern-forming behavior in insects and Active
Self-Assembly are different ways of looking at the same
phenomenon. See [11, 12] for more on this perspective.

The general theory of self-assembly has seen a lot of work,
for example [4, 5], as has assembly by teams of robots [13].

ASSEMBLY AGENT REQUIREMENTS
For the class of algorithms described here to operate, each

Assembly Agent must have the following capabilities:

• Store and execute a finite state machine

• Communicate the current state to adjacent Assembly
Agents in the structure

• Accept a message from an adjacent Assembly Agent
and forward it to N adjacent Assembly Agents

• Maintain a hop counter on messages

• Physically attach to other Assembly Agents

• Perform periodic actions

• Perform a random walk

The examples provided in this paper also make use of a
further ability: the ability to move along the surface of the
structure. This ability is not critical to the function of the
system, but it can allow for faster construction by turning the
whole surface of the structure into a collector that funnels
Assembly Agents toward areas of active construction.

TERMINOLOGY
Assembly Agent: a single entity that takes part in the

construction of a structure by actively becoming part of that
structure.

Swarm: A collection of Assembly Agents. Swarms are
often considered as single objects.

Seed: An Assembly Agent that is triggering the growth of a
structure. Seeds can either be injected into the swarm a priori,
or an Assembly Agent can become a seed when it senses a
particular property of the environment.

State Memory: The part of an Assembly Agent's memory
that is time dependent.

State Space: The set of meaningful values that can be stored
in state memory.

COMMUNICATION
When Assembly Agents have the power to communicate

with their neighbors, the swarm gains significant new
capabilities.

The current state of an Assembly Agent is always
communicated to its connected neighbors. In addition,
Assembly Agents can send messages. Messages are defined as
nonstate information that is passed from one neighbor to
another. The messages used in this paper are elements of a
predefined subset of the counting numbers, but messages
containing data fields are conceivable.

Messages are distinct from communicated state in that
individual Assembly Agents do not send the same message in
all directions. Assembly Agents usually transmit messages to
the neighbor on the opposite side from where the message
originated. This provides the messages with a property of
directionality that is necessary for the techniques in this paper
to work.

ADVANTAGES OF COMMUNICATION
By allowing the Assembly Agents to locally pass messages,

we enable a number of interesting capabilities. We have used
communication to reduce the state memory requirements of
Assembly Agents, to enable the assembly of partially specified
structures, and to construct structures by building and
disassembling a series of primitive shapes in a known
sequence.

A. Reducing the State Space of Assembly Agents
We reduce the state space of Assembly Agents by dividing

the state space into a number of non-overlapping sets of states
and requiring the Assembly Agents to remember only in which
set is their current state. From this point onward, when we say
“state” we mean a unique value in state memory, which in our
technique usually represents a set of physical states. This is a
gain relative to Jones' and Matarić's work, since it allows
several positions in the structure to be represented by a single
value in state memory, as opposed to having several values in
state memory for each position in the structure.

To illustrate this, consider the assembly of a square from
Assembly Agents that are themselves square. While this task
could certainly be performed by assigning several states to each
position in the final square (for example, states that mean
"waiting for a connection on the north side" or "waiting for a
connection on the east side"), we would like to reduce the
amount of state memory required.

We can reduce the state space required to assemble a square
by noting that a square can be recursively defined as what you
get when you take a smaller square and perform a Minkowski
dilation on two sides. In other words, a square consists of a
nested set of L shapes and a single atomic square. (See Fig. 1)

Since our Assembly Agents are themselves squares, we
only need to provide for the L shapes in order to be able to
create a square. An L can in turn be broken up into two rows of
Assembly Agents, so the question becomes "how many states
do we need to represent a row of N assembly agents?"

At one end, we have a seed, which is periodically sending a
message out of one face. We can interpret this message as
meaning "build a row." Other Assembly Agents randomly
attach to the structure. When one of these agents receives the
"build a row" message, it transitions to a new state, which we
can call "in the row." When an Assembly Agent that is "in the
row" receives a "build a row" message with a hop counter
equal to the desired length of the row (a parameter determined
at the time of state machine creation), that agent can conclude
that the row is complete. Thus, building a row requires only the
seed, random movement and "in a row" states, though more can
be added for convenience or to improve various features of the
construction.

The end result is that we can build a square using only three
states. Similar reduction techniques can be used for other
shapes (approximate triangles, rectangles, etc). These shapes
can then be used as primitives for assembling more
complicated shapes. We have built up a small library of these

primitives.

B.

C.

Assembling Partially Specified
Structures
In section VI.A, we had to add

complexity to the Assembly Agents
in order to fully specify the shape. In
particular, the messages we sent had
to have a hop counter attached to
them, so that we could tell the

specific length. If we stop using the hop counter, we lose the
ability to say "build a line of length N" but we gain the ability
to say "build a line, of any length." We then have a state
machine that specifies not a single shape, but a set of shapes.

This concept allows us to specify shapes that have
connectivity requirements instead of positional requirements.
In other words, message propagation without hop counting can
specify shapes in terms of what is connected to what, instead of
what is placed where.

For an example of the utility if this idea, consider the task
of self-assembling a road between two regions. We don't care
about what shape the road takes, except that it is necessary that
the road intersect both of the desired end regions and it cannot
intersect any obstacles. It is in fact impossible for us to specify
the precise shape the road is to take unless we know the precise
locations of the end regions relative to each other. By
employing partially specified self-assembly, we can describe
the road well enough for the Assembly Agents to create it even
without precise positional information.

After an Assembly Agent has become a seed, it periodically
sends out "direction" messages to its neighbors, which forward
the messages further. This directionality is used to move
Assembly Agents that have attached to the structure but which
do not yet have a final location away from the anchored end of
the path to one of the construction ends.

Once these free Assembly Agents reach an end of the
structure, they simply sit there until they receive a "direction"
message, at which point they transition to a state meaning
"finalized position." If an Assembly Agent in the "finalized
position" state determines that it is in contact with the second
endpoint for the path, it transitions into a state meaning "on the
path." If an Assembly Agent in the "finalized position" state
sends a "direction" message to an "on the path" Assembly
Agent, it too transitions to "on the path."

In this way a single unbranching path is traced backwards
through the tree from destination to start. Because the
Assembly Agents are unable to penetrate obstacles, the path is
guaranteed not to intersect any obstacles. Finally, a message is
sent out which causes those agents not "on the path" to revert to
their original random walk state. When the process is over, a
line of Assembly Agents which forms a path remains. Figs. 2
(A, B & C) are sequential snapshots of this process in
operation.

Sequential Construction and Sacrificial Structures
Of particular interest in the road building scenario is that

the self-assembly process has two stages: a first stage in which
something that is a superset of the desired shape is built, and a
second stage in which messages passed through the structure

Figure 1. Recursivly

defined square
Assembly Agents to build lines of a

Figure 2. Road building sequence

cause unwanted pieces to remove themselves from the
structure.

This highlights two nice features of communication in self-
assembly. One of these features is that a global sequence can be
imposed on the construction by means of messages passed
from neighbor to neighbor. The other nice feature is that this
self-assembly technique supports the creation and subsequent
removal of sacrificial structures.

Imposing a global ordering on the construction of a
structure can be very important, because the order of
construction can affect whether or not is it possible to complete
a structure. For example, consider assembling the shape
represented by the black area in Fig. 3 in a two dimensional
space. If the assembly technique does not provide ordering, it is
possible for the outer shell to be completed first, leaving too
few Assembly Agents inside to complete the rest of the
structure. There are many analogous structures in three
dimensions.

Communication is not unique in its ability to support global
ordering ([6] supports it as well), but by using communication
is it possible to consider global ordering on the more coarse
(and thus less memory intensive) level of sequencing the
construction of primitive shapes, instead of on the level of
sequencing individual Assembly Agent binding events. Each
primitive shape generates a message when it is complete,
which can be used to command one of the Assembly Agents
taking part in the structure at a uniquely identifiable location to
become a seed for the next primitive shape to be added.

On a square, the corners are such uniquely identifiable
locations, because the agents in those positions can recognize
that fact from local topology and message traffic.

Using communication allows us to treat each of the
primitive shapes we have thus far constructed as a modular
component with attachment points for other components. The
process of creating a state machine to assemble a structure
made from these primitives is only a matter of stringing
together the state machines, one after the other, by turning
Assembly Agents into seeds when they receive the appropriate
"shape completed" message.

Related to the ability to perform global ordering is the
ability to generate and then remove sacrificial structures.
Sacrificial structures are structural elements that are needed
during some phase of the construction but which are not
intended to be part of the final structure. Scaffolds and
temporary supports are examples of sacrificial structures.
Sacrificial structures depend on the ability to globally order
events, since a sacrificial structure that is not present when it is

needed, or which remains present
after it is no longer needed, results
in a failure to construct the desired
structure.

The ability to build sacrificial
structures expands the range of
shapes that can be self-assembled.
With sacrificial structures, it is
possible to self-assemble objects
that are not fully connected. For

example, it is possible to construct the shape represented by the
black area in Fig. 4 by using a sacrificial structural element to
connect the two parts. Once both parts are built, the sacrificial
element disassembles itself, leaving the desired structure in
place. If they are not fully enclosed, the Assembly Agents that
made up the sacrificial structure can wander away and take part
in another construction project.

VII.

A.

B.

1)

VALIDATION
Several validations have been performed on the concepts

presented in this paper. We have implemented state machines
which perform partially specified road building in both discrete
and continuous simulated environments, we have written state
machines which result in the construction of primitive shapes,
and we have connected the state machines representing
primitive shapes together to form state machines that construct
more complicated structures.

Building roads
We have created and tested a state machine that results in

the creation of partially specified roads, as described earlier.
This state machine has 16 states, and its transition table can be
stored in 158 bytes.

A state machine designed in the paradigm described in [6]
to generate an optimal road in our test environment would have
approximately twice as many state bits and twice as many
bytes in the transition table. These factors increase as the
distance between the end points increases, and the state
machine is valid only when the end points have the precise
relative positions that the state machine was designed for.

Our state machine is smaller, has memory requirements that
are independent of the size of the built structure, and is robust
in that it builds a correct structure regardless of the relative
positions of the endpoints.

We have not evaluated the reliability of the system, but
present as anecdotal evidence that we have never seen it fail
except in cases where it was starved for Assembly Agents.

Primitive Shapes
We have created and tested state machines that construct

the primitive shapes square, rectangle, and approximate
triangle. The state and transition table memory requirements of
each of these state machines are independent of the size of the
built shape. The state machines can be parameterized to
construct shapes of any size.

Each of these primitive shapes has several locations that
can become seeds when the construction of the primitive is
finished. A portion of a state
machine for constructing a
primitive shape is detailed in the
appendix.

Figure 3. Problematic

structure

Figure 4. Disconnected

structure

Squares
The state machine that creates

squares causes the structure to grow
from a seed in one corner of the
square. In Fig. 5, the seed is in the

square marked "S." The seed grows
two perpendicular rows of Assembly
Agents (in the up and right directions
in Fig. 5), whose length is controlled
by counting how many hops a
message takes when it travels along
them.

Once each row is of the right
length, its members change to a new

"
a
r
r

p
W
f
t
c

g
l
l
a
p
A
o
t
c

c
s
m
b
v
a

L
i
A
o
h
h

c
c
m

pattern of message flow that uniquely identifies a completed
triangle harder. One solution is to make the hypotenuse edge of
the triangle reflective to completion check messages. Then, a
triangle can be known to be finished when two completion
check messages with hop counters either a) equal to the edge
length or b) equal to the edge length minus 1 are received by an
Assembly Agent. At this point, the agent can declare the
triangle finished and send the "shape completed" message for
the triangle. These criteria are illustrated in Fig. 7.

Figure 5. Square

completion criterion
state in which they forward the seed's
grow row" messages, with a modified hop count, along the
xis perpendicular to their original direction of travel. This
ecursively creates a square by creating nested perpendicular
ows.

The square is known to be completed when messages can
ropagate along the two paths represented by arrows in Fig. 5.
hen an Assembly Agent with two neighbors receives "check

or completion" messages from both neighbors, it knows that
he square is finished and that it may generate the "shape
ompleted" message.

2)

3)

4)

VIII.

Rectangles
Rectangles grow outward from a seed at one end. The seed

enerates a single row of Assembly Agents aligned with the
ong axis of the desired rectangle. Once that row is in place,
ayers are added to it on each side until the rectangle is of the
ppropriate width. Width is measured by sending out messages
erpendicular to the long axis of the rectangle from each
ssembly agent in the center row, and checking the hop count
n those messages. Each layer starts at the Seed end, so the last
wo Assembly Agents to join the structure will be in the two
orners of the rectangle that are furthest from the seed.

The rectangle is known to be completed when a message
an be sent from the seed along the length of the rectangle, then
ent outward in both directions to the corners and back in to the
iddle, as shown in Fig. 6. When an Assembly Agent receives

oth the version of the completion message sent "up" and the
ersion sent "down," it knows that the rectangle is complete
nd that it may send the "shape completed" message.

Right Triangles
Triangles grow from a seed in their right-angled corner.

ike a square, a triangle grows by creating nested L shapes, but
n the case of the triangle each arm of the L is two Assembly
gents shorter than the one it is nested within, instead of being
ne shorter as in the case of the square. Message propagation is
andled in the same way as with a square; the difference is in
ow the hop counter is modified when its direction is changed.

Determining that a triangle is complete requires a bit more
leverness than does determining that a square or rectangle is
omplete, because its hypotenuse-edge is an even number of
essage hops away from the seed when the length of the other

edges is odd, and an odd
number of hops away when
the edge length is even. This
makes finding a single

Compound shapes
We have aggregated state machines for primitive shapes

into a state machine that generates a compound shape. This
required the addition of a single extra transition to the system
per joint between primitives. These extra transitions are
triggered by the "shape completed" messages, and result in an
Assembly Agent that is located at a uniquely identifiable
location within the structure becoming a seed for a new shape.

 The memory requirements of these aggregate state
machines are equal to the sum of the requirements of the
primitives that make them up, plus one transition table entry
per primitive. For example, the memory required for a
square+triangle compound shape is equal to the memory
required for the square and the memory required for the
triangle, plus a single extra transition entry to turn one of the
members of the square into a seed for the triangle.

CONCLUSIONS AND FUTURE WORK
Swarms of very simple robots can be programmed ro self-

assemble into interesting structures such as wires between
given shapes, primitive shapes including rectangles and
triangles, and compositions of primitive shapes. The robots
have small memories, simple execution mechanisms, and
communicate with very few messages and only when they are
in physical contact. These are characteristics that chemically-
communicating nanorobots of the future are expected to have.
Therefore our work shows that it is likely that complex,
asymmetric nanostructures may be built by active self-
assembly, which is an inherently parallel process well suited to
mass production.

There are many avenues for future research. The most
exciting would be to demonstrate active self-assembly with
physical nanorobots, but this must wait until the state of the art
in nanorobotics has advanced significantly. Extensions that are
possible now include 3-D self-assembly (in simulation), and
CAD tools that allow a user to create structures by defining
primitive shapes, positioning and scaling them, linking them to
produce composite objects, and in turn linking these together,
much like the mechanical CAD systems of today. The finite
state machines and other information required to self-assemble
the structures in the proposed CAD tool would be generated
automatically
by the tool.

Figure 6. Rectangle completion

criterion

Figure 7. Triangle completion criteria

[11] E. Bonabeau, M. Dorigo, and G Theraulaz, Swarm Intelligence: From
Natural to Artificial Systems. Oxford: Oxford University Press, 1999.

TRANS WANDER WANDER TIMER REORIENT
TRANS WANDER PLACED TOUCH+SOUTH=SEED GRAB/SOUTH
TRANS WANDER PLACED TOUCH+WEST=SEED GRAB/WEST
TRANS WANDER MATERIAL TOUCH+SOUTH=PLACED GRAB/SOUTH
TRANS WANDER MATERIAL TOUCH+WEST=PLACED GRAB/WEST
TRANS WANDER MATERIAL TOUCH+NORTH=PLACED GRAB/NORTH
TRANS WANDER MATERIAL TOUCH+EAST=PLACED GRAB/EAST
TRANS WANDER MATERIAL TOUCH+SOUTH=FINAL GRAB/SOUTH
TRANS WANDER MATERIAL TOUCH+WEST=FINAL GRAB/WEST
TRANS WANDER WANDER ELSE MOVE

Figure A.1 Excerpt of state machine code for square

REFERENCES
[12] E. Bonabeau, G. Theraulaz, E. Arpin and E. Sardet. “The Building

Behavior of Lattice Swarms.” Proc. Fourth International Conference on
Artificial Life, MIT Press, Cambridge, MA, pp. 307-312, 1994.

[1] A. A. G. Requicha, “Nanorobots, NEMS and Nanoassembly”, Proc.
IEEE, Special Issue on Nanoelectronics and Nanoprocessing, Vol 91,
No. 11, pp. 1922-1933, November 2003

[13] Jens Wawerla, Gaurav Sukhatme, and Maja J. Mataric´. “Collective
Construction with Multiple Robots.” Proc. IEEE/RSJ International
Conference on Robotics and Intelligent Systems, Lausanne, Switzerland,
Vol. 3, pp. 2696-2701, Oct 2002

[2] D. J. Arbuckle and A. A. G. Requicha, “Massively Parallel Scanning
Probe Nanolithography”, Proc. 3rd. IEEE Intl. Conf. on
Nanotechnology, S. Francisco, CA, Vol. 1, pp. 72-74, August 12-14,
2003.

[3] R. R. A. Syms, E. M. Yeatman, V. M. Bright and G. M. Whitesides,
“Surface-tension-powered self-assembly of microstructures – The State
of the Art”, J Microelectromechanical Systems, Vol. 12, No. 4, pp 387-
417, August 2003.

APPENDIX: EXAMPLE STATE MACHINE CODE
The code in Fig. A.1 is excerpted from the state machine

that controls the construction of our square primitive shape.
This particular instance has been parameterized to represent a
square with its seed in the "lower left" corner. The complete
state machine has 46 transitions between 6 states. The
excerpted code represents the transitions from the random walk
state, called “wander.” The syntax “trans state1 state2” means
that the line describes a transition from the state called “state1”
to the state called “state2”.

[4] Adleman, L., “Toward a mathematical theory of self-assembly,”
Technical Report 00-722, Department of Computer Science, University
of Southern California. 2000.

[5] L. Adleman, Q. Cheng, A. Goel and M. Huang, “Running time and
program size for self-assembled squares”, Proc. ACM Symposium on
Theory of Computing, Heraklion, Greece, pp. 740-748, July 6-8 2001

[6] Chris V. Jones and Maja J. Mataric´. "From Local to Global Behavior in
Intelligent Self-Assembly". Proc. IEEE Intl. Conf. on Robotics and
Automation, Taipei, Taiwan, pp. 721-726, Sep 14-19 2003

The state machine transitions between states when there is a
transition condition that matches the current state. For example,
in the code shown, the syntax “TOUCH+WEST=final” means
that the transition should take place when the neighboring
Assembly Agent in the direction called ‘west’ is in the state
“final.” When the state machine transitions, it may send control
signals such as “grab/WEST,” which means that the Assembly
Agent should grab its neighbor to the west.

[7] Wei-Min Shen, Peter Will, Berok Khoshnevis, “Self-Assembly in Space
via Self-Reconfigurable Robots”, Proc. IEEE Intl. Conf. on Robotics &
Automation, Taipei, Taiwan, pp. 721-726, Sep 14-19 2003.

[8] Shen, W.-M., Y. Lu and P. Will, "Hormone-based control for self-
reconfigurable robots.", Proc. Intl. Conf. Autonomous Agents, Barcelona,
Spain, pp. 1-8, June 3-7 2000.

[9] B. Salemi, W.-M. Shen and P. Will, "Hormone Controlled Metamorphic
Robots", Proc. IEEE Intl. Conf. on Robotics and Automation, Seoul,
Korea, Vol. 4, pp. 4194-4199, May 21-26 2001.

[10] E. Sahin, T. H. Labella, V. Trianni, J-L Deneubourg, P. Rasse, D.
Floreano, L. Gambardella, F. Mondada, S. Nolfi, M. Dorigo, "SWARM-
BOT: Pattern Formation in a Swarm Of Self-Assembling Mobile
Robots" , Proc. IEEE Intl. Conf. on Systems, Man and Cybernetics,
Hammamet, Tunisia, Vol. 4, Oct. 2002.

	Introduction
	Related Work
	Assembly Agent Requirements
	Terminology
	Communication
	Advantages of Communication
	Reducing the State Space of Assembly Agents
	Assembling Partially Specified Structures
	Sequential Construction and Sacrificial Structures

	Validation
	Building roads
	Primitive Shapes
	Squares
	Rectangles
	Right Triangles
	Compound shapes

	Conclusions and Future Work
	
	
	
	References
	Appendix: Example State Machine Code

